SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen
Shanghai Key Laboratory for Scalable Computing Systems
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

Microkernels have been extensively studied over decades.
However, IPC (Inter-Process Communication) is still a major
factor of run-time overhead, where fine-grained isolation usu-
ally leads to excessive IPCs. The main overhead of IPC comes
from the involvement of the kernel, which includes the direct
cost of mode switches and address space changes, as well as
indirect cost due to the pollution of processor structures.

In this paper, we present SkyBridge, a new communica-
tion facility designed and optimized for synchronous IPC
in microkernels. SkyBridge requires no involvement of ker-
nels during communication and allows a process to directly
switch to the virtual address space of the target process and
invoke the target function. SkyBridge retains the traditional
virtual address space isolation and thus can be easily inte-
grated into existing microkernels. The key idea of SkyBridge
is to leverage a commodity hardware feature for virtualization
(i.e., VMFUNC) to achieve efficient IPC. To leverage the
hardware feature, SkyBridge inserts a tiny virtualization layer
(Rootkernel) beneath the original microkernel (Subkernel).
The Rootkernel is carefully designed to eliminate most vir-
tualization overheads. SkyBridge also integrates a series of
techniques to guarantee the security properties of IPC.

We have implemented SkyBridge on three popular open-
source microkernels (seL.4, Fiasco.OC, and Google Zircon).
The evaluation results show that SkyBridge improves the
speed of IPC by 1.49x to 19.6x for microbenchmarks. For
real-world applications (e.g., SQLite3 database), SkyBridge
improves the throughput by 81.9%, 1.44x and 9.59x for the
three microkernels on average.

ACM Reference Format:

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen. 2019.
SkyBridge: Fast and Secure Inter-Process Communication for Mi-
crokernels. In Fourteenth EuroSys Conference 2019 (EuroSys ’19),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6281-8/19/03. .. $15.00
https://doi.org/10.1145/3302424.3303946

March 25-28, 2019, Dresden, Germany. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3302424.3303946

1 Introduction

Microkernels have been extensively studied over the past four

most kernel functionalities into different servers residing in
isolated user processes. The kernel provides basic function-
alities, such as process management, capability enforcement
and inter-process communication (IPC). Such a decentralized
design makes the OS architecture robust against run-time er-
rors, which means a fault within one server would not affect
other servers and the kernel. Removing most functionalities
from the kernel also results in a small Trusted Computing
Base (TCB), making it less vulnerable to attacks and possible
for comprehensive formal verification [?]. Given such advan-
tages, microkernels [? ?] are widely used in various areas
where high reliability matters, such as aerospace, automotive
and medical devices.

In a microkernel, any communication between different
user processes is based on IPC, which is an intensively-used
operation. For example, if a client process writes data into
an external block device, it first communicates with the file
system, which in turn notifies the disk device driver to write
data into the block device. All the communication is done
via IPC. In fact, IPC is known as a major factor of run-time
overhead [? ? ? ?], which determines the performance of
applications on microkernels. Transferring control across pro-
cess boundaries is expensive, which requires at least: a trap
into the microkernel (SYSCALL instruction), data copying
for arguments, one address space switch (even two switches
if considering the recent Meltdown attack [?]), and an upcall
back to the user level. Such operations must be repeated upon
IPC return. Some asynchronous implementation of IPC even
involves costly scheduling work.

A large body of research has been done to optimize the IPC
performance. Software-based solutions try to shorten the [PC
path by removing unnecessary operations. seL.4 [?] uses the
IPC fastpath for the case of Call and ReplyWait system calls
where the IPC message fits in CPU registers, and no capabili-
ties are transferred. For a fastpath, the message will be sent
immediately and the control flow will be directly transferred
without entering into the costly scheduling logic. Similarly,
some software-based solutions like LRPC [?] also eliminate

https://doi.org/10.1145/3302424.3303946
https://doi.org/10.1145/3302424.3303946

EuroSys 19, March 25-28, 2019, Dresden, Germany

the scheduling overhead and allow a process’s thread to ex-
ecute requested procedures in the receiver’s address space.
However, all such approaches still require the involvement
of the kernel and thus their performance (around 1000 cy-
cles for an IPC roundtrip) do not satisfy the requirement of
IPC-intensive workloads, as shown in Section 2. Hardware-
based solutions propose new hardware extensions to boost
IPC operation. dIPC [?] puts all IPC participants into a sin-
gle address space, and the kernel is removed from the IPC
path. The process isolation is achieved by the newly designed
tagged memory. Such hardware-based solutions usually re-
quire non-trivial modification to both hardware and software,
which have less potential for practical adoption.

Therefore, we argue that there is a need for an IPC tech-
nique that satisfies the following requirements.

o Efficient: the IPC path does not involve the kernel.

o Lightweight: the IPC can be readily deployed on com-
modity hardware and can be easily integrated into ex-
isting microkernel architecture.

e Secure: the IPC design does not break the microkernel
isolation abstraction.

In this paper, we present a new IPC design that meets such
requirements. Our design, called SkyBridge, allows one pro-
cess (sender) to directly execute the requested procedure in
another process’s (receiver) address space without trapping
into the kernel. SkyBridge has two main technical advantages.
First, SkyBridge still places each process in its own virtual
address space which fits well with the design and implemen-
tation of existing microkernels. Second, SkyBridge leverages
one Intel hardware feature for virtualization, named EPT (ex-
tended page table) switching (the VMFUNC instruction), to
change the virtual address space at the user level. By con-
figuring the receiver’s EPT, SkyBridge maps the page table
of the sender to that of the receiver. Therefore, after switch-
ing the EPT by VMFUNC, the hardware uses the receiver’s
page table to translate all subsequent virtual addresses. Sky-
Bridge also provides a separated stack for each receiver’s
thread in its virtual address space. To support long IPC, Sky-
Bridge provides shared buffers for the IPC participants when
large messages are transferred. Each buffer is bound to one
receiver’s thread for concurrency.

Although the approach of SkyBridge sounds intuitive, ap-
plying it to the microkernels imposes three practical chal-
lenges. First, leveraging EPT switching requires the virtual-
ization layer, which may bring overhead to the whole system
since the new layer could cause a large number of costly
VM exits. To address this challenge, SkyBridge introduces
a tiny virtualization layer (called Rootkernel) only consist-
ing of the most primitive functionalities for SkyBridge while
eliminating VM exits during an IPC.

Second, existing ways [? ?] of leveraging VMFUNC re-
quire non-trivial modification to the microkernels and thus

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

tremendous engineering effort. SkyBridge proposes a light-
weight method to efficiently switch virtual address spaces
among different processes which can be easily integrated into
microkernel architectures.

Third, it is difficult to design a secure IPC facility without
the involvement of the kernel, especially when one malicious
process can exploit the VMFUNC instruction to corrupt other
processes [?]. SkyBridge guarantees that there is only one
legal entry point for switching address spaces among pro-
cesses, which prevents a malicious process from invoking
self-prepared VMFUNC instructions to corrupt other pro-
cesses. SkyBridge also requires a process to register to other
processes before communicating with them and introduces a
calling-key table mechanism to enforce such a policy.

We have implemented SkyBridge on three different micro-
kernels (seL4 [?], Fiasco.OC [?] and Google Zircon [?]) and
deployed them on a commodity Intel Skylake machine. Our
evaluation shows that SkyBridge significantly improves the
performance of IPC by 1.49x, 5.86x, and 19.6x for seL4 (fast-
path), Fiasco.OC and Zircon respectively. For a real-world
application like a multi-tier SQLite3 workload, SkyBridge
improves the performance by 81.9%, 1.44x and 9.59x for
such three microkernels on average.

