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Abstract

Microkernels have been extensively studied over decades.

However, IPC (Inter-Process Communication) is still a ma-

jor factor of run-time overhead, where fine-grained isolation

usually leads to excessive IPCs. The main overhead of IPC

comes from the involvement of the kernel, which includes

the direct cost of mode switches and address space changes,

as well as indirect cost due to the pollution of processor struc-

tures.

In this paper, we present SkyBridge, a new communica-

tion facility designed and optimized for synchronous IPC

in microkernels. SkyBridge requires no involvement of ker-

nels during communication and allows a process to directly

switch to the virtual address space of the target process and

invoke the target function. SkyBridge retains the traditional

virtual address space isolation and thus can be easily inte-

grated into existing microkernels. The key idea of SkyBridge

is to leverage a commodity hardware feature for virtualiza-

tion (i.e., VMFUNC) to achieve efficient IPC. To leverage

the hardware feature, SkyBridge inserts a tiny virtualization

layer (Rootkernel) beneath the original microkernel (Subker-

nel). The Rootkernel is carefully designed to eliminate most

virtualization overheads. SkyBridge also integrates a series

of techniques to guarantee the security properties of IPC.

We have implemented SkyBridge on three popular open-

source microkernels (seL4, Fiasco.OC, and Google Zircon).

The evaluation results show that SkyBridge improves the

speed of IPC by 1.49x to 19.6x for microbenchmarks. For

real-world applications (e.g., SQLite3 database), SkyBridge

improves the throughput by 81.9%, 1.44x and 9.59x for the

three microkernels on average.
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1 Introduction

Microkernels have been extensively studied over the past

four decades [22, 28, 29, 36, 42, 43, 48, 60, 63]. The key

design is to deprivilege most kernel functionalities into dif-

ferent servers residing in isolated user processes. The ker-

nel provides basic functionalities, such as process manage-

ment, capability enforcement and inter-process communica-

tion (IPC). Such a decentralized design makes the OS archi-

tecture robust against run-time errors, which means a fault

within one server would not affect other servers and the ker-

nel. Removing most functionalities from the kernel also re-

sults in a small Trusted Computing Base (TCB), making it

less vulnerable to attacks and possible for comprehensive

formal verification [36]. Given such advantages, microker-

nels [29, 34] are widely used in various areas where high re-

liability matters, such as aerospace, automotive and medical

devices.

In a microkernel, any communication between different

user processes is based on IPC, which is an intensively-used

operation. For example, if a client process writes data into

an external block device, it first communicates with the file

system, which in turn notifies the disk device driver to write

data into the block device. All the communication is done

via IPC. In fact, IPC is known as a major factor of run-

time overhead [20, 27, 40, 52], which determines the per-

formance of applications on microkernels. Transferring con-

trol across process boundaries is expensive, which requires

at least: a trap into the microkernel (SYSCALL instruction),

data copying for arguments, one address space switch (even

two switches if considering the recent Meltdown attack [45]),

and an upcall back to the user level. Such operations must be

repeated upon IPC return. Some asynchronous implementa-

tion of IPC even involves costly scheduling work.

A large body of research has been done to optimize the

IPC performance. Software-based solutions try to shorten

the IPC path by removing unnecessary operations. seL4 [36]

uses the IPC fastpath for the case of Call and ReplyWait

system calls where the IPC message fits in CPU registers,
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and no capabilities are transferred. For a fastpath, the mes-

sage will be sent immediately and the control flow will be

directly transferred without entering into the costly sched-

uling logic. Similarly, some software-based solutions like

LRPC [8] also eliminate the scheduling overhead and allow

a process’s thread to execute requested procedures in the re-

ceiver’s address space. However, all such approaches still

require the involvement of the kernel and thus their perfor-

mance (around 1000 cycles for an IPC roundtrip) do not sat-

isfy the requirement of IPC-intensive workloads, as shown

in Section 2. Hardware-based solutions propose new hard-

ware extensions to boost IPC operation. dIPC [55] puts all

IPC participants into a single address space, and the ker-

nel is removed from the IPC path. The process isolation

is achieved by the newly designed tagged memory. Such

hardware-based solutions usually require non-trivial modifi-

cation to both hardware and software, which have less poten-

tial for practical adoption.

Therefore, we argue that there is a need for an IPC tech-

nique that satisfies the following requirements.

• Efficient: the IPC path does not involve the kernel.

• Lightweight: the IPC can be readily deployed on com-

modity hardware and can be easily integrated into ex-

isting microkernel architecture.

• Secure: the IPC design does not break the microkernel

isolation abstraction.

In this paper, we present a new IPC design that meets

such requirements. Our design, called SkyBridge, allows one

process (sender) to directly execute the requested procedure

in another process’s (receiver) address space without trap-

ping into the kernel. SkyBridge has two main technical ad-

vantages. First, SkyBridge still places each process in its

own virtual address space which fits well with the design

and implementation of existing microkernels. Second, Sky-

Bridge leverages one Intel hardware feature for virtualiza-

tion, named EPT (extended page table) switching (the VM-

FUNC instruction), to change the virtual address space at

the user level. By configuring the receiver’s EPT, SkyBridge

maps the page table of the sender to that of the receiver.

Therefore, after switching the EPT by VMFUNC, the hard-

ware uses the receiver’s page table to translate all subsequent

virtual addresses. SkyBridge also provides a separated stack

for each receiver’s thread in its virtual address space. To sup-

port long IPC, SkyBridge provides shared buffers for the

IPC participants when large messages are transferred. Each

buffer is bound to one receiver’s thread for concurrency.

Although the approach of SkyBridge sounds intuitive, ap-

plying it to the microkernels imposes three practical chal-

lenges. First, leveraging EPT switching requires the virtual-

ization layer, which may bring overhead to the whole sys-

tem since the new layer could cause a large number of costly

VM exits. To address this challenge, SkyBridge introduces

a tiny virtualization layer (called Rootkernel) only consist-

ing of the most primitive functionalities for SkyBridge while

eliminating VM exits during an IPC.

Second, existing ways [41, 46] of leveraging VMFUNC

require non-trivial modification to the microkernels and thus

tremendous engineering effort. SkyBridge proposes a light-

weight method to efficiently switch virtual address spaces

among different processes which can be easily integrated

into microkernel architectures.

Third, it is difficult to design a secure IPC facility without

the involvement of the kernel, especially when one malicious

process can exploit the VMFUNC instruction to corrupt

other processes [46]. SkyBridge guarantees that there is only

one legal entry point for switching address spaces among

processes, which prevents a malicious process from invok-

ing self-prepared VMFUNC instructions to corrupt other pro-

cesses. SkyBridge also requires a process to register to other

processes before communicating with them and introduces a

calling-key table mechanism to enforce such a policy.

We have implemented SkyBridge on three different micro-

kernels (seL4 [36], Fiasco.OC [1] and Google Zircon [5])

and deployed them on a commodity Intel Skylake machine.

