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1 INTRODUCTION

Allocation latency, access locality and performance

scalability are three key factors affecting the effi-

ciency of a memory allocator for many cores. How-

ever, many previous state-of-the-art memory alloca-

tors focus one or two of them, making the applica-

tion performance not satisfactory enough when the

other factors become dominant.

Moreover, our investigation (detailed data in sec-

tion 3) indicates that most state-of-art memory allo-

cators cannot maintain stable scalability and local-

ity when the number of threads exceeds the num-

ber of cores, which may be common in nowadays

software. We believe that performance stability is

equally important to the above three factors as it can

provide more predictable performance for many ap-

plications requiring frequent memory allocation.

This paper presents a new memory allocator

(called SSMalloc) that provide low-latency and

locality-conscious memory management with stable

performance scalability even with a large number of

application threads. The key design decisions un-

derlying SSMalloc include: 1) providing low and

predictable latency for memory management oper-

ations through carefully minimized critical path; 2)

minimizing mmap system calls that might be con-

tended in kernel; 3) adopting lock-free and mostly

wait-free algorithms.

We have implemented a prototype version of

SSMalloc and evaluated its performance and scal-

ability against state-of-the-art memory allocators.

Experiments using a number of commonly used

allocation-benchmarks running on a 48-core ma-

chines show that for most cases SSMalloc outper-

forms prior systems in allocation latency and access

locality, and provides more stable and scalable per-

formance.

2 DESIGN OF SSMALLOC

Design Principles: The most important design goal

of SSMalloc is stable scalability. Hence, SSMal-

loc should be lock-free. However, pure lock-free

memory allocator is impossible in nowadays oper-

ating system. Multiple threads that perform VM

management operations (e.g. mmap, munmap) si-

multaneously will contend in kernel [1]. In the OS

kernel, these operations are usually being executed

with a global lock held. The design of SSMalloc

strictly limits the number of VM management sys-

tem calls, whereby most of the possible kernel-level

contention are avoided.

Another requirement is low and predictable la-

tency. To achieve predictable latency, SSMalloc is

designed to be nearly wait-free. Use of loops is

strictly limited in lock-free synchronization. The

other part of the algorithm could be done in bounded

steps, where the critical path of SSMalloc is very

short.

To achieve stable cache locality, all the data struc-

tures are carefully arranged. Fields frequently used

together locally are grouped into the same cache

line. Fields that may be read or write by multi-

ple threads are separated in different cache lines to
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avoid false sharing.

Overall Structure: The structure of SSMalloc is

showed in Figure 1. SSMalloc maintains a private

heap for each application thread. A thread oper-

ates on its own heap for most requests, thus elim-

inates most of the synchronization. Each private

heap holds several fixed-size memory chunks. A

memory chunk contains many objects of the same

size class.
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Figure 1: Overall Architecture of SSMalloc

When the thread private heap space is insufficient

to fulfill a subsequent request, a free memory chunk

is fetched from a global pool. If the thread private

heap holds too many free memory chunks, some

chunks will be reclaimed back to the global pool.

Most of the operations on global pool is done purely

by lock-free operations except for global pool en-

largement. Note that we could easily eliminate this

only lock by allowing different threads to enlarge

the global pool simultaneously, However, it is use-

less since memory map operations will contend in

kernel.

2.1 Memory Chunks

Memory chunk is the basic unit of the memory

exchange between the private heap and the global

pool. It is composed of a 65536-bytes data area

and a 256-bytes header. Each memory chunk stores

memory objects of the same size class.

Allocations requests smaller than 64KB are con-

sidered as small allocations, which are directly han-

dled in the private heap without interfering with

other threads. Small allocations are subdivided into

several predefined size classes. A memory request

is served with a memory block of the nearest size

class. SSMalloc chooses three sets of size classes:

Tiny (8B, 12B, 16B, 20B, ... , 60B, 64B); Medium

(80B, 96B, ...,256B); and Large (384B, 512B, ...

,32768B, 49152B, 65536B).

Data area of the memory chunk is divided into

clean area and dirty area. Memory in clean area

has never been touched in the memory chunk. The

header maintains a pointer to the clean area and a

list of deallocated objects. During an allocation, SS-

Malloc first tries to pop a free object in this list. If

the list is empty, memory will be allocated from the

clean area by increasing the clean pointer. Design-

ing the memory chunk includes several other con-

siderations:

Uniform Memory Chunk Size for Memory

Reuse: Memory chunk size is crucial to SSMal-

loc’s performance. Smaller chunk size forces pri-

vate heaps to perform more synchronization with

the global pool to acquire the same amount of mem-

ory, thus suppress the scalability of the allocator,

while larger chunks introduce more memory frag-

mentation, which result in poor spatial locality and

comparably higher memory consumption.

