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Abstract

Blockchain is becoming popular as a distributed and reliable ledger which allows distrustful parties to transact

safely without trusting third parties. Emerging blockchain systems like Ethereum support smart contracts where

miners can run arbitrary user-defined programs. However, one of the biggest concerns about the blockchain and

the smart contract is privacy, since all the transactions on the chain are exposed to the public. In this paper, we

present ShadowEth, a system that leverages hardware enclave to ensure the confidentiality of smart contracts while

keeping the integrity and availability based on existing public blockchains like Ethereum. ShadowEth establishes

a confidential and secure platform protected by Trusted Execution Environment (TEE) off the public blockchain

for the execution and storage of private contracts. It only puts the process of verification on the blockchain. We

provide a design of our system including a protocol of the cryptographic communication and verification and show

the applicability and feasibility of the ShadowEth by various case studies. We implement a prototype using the

Intel SGX on the Ethereum network and analyze the security and availability of the system.

Keywords blockchain, smart contract, privacy, trusted execution environment, hardware-enclave

1 Introduction

Blockchain, proposed as an underlying tech-

nology of cryptocurrency like Bitcoin [1], allows

users to transfer currency over a distributed, pub-

lic and trust-less network. Over the last few years,

blockchain systems evolved to support smart con-

tracts which can run custom Turing-complete code
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on the blockchain, such as Ethereum [2]. To-

day, public cryptocurrencies are widely used. On

Ethereum, more than 10 million ethers 1© are hold

by more than 1 million smart contracts. On these

blockchain systems, all the participants have the

entire log of the system and reach a distributed

consensus on the transactions that will modify the

state of the chain. This high degree of replica-

tion and the strict consensus mechanism ensure

integrity and availability but make all data public,

which brings the deficiency in confidentiality.

Previous researchers have proposed several

solutions to improve the privacy of blockchain.

Bitcoin provides a simple pseudonym-based

anonymity to protect secrets, but it exposes all

the transactions plainly, which is vulnerable un-

der the attack of relationship analysis [3, 4]. Some

privacy-preserving cryptocurrencies such as Men-

ero 2©, Zcash [5] and several others [6, 7] do im-

prove the confidentiality of currency transfer, but

forgo programmability and cannot support smart

contracts. Hawk [8] tries to protect the privacy

of both currency transfer and execution of smart

contracts. It designs a new coin that is simi-

lar to Zcash and requires users to use this coin

for private currency transaction. Recently, Mi-

crosoft presents an open-source blockchain frame-

work named Coco 3©. Coco enables the creation of

a trusted network of physical nodes which is pro-

tected by Trusted Execution Environment (TEE).

It applies to building a private blockchain net-

work, aka. permissioned blockchain, and can re-

strict that only the legal members can access the

information of the blockchain.

We find that few of these proposed systems

can be deployed directly on current widely-used

blockchain systems like Ethereum. They either re-

quire users to use a new coin (e.g., hawk), or do

not support smart contract (e.g., Zcash). A nat-

ural question is: is it possible to support private

smart contract on Ethereum?

One of our observations is: in many cases,

the privacy of the execution of smart contracts is

much more important than the privacy of the en-

tire blockchain. For example, in a second-price

auction where the winner pays the second high

price, it is critical to hide all the bids during the

auction. When the auction is done, the currency

transfer information (in the log of blockchain) will

eventually be open to the public (e.g., if users use

ether to bid). Similarly, in a vote, the most impor-

tant secret to protect is “who votes whom”. Once

the vote is done, the result could get public on the

blockchain.

Based on the observation, we decouple the

protection of the privacy of smart contract exe-

cution from the protection of the privacy of the

entire blockchain, and further propose a system

that can ensure the privacy of smart contract ex-

ecution. There are several challenges in design-

1© Etherscan. https://etherscan.io/accounts/c. Referenced Nov 2017
2© Monero. https://getmonero.org. Referenced Nov 2017
3© Microsoft Corporation. coco-framework. https://github.com/Azure/coco-framework
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ing our system. It needs to make a clear separa-

tion between the public chain and private smart

contracts, as well as to define a protocol between

the two parts. The system should let any worker

node discover new deployed private contracts from

the public blockchain, execute them in a protected

way, and make the settlement after the execution.

The worker nodes are not trusted that may leak or

tamper with the execution states, or even abort the

execution in a malicious way. It is also required to

integrate our system seamlessly with existing pub-

lic blockchain systems like Ethereum without any

modification. Finally, for a user, using our private

contract should be as easy as using ordinary smart

contract.