Our evaluation shows that SkyBridge significantly improves

the performance of IPC by 1.49x, 5.86x, and 19.6x for seL4

(fastpath), Fiasco.OC and Zircon respectively. For a real-

world application like a multi-tier SQLite3 workload, Sky-

Bridge improves the performance by 81.9%, 1.44x and 9.59x

for such three microkernels on average.

Contributions. The contributions of the paper are summa-

rized as follows:

• A detailed analysis of the performance overheads of

IPC in state-of-the-art microkernels.

• A new design which can significantly improve the per-

formance of the microkernel IPC without any modifi-

cation to the hardware.

• An implementation of SkyBridge and an evaluation us-

ing real-world benchmarks on three different microker-

nels.

2 Motivation and Background

2.1 Deconstructing Synchronous IPC

In this section, we evaluate the performance costs associ-

ated with the traditional synchronous inter-process call (IPC)

in microkernels. We use seL4 [36] (v10.0.0) on an Intel Sky-

lake processor to conduct all the experiments. seL4 is known

to have a fast IPC facility, which we believe can represent

state-of-the-art microkernels.

Although integrated with different optimization tech-

niques, the current implementation of synchronous IPC still

negatively impacts the performance of microkernel work-

loads, which are usually IPC-intensive. The synchronous

IPC overheads can be classified into two categories: one is
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the direct cost from the kernel, and the other is the indirect

pollution of processor structures.

2.1.1 Direct Cost of Microkernels

Mode Switch. For each IPC, the sender first invokes a

SYSCALL instruction to trap into the kernel, which then saves

necessary user-mode states into a kernel stack. When the ker-

nel resumes the execution of the receiver, it restores the re-

ceiver’s user-mode states and finally invokes a SYSRET in-

struction to return to the user mode. The mode switch in an

IPC also contains two SWAPGS instructions that change the

base address of the gs registers when entering and exiting the

kernel. We measure the mode switch cost by executing a null

SYSCALL which directly returns to the user mode for one

billion times. To measure the overhead of each operation, we

read The Time Stamp Counter (TSC) values before and after

each instruction. The cycles for SYSCALL, SWAPGS and

SYSRET are 82, 26 and 75 respectively.

Address Space Switch. A microkernel uses different virtual

address spaces for processes to isolate them. Thus, it is nec-

essary to switch the virtual address space when delivering

an IPC. The measured cost of an address space switch on

our machine is 186 cycles with the PCID (process ID) en-

abled. Moreover, recent microkernels use different page ta-

bles for the kernel and the user space to defend against the

Meltdown attack [45]. Hence, an IPC usually involves two

address space switches, which costs 372 cycles in total.

Other Software IPC logic. To handle an IPC request, a mi-

crokernel usually contains various security checks, endpoint

management and capability enforcement. The total cost of

this part is 98 cycles for seL4 fastpath on our machine.

In total, the fastest IPC implementation may cost 493 cy-

cles if the Meltdown mitigations are disabled. This result

matches the recent performance results for the fastpath IPC

of seL4 [3], which was also measured on an Intel Skylake

machine.

Table 1. The pollution of processor structures.

Name i-cache d-cache L2 cache L3 cache i-TLB d-TLB

Baseline 15 10624 13237 43 8 17

Delay 15 10639 13258 43 9 19

IPC 696 27054 15974 44 11 7832

2.1.2 Indirect Cost of Microkernels

The overheads of the synchronous IPC are not limited to the

direct cost of the kernel. During the execution of the kernel,

it will evict the user-mode states in some important proces-

sor structures, including the L1 instruction and data caches,

L2 and L3 shared caches and translation look-aside buffers

(TLB). The state pollution makes an indirect effect on the fol-

lowing user-mode instructions, which triggers TLB misses

and different levels’ cache misses.

To evaluate the overhead caused by the indirect pollution

of processor structures, we build a simple Key-Value store in

Client
Encrypt

Server
KV Store

Figure 1. An example to measure the cost of IPC.
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Figure 2. The average latency (in cycles) for the KV store

operation. Lower is better.

the seL4 microkernel. It consists of a client and two servers,

which are an encryption server and a key-value (KV) store

server as shown in Figure 1. For the insert operations, re-

quests from the client reach the encryption server to encrypt

the messages before getting to the KV store server to save

the messages. For the query operations, the encryption server

decrypts the query results from the KV store server and then

returns them to the client.

There are three ways to organize the three processes:

• Baseline: putting them into the same virtual address

space and utilizing function calls to connect them.

• IPC: putting them into different virtual address spaces

and utilizing IPC to connect them. The seL4 kernel is

configured without using Meltdown mitigations.

• Delay: putting them into the same virtual address

space and utilizing the delay function calls to connect

them. The delay function call uses a loop to delay for

a period of time which is equal to the direct cost of an

IPC (493 cycles).

We measure the impact of the key and value size on the

benchmark throughput. The requests of the client consist of

50%/50% insert and query operations. Ideally, there should

be no difference between the IPC and the Delay bar. How-

ever, as Figure 2 shows, the indirect cost of IPC is the reason

for the gaps between the IPC and Delay bars.

We also count the different events occurring for 512 op-

erations in the three experiments by leveraging Intel perfor-

mance monitoring unit (PMU). Table 1 shows the footprints

on several processor structures for them. The data indicates

that the IPC version causes more significant impact on all

levels of cache and TLB structure than that on the Delay and

Baseline cases.

3



EuroSys ’19, March 25–28, 2019, Dresden, Germany Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen

Table 2. Latency of different instructions and operations in

cycles. KPTI [58] is a technique that uses two page tables

for the kernel and the user space to defend against the Melt-

down attack.

Instruction or Operation Cycles

write to CR3 186±10

no-op system call w/ KPTI 431±13

no-op system call w/o KPTI 181±5

VMFUNC 134±3

2.1.3 IPC Cost in Multicore

In a multicore machine, the servers and the client may re-

side on different cores, which is resulted from an oversub-

scribed condition or a scheduling decision. Under such a cir-

cumstance, a cross-core IPC involves a costly inter-processor

interrupt (IPI). For example, the cross-core IPC degenerates

into a slowpath version which contains an IPI. One IPI takes

1,913 cycles on our machine. We reevaluate the IPC version

experiment by putting the client and its two servers to three

different cores. The result is also shown in Figure 2. For var-

ious lengths of keys and values, the cross-core IPC incurs

high overhead.

2.2 EPTP Switching with VMFUNC

VMFUNC [2] is an Intel hardware instruction that allows

software in non-root mode (in both kernel and user modes)

to invoke a VM function. VM functions are processor fea-

tures managed by the hypervisor. EPTP (the pointer to an

EPT) switching is one of these VM functions, which allows

the guest to load a new value for the EPTP from an EPTP

list stored in the Virtual Machine Control Structure (VMCS)

configured by the hypervisor. The new EPT then translates

subsequent guest physical addresses (GPA) to host physi-

cal addresses (HPA). The EPTP list can hold at most 512

EPTP entries. The typical usage of EPTP switching is to

create multiple domains for one physical address space and

these domains usually have different memory mappings and

privileges [30, 46]. Table 2 shows the latencies of different

instructions and operations. With the Virtual Processor ID

(VPID) feature enabled, the VMFUNC instruction does not

flush TLB and costs only 134 cycles.