Contributions. The contributions of the paper are summa-
rized as follows:

o A detailed analysis of the performance overheads of
IPC in state-of-the-art microkernels.

e A new design which can significantly improve the per-
formance of the microkernel IPC without any modifica-
tion to the hardware.

e An implementation of SkyBridge and an evaluation
using real-world benchmarks on three different micro-
kernels.

2 Motivation and Background

2.1 Deconstructing Synchronous IPC

In this section, we evaluate the performance costs associ-
ated with the traditional synchronous inter-process call (IPC)
in microkernels. We use selL.4 [?] (v10.0.0) on an Intel Sky-
lake processor to conduct all the experiments. seL4 is known
to have a fast IPC facility, which we believe can represent
state-of-the-art microkernels.

Although integrated with different optimization techniques,
the current implementation of synchronous IPC still nega-
tively impacts the performance of microkernel workloads,
which are usually IPC-intensive. The synchronous IPC over-
heads can be classified into two categories: one is the direct
cost from the kernel, and the other is the indirect pollution of
processor structures.

2.1.1 Direct Cost of Microkernels

Mode Switch. For each IPC, the sender first invokes a
SYSCALL instruction to trap into the kernel, which then saves

SkyBridge: Fast and Secure IPC for Microkernels

Encrypt

Client
Server <

KV Store

a

Figure 1. An example to measure the cost of IPC.

necessary user-mode states into a kernel stack. When the
kernel resumes the execution of the receiver, it restores the
receiver’s user-mode states and finally invokes a SYSRET in-
struction to return to the user mode. The mode switch in an
IPC also contains two SWAPGS instructions that change the
base address of the gs registers when entering and exiting the
kernel. We measure the mode switch cost by executing a null
SYSCALL which directly returns to the user mode for one
billion times. To measure the overhead of each operation, we
read The Time Stamp Counter (TSC) values before and after
each instruction. The cycles for SYSCALL, SWAPGS and
SYSRET are 82, 26 and 75 respectively.

Address Space Switch. A microkernel uses different virtual
address spaces for processes to isolate them. Thus, it is neces-
sary to switch the virtual address space when delivering an
IPC. The measured cost of an address space switch on our
machine is 186 cycles with the PCID (process ID) enabled.
Moreover, recent microkernels use different page tables for
the kernel and the user space to defend against the Meltdown
attack [?]. Hence, an IPC usually involves two address space
switches, which costs 372 cycles in total.

Other Software IPC logic. To handle an IPC request, a mi-
crokernel usually contains various security checks, endpoint
management and capability enforcement. The total cost of
this part is 98 cycles for seL.4 fastpath on our machine.

In total, the fastest [IPC implementation may cost 493 cycles
if the Meltdown mitigations are disabled. This result matches
the recent performance results for the fastpath IPC of selL4 [?
], which was also measured on an Intel Skylake machine.

Table 1. The pollution of processor structures.

Name i-cache | d-cache | L2 cache | L3 cache | i-TLB | d-TLB
Baseline | 15 10624 13237 43 8 17
Delay 15 10639 13258 43 9 19

IPC 696 27054 15974 44 11 7832

2.1.2 Indirect Cost of Microkernels

The overheads of the synchronous IPC are not limited to
the direct cost of the kernel. During the execution of the
kernel, it will evict the user-mode states in some important
processor structures, including the L1 instruction and data
caches, L2 and L3 shared caches and translation look-aside
buffers (TLB). The state pollution makes an indirect effect
on the following user-mode instructions, which triggers TLB
misses and different levels’ cache misses.

EuroSys 19, March 25-28, 2019, Dresden, Germany

35000

30000 | ™= Baseline mmm |PC 33¢61
I Delay mmmm |PC-CrossCore
% 25000
@ 22162 20577
(% 20000 18895 19809 +eoon
S 6
QE) 15000 14652
E 11025
= 10000 929 8548 P
4735 5345 5g84
il
0
16-Bytes 64-Bytes 256-Bytes 1024-Bytes

Key and Value Length (Bytes)

Figure 2. The average latency (in cycles) for the KV store
operation. Lower is better.

To evaluate the overhead caused by the indirect pollution
of processor structures, we build a simple Key-Value store in
the seL4 microkernel. It consists of a client and two servers,
which are an encryption server and a key-value (KV) store
server as shown in Figure 1. For the insert operations, requests
from the client reach the encryption server to encrypt the
messages before getting to the KV store server to save the
messages. For the query operations, the encryption server
decrypts the query results from the KV store server and then
returns them to the client.

There are three ways to organize the three processes:

e Baseline: putting them into the same virtual address
space and utilizing function calls to connect them.

o TPC: putting them into different virtual address spaces
and utilizing IPC to connect them. The sel.4 kernel is
configured without using Meltdown mitigations.

e Delay: putting them into the same virtual address space
and utilizing the delay function calls to connect them.
The delay function call uses a loop to delay for a period
of time which is equal to the direct cost of an IPC (493
cycles).

We measure the impact of the key and value size on the
benchmark throughput. The requests of the client consist of
50%/50% insert and query operations. Ideally, there should
be no difference between the IPC and the Delay bar. However,
as Figure 2 shows, the indirect cost of IPC is the reason for
the gaps between the IPC and Delay bars.

We also count the different events occurring for 512 opera-
tions in the three experiments by leveraging Intel performance
monitoring unit (PMU). Table 1 shows the footprints on sev-
eral processor structures for them. The data indicates that the
IPC version causes more significant impact on all levels of
cache and TLB structure than that on the Delay and Baseline
cases.

2.1.3 IPC Cost in Multicore

In a multicore machine, the servers and the client may reside
on different cores, which is resulted from an oversubscribed
condition or a scheduling decision. Under such a circum-
stance, a cross-core IPC involves a costly inter-processor

EuroSys 19, March 25-28, 2019, Dresden, Germany

Table 2. Latency of different instructions and operations in
cycles. KPTI [?] is a technique that uses two page tables for
the kernel and the user space to defend against the Meltdown
attack.

Instruction or Operation Cycles
write to CR3 18610
no-op system call w/ KPTI | 431+£13
no-op system call w/o KPTT | 181+£5
VMFUNC 13443

interrupt (IPI). For example, the cross-core IPC degenerates
into a slowpath version which contains an IPI. One IPI takes
1,913 cycles on our machine. We reevaluate the IPC version
experiment by putting the client and its two servers to three
different cores. The result is also shown in Figure 2. For vari-
ous lengths of keys and values, the cross-core IPC incurs high
overhead.

2.2 EPTP Switching with VMFUNC

VMFUNC [?] is an Intel hardware instruction that al-
lows software in non-root mode (in both kernel and user
modes) to invoke a VM function. VM functions are proces-
sor features managed by the hypervisor. EPTP (the pointer
to an EPT) switching is one of these VM functions, which
allows the guest to load a new value for the EPTP from an
EPTP list stored in the Virtual Machine Control Structure
(VMCS) configured by the hypervisor. The new EPT then
translates subsequent guest physical addresses (GPA) to host
physical addresses (HPA). The EPTP list can hold at most
512 EPTP entries. The typical usage of EPTP switching is
to create multiple domains for one physical address space
and these domains usually have different memory mappings
and privileges [? ?]. Table 2 shows the latencies of different
instructions and operations. With the Virtual Processor ID
(VPID) feature enabled, the VMFUNC instruction does not
flush TLB and costs only 134 cycles.

3 Overview

The traditional implementation of IPC requires the involve-
ment of the kernel, which incurs the direct and indirect cost
as we analyzed in Section 2. Therefore, to address the perfor-
mance impact of the traditional synchronous IPC, SkyBridge
aims at removing the kernel participation from synchronous
IPC. Tt allows the client to directly switch to the server’s
virtual address space and execute the requested procedure,
which not only avoids the direct cost of trapping into the
microkernel but also partially eliminates the indirect cost of
architectural state pollution.