In this paper, we present ShadowEth, a sys-

tem that enables private smart contract based on

public blockchains. Our idea is to combine hard-

ware enclaves and public blockchains to offer confi-

dentiality of smart contracts while keeping the in-

tegrity and availability. On the public blockchain,

we create a public smart contract named “bounty

contract” which performs the process of deploy-

ment and verification and stores the metadata of

private contract. We also introduce an off-chain

distributed storage named TEE-DS to store bi-

nary and states of private contracts. The entire

TEE-DS is protected by hardware enclaves so all

the data it stores will not be leaked or tampered.

Users can then publish the deployment and invoca-

tion request and the remuneration on the bounty

contract to draw workers (who provide off-chain

execution environment) in. If a worker wants to

execute a private contract, it needs to run a worker

client in hardware enclave, which will get the bi-

nary and state from TEE-DS to execute. After the

off-chain execution, the enclave will generate a par-

ticular signature and put it back to the Ethereum,

which is used to verify the correctness of the exe-

cution. Since we just put the metadata (like hash

of binary, public key, state versions) and the en-

crypted data (like input and output) of ShadowEth

to the bounty contract, there is no need for any

modification to the underlying protocol of exist-

ing blockchain systems. Meanwhile, many workers

comprise a distributed storage to improve the re-

liability and guarantee the availability. We also

implement a prototype of ShadowEth with the

Intel SGX on Ethereum blockchain network and

show the applicability with three use cases.

In summary, our paper makes the following

contributions.

• It presents ShadowEth, a confidential, dis-

tributed, trust-less off-chain smart contract

system clinging to existing public blockchain

networks like Ethereum without any modifi-

cation.

• It describes the detailed architecture and

protocol of ShadowEth.

• It shows the applicability of ShadowEth with

three use cases.

• It presents a prototype and demonstrates the

security and availability of ShadowEth.
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The rest of the paper is organized as follows.

We present the motivation of this paper and previ-

ous technologies in Section 2; the high-level archi-

tecture of ShadowEth is introduced in Section 3;

the detailed design of ShadowEth is demonstrated

in Section 4; three cases are presented to show the

applicability of ShadowEth in Section 5; a proto-

type is presented and the security of ShadowEth

is analyzed in Section 6; the availability of Shad-

owEth is discussed in Section 7; related work is

presented in Section 8 and finally we conclude in

Section 9.

2 Background and Motivation

In this section, we provide background on the

technologies that underpin ShadowEth. We first

give a short overview of the blockchain and smart

contracts, explore the lack of confidentiality of cur-

rent smart contract systems, then introduce the

hardware enclave and finally describe the threat

model of ShadowEth.

2.1 Blockchain

A blockchain typically serves as an open, de-

centralized and trustless distributed ledger which

is maintained by all participants. Some partici-

pants, called miners, form a peer-to-peer network

and all have the full copy of the blockchain. They

collect transactions signed by users. After validat-

ing the signatures, they packed these transactions

into a block. Each block contains the information

of the transactions as well as the hash of the previ-

ous block, which organizes the data as a sequential

list of blocks, called a blockchain. The blockchain

is a distributed system designed for Byzantine fault

tolerance. Each transaction which may modify the

state of the chain will be broadcasted to all miners

in the network. Once a block is generated, all the

miners need to achieve a consensus on whether to

accept it or not. Each miner can decide the block’s

content arbitrarily, that is to say, he/she can decide

which transactions will be packed into the block.

Miners can always generate different blocks with

the same parent at the same time, which will cause

inconsistency called a fork. To solve the bifurca-

tion, an honest miner always chooses to follow the

longest branch.

If an attacker controls more than 50% of the

nodes, he/she can unilaterally generate the branch

containing the fake transactions faster than the

branch containing the real ones, which causes the

double spending problem. To solve this problem,

a miner needs to prove that he/she has done a

certain amount of work before generating a block.

With this proof, known as Proof of Work (PoW),

the block is acknowledged to be valid. PoW

makes a miner create blocks at the rate related to

the proportional of his/her mining power, which

prevents Sybil attack.