3 Overview

The traditional implementation of IPC requires the involve-

ment of the kernel, which incurs the direct and indirect cost

as we analyzed in Section 2. Therefore, to address the per-

formance impact of the traditional synchronous IPC, Sky-

Bridge aims at removing the kernel participation from syn-

chronous IPC. It allows the client to directly switch to the

server’s virtual address space and execute the requested pro-

cedure, which not only avoids the direct cost of trapping into

the microkernel but also partially eliminates the indirect cost

of architectural state pollution.

Server1 Server2

      Kernel

Trampoline

Client-PT Server1-PTClient-PT Client-PT Client-PT Server2-PT

Server0-EPT Server1-EPT

Trampoline

Client

Trampoline

VMFUNC VMFUNC

Client-EPT

Configure Configure Configure

… … …

1 1 1

2 2

Figure 3. The general workflow of SkyBridge.

     int server_handler(args)

     {

          int res

          … // server handler logic

          return res;

     }

     void server (void) 

     {

           int connection_count = 8;

           int server_id = register_server(connection_count, 

                                 server_handler);

     }

     void client (void) 

     {

           register_client_to_server(server_id);

           direct_server_call(server_id, args) 

     }

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Figure 4. Example code of a client and a server.

3.1 Key Idea and Challenges

SkyBridge uses one VMFUNC to implement the switch

of virtual address space without trapping into the kernel and

eliminate the costly IPI because it allows one process to di-

rectly invoke other process’s code. The general workflow of

SkyBridge and the example code are shown in Figure 3 and

Figure 4. SkyBridge provides a programming model simi-

lar to that of traditional IPC. To use SkyBridge, a program

should be modified to use the SkyBridge user-level inter-

faces.

A server has to register into the kernel before other pro-

cesses start to request its service. During registration, the

server provides the kernel with a function address it allows

other processes to directly invoke and a number indicating

the maximum number of connections it can receive at the

same time. Then the kernel maps trampoline-related code

and data (shared pages and stacks) into the server’s virtual

address space and returns the server ID that can be used by

clients to locate the server during registration. Similarly, the

client also registers into SkyBridge by providing the server

ID which it intends to call. The kernel then maps trampoline-

related code and data pages into the client’s virtual address

space. It maps a server function list into the client virtual ad-

dress space as well. Most importantly, the kernel creates one
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Figure 5. The overall architecture.

EPT for the client and all the target servers, as shown in Step

1 in Figure 3. In these servers’ EPTs, the page table of the

client is mapped to the corresponding ones of the servers.

When the client invokes the direct_server_call (Step 2

in Figure 3), the trampoline saves the client’s states into its

stack and invokes the VMFUNC instruction to switch to the

server’s EPT. After switching EPT, the configuration in the

server’s EPT makes sure the hardware use the server’s page

table to translate all subsequent virtual addresses. Finally, the

trampoline installs the server’s stack and invokes the server’s

registered handling function.

However, applying VMFUNC imposes the following chal-

lenges.

• Virtualization overhead. The use of VMFUNC re-

quires a hypervisor to be inserted at the bottom of the

microkernel, which inevitably incurs overhead for the

normal execution of the system.

• Integration. Existing techniques of leveraging VM-

FUNC are difficult to apply to microkernels without

much modification.

• Security. New security threats are introduced by the

design of the direct virtual address space switch.

3.2 Solutions

To leverage SkyBridge, SkyBridge proposes a series of so-

lutions to addressing these challenges.

Efficient Virtualization: The overheads of virtualization

mainly come from two sources. The first one is the two-level

address translation and the other one is a large number of

costly VM exits. To tackle the virtualization overheads, Sky-

Bridge introduces a tiny hypervisor (Rootkernel) that con-

tains only 1500 LoCs. It utilizes 1 GB huge pages to map

most host physical memory except those reserved for Rootk-

ernel to the microkernel (named Subkernel in our paper) in

non-root mode. This memory mapping not only allows the

execution of the microkernel not to trigger any EPT viola-

tion but also diminishes the cost of address translation from a

GPA to its HPA. To tackle the second overhead, the Rootker-

nel configures VMCS to let the Subkernel handle most hard-

ware events (external interrupts) or privileged instructions

(e.g., HLT). By using such configuration, most VM exits are

avoided. In our evaluation, there are no VM exits when run-

ning normal applications and the virtualization overheads are

negligible.

Therefore, the architecture of SkyBridge is divided into

two components, as shown in Figure 5. The Rootkernel con-

sists of three parts, which are the management of EPT, han-

dlers for inevitable VM exits and a self-virtualization mod-

ule. The Subkernel has one line of code to call the self-

virtualization module in Rootkernel to dynamically start the

Rootkernel during the booting procedure. The process cre-

ation part is also modified to call the EPT management part

of the Rootkernel to configure the EPT part for each new

process. When creating a new process, the Subkernel maps

a trampoline into the process, which helps the process to in-

voke the direct server call of SkyBridge. The details of the

Rootkernel and Subkernel are described in Section 4.1 and

Section 4.2.

Lightweight Virtual Address Switch: To use VMFUNC to

efficiently switch the virtual address space in the user mode

without the involvement of the kernel, there is one possible

design, which is to combine all related processes into the

same virtual address and use different EPTs to isolate them.

Switching the virtual address space means to install a new

EPT that enables the corresponding permission. Even if the

solution sounds intuitive, it requires non-trivial modification

to the microkernel to fix possible virtual address overlapping

problems, which thus incurs tremendous engineering effort.

SkyBridge proposes a lightweight and effective design that

remaps the base address of the page table (CR3 value) in

each EPT. Instead of putting all processes into the same vir-

tual address space, SkyBridge still isolates them using differ-

ent page tables. Before scheduling a new client, SkyBridge

installs a new EPTP list for it, which contains the servers’

EPT pointers the client is allowed to invoke. In each server’s

EPT, the GPA of the client’s CR3 value is translated to the

HPA of the corresponding server’s CR3 value, which allows

hardware to automatically use the new page table for later vir-

tual address translation after the invocation of the VMFUNC

instruction (Section 4.3).

Secure Trampoline: In the traditional microkernel design,

each IPC gets trapped into the kernel, which then has the

chance to do the security check and deny any illegal IPC

communication. However, the kernel is unable to check each

IPC communication in SkyBridge, which means SkyBridge

has to provide new techniques to guarantee the same security

level as the traditional IPC. First, a malicious process may

use self-prepared VMFUNC instruction to bypass the tram-

poline and access sensitive data or code of other processes,

which is called the VMFUNC faking attack in SeCage [46].

Yet, the defense proposed by SeCage fails to work in Sky-

Bridge (we will explain it in Section 4.4). To defend against

such attack, SkyBridge dynamically rewrites the binary of a

5
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process to replace any illegal VMFUNC with functionally-

equivalent instructions. To prevent a sender from calling un-

registered receivers, we provide a calling-key table for each

process, which records a list of calling keys. For each IPC,

the sender should provide a calling key for the receiver,

which checks the key against its calling-key table and denies

the IPC and notifies the kernel if the sent key does not ex-

ist in the table. This solution provides an optimistic security

check which assumes most IPC is legal and does not require

the kernel to check it (Section 4.4).