3.1 Key Idea and Challenges

SkyBridge uses one VMFUNC to implement the switch
of virtual address space without trapping into the kernel and
eliminate the costly IPI because it allows one process to di-
rectly invoke other process’s code. The general workflow of

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

Client VMFUNC Server1 ~ VMFUNC Server2
2 NN 2 N
Trampoline \/[| Trampoline | | Trampoline |
TN ClientePT Sever0EPT SewerlEPT

Client-PT |—>| Server1-PT

@ '?‘Conﬂgure

]
Kernel

CientPT] clentpT
@ 't\ Configure
(|

Client-PT |—>| Server2-PT

@ 't\Conﬂgure
|

Figure 3. The general workflow of SkyBridge.

int server_handler(args)

{
int res
... // server handler logic
return res;

¥

: void server (void)
{
int connection_count = 8;
int server_id = register_server(connection_count,
server_handler);

i

: void client (void)

Ht

register_client_to_server(server_id);
direct_server_call(server_id, args)

el I Il e
OCONOOTUBRWNFHROOVONOTUDAWNE

D)

Figure 4. Example code of a client and a server.

SkyBridge and the example code are shown in Figure 3 and
Figure 4. SkyBridge provides a programming model similar
to that of traditional IPC. To use SkyBridge, a program should
be modified to use the SkyBridge user-level interfaces.

A server has to register into the kernel before other pro-
cesses start to request its service. During registration, the
server provides the kernel with a function address it allows
other processes to directly invoke and a number indicating
the maximum number of connections it can receive at the
same time. Then the kernel maps trampoline-related code and
data (shared pages and stacks) into the server’s virtual address
space and returns the server ID that can be used by clients to
locate the server during registration. Similarly, the client also
registers into SkyBridge by providing the server ID which
it intends to call. The kernel then maps trampoline-related
code and data pages into the client’s virtual address space.
It maps a server function list into the client virtual address
space as well. Most importantly, the kernel creates one EPT
for the client and all the target servers, as shown in Step @ in
Figure 3. In these servers’ EPTs, the page table of the client
is mapped to the corresponding ones of the servers.

When the client invokes the direct_server_call (Step @
in Figure 3), the trampoline saves the client’s states into its
stack and invokes the VMFUNC instruction to switch to the

SkyBridge: Fast and Secure IPC for Microkernels

Direct
Server Call

Trampoline [: ‘ Trampoline
Ring 3

! Client0 == Server 0 Server M
Non |
Root I Register |
e T I
|
: RootKernel
Ring 0 4_ - [\nmahzamon} [Others J
SubKernel
- J
| —
___________ T — — — — — — — — —
EVF'T Self:
. (VM Exits) () (-)
Root ng 0 Handlers Management) \virtualization) gooikernel

Figure 5. The overall architecture.

server’s EPT. After switching EPT, the configuration in the
server’s EPT makes sure the hardware use the server’s page
table to translate all subsequent virtual addresses. Finally, the
trampoline installs the server’s stack and invokes the server’s
registered handling function.

However, applying VMFUNC imposes the following chal-
lenges.

e Virtualization overhead. The use of VMFUNC re-
quires a hypervisor to be inserted at the bottom of the
microkernel, which inevitably incurs overhead for the
normal execution of the system.

e Integration. Existing techniques of leveraging VM-
FUNC are difficult to apply to microkernels without
much modification.

e Security. New security threats are introduced by the
design of the direct virtual address space switch.

3.2 Solutions

To leverage SkyBridge, SkyBridge proposes a series of
solutions to addressing these challenges.

Efficient Virtualization: The overheads of virtualization
mainly come from two sources. The first one is the two-level
address translation and the other one is a large number of
costly VM exits. To tackle the virtualization overheads, Sky-
Bridge introduces a tiny hypervisor (Rootkernel) that contains
only 1500 LoCs. It utilizes 1 GB huge pages to map most
host physical memory except those reserved for Rootkernel to
the microkernel (named Subkernel in our paper) in non-root
mode. This memory mapping not only allows the execution
of the microkernel not to trigger any EPT violation but also
diminishes the cost of address translation from a GPA to its
HPA. To tackle the second overhead, the Rootkernel config-
ures VMCS to let the Subkernel handle most hardware events
(external interrupts) or privileged instructions (e.g., HLT).
By using such configuration, most VM exits are avoided. In
our evaluation, there are no VM exits when running normal
applications and the virtualization overheads are negligible.
Therefore, the architecture of SkyBridge is divided into two
components, as shown in Figure 5. The Rootkernel consists
of three parts, which are the management of EPT, handlers

EuroSys 19, March 25-28, 2019, Dresden, Germany

for inevitable VM exits and a self-virtualization module. The
Subkernel has one line of code to call the self-virtualization
module in Rootkernel to dynamically start the Rootkernel
during the booting procedure. The process creation part is
also modified to call the EPT management part of the Rootk-
ernel to configure the EPT part for each new process. When
creating a new process, the Subkernel maps a trampoline
into the process, which helps the process to invoke the direct
server call of SkyBridge. The details of the Rootkernel and
Subkernel are described in Section 4.1 and Section 4.2.

Lightweight Virtual Address Switch: To use VMFUNC to
efficiently switch the virtual address space in the user mode
without the involvement of the kernel, there is one possible
design, which is to combine all related processes into the
same virtual address and use different EPTs to isolate them.
Switching the virtual address space means to install a new
EPT that enables the corresponding permission. Even if the
solution sounds intuitive, it requires non-trivial modification
to the microkernel to fix possible virtual address overlapping
problems, which thus incurs tremendous engineering effort.
SkyBridge proposes a lightweight and effective design that
remaps the base address of the page table (CR3 value) in each
EPT. Instead of putting all processes into the same virtual ad-
dress space, SkyBridge still isolates them using different page
tables. Before scheduling a new client, SkyBridge installs a
new EPTP list for it, which contains the servers’ EPT point-
ers the client is allowed to invoke. In each server’s EPT, the
GPA of the client’s CR3 value is translated to the HPA of the
corresponding server’s CR3 value, which allows hardware to
automatically use the new page table for later virtual address
translation after the invocation of the VMFUNC instruction
(Section 4.3).

Secure Trampoline: In the traditional microkernel design,
each IPC gets trapped into the kernel, which then has the
chance to do the security check and deny any illegal IPC
communication. However, the kernel is unable to check each
IPC communication in SkyBridge, which means SkyBridge
has to provide new techniques to guarantee the same security
level as the traditional IPC. First, a malicious process may use
self-prepared VMFUNC instruction to bypass the trampoline
and access sensitive data or code of other processes, which
is called the VMFUNC faking attack in SeCage [?]. Yet, the
defense proposed by SeCage fails to work in SkyBridge (we
will explain it in Section 4.4). To defend against such attack,
SkyBridge dynamically rewrites the binary of a process to
replace any illegal VMFUNC with functionally-equivalent
instructions. To prevent a sender from calling unregistered
receivers, we provide a calling-key table for each process,
which records a list of calling keys. For each IPC, the sender
should provide a calling key for the receiver, which checks
the key against its calling-key table and denies the IPC and
notifies the kernel if the sent key does not exist in the table.
This solution provides an optimistic security check which

EuroSys 19, March 25-28, 2019, Dresden, Germany

assumes most IPC is legal and does not require the kernel to
check it (Section 4.4).