A typical approach adapted by many other allo-

cators is using larger chunks for larger classes. It

ensures that memory chunks for every class con-

tains enough available memory objects. In contrast,

memory chunks in SSMalloc are of the same size

for all the size classes. In most applications, small

object allocation is far more frequently than large

ones. This design naturally guarantees that a mem-

ory chunk for smaller size class contains more avail-

able memory objects. Further, this design brings

several more benefits: 1) In the private heap, the size

class for memory objects could be changed instantly

without additional coalescing and splitting of mem-

ory areas. It allows memory chunks to be easily

reused as other size classes within the private heap.

2) The design of the global pool is greatly simpli-

fied, which makes a lock-free global pool possible.

3) Indexing the metadata of a memory object be-

came straightforward and can be done by a simple

alignment operation, as described below.

Per-chunk Metadata to Ease Locating: Mem-

ory allocators often cluster metadata in a central-

ized area, which improves spatial memory local-

ity by eliminating per-object header but make it

harder to locate metadata during deallocation. Spe-

cial hashtable or page-table-like structures are often

used to index the metadata, which is usually costly.
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In SSMalloc, metadata are placed in the per-

chunk header. Spatial locality is still preserved since

there is no metadata in the data area of a memory

chunk. As memory chunks are placed one after an-

other in heap space, locating metadata is as sim-

ple as aligning the address of memory object to the

chunk boundary, which is a simple O(1) operation.

Unaligned Chunk to Reduce Cache Conflict:

As described above, the size of memory chunks in

SSMalloc is 65536 bytes + 256 bytes, which is not

aligned to page size. Although it would be easier to

manage memory resources if memory chunk size is

aligned, all the headers would be placed at the be-

ginning of memory pages, thus occupying the same

cache sets. Accessing these headers will result in se-

vere cache conflicts. We address this problem by as-

signing an unaligned size to memory chunks, which

staggers cache lines used by different headers and

consequently balances the load of cache access.

2.2 Private Heap

Each private heap belongs to an application thread.

It is allocated when a thread performs its first alloca-

tion. All the small allocations are directly handled

in it. This design is an important guarantee of over-

all scalability.
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Figure 2: Private Heap in SSMalloc.

Figure 2 shows the basic structure of a private

heap. A private heap maintains several memory

chunks in different states as listed below.

Foreground Chunks are chunks currently in use,

which are responsible for the next allocation. Hence

there is at least one free object in each chunk. A

private heap maintains one Foreground Chunk for

each size class.

Full Chunks are chunks with no available mem-

ory objects. After all the objects are allocated, a

Foreground Chunk becomes a Full Chunk and a new

Foreground Chunk is selected.

Background Chunks contains one or more free

objects. Freeing a single object in a Full Chunk

makes it to be a Background Chunk. They are main-

tained in lists in private heaps.

Local Free Chunks are completely free chunks

that are temporarily cached in the private heap. A

Local Free Chunk could be directly converted into

a memory chunk of any size class and reused lo-

cally. When the free chunk cache in private heap is

overpopulated, additional free chunks are released

to the global memory pool and become Global Free

Chunks.

Dummy Chunk is a special pseudo chunk that

contains a valid header and only one available mem-

ory object. When a private heap is allocated, all

the Foreground Chunk pointers points to a sin-

gle Dummy Chunk that resides in the private heap

header. During the first allocation in a size class,

the dummy chunk will be replaced by a real mem-

ory chunk. This trick eliminates the validity check

of memory chunk in critical path.

2.3 Global Pool

Global pool manages memory chunks and private

heaps in the lowest level of SSMalloc. All the mem-

ory chunks and private heaps are allocated from the

Global Pool. Detailed structure of the Global Pool

is illustrated in Figure 3.
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Figure 3: Global Pool in SSMalloc

Contiguous Raw Memory Pool to Reduce VM

Footprint: Raw Memory Pool occupies a contigu-

ous area in the address space, in which memory

chunks are allocated next to each other. This de-

sign is TLB-friendly since it keeps virtual memory

footprint of allocated memory as smaller as possi-

ble.

There’s a pointer recording the begin of unused

memory area of the Raw Memory Pool. Memory

chunks are allocated by increasing this pointer by

the size of a memory chunk, which could be done in

one atomic instruction.

Raw Memory Pool is enlarged via mmap if its

spare space is not enough. A lock must be acquired
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before a thread tries to enlarge it. This is the only

lock in SSMalloc. To reduce the number of mmap

calls, the size of the Raw Memory Pool is enlarged

exponentially each time. Besides, since the desig-

nated virtual address is specified in a mmap call, its

latency is much lower. Though this approach seems

not very economic in VM space, the physical mem-

ory consumption will not be affected since physical

pages are allocated on demand the first time it is

touched. In this way, the total time spent in mmap

calls can be greatly reduced.