4 Detailed Design

4.1 The Rootkernel

To utilize VMFUNC, the processes have to run in non-

root mode. However, there are two design choices of whether

or not to put the kernel into non-root mode. One way like

SeCage [46] and CrossOver [41] works like a virtual ma-

chine, where both the kernel and processes run in non-root

mode. Usually, these systems reuse mature commercial hy-

pervisors like KVM [35] and Xen [6], which are designed to

support general virtual machines. Hence, this way will incur

large overhead caused by the virtualization layer. The other

design choice is to put the kernel in root mode while sustain-

ing the processes in non-root mode, like Dune [7]. However,

the costly VM exits still exist. In Dune, most system calls in-

cur the cost of a VM exit that is significantly more expensive

than a (nonvirtualized) system call.

SkyBridge offers a new solution different from the above

two design choices. It eliminates the costly VM exits caused

by previous solutions. SkyBridge provides a tiny hypervisor

called the Rootkernel whose size is much smaller than the

commercial hypervisors. The Rootkernel only contains nec-

essary functionalities to support SkyBridge, which includes

the EPT management, a dynamic self-virtualization module,

and some basic VM exit handlers.

To eliminate the costly VM exits, the Rootkernel config-

ures the hardware to let most VM behaviors not trigger any

VM exits. VM exits include three categories: the privileged

instruction exits, hardware event exits, and EPT violation ex-

its. For the privileged instruction exits like changing CR3

value, the Rootkernel allows these instructions not to trigger

any VM exits. To handle hardware events like an external in-

terrupt in traditional hypervisors, a VM exit triggers to wake

up the hypervisor when receiving this event. In SkyBridge,

the Rootkernel allows the hardware to inject the external in-

terrupts directly into the microkernel in non-root mode since

it has the privilege to manage its external devices.

Commercial hypervisors use an EPT for each VM and

specify in the EPT the memory regions belonging to the VM.

This can limit this VM from accessing other VMs and the hy-

pervisor’s physical memory. When a VM accesses the phys-

ical memory which is not present in the EPT or it has not

enough permissions to access it, an EPT violation VM exit

triggers and the hypervisor wakes up to handle such viola-

tion. Furthermore, the 2-level address translation (from GVA

to HPA) incurs higher overhead than the 1-level translation

(from GVA to GPA). For example, one TLB miss in the 2-

level address translation may require at most 24 memory ac-

cesses [26], which incurs large overhead. To eliminate the

EPT violation VM exits and reduce the overhead of 2-level

address translation, the Rootkernel creates a base EPT for

the Subkernel and uses the maximum huge page (1 GB on

an x86_64 machine) to map most physical memory address

to the Subkernel. SkyBridge only reserves a small portion of

physical memory (100 MB in our evaluation) for the Rootker-

nel. Hence, the microkernel is free to access almost all physi-

cal memory on the machine, and no more EPT violation will

be triggered. Moreover, the huge page mapping not only re-

duces the number of memory accesses for handling a TLB

miss, but also reduces the number of TLB misses.

The booting procedure of Rootkernel is different from

traditional hypervisors. Inspired by CloudVisor [61], Sky-

Bridge does not contain the machine bootstrap code that in-

creases the complexity of the Rootkernel and is error-prone.

Instead, the Rootkernel is booted by the Subkernel and down-

grades the Subkernel to non-root mode.

The Rootkernel also retains handlers for inevitable exits.

In our current implementation, the Rootkernel contains han-

dlers for CPUID instructions, VMCALL instructions and

EPT violations. The VMCALL instruction is leveraged by

the Rootkernel to implement an interface to communicate

with the Subkernel.

4.2 The Subkernel

The Rootkernel provides an interface for the Subkernel to

manage each process’s EPT. When a server registers into

SkyBridge, the Subkernel maps the trampoline code page

and a number of stack pages into the server’s virtual address

space. Then it allocates a free server ID for the server. When

a client registers into SkyBridge and asks for getting bound

to a server, the Rootkernel maps the trampoline code and

stack pages into the client’s virtual address space. Then the

Subkernel invokes the Rootkernel interface to ask the Rootk-

ernel to bind the client and server in the EPT level. The

Rootkernel copies a new server EPT and maps the client

page table to the server page table. Finally, the Rootkernel

installs the newly created EPT into the client’s EPTP list. Ac-

tually, the Rootkernel also writes all processes’ EPTPs that

the server depends on into the client’s EPTP list.

SkyBridge does not modify the scheduling algorithm part

of the microkernel. Yet, when the Subkernel decides to do

a context switch from one process to a new process, it will

notify the Rootkernel to install the next process’s EPTP list.

SkyBridge provides shared buffers for processes to trans-

fer large data. The Subkernel creates multiple shared buffers

according to the number of registered threads for one server.
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Figure 6. Virtual address space switches in SkyBridge

Each time the client calls a server, it may use the server

thread’s buffer for large data transfer.

Process Misidentification: If a sender gets trapped into the

kernel (e.g., caused by an interrupt) when executing in one

receiver’s virtual address space, it intends to invoke micro-

kernel’s services as a receiver. However, the microkernel will

still treat the process as the original process, which we call

a process misidentification problem. To address the problem,

SkyBridge allocates an identity page that records each pro-

cess’s identity information and maps this page into the same

GPA in each EPT. This page is also mapped into the kernel

address space which thus can be accessed by the Subkernel

via a virtual address. The Subkernel checks this page to know

which process it is serving for by accessing this virtual ad-

dress.

4.3 Memory Mapping

SkyBridge guarantees that the virtual address spaces of

different processes are isolated and provides an efficient user-

level virtual space switch method for them. In fact, there

are two known techniques for such purpose. The first tech-

nique [46] is to put different processes into the same virtual

address space and use one EPT for each process to provide

an isolated view of the shared virtual address space. Similar

to SkyBridge, it also uses VMFUNC to switch among views

without kernel involvement. This technique is easy to imple-

ment when the number of processes is small. When the num-

ber gets large, virtual address regions for different processes

have to be carefully managed in order to prevent these re-

gions from overlapping, which requires tedious engineering

efforts.

The second technique is to leverage the recent Intel Mem-

ory Protection Keys for Userspace (PKU) to switch views.

Applying PKU does not address the overlapping problem ei-

ther. Moreover, it provides a limited number of security do-

mains (16) and does not satisfy the requirement of microker-

nels.

SkyBridge sustains the traditional virtual memory isola-

tion method and proposes an efficient virtual space switch

technique, which does not require much engineering work to

implement it. Different from the first technique, SkyBridge

still uses separated page tables for these processes. To switch

page tables without modifying the CR3 register in the user

mode, it remaps the client’s table page base address (CR3

value) to the HPA of server’s CR3 value in the server’s EPT.

Therefore, the switch of EPT by invoking VMFUNC can in-

stall the server’s virtual page table for later virtual address

translations.

