
Greedy Map Generalization by Iterative Point Removal

Yanzhe Chen
Shanghai Jiao Tong University

Shanghai, China
chenyanzhe@sjtu.edu.cn

Yin Wang
Facebook

Menlo Park, CA,
USA

yinwang@fb.com

Rong Chen Haibo Chen Binyu Zang
Shanghai Jiao Tong University

Shanghai, China
{rongchen,haibochen,byzang}

@sjtu.edu.cn

ABSTRACT
This paper describes a map generalization program we sub-
mitted to the ACM SIGSPATIAL Cup 2014. In this com-
petition, the goal is to remove as many points in a set of
polygonal lines as quickly as possible with respect to two
constraints. The topological relationships among the lines
must not change, and the relationships between a set of
control points and the lines must not change. Inspired by
Visvalingam-Whyatt Algorithm, we iteratively examine suc-
cessive triplets along each line, and remove the middle point
if no control point or point of other lines is in the associated
triangle. Based on the features of the training datasets, we
further introduce many optimization techniques to speed up
the computation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Applications—Spatial
databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
map generalization, spatial index, spatial query

1. INTRODUCTION AND OVERVIEW
Geometry generalization is a well-known problem of s-

electing the information on a map in a way that adapts
to the scale of the display medium of the map. It filters
the unnecessary cartographic details while maintaining the
map’s purpose and actuality of the object being mapped.
In SIGSPATIAL Cup 2014, we consider a special case of
map generalization. The input is a set of polygonal lines
that bound polygonal regions and a set of control points.
The objective is to simplify the lines by removing its mid-
dle points yet preserving the topological relationships among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL ’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
ACM 978-1-4503-3131-9/14/11. http://dx.doi.org/10.1145/2666310.2666422

A

C

D

E

B

... ...

... ...

Figure 1: The middle point of a successive triplet
can be removed if its associated triangle is empty,
point C in this case.

the lines, as well as the relationships between control points
and lines. The competition is evaluated by the number of
points removed divided by the computation time, subject to
the penalty on lines violating topological constraints and a
required minimum number of points to be removed.

There are two classical algorithms for map generalization.
Ramer-Douglas-Peucker algorithm [1] recursively divides the
polygonal line, and preserves the point which is furthest from
the line segment between the two endpoints, if the distance
exceeds a threshold. Visvalingam-Whyatt algorithm [4] iter-
atively eliminates a point with the smallest triangle formed
by it and its two neighbor points. Neither of these algorithm-
s takes into account the topological relationships among lines
and between lines and control points. Therefore we cannot
apply these algorithms directly to our map generalization
problem.

Inspired by Visvalingam-Whyatt algorithm, however, we
observe that it is safe to remove a point on a polygonal line if
the triangle associated with the point and its two neighbors
does not contain any control point or point from other lines.
Figure 1 explains this idea. In this Figure, point B cannot be
removed because its associated triangle ABC contains a red
control point. Point D cannot be removed because triangle
CDE contains a point of another line. Point C can be safely
removed because triangle BCD is empty. Therefore we can
examine all triangles associated with successive triplets of
each polygonal line, and remove the middle point when the
triangle is empty.

Multiple iterations of the above procedure can help elim-
inate more points. Figure 2 illustrates the idea. On the
left side, there are two lines, ABC and DEF . We cannot
remove B in the first iteration because E is inside trian-
gle ABC, but it can be removed after we remove E. On
the right side, we cannot remove B in the first iteration be-
cause control point P is inside triangle ABC, but C can be
removed. The second iteration removes B.

Overall, our map generalization algorithm takes the fol-



Iteration 1

A

B

C

D
E

F
A

B

C

D

P

A

B D

P

A

D

P

A

B

C

D F

A C

D F

Iteration 2

Figure 2: Iterations remove more points.

A

B

C D

E

A

C D

E

A

B

E

Greedy OptimalOriginal

Figure 3: Our greedy algorithm is not optimal.

Table 1: Basic statistics of the provided datasets.
lines inner points control points

Dataset1 27 992 26
Dataset2 46 1,564 127
Dataset3 476 8,531 151
Dataset4 1,353 28,014 356
Dataset5 2,331 28,323 1,607

lowing steps.