2.2 Smart Contract and Ethereum

The smart contract can trace back to 1996,

proposed by Nick Szabo [9]. It is described as “a

set of promises, specified in digital form, includ-
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ing protocols within which the parties perform on

these promises”. The smart contract is usually de-

signed to ensure the execution of a contract and

to avoid malicious act as well as unforeseen cir-

cumstances. It can minimize the utilization of the

trusted third party, which results in the reduc-

tion of transaction cost, and potentially circum-

vent censorship, collusion and counter-party risk.

Blockchain makes smart contracts possible.

Based on the blockchain, smart contracts usually

take the form of a general-purpose program. Users

can write and deploy any Turing-complete pro-

gram on the blockchain network. The most notable

smart contract implementation is Ethereum [10, 2].

A contract in Ethereum will be endowed with exe-

cution contexts such as stack, heap and persistent

memory on the chain. Once a contract is deployed,

it will be executed autonomously. Even its creator

cannot stop the execution or modify the code. A

contract can operate as a specified function, accept

messages as arguments and eventually update its

state. The execution of a contract is triggered by a

message from a user account or another contract,

analogous to a function call, and is finished when

the program exits or the gas (the fee paid for min-

ers) is depleted.

Ethereum provides a runtime environment

named Ethereum Virtual Machine (EVM). It is

sandboxed and isolated from the host operating

system. Each miner runs an EVM for contract exe-

cution. In Ethereum, the smart contract is a high-

level programming abstraction. Smart contracts

can be written in a programming language like So-

lidity. Then the source code will be compiled to

bytecode for EVM and deployed to the Ethereum

network in a transaction. Ethereum has its value

token called ether 4©. Analogous to Bitcoin, it is

a cryptocurrency with its market value. The set-

tlement of smart contracts is done on the base of

ether. To prevent DoS attacks such as requests

for executing some infinite loop within smart con-

tracts, contracts need to be powered by a certain

amount of Ether called gas. Ethereum endows

every operation, including computation and data

transfer, a fixed price, and the corresponding gas

will be consumed once the operation is executed. A

transaction must contain a parameter named Gas

Limit, which defines the maximum limit of the gas

consumed by the execution. Once a contract calls

another function, it needs to specify a lower Gas

Limit for it. If a function exits normally, it will

consume the corresponding gas and return the rest

gas. When a function runs out of its gas, it will be

aborted and all the changes of the state caused by

it will be rolled back to their pre-call state without

returning any gas.

The wide public participation of Ethereum

and the strict consensus mechanism ensure the en-

forcement, integrity and availability of smart con-

tracts. However, the lack of privacy becomes a

pain point that restricts the applications of smart

contracts in some privacy-sensitive scenarios.

4© https://coinmarketcap.com/currencies/ethereum/
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2.3 Hardware Enclave

Trusted executed environment (TEE) is a new

feature provided by recent commodity CPUs. It

creates a secure area which guarantees the in-

tegrity and confidentiality of code and data inside.

TEE serves as an isolated environment running in

parallel with OS. It provides a high-level security

for software inside by reducing the trusted com-

puting base (TCB) to only the CPU. Applications

running in TEE have secure memory and cryp-

tographic operations to resist attacks from other

applications, even the privileged software such as

OS or hypervisor.

Our design is general-purpose and applies to

any TEE that has above features. In this paper,

our implementation is based on Intel’s Software

Guard Extensions (SGX) [11] 5© 6©. Intel SGX pro-

vides a trusted and isolated environment called en-

clave. With this hardware feature in CPU, users

can deploy their softwares in a remote host with

integrity and confidentiality unless CPU package

was hacked. An application running inside an en-

clave is protected from other malicious software

including the operating system.

SGX provides remote attestation 7© which al-

lows a remote host to verify the application run-

ning in the enclave and generate a secure channel

to communicate with it. In the process of initia-

tion of an enclave, the CPU measures the trusted

code and the trusted memory within the enclave

and produces a hash based on all memory pages

known as measurement. Then the software inside

the enclave can acquire a report which contains

the measurement and other supplementary data

such as the public key. This report is signed by a

hardware-protected key in CPU to prove that the

measured software is running in SGX indeed. The

remote attester can then verify the report with In-

tel Attestation Service (IAS) which can certify that

the signature is valid and the corresponding report

is generated from authentic CPUs.

2.4 Threat Model

Our threat model assumes that multiple par-

ties mutually distrust each other. They are poten-

tially malicious and may try to steal information

of smart contracts, modify the execution flow and

deviate from the protocol for their benefit. Each

party may send, drop, modify, record arbitrary

messages in the protocol at any time during the

contract deployment and invocation. Any party

may crash and stop responding entirely.