The technique SkyBridge employs to provide an efficient

page table switch is depicted in Figure 6. A process is still

created by the original mechanism of the microkernel and

owns its virtual address space. In this example, the client and

the server have their own page tables, whose base physical

addresses (GPA) are client-CR3 and server-CR3 respectively.

Once starting one new server, the Subkernel saves the CR3

value of the server (server-CR3). When the client registers,

the Subkernel notifies the Rootkernel to copy two new EPTs

from the base EPT for the client and server, which are EPT-C

and EPT-S respectively. Then the Rootkernel remaps client-

CR3 to the HPA of server-CR3 in EPT-S and does not make

any modification to EPT-C.

During execution, the value of the CR3 register is client-

CR3 and will not be changed. When the client invokes di-

rect_server_call interface, the trampoline invokes the VM-

FUNC instruction to change the value of EPT pointer from

EPT-C to EPT-S. After using EPT-S, client-CR3 will be

mapped to the HPA of server-CR3, which means all subse-

quent virtual address will be translated by the server page

table. Therefore, the client can access any virtual address in

the server’s virtual address space.

Please note that the creation of EPT here is just a shal-

low copy that reuses most mapping in the base EPT. Only

four pages that map client-CR3 to the HPA of server-CR3

are modified. All other EPT pages are kept intact.

4.4 Trampoline

The direct_server_call interface of SkyBridge is imple-

mented by a trampoline, which is a code page mapped into

the virtual space by the Subkernel during process registration.

A client and all its bound servers should be inserted such

trampoline. When binding a client to a server, the Subker-

nel creates multiple stacks and maps them into the server’s

virtual address space. The number of stacks is specified by

the server during its registration and determines how many

concurrent threads the server can support.

Usually, the sender needs to transfer some data to the re-

ceiver in an IPC. For small data transfer, SkyBridge puts

these data into CPU registers which obeys the calling con-

vention in x86_64. For large data transfer, SkyBridge creates

a shared buffer for each pair of client and server thread and

maps them into both the client and the server.
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Trampoline Workflow: When the sender is a client, its ID

is zero. Otherwise, the sender ID is the value returned by

the register_server function. Before invoking the VMFUNC

instruction, the trampoline copies data from the client’s in-

ternal buffer into the shared buffer if the transferred data

exceeds the capacity of CPU registers. After switching the

virtual address space by invoking the VMFUNC instruction,

the trampoline installs the server stack. Finally, it calls the

server’s registered function according to the server ID.

Security Threats: The design of the trampoline considers

two possible attacks. The first attack is a self-prepared VM-

FUNC attack, where the malicious client or server invokes

an illegal VMFUNC instruction which is not prepared by the

trampoline to bypass the trampoline and access sensitive in-

structions or data in other processes. The previous defense

against this attack is to put different pieces of application

logic (PAL) code and data into different EPTs and guarantee

that only the trampoline is mapped into these EPTs which

makes it the only entry point to other PALs. However, this

solution does not apply to SkyBridge due to the remapping

of CR3 GPA technique, which allows the attacker to invoke

VMFUNC at any virtual address to switch to the victim pro-

cess’s virtual address space. Therefore, the trampoline is not

the only legal entry point to other processes.

To defend against such attack, we leverage the binary

rewriting technique and scan the each process’s code to re-

place any VMFUNC instruction or any sequences of in-

structions containing an inadvertent VMFUNC with other

functionally-equivalent instructions. This solution has been

used by different other systems [18, 50, 53] and we will de-

scribe our method in Section 5.

The second attack is called the illegal server call or client

return. The illegal server call is that one client may bypass

the server it should invoke and directly call unregistered

servers, which is dangerous if these servers contain sensi-

tive information. Similarly, the illegal client return is that one

server does not return to the client that calls it, but to other

client or servers. To defend against such attack, SkyBridge

provides a calling-key table for each process, which records

the processes bound to it and their calling keys. The server’s

calling keys are generated during the client registration. The

Subkernel generates a random 8-byte key for the client and

gives it to the client and the server. For example, the client

gets the server’s calling key and passes it to the server, which

then checks the calling key against those in its table and no-

tifies the Subkernel when it does not locate the given key in

its table.

Each time a client will call its server, it also dynamically

generates a client calling key and passes it to the receiver.

The receiver should return this key to the sender, which

rechecks it to ensure the receiver is what it calls before. A

malicious process may deliberately leak its key to other pro-

cesses. But the leaked key only exposes sensitive informa-

tion belonging to the key owner and no other data will be

exposed as servers can use calling keys to identify the call-

ing processes.

5 Dynamically Rewriting Illegal VMFUNC

5.1 Rewriting Mechanism

When a process registers into SkyBridge, the Subkernel

scans all code pages of the process to replace any illegal VM-

FUNC instructions outside the trampoline code page with

functionally-equivalent instructions. After rewriting, one in-

struction may be changed to two or more instructions, which

cannot be held in the original location. Therefore, SkyBridge

replaces these instructions with a jump instruction which

jumps to a page for rewriting. The rewriting page is inserted

by the Subkernel and is mapped at an unused virtual address.

We choose the second page in the virtual address space (start-

ing from 0x1000). This page is deliberately left unmapped

for most operating systems. In the inserted page, the Subker-

nel creates one code snippet for the new instructions. At the

end of each snippet, the Subkernel also appends a new jump

instruction to get back to the original code page.

5.2 Rewriting Strategy

The rewriting strategy is inspired by ERIM [53], which

uses a similar strategy to replace the WRPKRU instruction.

The strategy is complete: any inadvertent VMFUNC instruc-

tion can be rewritten to functionally-equivalent instructions.

The strategy is highly dependent on x86 variable-length in-

struction encoding. Intel x86 instruction encoding consists of

five regions: 1) an opcode field possibly with a prefix (the op-

code for VMFUNC contains three bytes: 0x0F, 0x01, 0xD4);

2) an optional 1-byte Mod R/M field describes the address-

ing mode and two operands for this instruction; 3) an op-

tional 1-byte SIB (Second Addressing Byte) field specifying

the indirect memory addressing; 4) an optional displacement

which works as offset used in the addressing mode described

by Mod R/M field; 5) an optional immediate field for the

instruction.

There are three conditions where a VMFUNC instruction

may be decoded from:

• C1: The instruction is indeed VMFUNC.

• C2: A VMFUNC encoded by spanning two or more

instructions.

• C3: A long instruction contains the VMFUNC encod-

ing.