1. For each polygonal line, examine all successive triplets
and remove the middle point if a triplet has no con-
trol point or point from other lines in its associated
triangle.

2. Repeat Step 1 until no more point can be removed.

Our map generalization algorithm is greedy and it does
not necessarily yield the minimally simplified solution. Fig-
ure 3 shows an example. If we remove point B first, both
points C and D must remain to keep the red control point
underneath the line. The optimal solution in this case is
to keep just B. We choose this suboptimal greedy algorith-
m for a good balance between minimal simplification and
computation speed.

Next we describe various optimization techniques in Sec-
tion 2, and presents our evaluation results in Section 3. Sec-
tion 4 concludes the paper.

2. OPTIMIZATION TECHNIQUES
In this section, we explain several optimization techniques

employed by our program. Our optimizations are empiri-
cal in nature, based on the characteristics of the training
datasets. Table 1 shows the datasets provided by the com-
petition. The first three are training datasets given before
the submission, and the last two are testing datasets released
after the submission.

Our program finishes each of the datasets in at most tens
of milliseconds after optimization. The time scale is too s-
mall for reliable measurements, i.e., operating system schedul-
ing, disk hiccups can significantly affect the computation

Table 2: Large shift-cloned datasets.
size of line file size of point file

Dataset1 x4500 198 MB 21.5 MB
Dataset2 x3000 208 MB 70.3 MB
Dataset3 x500 204 MB 13.8 MB
Dataset4 x150 197 MB 9.79 MB
Dataset5 x150 221 MB 44.3 MB

0

0.2

0.4

0.6

0.8

1

Dataset1_
x4500

Dataset2_
x3000

Dataset3_
x500

Dataset4_
x150

Dataset5_
x150

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
o

n
d

)

quadratic rstar linear

Figure 4: R-Tree building time (s) with different
node splitting policies.

0
0.5

1
1.5

2
2.5

3
3.5

4

Dataset1_
x4500

Dataset2_
x3000

Dataset3_
x500

Dataset4_
x150

Dataset5_
x150

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
o

n
d

)

quadratic rstar linear

Figure 5: R-Tree querying time (s) with different
node splitting policies.

time. Sometimes even the overhead introduced by the mea-
surement code can dominate the overall computation. There-
fore, we created synthetic large datasets by shift-cloning
the provided datasets [6]. We prefer cloning the provided
datasets instead of generating random ones because we want
to preserve the data characteristics for proper optimization.
Since each dataset appears to have different characteristic-
s, e.g., different ratio between lines and control points, we
clone each dataset to about 200 MB, and use all of them
in experiments. Table 2 shows the cloned datasets, where
the name like“Dataset1 x4500”means Dataset1 shift-cloned
4,500 times.

2.1 Spatial Index
Checking whether there is any point in a triangle is the

most time-consuming part of our algorithm. Spatial index
is the key to achieving optimal performance. We employ R-
Tree [2] in our implementation to index all points, and then
get all points within the bounding box of a given triangle.
For each point returned, we use boost::geometry::within

function to check if it is inside the triangle.
Minimizing both coverage and overlap is crucial to the

performance of R-tree. Different R-tree variants employ d-



A

B

C

D

E

F

A C

D

E

F

Figure 6: Incorrect result by ignoring inner points.

Table 3: Correctness rate of ignoring inner points.
total lines correct lines correctness rate

Dataset1 27 27 100.0%
Dataset2 46 45 97.8%
Dataset3 476 473 99.4%
Dataset4 1,353 1,346 99.5%
Dataset5 2,331 2,317 99.4%

Table 4: Building and querying time includ-
ing/excluding inner points in indexing.

Time (ms) all points excluding inner points
Dataset1 41 1
Dataset2 117 1
Dataset3 4,582 2
Dataset4 35,605 7
Dataset5 80,483 10

ifferent heuristics to split overflowing nodes, trying to mini-
mize coverage and overlap [3]. We examined different node
splitting policies implemented in the Boost library, quadrat-
ic, r-star, and linear, for both the tree building and querying
time, shown in Figures 4 and 5. We can see that the node
splitting policy has little effect on query performance, but
makes substantial difference on building time. This is be-
cause there are lots of points to be indexed, but not many
queries. We choose the linear splitting policy in our pro-
gram.