4 Detailed Design
4.1 The Rootkernel

To utilize VMFUNC, the processes have to run in non-
root mode. However, there are two design choices of whether
or not to put the kernel into non-root mode. One way like
SeCage [?] and CrossOver [?] works like a virtual machine,
where both the kernel and processes run in non-root mode.
Usually, these systems reuse mature commercial hypervisors
like KVM [?] and Xen [?], which are designed to support
general virtual machines. Hence, this way will incur large
overhead caused by the virtualization layer. The other design
choice is to put the kernel in root mode while sustaining the
processes in non-root mode, like Dune [?]. However, the
costly VM exits still exist. In Dune, most system calls incur
the cost of a VM exit that is significantly more expensive than
a (nonvirtualized) system call.

SkyBridge offers a new solution different from the above
two design choices. It eliminates the costly VM exits caused
by previous solutions. SkyBridge provides a tiny hypervisor
called the Rootkernel whose size is much smaller than the
commercial hypervisors. The Rootkernel only contains neces-
sary functionalities to support SkyBridge, which includes the
EPT management, a dynamic self-virtualization module, and
some basic VM exit handlers.

To eliminate the costly VM exits, the Rootkernel config-
ures the hardware to let most VM behaviors not trigger any
VM exits. VM exits include three categories: the privileged
instruction exits, hardware event exits, and EPT violation
exits. For the privileged instruction exits like changing CR3
value, the Rootkernel allows these instructions not to trigger
any VM exits. To handle hardware events like an external in-
terrupt in traditional hypervisors, a VM exit triggers to wake
up the hypervisor when receiving this event. In SkyBridge,
the Rootkernel allows the hardware to inject the external in-
terrupts directly into the microkernel in non-root mode since
it has the privilege to manage its external devices.

Commercial hypervisors use an EPT for each VM and spec-
ify in the EPT the memory regions belonging to the VM. This
can limit this VM from accessing other VMs and the hyper-
visor’s physical memory. When a VM accesses the physical
memory which is not present in the EPT or it has not enough
permissions to access it, an EPT violation VM exit triggers
and the hypervisor wakes up to handle such violation. Fur-
thermore, the 2-level address translation (from GVA to HPA)
incurs higher overhead than the 1-level translation (from GVA
to GPA). For example, one TLB miss in the 2-level address
translation may require at most 24 memory accesses [?],
which incurs large overhead. To eliminate the EPT violation
VM exits and reduce the overhead of 2-level address transla-
tion, the Rootkernel creates a base EPT for the Subkernel and

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

uses the maximum huge page (1 GB on an x86_64 machine)
to map most physical memory address to the Subkernel. Sky-
Bridge only reserves a small portion of physical memory (100
MB in our evaluation) for the Rootkernel. Hence, the micro-
kernel is free to access almost all physical memory on the
machine, and no more EPT violation will be triggered. More-
over, the huge page mapping not only reduces the number of
memory accesses for handling a TLB miss, but also reduces
the number of TLB misses.

The booting procedure of Rootkernel is different from tra-
ditional hypervisors. Inspired by CloudVisor [?], SkyBridge
does not contain the machine bootstrap code that increases
the complexity of the Rootkernel and is error-prone. Instead,
the Rootkernel is booted by the Subkernel and downgrades
the Subkernel to non-root mode.

The Rootkernel also retains handlers for inevitable exits.
In our current implementation, the Rootkernel contains han-
dlers for CPUID instructions, VMCALL instructions and
EPT violations. The VMCALL instruction is leveraged by the
Rootkernel to implement an interface to communicate with
the Subkernel.

4.2 The Subkernel

The Rootkernel provides an interface for the Subkernel
to manage each process’s EPT. When a server registers into
SkyBridge, the Subkernel maps the trampoline code page and
anumber of stack pages into the server’s virtual address space.
Then it allocates a free server ID for the server. When a client
registers into SkyBridge and asks for getting bound to a server,
the Rootkernel maps the trampoline code and stack pages into
the client’s virtual address space. Then the Subkernel invokes
the Rootkernel interface to ask the Rootkernel to bind the
client and server in the EPT level. The Rootkernel copies a
new server EPT and maps the client page table to the server
page table. Finally, the Rootkernel installs the newly created
EPT into the client’s EPTP list. Actually, the Rootkernel also
writes all processes’ EPTPs that the server depends on into
the client’s EPTP list.

SkyBridge does not modify the scheduling algorithm part
of the microkernel. Yet, when the Subkernel decides to do
a context switch from one process to a new process, it will
notify the Rootkernel to install the next process’s EPTP list.

SkyBridge provides shared buffers for processes to transfer
large data. The Subkernel creates multiple shared buffers
according to the number of registered threads for one server.
Each time the client calls a server, it may use the server
thread’s buffer for large data transfer.

Process Misidentification: If a sender gets trapped into the
kernel (e.g., caused by an interrupt) when executing in one
receiver’s virtual address space, it intends to invoke micro-
kernel’s services as a receiver. However, the microkernel will
still treat the process as the original process, which we call
a process misidentification problem. To address the problem,

SkyBridge: Fast and Secure IPC for Microkernels

: 1: instrcutionA; / Translated using CR3-C
1 2: vmfunc(0x0, 0x1); / Func ID is 0x0, switch to EPTP-S
: 3: instructionB; // Translated using CR3-S

CR3-S
Server

EPT Pointer

VMCS CR3-C > craC
4 ELIES Client EPT

EPTP-S |

0 (5]

0

0 cra-Cc > crss

=

Server EPT

EPTP List

Figure 6. Virtual address space switches in SkyBridge

SkyBridge allocates an identity page that records each pro-
cess’s identity information and maps this page into the same
GPA in each EPT. This page is also mapped into the kernel
address space which thus can be accessed by the Subker-
nel via a virtual address. The Subkernel checks this page to
know which process it is serving for by accessing this virtual
address.

4.3 Memory Mapping

SkyBridge guarantees that the virtual address spaces of
different processes are isolated and provides an efficient user-
level virtual space switch method for them. In fact, there are
two known techniques for such purpose. The first technique [?
] is to put different processes into the same virtual address
space and use one EPT for each process to provide an isolated
view of the shared virtual address space. Similar to SkyBridge,
it also uses VMFUNC to switch among views without kernel
involvement. This technique is easy to implement when the
number of processes is small. When the number gets large,
virtual address regions for different processes have to be
carefully managed in order to prevent these regions from
overlapping, which requires tedious engineering efforts.

The second technique is to leverage the recent Intel Mem-
ory Protection Keys for Userspace (PKU) to switch views.
Applying PKU does not address the overlapping problem
either. Moreover, it provides a limited number of security
domains (16) and does not satisfy the requirement of micro-
kernels.

SkyBridge sustains the traditional virtual memory isola-
tion method and proposes an efficient virtual space switch
technique, which does not require much engineering work to
implement it. Different from the first technique, SkyBridge
still uses separated page tables for these processes. To switch
page tables without modifying the CR3 register in the user
mode, it remaps the client’s table page base address (CR3
value) to the HPA of server’s CR3 value in the server’s EPT.

EuroSys 19, March 25-28, 2019, Dresden, Germany

Therefore, the switch of EPT by invoking VMFUNC can in-
stall the server’s virtual page table for later virtual address
translations.

The technique SkyBridge employs to provide an efficient
page table switch is depicted in Figure 6. A process is still
created by the original mechanism of the microkernel and
owns its virtual address space. In this example, the client and
the server have their own page tables, whose base physical
addresses (GPA) are client-CR3 and server-CR3 respectively.
Once starting one new server, the Subkernel saves the CR3
value of the server (server-CR3). When the client registers,
the Subkernel notifies the Rootkernel to copy two new EPTs
from the base EPT for the client and server, which are EPT-C
and EPT-S respectively. Then the Rootkernel remaps client-
CR3 to the HPA of server-CR3 in EPT-S and does not make
any modification to EPT-C.