To classify these three conditions, the Subkernel will book-

keep current instruction during scanning, which helps to de-

termine instruction’s boundary. For C1, the Subkernel just

replaces the illegal VMFUNC with three NOP instructions

(0x90). For C2, Illegal VMFUNC spanning two or more in-

structions can be “broken” by inserting a NOP between these

consecutive instructions.
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Table 3. Rewrite strategy for illegal VMFUNC instructions

ID Overlap Case Rewriting Strategy Example

1 Opcode=VMFUNC Replace VMFUNC with 3 NOP instructions

2 Mod R/M=0x0F Push/pop used register; use new register
imul $0xD401, rdi, rcx; → push rax; mov rdi, rax;

imul $0xD401, rax, rcx; pop rax

3 SIB=0x0F Push/pop used register; use new register
lea 0xD401(rdi, rcx, 1), rbx; → push rax; mov rdi, rax;

lea 0xD401(rax, rcx,1), rbx; pop rax

4 Displacement=0x0F Compute displacement value before the instruction
add 0xD4010F(rax), rbx; → add 0xD4000F, rax;

add 0x0100(rax),rbx

5 Immediate=0x0F
Apply instruction twice with different immediates to get equivalent effect

add 0xD4010F, rax → add 0xD3010F, rax;

add 0x10000, rax

Jump-like instruction: modify immediate after moving this instruction

When VMFUNC exists in one longer instruction (C3), the

Subkernel replaces this instruction with other functionally-

equivalent instructions. Table 3 lists all possible cases and

their corresponding rewriting strategies. The byte 0x0F is an

escape prefix for opcode and will not occur in the middle

bytes of any instruction opcode. Therefore, if the first byte

of one instruction’s opcode overlaps with 0x0F, this instruc-

tion is VMFUNC, whose rewriting strategy has already beed

discussed (replace it with three NOP instructions).

If 0x0F equals the Mod R/M field (which is 1 byte), it

determines that rcx (r9 and ecx) and rdi (r15 and edi) are

the instruction’s operands. The Subkernel replaces one of the

registers (e.g., rdi) to another register, whose value will be

pushed into the stack in advance. For example, the Subker-

nel replaces rdi with rax in Table 3. If 0x0F equals the SIB

field (which is 1 byte as well), this instruction also uses fixed

register and SkyBridge applies a similar rewriting strategy to

replace it.

When the 0x0F overlaps with the displacement, the re-

maining two bytes (0x01 and 0xD4) may fit in the displace-

ment or the immediate field. If the three bytes all reside in

the displacement field, SkyBridge precomputes the displace-

ment value before the instruction (Example is row 4). If some

of the three bytes overlap with the immediate field, Sky-

Bridge applies the instruction twice to get the same effect.

For jump-like instructions, the immediate is treated as an off-

set which will be changed to a new value when we rewrite

this instruction in the rewriting page.

6 Evaluation

This section tries to answer the following questions:

• Q1: What is the implementation complexity of Sky-

Bridge?

• Q2: How does SkyBridge improve the IPC perfor-

mance compared with other microkernels?

• Q3: How does SkyBridge improve the performance of

the workloads introduced in Section 2?

• Q4: How do real-world microkernel applications per-

form when running using SkyBridge?

• Q5: How does the virtualization layer affect the perfor-

mance of the original microkernel workloads?

• Q6: How many inadvertent VMFUNC instructions do

we find?

6.1 Experimental Setup

Our test machine is equipped with an Intel Skylake Core

i7-6700K processor, which has 4 cores and 8 hardware

threads with the hyper-threading enabled. The memory size

is 16 GB.

The microkernels we evaluated are seL4 (v10.0.0),

Fiasco.OC and Zircon. Fiasco.OC is a 3rd-generation

capability-based microkernel and provides synchronous IPC

facility. Zircon is a microkernel developed by Google and

also implements an IPC facility.

To ensure the evaluation results measured at the same CPU

clock, we disabled the CPU frequency scaling. All experi-

ments without using SkyBridge are conducted in the native

hardware without using the virtualization layer.

6.2 Status Quo and Implementation Complexity

To answer the first question (Q1), we have implemented

SkyBridge on different microkernels. The code sizes of the

Rootkernel is 1.5 KLoC and modified lines of code to inte-

grate SkyBridge into each microkernel are about 200 LoC.

It is easy to integrate SkyBridge into an existing microker-

nel. We first implemented SkyBridge on seL4 and the port-

ing cost of SkyBridge Fiasco.OC and Zircon took 2 and 4

person days accordingly.

6.3 IPC Performance

To answer the second question (Q2), we first evaluate and

analyze the performance of various synchronous IPC imple-

mentations in different microkernels and compare them with

the corresponding SkyBridge versions.

Figure 7 is the performance breakdowns of different IPC

implementations. We measure the time period for an IPC

roundtrip which starts from sending an empty message from

the client until the client receives the response from the

server. The results are the average value of 100,000 experi-

ment runs. For IPC within the same core, seL4 has a fastpath

implementation that we have analyzed in Section 2 and it

performs the best among all the microkernel. For cross-core

IPC, the fastpath IPC degenerates into a slowpath version.

The slowpath version not only contains more IPC logics but
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also involves a costly IPI. Therefore, the IPC roundtrip costs

6764 cycles.

The Fiasco.OC microkernel also has a fastpath IPC imple-

mentation. However, the fastpath in Fiasco.OC may handle

deferred requests (drq) during IPC which is the reason why

its IPC is relatively slower than that in seL4. The cross-core

IPC in Fiasco.OC also involves the costly IPI, which costs

8440 cycles.

The Zircon microkernel does not have a fastpath IPC,

which means it may enter the scheduler when handling IPC.

Moreover, the IPC path in Zircon may be preempted by inter-

rupts. The message copying in Zircon is not well optimized,

which involves two expensive memory copies for each IPC.

These are the reasons why Zircon performs worst among the

three microkernels. Its cross-core IPC also involves schedul-

ing part and its average cost is 20099 cycles.

We implement SkyBridge on these three microkernels.

The overheads of SkyBridge mainly comes from two sources.

The first one is the VMFUNC instruction, which costs 134

cycles. The second one includes all other operations, such as

saving and restoring register values and installing the target

stack. The second source costs 64 cycles. Therefore, an IPC

roundtrip in SkyBridge costs 396 cycles, which improves the

performance of single-core IPC by 1.49x, 5.86x and 19.6x

for seL4, Fiasco.OC and Zircon respectively. For cross-core

IPC, the improvement is 16.08x, 20.31x and 49.76x.

6.4 Performance of the Key-Value Store in SkyBridge

To answer Q3, we modify the KV store benchmark and

connect the processes using SkyBridge. The result is shown

in Figure 8. Due to the space limit, we only report the re-

sults in seL4, which has the fastest IPC and we believe can

represent other microkernels.

When the length of key and value is small, the IPC occu-

pies a large portion of the whole benchmark. SkyBridge can

reduce the latency from 7929 cycles to 3512 cycles. When

the length of key and value is large, the overhead of Sky-

Bridge is negligible.
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6.5 SQLite3 Performance

Table 4. The throughputs (in ops/s) of four basic SQLite3

operations under different microkernels and server settings.

ST-Server means that the file system and the block device

has a single working thread, while MT-Server represents

that these servers have multiple working threads and they

are pinned to each physical cores. The rightmost column is

the speedup of SkyBridge compared with the performance

of MT-Server.