We assume that the blockchain is trustable

and available all the time. The information on

the blockchain is tamper-resistant but public to ev-

eryone. We also assume that network adversaries

5© INTEL CORP. Software Guard Extensions Programming Reference. https://software.intel.com/sites/default/files/managed

/48/88/329298-002.pdf
6© INTEL CORP. Intel Software Guard Extensions SDK. https://software.intel.com/en-us/sgx-sdk
7© JOHNSON, SIMON ET AL. Intel Software Guard Extensions: EPID Provisioning and Attestation Services.

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
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can intercept the communication between parties,

but they cannot control the whole network so that

the communication can be eventually established,

for example, the user can send a request to the

blockchain network and get the response.

We trust the hardware enclave, its manufac-

ture (like Intel) and the remote attestation ser-

vice. As long as a node passes the remote attesta-

tion, it will be able to execute the shadow contract

within its enclave. The rest of the system, includ-

ing the other software stacks (outside the enclave)

and the hardware is not trusted. Side-channel at-

tacks [12, 13, 14, 15] against enclaves and DoS at-

tacks are not considered in this paper.

Our system also relies on the privacy of pri-

vate key. Each private contract has a unique pri-

vate key only possessed by the enclave. The pri-

vate key is used to generate the attestation that

the contract has been executed correctly. If an at-

tacker steals the private key in some way, he/she

can get paid from the Ethereum without executing

the contract, which could compromise the integrity

but not privacy.

3 System Overview

The goal of ShadowEth is to provide a con-

fidential platform to executing private smart con-

tracts which can be integrated with existing public

blockchain such as Ethereum. Specifically, the pri-

vacy of a smart contract consists of the following

three parts.

• Privacy of the specification of a smart

contract. The source code of a private con-

tract must be hidden during the deployment

and subsequent process of execution and syn-

chronization.

• Privacy of the execution of a smart

contract. Once a private contract is in-

voked, the executing process on a worker

client cannot be spied and the call arguments

as well as the return values should be hidden

during the execution.

• Privacy of the state of a smart con-

tract. The internal state of a private con-

tract may contain user’s secrets and can re-

flect information of recent transactions. So

it should not be published on the blockchain.

To guarantee the confidentiality of the code

and data of a smart contract, a secure channel be-

tween a user and TEE-DS will be established be-

fore transferring the contract. The contract will

be encrypted before transferring and can only be

decrypted inside the corresponding enclave.

To preserve the privacy of execution, we only

put the information of invocation and verification

onto the blockchain. During the deployment of a

private contract, TEE will generate a key-pair for

this contract and publish the public key. The invo-

cation arguments are encrypted with the contract’s

public key which can only be decrypted within the

enclave. The return value will be encrypted by

a user-provided key which is delivered along with

call arguments. In the entire process, the informa-
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tion of the execution is encrypted except inside the

enclave. Anyone even the worker cannot leak the

internal executing state.

To guarantee the confidentiality of the persis-

tent state of a private contract, ShadowEth stores

only the hash of the ledger on the Ethereum in-

stead of all data. The data can only be man-

aged and viewed inside enclaves. Due to the

limited secure memory of enclave like SGX, data

could be moved to untrusted memory or disk, and

sometimes need network transmission for backup

or synchronization. Before writing out the data,

ShadowEth will encrypt all data with the hardware

key which is only kept by CPUs. This ensures that

the data can only be accessed by authenticated

users through ShadowEth and no one outside can

view or manipulate the persistent state.

3.1 System Components

Fig. 1 shows the architecture of ShadowEth.

ShadowEth can be broken down into several sub-

components.

• Bounty Contract. A bounty contract is a

native smart contract deployed on blockchain

directly, serving as the public portion of

ShadowEth.

• User Client. A user client provides inter-

faces to end users. It does not require enclave

to execute.

• Worker Client. A worker client is respon-

sible for the execution and maintenance of

private contracts. It needs to run inside en-

claves.

• TEE-DS. TEE-DS (Distributed Storage)

serves as a distributed network which stores

private contracts.

We create a smart contract named bounty

contract on the Ethereum blockchain network

which serves as a platform for publishing private

contract, grabbing execution task and remunera-

tion settlement. Bounty contract is a public con-

tract that every participant in Ethereum can see

and use. A user can deploy his/her private con-

tracts and then invoke them like ordinary contracts

via the bounty contract. On the other side, work-

ers with TEE-enabled devices can look up execu-

tory tasks in the bounty contract, get the param-

eters, do the computation, and finally commit the

result of the execution.