During execution, the value of the CR3 register is client-
CR3 and will not be changed. When the client invokes di-
rect_server_call interface, the trampoline invokes the VM-
FUNC instruction to change the value of EPT pointer from
EPT-C to EPT-S. After using EPT-S, client-CR3 will be
mapped to the HPA of server-CR3, which means all sub-
sequent virtual address will be translated by the server page
table. Therefore, the client can access any virtual address in
the server’s virtual address space.

Please note that the creation of EPT here is just a shallow
copy that reuses most mapping in the base EPT. Only four
pages that map client-CR3 to the HPA of server-CR3 are
modified. All other EPT pages are kept intact.

4.4 Trampoline

The direct_server_call interface of SkyBridge is imple-
mented by a trampoline, which is a code page mapped into
the virtual space by the Subkernel during process registration.
A client and all its bound servers should be inserted such
trampoline. When binding a client to a server, the Subkernel
creates multiple stacks and maps them into the server’s virtual
address space. The number of stacks is specified by the server
during its registration and determines how many concurrent
threads the server can support.

Usually, the sender needs to transfer some data to the re-
ceiver in an IPC. For small data transfer, SkyBridge puts these
data into CPU registers which obeys the calling convention in
x86_64. For large data transfer, SkyBridge creates a shared
buffer for each pair of client and server thread and maps them
into both the client and the server.

Trampoline Workflow: When the sender is a client, its ID
is zero. Otherwise, the sender ID is the value returned by the
register_server function. Before invoking the VMFUNC in-
struction, the trampoline copies data from the client’s internal
buffer into the shared buffer if the transferred data exceeds the
capacity of CPU registers. After switching the virtual address
space by invoking the VMFUNC instruction, the trampoline

EuroSys 19, March 25-28, 2019, Dresden, Germany

installs the server stack. Finally, it calls the server’s registered
function according to the server ID.

Security Threats: The design of the trampoline considers
two possible attacks. The first attack is a self-prepared VM-
FUNC attack, where the malicious client or server invokes
an illegal VMFUNC instruction which is not prepared by
the trampoline to bypass the trampoline and access sensitive
instructions or data in other processes. The previous defense
against this attack is to put different pieces of application
logic (PAL) code and data into different EPTs and guarantee
that only the trampoline is mapped into these EPTs which
makes it the only entry point to other PALs. However, this
solution does not apply to SkyBridge due to the remapping
of CR3 GPA technique, which allows the attacker to invoke
VMFUNC at any virtual address to switch to the victim pro-
cess’s virtual address space. Therefore, the trampoline is not
the only legal entry point to other processes.

To defend against such attack, we leverage the binary
rewriting technique and scan the each process’s code to
replace any VMFUNC instruction or any sequences of in-
structions containing an inadvertent VMFUNC with other
functionally-equivalent instructions. This solution has been
used by different other systems [? ? ?] and we will describe
our method in Section 5.

The second attack is called the illegal server call or client
return. The illegal server call is that one client may bypass the
server it should invoke and directly call unregistered servers,
which is dangerous if these servers contain sensitive infor-
mation. Similarly, the illegal client return is that one server
does not return to the client that calls it, but to other client or
servers. To defend against such attack, SkyBridge provides
a calling-key table for each process, which records the pro-
cesses bound to it and their calling keys. The server’s calling
keys are generated during the client registration. The Subker-
nel generates a random 8-byte key for the client and gives it
to the client and the server. For example, the client gets the
server’s calling key and passes it to the server, which then
checks the calling key against those in its table and notifies
the Subkernel when it does not locate the given key in its
table.

Each time a client will call its server, it also dynamically
generates a client calling key and passes it to the receiver. The
receiver should return this key to the sender, which rechecks
it to ensure the receiver is what it calls before. A malicious
process may deliberately leak its key to other processes. But
the leaked key only exposes sensitive information belonging
to the key owner and no other data will be exposed as servers
can use calling keys to identify the calling processes.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

S Dynamically Rewriting Illegal VMFUNC

5.1 Rewriting Mechanism

When a process registers into SkyBridge, the Subkernel
scans all code pages of the process to replace any illegal VM-
FUNC instructions outside the trampoline code page with
functionally-equivalent instructions. After rewriting, one in-
struction may be changed to two or more instructions, which
cannot be held in the original location. Therefore, SkyBridge
replaces these instructions with a jump instruction which
jumps to a page for rewriting. The rewriting page is inserted
by the Subkernel and is mapped at an unused virtual address.
We choose the second page in the virtual address space (start-
ing from 0x1000). This page is deliberately left unmapped
for most operating systems. In the inserted page, the Subker-
nel creates one code snippet for the new instructions. At the
end of each snippet, the Subkernel also appends a new jump
instruction to get back to the original code page.

5.2 Rewriting Strategy

The rewriting strategy is inspired by ERIM [?], which uses
a similar strategy to replace the WRPKRU instruction. The
strategy is complete: any inadvertent VMFUNC instruction
can be rewritten to functionally-equivalent instructions. The
strategy is highly dependent on x86 variable-length instruc-
tion encoding. Intel x86 instruction encoding consists of five
regions: 1) an opcode field possibly with a prefix (the opcode
for VMFUNC contains three bytes: 0xOF, 0x01, 0xD4); 2) an
optional 1-byte Mod R/M field describes the addressing mode
and two operands for this instruction; 3) an optional 1-byte
SIB (Second Addressing Byte) field specifying the indirect
memory addressing; 4) an optional displacement which works
as offset used in the addressing mode described by Mod R/M
field; 5) an optional immediate field for the instruction.

There are three conditions where a VMFUNC instruction
may be decoded from:

o C1: The instruction is indeed VMFUNC.

e C2: A VMFUNC encoded by spanning two or more
instructions.

e C3: A long instruction contains the VMFUNC encod-
ing.

To classify these three conditions, the Subkernel will book-
keep current instruction during scanning, which helps to de-
termine instruction’s boundary. For C1, the Subkernel just
replaces the illegal VMFUNC with three NOP instructions
(0x90). For C2, Illegal VMFUNC spanning two or more in-
structions can be “broken” by inserting a NOP between these
consecutive instructions.

When VMFUNC exists in one longer instruction (C3), the
Subkernel replaces this instruction with other functionally-
equivalent instructions. Table 3 lists all possible cases and
their corresponding rewriting strategies. The byte OxOF is an
escape prefix for opcode and will not occur in the middle
bytes of any instruction opcode. Therefore, if the first byte

SkyBridge: Fast and Secure IPC for Microkernels

EuroSys 19, March 25-28, 2019, Dresden, Germany

Table 3. Rewrite strategy for illegal VMFUNC instructions

D Overlap Case Rewriting Strategy

Example

1 | Opcode=VMFUNC | Replace VMFUNC with 3 NOP instructions

2 | Mod R/M=0x0F Push/pop used register; use new register

imul $0xD401, rdi, rcx; — push rax; mov rdi, rax;
imul $0xD401, rax, rcx; pop rax

3 | SIB=0x0F Push/pop used register; use new register

lea 0xD401(rdi, rcx, 1), rbx; — push rax; mov rdi, rax;
lea 0xD401(rax, rcx,1), rbx; pop rax

4 | Displacement=0x0F | Compute displacement value before the instruction

add 0xD4010F(rax), rbx; — add 0xD4000F, rax;
add 0x0100(rax),rbx

5 | Immediate=0x0F

Apply instruction twice with different immediates to get equivalent effect

add 0xD4010F, rax — add 0xD3010F, rax;
add 0x10000, rax

Jump-like instruction: modify immediate after moving this instruction

of one instruction’s opcode overlaps with OxOF, this instruc-
tion is VMFUNC, whose rewriting strategy has already beed
discussed (replace it with three NOP instructions).