ST-Server MT-Server SkyBridge Speedup

seL4

Insert 4839.08 6001.82 11251.08 87.5%
Update 3943.71 4714.52 7335.57 55.6%
Query 13245.92 14025.37 18610.60 32.7%
Delete 4326.92 5314.04 7339.31 38.1%

Fiasco

Insert 1296.83 1685.39 5000.00 196.7%
Update 1222.83 1557.09 4545.45 191.9%
Query 8108.11 8256.88 15789.47 91.2%
Delete 1255.23 1607.14 4568.53 184.2%

Zircon

Insert 1408.42 2467.90 7710.63 212.4%
Update 1376.77 2360.00 6643.24 180.4%
Query 9432.34 9535.56 17843.54 87.1%
Delete 1389.64 1389.64 7027.30 405.7%

To answer Q4, we evaluate the performance of a database

application.

SQLite3 [4] is a widely-used and lightweight relational

database. To use it, we put the client and the SQLite3 data-

base into the same virtual address space. We also port a log-

based file system named xv6fs [15], which is a formally ver-

ified crash-safe file system. The LibC of the three microker-

nels is modified to use the new file system. We use a RAM

disk device to work as the block device and the file system

communicates with the device with IPC. The client first uses

the SQLite3 database to manipulate files and communicate

with the first server (the file system). The file system finally

reads and writes data into the block device server (The sec-

ond server).

In an SMP scenario, there are two possible configurations

of the server. One is to create only one server thread and

each client may use cross-core IPC to communicate with the

server. The second one is to create multiple server threads

and pin them to each physical core. The client can directly
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communicate with the server thread sharing the same core

with the client, which avoids the costly cross-core IPC.

We evaluate the performance of four basic SQLite3 oper-

ations, which are insert, update, query and delete, in three

microkernels, as Table 4 shows. Among the four operations,

the query operation performs the best since the SQLite3 has

an internal cache to handle the recent read requests, which

thus avoids a large number of IPC operations. For ST-Server,

we create one working thread for each server and pin the

client and the two servers to three different physical cores

and the IPC among them involves IPIs, which accounts for its

bad performance. For MT-Server, we create multiple work-

ing threads for each server and pin these thread to different

physical cores. The client can communicate with the local

server thread without issuing the costly cross-core IPC. We

also evaluate these four operations using SkyBridge, which

allows the client to directly jump into the server’s virtual

space and call its functions. SkyBridge can greatly improve

the performance of insert, update and delete operations ex-

cept the query operation. The reason is that the query oper-

ation does not cause many IPC operations compared with

other three operations.
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Table 5. The throughput (in ops/s) of SQLite3 using YCSB-

A in the native and virtualized environments without us-

ing SkyBridge and the number of VM exits in SkyBridge

Rootkernel.

Native Rootkernel #VM exits

YCSB-A 1 thread 9745.15 9694.49 0

YCSB-A 8 thread 1465.95 1411.64 0

Figure 9 shows the throughputs of SkyBridge for seL4 in

an SMP scenario. Since the xv6fs does not support multi-

threading, we use one big lock in the file system, that is the

reason why the scalability is so bad for this benchmark. We

use the YCSB workloads to test the throughput. All work-

loads have similar results and we only report YCSB-A result

here due to the space limit. YCSB-A workload consists of

50% read (query) and 50% write (update) operations. We run

the workload on a table with 10,000 records. seL4-st means

that the servers only have one working thread, but we do not

bind the thread to a specific core. In seL4-mt, we create mul-

tiple threads for the servers and pin them to each core. With

the increase of the cores, we also create more threads for the

clients. The result shows that SkyBridge can outperform the

old IPC mechanism in a different number of cores and the

average speedups are 0.819x, 1.442x and 9.593x for seL4,

Fiasco.OC (Figure 10) and Zircon (Figure 11) respectively.

We measure the number of IPI for each experiment. For

example, in the 8-thread experiment in seL4, the number of

IPI for seL4-st is 1,984,343 while the value in seL4-mt is 20.

6.6 Virtualization Overhead

To answer Q5, we count the number of VM exits dur-

ing the execution of the SQLite3 benchmark with and with-

out the Rootkernel. Table 5 shows the performance of the

SQLite3 using the YCSB-A workload with different num-

bers of threads in seL4. We first evaluate the performance

in the native environment and then run the same workload

above the Rootkernel without using SkyBridge. The result

demonstrates that the Rootkernel design incurs negligible

overhead for the workload. Even if an application does not
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Table 6. Inadvertent VMFUNC instructions found by Sky-

Bridge

Program Average Code Size (KB) VMFUNC Count

SPECCPU 2006 (31Apps) 424 0

PARSEC 3.0 (45 Apps) 842 0

Nginx v1.6.2 979 0

Apache v2.4.10 666 0

Memcached v1.4.21 121 0

Redis v2.8.17 729 0

Vmlinux v4.14.29 10,498 0

Linux Kernel Modules v4.14.29 (2,934 Modules) 15 0

Other Apps (2,605 Apps) 216 1 (in GIMP-2.8)

use SkyBridge, its performance is not affected by the virtual-

ized environment introduced by SkyBridge. The number of

VM exits collected during the experiments are 0, in that the

Subkernel can get access to most physical memory, handle

hardware events and execute privileged instructions without

triggering any VM exits, as we introduced in Section 4.1.

6.7 Rewriting VMFUNC

We do not find any occurrence of inadvertent VMFUNC

instructions in our microkernel benchmarks. We scan many

different programs in Linux and find only one occurrence of

inadvertent VMFUNC instruction in GIMP-2.8, as shown in

Table 6. GIMP is an image manipulation program and the in-

advertent VMFUNC is contained in the immediate region of

a longer call instruction. The immediate is an offset and the

call instruction can be replaced with our rewriting strategy

for jump-like instructions.

7 Security Analysis

Malicious EPT switching: As we mentioned in Section 4.4,

a malicious process may use a self-prepared VMFUNC to

bypass the trampoline and jump to any address of one victim

process. SkyBridge defends against such attack by dynami-

cally scanning the binary of each process during loading time

and replacing any VMFUNC instruction with functionally-

equivalent instructions.

Meltdown Attacks [45]: Meltdown attacks allow unautho-

rized processes to read data of privileged kernel or other pro-

cesses. Current OS kernels including the microkernels like

seL4 defend against this attack by using two page tables for

the kernel and user programs respectively. SkyBridge can

also defeat such attack since it still puts different processes

into different page tables..

DoS Attacks: During a direct server call, the called server

may encounter internal errors which lead to itself failure

or the server is deliberately waiting and does not return to

the client, both of which causes a hang for the client. Like

other microkernels, SkyBridge provides a timeout mecha-

nism, which can force the server to return the control flow

to the client.

Malicious Server Call: Due to the hardware features, the

Rootkernel has to put all server’s EPTP into the same EPTP

list before one client gets scheduled, which may allow a ma-

licious client or server to call other servers even if this call is

forbidden. To prevent this illegal call, SkyBridge provides a

calling-key table for each process to check whether the cur-

rent caller is a legally registered process.

Refusing to Call SkyBridge Interface: One process may

refuse to call the interface provided by SkyBridge. But it is

in an isolated environment, which means this behavior only

results in its own execution failure, not affecting other pro-

cesses or the kernel.