A user client provides interfaces including con-

tract deployment and invocation for users. It

communicates with bounty contract through an

Ethereum Client. It can be launched without

TEE, so it is only trusted by its user.

A worker client is used for fetching executory

tasks from bounty contract, getting code and data

of private contracts from TEE-DS, executing con-

tracts, committing results and updating the persis-

tent state of contracts. The main part of a worker

client, which does the contract correlation process-

ing, runs inside enclaves. It communicates with

bounty contract through an Ethereum client. Fur-

thermore, a worker client also serves as a server



Rui Yuan et al.: Private Smart Contract on Public Blockchain 9

Bounty
Contract

Ethereum Client

User Client

Ethereum Client

Worker Client

Enclave

TEE-DS

Ethereum

User Node Worker Node

Fig. 1. ShadowEth architecture.

node in TEE-DS.

Many worker clients comprise TEE-DS, a

peer-to-peer network storing the code and data of

private contracts. In the process of execution of

contracts, all the nodes maintain consistency by

Paxos-like consensus algorithm. For a certain con-

tract, different workers store the same data but

encrypt it with different secret keys. Enclaves

maintain the consistency of the unencrypted log-

ical data. The data synchronization is performed

on the safe channel between two enclaves after the

remote attestation.

3.2 Example

Here is a simple example to briefly demon-

strate the process of deployment and invocation

from different perspectives in our system.

Deployment: Suppose a user needs to de-

ploy a private contract to ShadowEth. He/She first

compiles the code and puts the binary to TEE-

DS through the user client. TEE-DS will generate

a pair of keys, bind them with the contract and

transfer only the public key back to the user. The

user client then uploads identification information

of the contract (including the public key and the

hash of binary, etc.) to the bounty contract. Now

the contract is publicly available.

Invocation: Once the user needs to invoke

his/her private contract, he/she sends an invoca-

tion request (including arguments) to the bounty

contract with a sum of remuneration. A worker

client will get the arguments from the bounty con-

tract and get the private contract’s binary from

the TEE-DS with the public key as its ID. It then

loads the binary to its hardware enclave and ex-

ecutes using the arguments to get a return value.

After that, it sends the new state of the private



10 J. Comput. Sci. & Technol., Mon.. Year., ,

contract to TEE-DS, which will be holden at this

moment. The worker then makes a response (in-

cluding the return value and signature, etc.) and

sends it to the bounty contract. The bounty con-

tract will verify the response to ensure that it is

generated by correct contract, states, and argu-

ments in real hardware enclave before transferring

the remuneration to the worker. Once TEE-DS

confirms that the execution has been acknowledged

by the bounty contract, it will update the states

of the private contract, which finishes the process

of one invocation.

As shown in the example, the Ethereum en-

sures the availability (a private contract will even-

tually get executed), and the integrity (the result

cannot be modified), while the hardware enclave

is used to protect privacy. There are many chal-

lenges unlisted, e.g., how to design a protocol and

key management to defend against attacks like roll-

back and impersonation, how to minimize the trust

on the manager in a second-price auction, which

will be described in the following sections.

4 Design

In this section we present the design of Shad-

owEth. We first describe the three major parts of

ShadowEth: the bounty contract (Subsection 4.1),

the shadow contract (Subsection 4.2) and the

TEE-DS (Subsection 4.3) and then introduce the

detailed protocol (Subsection 4.4).

4.1 Bounty Contract

Bounty contract is a native smart contract de-

ployed on the Ethereum. Its major responsibility is

to perform the public portion of deployment, invo-

cation and verification of private contracts. Some-

times it needs to generate transactions to handle

the settlement. It maintains two lists: a contract

list and a todolist.

Each entry in the contract list represents a pri-

vate contract. It contains (1) the contract’s ID (as

the primary key), (2) the contract’s public key, (3)

a version number, (4) an owner list, (5) the hash of

the contract’s persistent state, and (6) the balance

of the contract. Once the bounty contract receives

a deploying request, it will construct a new entry

and add it into the contract list, and the invoca-

tion will update the hash value and increase the

version number. The contract list can be used to

record and verify the state of private contracts but

does not expose any information about the core

business logic. Users can deposit funds into a pri-

vate contract by sending the corresponding ether

to bounty contract through deploy transaction or

invoke transaction (described in Subsection 4.4).