If OxOF equals the Mod R/M field (which is 1 byte), it
determines that rcx (r9 and ecx) and rdi (r15 and edi) are
the instruction’s operands. The Subkernel replaces one of the
registers (e.g., rdi) to another register, whose value will be
pushed into the stack in advance. For example, the Subkernel
replaces rdi with rax in Table 3. If OxOF equals the SIB field
(which is 1 byte as well), this instruction also uses fixed
register and SkyBridge applies a similar rewriting strategy to
replace it.

When the 0xOF overlaps with the displacement, the remain-
ing two bytes (0x01 and 0xD4) may fit in the displacement or
the immediate field. If the three bytes all reside in the displace-
ment field, SkyBridge precomputes the displacement value
before the instruction (Example is row 4). If some of the three
bytes overlap with the immediate field, SkyBridge applies
the instruction twice to get the same effect. For jump-like
instructions, the immediate is treated as an offset which will
be changed to a new value when we rewrite this instruction
in the rewriting page.

6 Evaluation
This section tries to answer the following questions:

e Q1: What is the implementation complexity of Sky-
Bridge?

e Q2: How does SkyBridge improve the IPC perfor-
mance compared with other microkernels?

e Q3: How does SkyBridge improve the performance of
the workloads introduced in Section 27

e Q4: How do real-world microkernel applications per-
form when running using SkyBridge?

e Q5: How does the virtualization layer affect the perfor-
mance of the original microkernel workloads?

e Q6: How many inadvertent VMFUNC instructions do
we find?

6.1 Experimental Setup

Our test machine is equipped with an Intel Skylake Core i7-
6700K processor, which has 4 cores and 8 hardware threads
with the hyper-threading enabled. The memory size is 16 GB.

The microkernels we evaluated are sel.4 (v10.0.0), Fi-
asc0.0C and Zircon. Fiasco.OC is a 3rd-generation capability-
based microkernel and provides synchronous IPC facility.
Zircon is a microkernel developed by Google and also imple-
ments an IPC facility.

To ensure the evaluation results measured at the same CPU
clock, we disabled the CPU frequency scaling. All experi-
ments without using SkyBridge are conducted in the native
hardware without using the virtualization layer.

6.2 Status Quo and Implementation Complexity

To answer the first question (Q1), we have implemented
SkyBridge on different microkernels. The code sizes of the
Rootkernel is 1.5 KLoC and modified lines of code to inte-
grate SkyBridge into each microkernel are about 200 LoC. It
is easy to integrate SkyBridge into an existing microkernel.
We first implemented SkyBridge on seL4 and the porting cost
of SkyBridge Fiasco.OC and Zircon took 2 and 4 person days
accordingly.

6.3 IPC Performance

To answer the second question (Q2), we first evaluate and
analyze the performance of various synchronous IPC imple-
mentations in different microkernels and compare them with
the corresponding SkyBridge versions.

Figure 7 is the performance breakdowns of different IPC
implementations. We measure the time period for an IPC
roundtrip which starts from sending an empty message from
the client until the client receives the response from the server.
The results are the average value of 100,000 experiment runs.
For IPC within the same core, seL.4 has a fastpath implemen-
tation that we have analyzed in Section 2 and it performs the
best among all the microkernel. For cross-core IPC, the fast-
path IPC degenerates into a slowpath version. The slowpath
version not only contains more IPC logics but also involves a
costly IPI. Therefore, the IPC roundtrip costs 6764 cycles.

The Fiasco.OC microkernel also has a fastpath IPC imple-
mentation. However, the fastpath in Fiasco.OC may handle
deferred requests (drq) during IPC which is the reason why
its IPC is relatively slower than that in seL.4. The cross-core
IPC in Fiasco.OC also involves the costly IPI, which costs
8440 cycles.

EuroSys 19, March 25-28, 2019, Dresden, Germany

20000

VMFUNC &=z
SYSCALL/SYSRET
context switch

IPl ==

message copy T
schedule

others

15000

cycles)

10000

Tim

5000

Figure 7. The performance breakdown of synchronous ipc
implementations in different microkernels. lower is better.

35000

=== Baseline mmmm |PC-CrossCore
30000 | == Delay mmmm SkyBridge
= PC
< 25000
3 22162
S 20000 18895 19809
Qe
o 15000 1465
E 11
10000 55 8548] 858
4735 5345 Spad CH’
5000 |-, 4 - 3ﬁ5 4152 ﬁ
16-Bytes 64-Bytes 256-Bytes 1024-Bytes

Key and Value Length (Bytes)

Figure 8. The performance of SkyBridge on the KV store
benchmark. Lower is better.

The Zircon microkernel does not have a fastpath IPC,
which means it may enter the scheduler when handling IPC.
Moreover, the IPC path in Zircon may be preempted by inter-
rupts. The message copying in Zircon is not well optimized,
which involves two expensive memory copies for each IPC.
These are the reasons why Zircon performs worst among the
three microkernels. Its cross-core IPC also involves schedul-
ing part and its average cost is 20099 cycles.

We implement SkyBridge on these three microkernels. The
overheads of SkyBridge mainly comes from two sources.
The first one is the VMFUNC instruction, which costs 134
cycles. The second one includes all other operations, such as
saving and restoring register values and installing the target
stack. The second source costs 64 cycles. Therefore, an IPC
roundtrip in SkyBridge costs 396 cycles, which improves the
performance of single-core IPC by 1.49x, 5.86x and 19.6x
for seL.4, Fiasco.OC and Zircon respectively. For cross-core
IPC, the improvement is 16.08x, 20.31x and 49.76x.

6.4 Performance of the Key-Value Store in SkyBridge

To answer Q3, we modify the KV store benchmark and
connect the processes using SkyBridge. The result is shown in
Figure 8. Due to the space limit, we only report the results in
seL4, which has the fastest IPC and we believe can represent
other microkernels.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

When the length of key and value is small, the IPC occu-
pies a large portion of the whole benchmark. SkyBridge can
reduce the latency from 7929 cycles to 3512 cycles. When the
length of key and value is large, the overhead of SkyBridge is
negligible.

6.5 SQLite3 Performance

Table 4. The throughputs (in ops/s) of four basic SQLite3
operations under different microkernels and server settings.
ST-Server means that the file system and the block device
has a single working thread, while MT-Server represents
that these servers have multiple working threads and they
are pinned to each physical cores. The rightmost column is
the speedup of SkyBridge compared with the performance
of MT-Server.

ST-Server | MT-Server | SkyBridge | Speedup
Insert 4839.08 6001.82 11251.08 87.5%
seld Update 3943.71 4714.52 7335.57 55.6%
Query 13245.92 14025.37 18610.60 32.7%
Delete 4326.92 5314.04 7339.31 38.1%

Insert 1296.83 1685.39 5000.00 196.7%

Fiasco Update 1222.83 1557.09 4545.45 191.9%
Query 8108.11 8256.88 15789.47 91.2%

Delete 1255.23 1607.14 4568.53 184.2%

Insert 1408.42 2467.90 7710.63 212.4%

Zircon Update 1376.77 2360.00 6643.24 180.4%
Query 9432.34 9535.56 17843.54 87.1%

Delete 1389.64 1389.64 7027.30 405.7%

To answer Q4, we evaluate the performance of a database
application.

SQLite3 [?] is a widely-used and lightweight relational
database. To use it, we put the client and the SQLite3 database
into the same virtual address space. We also port a log-based
file system named xv6fs [?], which is a formally verified
crash-safe file system. The LibC of the three microkernels
is modified to use the new file system. We use a RAM disk
device to work as the block device and the file system com-
municates with the device with IPC. The client first uses
the SQLite3 database to manipulate files and communicate
with the first server (the file system). The file system finally
reads and writes data into the block device server (The second
server).