8 Related Work

8.1 Software-based IPC Optimization

There is a long line of research on reducing the over-

heads of IPC over the last decades [8, 17, 19, 39, 43, 47].

L4 [19, 43, 44] integrates many techniques, including using

in-register message transfer to avoid redundant copying and

leveraging tagged TLB to reduce the context switch over-

head. One notable optimization technique is to migrate the

client’s thread to server’s address space and run server’s

code, which is used in LRPC [8] and thread migration

model [17, 23, 25, 39, 47]. This technique has two main ben-

efits. The first one is that it avoids the costly scheduling since

it does not block the client and allows it to directly switch to

the server using its own scheduling quantum. The second one

is that there is only a partial context switch where a small sub-

set of registers and the address space are changed. However,

it still requires the involvement of the kernel and the costly of

address switches. In contrast, SkyBridge follows the thread

migration model but designed a kernel-less IPC facility with

extremely low overhead.

Modern microkernels such as seL4 have adopted many

aforementioned optimization techniques. In seL4, there are

two kinds of IPC: fastpath and slowpath. The fastpath IPC

leverages the direct process switch technique to make the

kernel directly switch to the target server without the in-

volvement of the scheduler, which thus helps the fastpath

to achieve the extremely small latency. However, as we an-

alyzed in Section 2, the fastpath still involves the kernel and

thus performs worse than SkyBridge.

The requirement for supporting more complex functionali-

ties stimulates the design of asynchronous IPC like asynchro-

nous notifications [19]. Current microkernels usually con-

tain a mixture of both synchronous and asynchronous IPCs.

FlexSC [51] also proposes asynchronous system calls for

batching processing and avoiding the costly context switches

between user space and kernel space in a monolithic kernel.

The focus of this paper is mainly on improving synchronous

IPC, which has already resulted in tremendous performance

improvements.

Scheduling-related techniques are also proposed to im-

prove the IPC performance. Lazy scheduling [42] avoids

the frequent queue manipulation, but does not guarantee the

bounded execution time of the scheduler, which is required
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by some hard real-time systems. Hence, seL4 [19] proposes

Benno scheduling to address such problem.

For long message, one solution is to provide the shared

buffer for the client and server, which requires two memory

copies. To this end, L4 [42] proposes a technique called tem-

porary mapping, which temporarily maps the caller’s buffer

into the callee’s address space and avoids one costly message

copying. This technique is orthogonal to SkyBridge and may

also be combined with SkyBridge to achieve better perfor-

mance.

8.2 Single Address Space Systems

Another direction is to put all domains into a single vir-

tual address space and leverage other techniques to enforce

the isolation among these domains, which can be divided

into the software solutions [9, 11, 21, 31] and hardware solu-

tions [12, 24, 37, 46, 53–55, 57, 59].

SPIN [9] and Singularity [21, 31] uses type-safe program-

ming language to enable the low-overhead software-based

memory isolation. Besides, different mainstream processor

manufactures also present their products that support mem-

ory isolation within the same virtual space. ARM memory

domain mechanism [16, 62] assigns memory pages into dif-

ferent domains and the hardware Memory Management Unit

(MMU) decides if an access should be allowed based on the

current level stored in a per-core register (Domain Access

Control Register). Intel introduces the Protection Keys for

Userspace (PKU) mechanism to provide similar functional-

ity. ERIM [53] leverages Intel PKU to provide isolated do-

mains within a single virtual address space. However, these

hardware features only supported limited domain numbers.

Different from these works, SkyBridge provides an efficient

IPC facility for a larger number of virtual address spaces (i.e.,

512). SeCage [46] divides an existing application into differ-

ent Pieces of Application Logic (PAL) by program analysis

and puts them into isolated EPT space. SkyBridge focuses on

connecting different virtual address spaces which is different

from SeCage and proposes a series of techniques to address

the challenges SeCage does not encounter. CrossOver [41]

leverages VMFUNC to provide efficient cross-domain con-

trol transfers for virtual machines while SkyBridge focuses

on IPCs in the microkernel world. Besides, CrossOver is

mainly a hardware design that mandates hardware changes

for high efficiency.

New hardware extensions are also proposed to pro-

vide efficient in-process isolation, like CODOMs [54, 55],

CHERI [57, 59], Opal [12] and IMIX [24]. However, these

solutions usually require non-trivial modification to the hard-

ware and the microkernels.

9 Discussion and Limitation

Legacy Hypervisors. To run SkyBridge in cloud environ-

ments [33, 49, 56], legacy hypervisors need to be modified

in order to support the Rootkernel. Fortunately, most func-

tionalities of the Rootkernel have already been implemented

in today’s hypervisors. For example, Xen allows a VM to

create up to 512 EPTs and use VMFUNC to switch the EPT

pointer by using alt2pm [10]. Other required modifications

in the hypervisors are to allow the Subkernel to change map-

pings in the EPTs, which can be implemented via hypercalls

which accept and check the mapping information provided

by the Subkernel.

W⊕X Code Pages. To defend against a malicious VMFUNC

instruction, SkyBridge scans code pages to replace any inad-

vertent VMFUNCs with functionally-equivalent instructions.

One implication of this technique is that it disallows direct

modifications to code pages, which may prevent JIT com-

pilation [38], dynamic software updating [14] and live up-

dating of operating systems [13]. Therefore, to support dy-

namic code generation, the code generation process must be

adapted to make code pages writable and non-executable. Af-

ter code generation, these pages must be remapped as ex-

ecutable and non-writable, which allows SkyBridge to res-

can them. The rescanning should be carefully implemented

to avoid the instructions that span the newly mapped page

and neighboring pages. The remapping and rescanning may

impact application performance. However, these operations

can be boosted by leveraging a batching technique and thus

incur negligible overhead [32]. We will investigate the per-

formance implication of W⊕X code pages in the future.

10 Conclusion and Future Work

This paper described the motivation, design, implementation

and evaluation of SkyBridge, a microkernel IPC facility that

eliminates the involvement of the kernel and allows a pro-

cess to directly to switch to the virtual address space of

the target process and execute its code. SkyBridge leverages

VMFUNC to implement efficient IPCs and proposes a series

of techniques to guarantee security properties and efficiency.

We have integrated SkyBridge into three microkernels (seL4,

Fiasco.OC and, Google Zircon) to evaluate its performance.

The results show that SkyBridge can improve the perfor-

mance of IPC by 1.49x to 19.6x for microbenchmarks. For

real-world applications (SQLite3 database), SkyBridge im-

proves the throughput by 81.9%, 1.442x and 9.593x for these

three microkernels on average.

We plan to extend our work in three directions. First, we

plan to investigate and extend the design of SkyBridge to

monolithic kernels like Linux to boost applications that com-

municate through Linux IPC facilities. Second, we explore

how to generalize the design of SkyBridge on more hardware

architectures like ARM and AMD. Third, since the EPTP list

can hold at most 512 EPTP entries, we plan to design a tech-

nique that dynamically evicts the least recently used EPTP

entries from the EPTP list when the server number is larger

than 512.
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