Global Memory Reuse: Globally freed memory

chunks are maintained in a lock-free Global Free

Chunk List. When a private heap tries to allocate a

memory chunk from the Global Pool, it first tries to

pop a free memory chunk from this list. In case the

list is empty, a new memory chunk will be allocated

from the Raw Memory Pool. Since all the memory

chunks are of the same size, no further processing

is needed on the returned memory chunks. In this

way memory chunks can be reused among different

local heaps.

Private Heap Reuse: After a thread is termi-

nated, there may be several memory chunks remain-

ing in the private heap. Rather than returning these

memory chunks to the Global Pool, SSMalloc di-

rectly caches the whole private heap header of ter-

minated threads in a lock-free list.

During the allocations of new private heaps, the

lock-free list is checked first. Private heaps allo-

cated from this list are comparatively mature ones

as they have already owned a series of memory

chunks. Reusing these private heaps reduces syn-

chronization needed to allocate memory chunks to

fresh private heaps. This mechanism minimizes the

overhead of thread creation in SSMalloc and fur-

ther guarantees the scalability of applications creat-

ing and destroying a large number of threads.

2.4 Large Allocations

Large allocations in SSMalloc are directly for-

warded to OS via mmap. A pseudo data chunk

header (whose owner is a special value) is added

before the beginning of each large memory object

to record its related metadata. Since large alloca-

tions rarely happen in real applications, it seldom

becomes a bottleneck of scalability.

2.5 Allocation Algorithm

Based on the discussion above, we summarize the

allocation algorithm as the following pseudo-code.

Algorithm 1: Allocation Algorithm

Input: size of the requested object
Output: ptr to the allocated object
class ← SizeToClass(size);1
if IsSmallClass(class) then2

cph ← CurrentPrivateHeap;3
Retry :;4
fc ← ForegroundChunk(cph,class);5
ptr ← AllocFromChunk(fc);6
if Full(fc) then7

ReplaceForegroundChunk(cph,class);8
if IsDummyChunk(fc) then9

ResetDummyChunk(cph);10
goto Retry;11

end12
end13

else14
ptr ← LargeAlloc();15

end16
return ptr17

The critical path in the algorithm is very short and

contains no synchronization. Furthermore, all oper-

ations in the private heap contains no loops. For an

allocation request, the size class is first calculated

from the requested size. If it is a small allocation,

a memory object is allocated from the Foreground

Chunk of that class. Otherwise the request is for-

warded to OS via mmap.

2.6 Deallocation Algorithm

The algorithm is summarized as the following

pseudo-code. Note that all chunks in SSMalloc are

organized in a FIFO fashion so that data locality can

be preserved.

Algorithm 2: Deallocation Algorithm

Input: ptr of the object to be deallocated
cph ← CurrentPrivateHeap;1
chunk ← ExtractChunk(ptr);2
if IsOwner(cph,chunk) then3

LocalFree(chunk,ptr);4
else5

if IsLarge(chunk) then6
LargeFree(ptr);7

else8
RemoteFree(chunk,ptr);9

end10

end11

Memory object may be freed by threads other

than its owner thread (i.e. Remote Free). These

threads could not directly operate on the cor-

responding memory chunk. Similar to Stream-

flow [2], each memory chunks maintains an addi-

tional lock-free list in to temporarily store memory

4



objects deallocated be other threads. Other threads

can insert memory objects to this list via a single

atomic instruction. Even so, there’s still one atomic

instruction in each remote free, whose overhead is a

little higher. Unlike Streamflow, SSMalloc caches

remotely freed objects in the private heap of the

freer thread. Therefore, multiple objects could be

returned to the owner thread with a single instruc-

tion. This design improves scalability significantly

for those programs who perform a lot of remote

frees. SFMalloc [3] also caches remotely freed ob-

jects in the freeing thread, but its remote free algo-

rithm is much more complex than SSMalloc, result-

ing in a much higher CPU consumption.

3 PRELIMINARY EVALUATION

All performance tests are performed on an 8 Six-

Core (2.4 Ghz) AMD x64 system (48 cores in total)

running Debian-Linux with kernel version 3.2.10.

The machine has 128 GB of memory.

Other memory allocators we used for comparison

include (1) the thread-safe allocator of glibc [4]; (2)

TCMalloc from Google’s performance tools [5]; (3)

jemalloc from Facebook [6]; (4) Streamflow [2]; (5)

SFMalloc [3].