The bounty contract records the funds as the bal-

ance of a contract. When the result of an invo-

cation is a settlement, the bounty contract will

check if the balance is enough before performing

the transfer. It is worth noting that the bounty

contract only records the total balance of the con-

tract. The detailed distribution of this sum money

is decided by the contract itself.



Rui Yuan et al.: Private Smart Contract on Public Blockchain 11

The todolist serves as a task pool. Users

publish invocation tasks into the todolist to allow

workers to bid the task. Each entry represents an

invocation request, which contains (1) the task ID

(as the primary key) , (2) the contract’s public

key, (3) the encrypted arguments, (4) the remu-

neration offered by the user, (5) the state (e.g.,

TODO or FINISHED), and (6) the encrypted

return value. Only one worker can gain the remu-

neration (typically the first), which is guaranteed

by the Ethereum.

The bounty contract is the key component of

our system. Users and workers communicate in-

directly through the bounty contract. Thus, the

integrity and the availability of operations on pri-

vate contracts like deployment and invocation are

ensured by the public blockchain.

4.2 Shadow Contract

We propose to build a confidential environ-

ment for smart contract execution using hardware

enclave, but it is not enough to just deploy the na-

tive Ethereum contract directly because only the

process of the execution can be hidden, while the

information outside such as the call arguments and

return values is still exposed.

To this end, we introduce Shadow Contract, a

re-design of the native Ethereum smart contract.

Shadow Contract uses a contract gate to isolate

the core business logic of the smart contract. The

contract gate is loaded by the worker client be-

fore the execution of smart contracts, endowed

with the private key of the smart contract. The

contract gate has two primary functionalities: de-

crypting arguments and generating the response.

The two functionalities are independent of the con-

tract code, which means the contract gate can be

compatible with any private contract.

To preserve the privacy of the call arguments,

users need to encrypt them with the public key

of the contract before sending them to the bounty

contract. Before execution, the contract gate first

decrypts the arguments and then invokes the tar-

get function with the plaintext.

After the execution, a response is required

to put back to the bounty contract. A response

includes the execution’s return value, the version

number before the execution, the hash of the con-

tract’s state after the execution, and the settle-

ment information. What is more, an invocation

verification signature (IVS) is required to attached

to the response.

IVS is used for verifying whether the contract

has been executed correctly inside an enclave. The

contract gate signs the response along with the

hash of call arguments and the worker’s ID by the

secret key of the contract to generate IVS. The

encryption can only be performed after the exe-

cution within enclaves. Then the bounty contract

can decrypt IVS by the public key of the contract

to verify the execution. The inclusion of the hash

of call arguments is to ensure that the worker does

execute the contract with given arguments. Since

IVS contains the ID of the worker, the remunera-
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tion will be sent to the right worker even when a

malicious attacker captures IVS and resents it to

the bounty contract using his/her own Ethereum

account.

The return value of the execution is required

to be sent back to the user without exposure. To

this end, the user needs to provide another sym-

metric key along with the arguments and encrypt

them together with the public key of the contract.

The contract gate will encrypt the return value

with this key and put the cipher-text into the re-

sponse, which will then be put back to the bounty

contract and only the user can decrypt it.

When a function is to trigger a settlement

on the Ethereum, it will return a transaction-type

object which the contract gate will put into the

response. If a response contains settlement in-

formation, the bounty contract will generate an

Ethereum transaction to transfer the money.

Besides the above-mentioned data, the con-

tract gate also puts the hash of the contract state

after execution into the response which is used as

an attestation for off-chain contract transfer.

4.3 TEE-DS

TEE-DS is a peer-to-peer network consisting

of many worker clients. It serves as a distributed

storage of private contracts which can provide high

reliability against malfunction. The secrets (e.g.,

the code, data and private key) of a private con-

tract are protected by hardware enclave, which

guarantees the confidentiality.

Admission Mechanism: Anyone runs the

worker client inside an enclave can join the TEE-

DS as a worker. To get permission, the expectant

worker needs to connect one of the approved work-

ers and offer a CPU-signed statement that he/she

is executing a particular enclave. Once the state-

ment is certified, which is known as remote at-

testation, the expectant worker can then join the

network, get the current network constitution and

synchronize data from other workers.