2.2 No Indexing for Inner Points

Figure 1 shows that we need to index two sets of points for
correctness, control points and points of all polygonal lines.
Table 1 shows that points of lines are at least an order of
magnitude more than control points. In addition, since we
remove inner points of polygonal lines in each iteration, the
index must be updated between iterations. Our experiments
show that index building dominates the computation time.

We observe that since there are not many control points,
the majority of inner points are removed. We can therefore
ignore inner points in each iteration when checking whether
any point is inside a triangle, i.e., indexing only control
points and endpoints of all lines. Figure 2 shows an ex-
ample where for the left part we can safely ignore point E
and remove B since E will be removed later. This optimiza-
tion is not always correct. Figure 6 shows an example where
removing point B by ignoring E leads to incorrect simplifi-
cation because E cannot be removed due to the red control
point.

However, Table 3 shows that cases like Figure 6 are neg-
ligible. Table 4 further shows significant time saving by ex-
cluding inner points in indexing. Therefore we choose to
exclude inner points in our R-tree index. Another crucial
benefit of excluding inner points is that R-tree now becomes
read-only, convenient for parallel processing, discussed in
Section 2.4.

2.3 Fast Path

A

B

C

D

E

F

G

H

Figure 7: Fast path optimization.

Table 5: Fast path check success rate.
Fast Path Normal lines Utilization

Dataset1 14 13 51.9%
Dataset2 19 27 41.3%
Dataset3 388 88 81.5%
Dataset4 1,181 172 87.3%
Dataset5 1,801 530 77.3%

0

100

200

300

400

500

600

700

800

Dataset1_
x4500

Dataset2_
x3000

Dataset3_
x500

Dataset4_
x150

Dataset5_
x150

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)
without fast path with fast path

Figure 8: Time saving with fast path optimization
at the point removal step.

Ignoring inner points significantly reduces the R-tree build-
ing time. Fast path optimization further reduces the number
of R-tree queries. This is also based on the observation of
fewer control points than line points. Based on Table 1, the
number of control points is even less than the number of lines
for most datasets. This implies that many polygonal lines
are not adjacent to any control point and can be reduced to
just one line segment. Fast path optimization achieves this.
More specifically, we first build the bounding box for a line,
and query R-tree to check if it is empty; see Figure 8. If
so, we can remove all inner points and reduce the polygonal
line to a line segment. Otherwise, we fall back and examine
all triangles of successive triplets iteratively.

Table 5 shows that for most datasets fast path check suc-
ceeds in majority of the lines, and therefore substantially
reducing the number of queries. Figure 8 shows the perfor-
mance improvement at the point removal step.

2.4 Parallel Computation

Parallel computation is crucial for performance focused
competitions like SIGSPATIAL Cup. Our program roughly
consists of four stages, input, R-tree building, point removal,
and output. For input and output, we apply the same paral-
lel processing techniques used in our previous competition-
s [5, 6]. R-tree building is the only serial step. We apply
a global lock to the tree, so each thread that processes the
input needs to lock the tree before inserting a point. As dis-
cussed in Section 2.2, our R-tree is read only, so we can safely
process multiple lines in parallel after the tree is built. We
use the parallel for primitive from the OpenMP library
in our implementation.



1

1.5

2

2.5

3

3.5

4

1 thread 2 threads 4 threads 8 threads

Pe
rf

o
rm

an
ce

 S
p

ee
d

u
p

parsing point removal output

Figure 9: Parallel computation speedup for input
parsing, point removal and output stages

Table 6: Computation time breakdown.
input R-Tree point

Time (ms) parsing building removal output all
Dataset1 0.00 0.33 0.33 2.00 1.50
Dataset2 0.75 0.25 0.75 4.00 5.67
Dataset3 2.33 0 1.00 88.67 93.33
Dataset4 5.67 0.67 4.00 15.33 24.00
Dataset5 6.00 2.67 4.67 10.57 22.33
Dataset1 x4500 615 130 581 341 1,735
Dataset2 x3000 720 361 816 473 2,358
Dataset3 x500 617 94 398 598 1,703
Dataset4 x150 582 69 339 523 1,539
Dataset5 x150 728 268 601 889 2,480

Figure 9 shows the parallel speedup for different computa-
tion stages, including input parsing, iterative point removal,
and result output. We use the five large cloned datasets,
and take the average of the normalized computation time to
calculate the speedup factor.