We use several different types of workloads to

study the performance of these allocators: (1)

197.parser from SPECINT-2000, a CPU intensive

single thread benchmark; (2) espresso [7], an opti-

mizer for programmable logic array; (3) splint [8],

a tool for statically checking C programs; (4)

shbench, a memory allocator stress test tool from

MicroQuill [9]; (5) Larson benchmark from Lar-

son and Krishnan [10]; (6) Recycle, a custom syn-

thetic microbenchmark that allocate and deallo-

cate objects simultaneously in multiple threads [2];

(7) WordCount, a MapReduce application from

Phoenix 2.0.0 [11].

Most of the objects allocated in these benchmarks

are small objects. It is a common characteristic of

most applications using dynamic memory alloca-

tion. The benchmarks we chose represent several

different memory reuse patterns.

Sequential Performance: We choose 3 applica-

tions for sequential performance evaluation. The re-

sult is summarized in Figure 4(a). All the execution

times are normalized to the one with glibc malloc.

SSMalloc outperforms all other memory allocators

in espresso, splint and 197.parser, due to the opti-

mization for latency in SSMalloc. The critical path

of SSMalloc is very short and contains no synchro-

nization. Although SFMalloc, Streamflow, TCMal-

loc and jemalloc also eliminate synchronizations in

critical path, the length of their critical path is longer

than SSMalloc, especially for the deallocation rou-

tine.

Multithreading Scalability and Stableness:

Figure 4 show the performance scalability of all

four multithreading benchmarks. We can see that

SSMalloc notably outperforms other allocators in

most cases. For Recycle, SSMalloc consistently out-

perform all the other memory allocators for at least

8.9% . It is mainly because SSMalloc has much

lower allocation latency. Besides, since SSMalloc

is designed to avoid kernel-level contention, the per-

formance of SSMalloc stands stable when there are

4096 threads, while the performance of jemalloc

and SFMalloc drop dramatically.

For shbench, the glibc allocator times out after

64 threads. Since the execution time varies largely

among different allocators, performance is showed

in speedup relative to the performance of glibc allo-

cator with one thread. SSMalloc achieves at least

2X speedup to other allocators except SFMalloc.

Again, SSMalloc is the most stable one when the

number of threads exceeds the number of cores.

SFMalloc manages to scale well before 48 threads

since it is lock-free in user space. But its perfor-

mance drops dramatically with more threads be-

cause of kernel-level contention. TCMalloc and the

glibc allocator cannot scale in this benchmark be-

cause of lock contention on global data structures.

For Larson, SSMalloc scales better than all other

allocator and achieves at least 24% higher through-

put compared to other allocators when the number

of threads is larger than 4. When the number of

threads is larger than the number of cores, SSMalloc

is much more stable than other allocators. It outper-

forms other allocators by 74% to 99% in this case.

Multithreading Locality Stableness: Fig-

ure 4(e) also confirms that SSMalloc experience

much less cache misses that other memory alloca-

tors with both 48 and 1024 threads. This further

contributes to a much less execution time of the Map

phase, as shown in Figure 4(f).

Memory Space Efficiency: We measure the
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Figure 4: Evaluation results of 5 benchmarks and the cache locality of WordCount.

Benchmark glibc TCMalloc jemalloc Streamflow SFMalloc SSMalloc

Recycle 242M 252M 272M 438M 227M 320M
shbench 33809M 21555M 21709M 24864M 21673M 21673M
Larson 285M 278M 448M 792M 1200M 915M

WordCount 1728M 1680M 1709M 1703M 1691M 1694M
espresso 1044K 2588K 3928K 6932K 2164K 1652K

splint 33172K 24860K 23964K 28500K 25868K 25580K
197.parser 10084K 10932K 8864K 21604K 9876K 10068K

Table 1: Physical memory consumption of each memory allo-

cator

peak physical memory footprint of all the bench-

marks for 48 threads, as shown in Table 1. SSMal-

loc’s memory consumption for most programs are

similar with other allocators. The memory footprint

for Larson is larger as Larson measures the through-

put in a fixed time. SSMalloc as well as SFMalloc

caches remotely freed objects locally and thus in-

curs greater memory consumption.

4 CONCLUSION

In this paper, we have introduced an memory alloca-

tor SSMalloc. SSMalloc explored the design space

of memory allocator for many-thread programs on

many-core system. It simultaneously provided very

low and predictable latency, stable high scalabil-

ity, and stable cache locality. We have evaluated

SSMalloc using 7 different workloads. Exprimen-

tal results showed that SSMalloc had notable per-

formance advantage with sequential workloads and

scaled much better with many threads than previous

memory allocators. SSMalloc also provided stable

cache locality with many threads.
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