Synchronization Mechanism: After a

worker performs an invocation of a private con-

tract, he/she needs to broadcast the updates to

other workers. However, some workers may pub-

lish different updates of the same contract simulta-

neously. This happens for several reasons: (1) the

states before invocation are different; (2) the invo-

cation requests they choose are different; (3) there

are some malicious actions. We utilize the consen-

sus on the blockchain to evade conflicts in TEE-

DS. When a worker sends the response of an invo-

cation to the bounty contract, he/she must specify

the version number before the execution and the

hash of the contract’s state after the execution.

When receiving more than one response about the

same contract, the bounty contract will check if

the version number is the latest and only accept

the first valid one. Then the bounty contract in-

creases the version number and updates the hash.

Even if different miners accept different responses

at first, they will eventually reach an agreement

by Ethereum’s consensus mechanism. In TEE-
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Fig. 2. ShadowEth protocol (Bold lines represent secure channels protected by enclave).
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DS, before the data synchronization, workers will

check the version number as well as the hash in

the bounty contract and only accept the updates

which have been acknowledged.

4.4 Protocol

The ShadowEth protocol operates in two sce-

narios: (1) contract deployment, and (2) con-

tract invocation. Fig. 2 shows the process.

Just like smart contract systems based on pub-

lic blockchains, our current system does not sup-

port withdrawal mechanisms unless they have been

coded in the contract. Considering the irreversibil-

ity and non-repudiation, a contract cannot be

stopped from the outside once deployed. The fol-

lowing is a detailed description of the process of

these two scenarios. For simplicity, we ignore min-

ing fees in this subsection, although they can be

supported in the implementation.

4.4.1 Contract Deployment

The first scenario of the ShadowEth protocol

is contract deployment, as shown in the Fig. 2-

A. Similar to using Ethereum natively, users write

the business logic of their private contracts on their

clients using native languages (like C/C++), then

compile the code, deploy them onto the TEE-DS,

and meanwhile upload the identification informa-

tion (e.g., the hash of the code) to the bounty con-

tract.

The final purpose of the deployment is to gen-

erate an asymmetric key pair, of which the private

key is only kept by the enclave, so that the sub-

sequent invocation can be protected by the public

key directly without establishing a secure commu-

nication channel.

A1. First, the user sends the binary code to

TEE-DS through a secure channel, which is estab-

lished through remote attestation and protected

by a Keysession which is used for encrypting data

in the session. Once the code is received, TEE-

DS will generate an asymmetric encryption key

pair(based on the RSA algorithm): Keyc p and

Keyc s (p for public and s for secret), which is

unique for each contract. Then TEE-DS sends

Keyc p back to the user.

A2. After receiving Keyc p, the user will up-

load the identification information to the bounty

contract, essentially announcing the existence of a

new private contract. The information includes:

(1) Keyc p, (2) the owner list (the user’s public

address as default), and (3) the hash of the binary

code. This is done by the Ethereum client, which

generates a deploy transaction containing the in-

formation and sends it to the bounty contract. The

bounty contract then creates a new contract record

in its contract list with the identification informa-

tion, sets the version number to 0, and sets the

state to DEPLOYED.

A3. At last, after the deploy transaction is ac-

knowledged, the code of the private contract along

with the key pair will be broadcasted to all other

workers in TEE-DS.
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4.4.2 Contract Invocation

Once a private contract has been deployed,

users can invoke it just like invoking native

Ethereum contracts. The procedure is shown in

the Fig. 2-B.

B1. A user initiates an invocation request

through its user client. Similar to the native con-

tract invocation in Ethereum, the user must spec-

ify the contract’s Keyc p, the remuneration and the

corresponding parameters including the function

name and call arguments.

B2. The user client will process the request:

(1) adding the timestamp into the request body,

(2) generating a secret key Keyreq which is only

used for this request and adding it into the request

body, and (3) using the Keyc p to encrypt the re-

quest except for the remuneration, then send the

data to the Ethereum client.

B3. The Ethereum client generates an invoke

transaction including the contract’s Keyc p, the

encrypted request and the remuneration, which is

sent to the bounty contract.

B4. Once the bounty contract receives the in-

voke transaction, it first verifies the identification

to ensure that the contract exists and the request

is from one of the owners of the contract. It then

adds a new entry with the information included

in the invoke transaction into the todolist marked

as TODO, and transfers the remuneration into its

account simultaneously.

B5. After the invoke transaction is acknowl-

edged, workers can see the executory tasks. They

can choose any task and get the related informa-

tion including Keyc p and encrypted request from

the bounty contract.