In an SMP scenario, there are two possible configurations
of the server. One is to create only one server thread and
each client may use cross-core IPC to communicate with the
server. The second one is to create multiple server threads
and pin them to each physical core. The client can directly
communicate with the server thread sharing the same core
with the client, which avoids the costly cross-core IPC.

We evaluate the performance of four basic SQLite3 oper-
ations, which are insert, update, query and delete, in three
microkernels, as Table 4 shows. Among the four operations,
the query operation performs the best since the SQLite3 has
an internal cache to handle the recent read requests, which
thus avoids a large number of IPC operations. For ST-Server,
we create one working thread for each server and pin the

SkyBridge: Fast and Secure IPC for Microkernels

g 18000 selL4-st
3 16000 seL4-mt —
4 14000 selL4-SkyBridge =
S 12000
= 10000 | 627%¢2
a 8321
£ 8000
g 6000 ks 6059
E 4000 874 pers
2000 H 1ges 188740902
N Aml
1-thread 2-thread 4-thread 8-thread

Number of threads

Figure 9. The throughput of YCSB-A (in op/s) for seL4.
Higher is better.

9000
8000 = Fiasco.0C-st mmmm
7000 Fiasco.OC-mt
6000 Fiasco.OC-SkyBridge
5000 4811
4245
4000 |s644
293 2970
3000 s
2000 13651640 I
1000 786
[1 | I
1-thread 2-thread 4-thread 8-thread

Number of threads

Figure 10. The throughput of YCSB-A (in op/s) for Fi-
asco.OC. Higher is better.

client and the two servers to three different physical cores
and the IPC among them involves IPIs, which accounts for its
bad performance. For MT-Server, we create multiple work-
ing threads for each server and pin these thread to different
physical cores. The client can communicate with the local
server thread without issuing the costly cross-core IPC. We
also evaluate these four operations using SkyBridge, which
allows the client to directly jump into the server’s virtual
space and call its functions. SkyBridge can greatly improve
the performance of insert, update and delete operations except
the query operation. The reason is that the query operation
does not cause many IPC operations compared with other
three operations.

Figure 9 shows the throughputs of SkyBridge for selL.4 in
an SMP scenario. Since the xv6fs does not support multi-
threading, we use one big lock in the file system, that is the
reason why the scalability is so bad for this benchmark. We
use the YCSB workloads to test the throughput. All work-
loads have similar results and we only report YCSB-A result
here due to the space limit. YCSB-A workload consists of
50% read (query) and 50% write (update) operations. We run
the workload on a table with 10,000 records. seLL4-st means
that the servers only have one working thread, but we do
not bind the thread to a specific core. In seL.4-mt, we create

EuroSys 19, March 25-28, 2019, Dresden, Germany

12000 11296 .
Zircon-st

10000 Zircon-mt

Zircon-SkyBridge
8000

6162
6000
4181
4000 3630
2466
2000 1107802 ml T
743
|] 5z L

1-thread 2-thread 4-thread

Number of threads

8-thread

Figure 11. The throughput of YCSB-A (in op/s) for Zircon.
Higher is better.

Table 5. The throughput (in ops/s) of SQLite3 using YCSB-
A in the native and virtualized environments without using
SkyBridge and the number of VM exits in SkyBridge Rootk-
ernel.

Native Rootkernel #VM exits
YCSB-A 1 thread 9745.15 9694.49 0
YCSB-A 8 thread 1465.95 1411.64 0

multiple threads for the servers and pin them to each core.
With the increase of the cores, we also create more threads for
the clients. The result shows that SkyBridge can outperform
the old IPC mechanism in a different number of cores and
the average speedups are 0.819x, 1.442x and 9.593x for seL4,
Fiasco.OC (Figure 10) and Zircon (Figure 11) respectively.
We measure the number of IPI for each experiment. For
example, in the 8-thread experiment in seL.4, the number of
IPI for selL4-st is 1,984,343 while the value in seL.4-mt is 20.

6.6 Virtualization Overhead

To answer Q5, we count the number of VM exits dur-
ing the execution of the SQLite3 benchmark with and with-
out the Rootkernel. Table 5 shows the performance of the
SQLite3 using the YCSB-A workload with different numbers
of threads in seL.4. We first evaluate the performance in the
native environment and then run the same workload above the
Rootkernel without using SkyBridge. The result demonstrates
that the Rootkernel design incurs negligible overhead for the
workload. Even if an application does not use SkyBridge, its
performance is not affected by the virtualized environment
introduced by SkyBridge. The number of VM exits collected
during the experiments are 0, in that the Subkernel can get
access to most physical memory, handle hardware events and
execute privileged instructions without triggering any VM
exits, as we introduced in Section 4.1.

6.7 Rewriting VMFUNC

We do not find any occurrence of inadvertent VMFUNC
instructions in our microkernel benchmarks. We scan many
different programs in Linux and find only one occurrence of

EuroSys 19, March 25-28, 2019, Dresden, Germany

Table 6. Inadvertent VMFUNC instructions found by Sky-
Bridge

Program
SPECCPU 2006 (31Apps)
PARSEC 3.0 (45 Apps) 0
Nginx v1.6.2 979 0
Apache v2.4.10 666 0
Memcached v1.4.21 121 0
0
0
0
1

Average Code Size (KB) VMFUNC Count
424 0
842

Redis v2.8.17 729
Vmlinux v4.14.29 10,498
Linux Kernel Modules v4.14.29 (2,934 Modules) 15
216

Other Apps (2,605 Apps) (in GIMP-2.8)

inadvertent VMFUNC instruction in GIMP-2.8, as shown in
Table 6. GIMP is an image manipulation program and the
inadvertent VMFUNC is contained in the immediate region
of a longer call instruction. The immediate is an offset and
the call instruction can be replaced with our rewriting strategy
for jump-like instructions.

7 Security Analysis

Malicious EPT switching: As we mentioned in Section 4.4,
a malicious process may use a self-prepared VMFUNC to
bypass the trampoline and jump to any address of one victim
process. SkyBridge defends against such attack by dynami-
cally scanning the binary of each process during loading time
and replacing any VMFUNC instruction with functionally-
equivalent instructions.

Meltdown Attacks [?]: Meltdown attacks allow unautho-
rized processes to read data of privileged kernel or other
processes. Current OS kernels including the microkernels like
selL4 defend against this attack by using two page tables for
the kernel and user programs respectively. SkyBridge can also
defeat such attack since it still puts different processes into
different page tables..

DoS Attacks: During a direct server call, the called server
may encounter internal errors which lead to itself failure
or the server is deliberately waiting and does not return to
the client, both of which causes a hang for the client. Like
other microkernels, SkyBridge provides a timeout mechanism,
which can force the server to return the control flow to the
client.

Malicious Server Call: Due to the hardware features, the
Rootkernel has to put all server’s EPTP into the same EPTP
list before one client gets scheduled, which may allow a
malicious client or server to call other servers even if this call
is forbidden. To prevent this illegal call, SkyBridge provides
a calling-key table for each process to check whether the
current caller is a legally registered process.

Refusing to Call SkyBridge Interface: One process may
refuse to call the interface provided by SkyBridge. But it
is in an isolated environment, which means this behavior
only results in its own execution failure, not affecting other
processes or the kernel.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

8 Related Work

8.1 Software-based IPC Optimization
There is a long line of research on reducing the overheads

grates many techniques, including using in-register message
transfer to avoid redundant copying and leveraging tagged
TLB to reduce the context switch overhead. One notable opti-
mization technique is to migrate the client’s thread to server’s
address space and run server’s code, which is used in LRPC [?

two main benefits. The first one is that it avoids the costly
scheduling since it does not block the client and allows it to
directly switch to the server using its own scheduling quan-
tum. The second one is that there is only a partial context
switch where a small subset of registers and the address space
are changed. However, it still requires the involvement of the
kernel and the costly of address switches. In contrast, Sky-
Bridge follows the thread migration model but designed a
kernel-less IPC facility with extremely low overhead.