2.5 Overlapping Lines
After simplification, sometimes two lines with the same

endpoints both reduce to just one segment, and thus over-
lapping. In order to preserve the topological relationship,
we must preserve at least one inner point of one line. Our
solution is to store endpoints in a hash set whenever a line
reduces to a segment. If the set has the endpoint pair al-
ready, a segment connecting the pair already exists. We
therefore preserve the middle point of the current line so it
does not overlap with the segment.

3. EVALUATION
We implemented our program in C++ using the Boost

library for the R-Tree index and OpenMP library for par-
allelization. Experiments ran on a 64-bit Windows 8.1 ma-
chine, which has a 4-core 3.30 GHz Intel Xeon E3-1230 CPU
and 8 GB memory. Table 6 shows the time breakdown and
the overall time when running our program against both the
real and our synthetic large datasets.

In this table, input parsing means the time needed to parse
both polygonal line and control point files. R-Tree building
is the serial step of constructing the index. Point removal
is the iterative procedure discussed in Section 1, and out-
put means writing the simplified lines to a file. For the
five competition datasets, the time scale is too small to be
reliably measured. The synthetic datasets show more con-
sistent results. It can be seen from the table that input and
output stages dominate the computation. Since the time

Table 7: Final results of our program and its variant
that blindly removes all inner points of all lines

time (ms) points removed grade
our program 311 58,221 187.2

variant 205 44,330 216.2

measurement function introduces significant overhead, we
remove the function when measuring the overall time for
better accuracy, and therefore the overall time is not always
the summation of all steps.

Just for fun, we submitted a variant of our program to the
competition that simply removes all inner points of each line,
or keeps one inner point if there is overlapping. Therefore,
the running time of the variant is roughly the summation of
the line parsing time and output time in Table 6. Table 7
shows the testing result reported by the program committee.
It can be seen that the variant has much high grader than
our full program due to its much faster computation time.
Unfortunately it did not remove enough points as required
by the competition, because incorrectly simplified lines do
not count toward the total number of points removed.

4. CONCLUSION
In this paper, we first discussed the overall procedure of

our iterative point removal algorithm for the map general-
ization problem. We then described several optimization
techniques we developed based on the characteristics of the
training dataset. Each optimization is supported by statis-
tics of the dataset and experimental results show significan-
t performance improvements. Our evaluation shows that
our program processes each competition dataset in less than
100 ms, and our synthetic dataset with close to 5 million
points in less than 2.5 s.

5. ACKNOWLEDGEMENTS
This work is supported in part by the Program for New

Century Excellent Talents in University of Ministry of E-
ducation of China (No. ZXZY037003), Shanghai Science
and Technology Development Funds (No. 12QA1401700),
a foundation for the Author of National Excellent Doctor-
al Dissertation of PR China(No. TS0220103006), Doctoral
Fund of Ministry of Education of China (No. 20130073120040),
National Natural Science Foundation of China (No. 61303011
and 61402284) and Singapore NRF (CREATE E2S2).

6. REFERENCES
[1] D. H. Douglas and T. K. Peucker. Algorithms for the

reduction of the number of points required to represent a
digitized line or its caricature. Cartographica, 10(2):112–122,
1973.

[2] A. Guttman. R-trees: A dynamic index structure for spatial
searching, volume 14. ACM, 1984.

[3] A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis.
R-trees: Theory and Applications. Springer, 2006.

[4] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic Journal,
30(1):46–51, 1993.

[5] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan. Fast
viterbi map matching with tunable weight functions. In
ACM SIGSPATIAL, 2012.

[6] T. Zhou, H. Wei, H. Zhang, Y. Wang, Y. Zhu, H. Guan, and
H. Chen. Point-polygon topological relationship query using
hierarchical indices. In ACM SIGSPATIAL, 2013.