Modern microkernels such as seL.4 have adopted many
aforementioned optimization techniques. In selL4, there are
two kinds of IPC: fastpath and slowpath. The fastpath IPC
leverages the direct process switch technique to make the
kernel directly switch to the target server without the involve-
ment of the scheduler, which thus helps the fastpath to achieve
the extremely small latency. However, as we analyzed in Sec-
tion 2, the fastpath still involves the kernel and thus performs
worse than SkyBridge.

The requirement for supporting more complex function-
alities stimulates the design of asynchronous IPC like asyn-
chronous notifications [?]. Current microkernels usually con-
tain a mixture of both synchronous and asynchronous IPCs.
FlexSC [?] also proposes asynchronous system calls for
batching processing and avoiding the costly context switches
between user space and kernel space in a monolithic kernel.
The focus of this paper is mainly on improving synchronous
IPC, which has already resulted in tremendous performance
improvements.

Scheduling-related techniques are also proposed to im-
prove the IPC performance. Lazy scheduling [?] avoids
the frequent queue manipulation, but does not guarantee the
bounded execution time of the scheduler, which is required
by some hard real-time systems. Hence, seL.4 [?] proposes
Benno scheduling to address such problem.

For long message, one solution is to provide the shared
buffer for the client and server, which requires two memory
copies. To this end, L4 [?] proposes a technique called tem-
porary mapping, which temporarily maps the caller’s buffer
into the callee’s address space and avoids one costly message
copying. This technique is orthogonal to SkyBridge and may
also be combined with SkyBridge to achieve better perfor-
mance.

SkyBridge: Fast and Secure IPC for Microkernels

8.2 Single Address Space Systems

Another direction is to put all domains into a single virtual
address space and leverage other techniques to enforce the
isolation among these domains, which can be divided into the
software solutions [? ? ? ? | and hardware solutions [? ? ? ?

SPIN [?] and Singularity [? ?] uses type-safe program-
ming language to enable the low-overhead software-based
memory isolation. Besides, different mainstream processor
manufactures also present their products that support memory
isolation within the same virtual space. ARM memory domain
mechanism [? ?] assigns memory pages into different do-
mains and the hardware Memory Management Unit (MMU)
decides if an access should be allowed based on the current
level stored in a per-core register (Domain Access Control
Register). Intel introduces the Protection Keys for Userspace
(PKU) mechanism to provide similar functionality. ERIM [?
] leverages Intel PKU to provide isolated domains within a
single virtual address space. However, these hardware fea-
tures only supported limited domain numbers. Different from
these works, SkyBridge provides an efficient IPC facility for a
larger number of virtual address spaces (i.e., 512). SeCage [?
] divides an existing application into different Pieces of Appli-
cation Logic (PAL) by program analysis and puts them into
isolated EPT space. SkyBridge focuses on connecting differ-
ent virtual address spaces which is different from SeCage
and proposes a series of techniques to address the challenges
SeCage does not encounter. CrossOver [?]| leverages VM-
FUNC to provide efficient cross-domain control transfers for
virtual machines while SkyBridge focuses on IPCs in the
microkernel world. Besides, CrossOver is mainly a hardware
design that mandates hardware changes for high efficiency.

New hardware extensions are also proposed to provide ef-
ficient in-process isolation, like CODOMs [? ?], CHERI [?
? 1, Opal [?] and IMIX [?]. However, these solutions usu-
ally require non-trivial modification to the hardware and the
microkernels.

9 Discussion and Limitation

Legacy Hypervisors. To run SkyBridge in cloud environ-
ments [? ? ?], legacy hypervisors need to be modified in
order to support the Rootkernel. Fortunately, most function-
alities of the Rootkernel have already been implemented in
today’s hypervisors. For example, Xen allows a VM to create
up to 512 EPTs and use VMFUNC to switch the EPT pointer
by using alt2pm [?]. Other required modifications in the hy-
pervisors are to allow the Subkernel to change mappings in
the EPTs, which can be implemented via hypercalls which
accept and check the mapping information provided by the
Subkernel.

WoX Code Pages. To defend against a malicious VMFUNC
instruction, SkyBridge scans code pages to replace any inad-
vertent VMFUNCs with functionally-equivalent instructions.
One implication of this technique is that it disallows direct

13

EuroSys 19, March 25-28, 2019, Dresden, Germany

modifications to code pages, which may prevent JIT compila-
tion [?], dynamic software updating [?] and live updating of
operating systems [?]. Therefore, to support dynamic code
generation, the code generation process must be adapted to
make code pages writable and non-executable. After code
generation, these pages must be remapped as executable and
non-writable, which allows SkyBridge to rescan them. The
rescanning should be carefully implemented to avoid the in-
structions that span the newly mapped page and neighboring
pages. The remapping and rescanning may impact applica-
tion performance. However, these operations can be boosted
by leveraging a batching technique and thus incur negligible
overhead [?]. We will investigate the performance implica-
tion of W&X code pages in the future.

10 Conclusion and Future Work

This paper described the motivation, design, implementation
and evaluation of SkyBridge, a microkernel IPC facility that
eliminates the involvement of the kernel and allows a process
to directly to switch to the virtual address space of the target
process and execute its code. SkyBridge leverages VMFUNC
to implement efficient IPCs and proposes a series of tech-
niques to guarantee security properties and efficiency. We
have integrated SkyBridge into three microkernels (sel.4, Fi-
asco0.0C and, Google Zircon) to evaluate its performance. The
results show that SkyBridge can improve the performance
of IPC by 1.49x to 19.6x for microbenchmarks. For real-
world applications (SQLite3 database), SkyBridge improves
the throughput by 81.9%, 1.442x and 9.593x for these three
microkernels on average.

We plan to extend our work in three directions. First, we
plan to investigate and extend the design of SkyBridge to
monolithic kernels like Linux to boost applications that com-
municate through Linux IPC facilities. Second, we explore
how to generalize the design of SkyBridge on more hardware
architectures like ARM and AMD. Third, since the EPTP
list can hold at most 512 EPTP entries, we plan to design
a technique that dynamically evicts the least recently used
EPTP entries from the EPTP list when the server number is
larger than 512.

Acknowledgments

We sincerely thank our shepherd Mathias Payer, Martin Decky
and the anonymous reviewers for their insightful comments.
We also thank Dong Du for sharing his experience in porting
SQLite 3.0 and xv6fs to microkernels. This work is sup-
ported in part by the National Key Research & Development
Program (No. 2016 YFB1000104), and the National Natural
Science Foundation of China (No. 61772335). Haibo Chen is
the corresponding author.

References

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Deconstructing Synchronous IPC
	2.2 EPTP Switching with VMFUNC

	3 Overview
	3.1 Key Idea and Challenges
	3.2 Solutions

	4 Detailed Design
	4.1 The Rootkernel
	4.2 The Subkernel
	4.3 Memory Mapping
	4.4 Trampoline

	5 Dynamically Rewriting Illegal VMFUNC
	5.1 Rewriting Mechanism
	5.2 Rewriting Strategy

	6 Evaluation
	6.1 Experimental Setup
	6.2 Status Quo and Implementation Complexity
	6.3 IPC Performance
	6.4 Performance of the Key-Value Store in SkyBridge
	6.5 SQLite3 Performance
	6.6 Virtualization Overhead
	6.7 Rewriting VMFUNC

	7 Security Analysis
	8 Related Work
	8.1 Software-based IPC Optimization
	8.2 Single Address Space Systems

	9 Discussion and Limitation
	10 Conclusion and Future Work
	Acknowledgments