B6. By using Keyc p, a worker can ask the

TEE-DS for the contract’s code and load the con-

tract into its enclave along with the encrypted re-

quest. Inside enclave, the contract gate first de-

crypts the request to get the arguments and the

Keyreq, and then executes the specified function.

B7. If the function exits normally, the con-

tract gate will broadcast the modification of the

contract’s persistent state to other workers in

TEE-DS and then generate a response including

the following parts:(1) the version number of the

contract before the execution, (2) the hash of the

contract’s state after the execution, (3) the re-

turn value (if the function has one) which is en-

crypted by Keyreq, (4) the settlement information

(if the function has one), and (5) the IVS (de-

scribed in Subsection 4.2). The worker client then

sends the response back to the bounty contract and

the bounty contract can verify the validity of the

IVS with Keyc p to ensure that this worker has

completed this task correctly. After the verifica-

tion, the bounty contract updates the entry in the

todolist , marking it as FINISHED and filling the

return value if any, and updates the information of

the contract including the version number and the

hash of contract state. Then the user can fetch the

return value and decrypt it by Keyreq. If the result

is marked as a settlement, the bounty contract will

generate a settlement transaction with the settle-
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ment information in the response. The first worker

to finish it will obtain the remuneration.

B8. Once the result is acknowledged by

bounty contract, the other workers in TEE-DS will

accept the modification.

5 Use Cases

In this section we introduce some use cases to

explain how we can use the ShadowEth to preserve

the privacy of smart contract.

5.1 Protecting Simple Vote

We first implement a simple vote example to

show the confidentiality of private contract. The

scenario is that some people want to start a vote

between themselves by a smart contract on the

Ethereum, but they do not want to expose the

content of this vote to the public. In our imple-

mentation, we assume that the participants know

and trust each other and create the vote contract

together. Algorithm 1 shows the approximate logic

of the example but not the detail.

First, all the voters agree on the voting code

(private contract). Then they deploy the con-

tract as described in Subsection 4.4, which can

be performed by any one of the participants. Af-

ter the deployment is acknowledged, each par-

ticipant can invoke the cast() function to cast

their ballot. The cast() operation will be exe-

cuted by workers using hardware enclave. Any

participant can invoke the check function to

query the current state of the vote at any time.

Algorithm 1 Pseudocode of simple vote contract

1: vote← {0, 0, 0, 0, 0}

2: function CAST(option)

3: vote[option] + +

4: function CHECK()

5: return new ResultType(vote)

Algorithm 2 Pseudocode of private transaction

contract
1: int seller addr . address

2: int buyer addr

3: int seller blc . balance

4: int buyer blc

5: function DEPOSIT(amount)

6: buyer blc+ = amount

7:

8: function PURCHASE(amount, price)

9: . check the signature first

10: if buyer blc >= amount ∗ price then

11: buyer blc− = amount ∗ price

12: seller blc+ = amount ∗ price

13: return newResultType(true)

14: else

15: . Transaction failed

16: return newResultType(false)

17:

18: function SETTLEMENT()

19: settlement← new Transaction()

20: settlement.add(seller addr, seller blc)

21: settlement.add(buyer addr, buyer blc)

22: return settlement
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Algorithm 3 Pseudocode of second-price contract

1: Map〈int, int〉 balances

2: int bestPrice← −1

3: int secondPrice← −1

4: int winner ← −1

5: int seller ← −1

6: function START(addrOfSeller)

7: balances.clear()

8: seller ← addrOfSeller

9:

10: function BID(addr, price, funds)

11: . check: funds deposited ≥ real price

12: balances.insert(addr, funds)

13: if price > bestPrice then

14: secondPrice← bestPrice

15: bestPrice← price

16: winner ← addr

17: else if price > secondPrice then

18: secondPrice← price

19:

20: function CONCLUDE()

21: settlement← newTransaction

22: settlement.add(seller, secondPrice)

23: settlement.add(winner, balances[winner]

24: −secondPrice)

25: for each b ∈ balances do

26: if b.first! = winner then

27: settlement.add(b.first, b.second)

28: return settlement

It is noteworthy that the whole process of the

vote including the cast and the check is hidden and

only the participants can view it. The workers can

get involved in executing but they will never know

what indeed happens inside the contract. If a par-

ticipant is malicious in this case, he/she can only

leak the vote result but not the detailed informa-

tion.

5.2 Protecting Transaction Details

We consider the following scenario: a seller

and a buyer have a contract with a certain price

and quantity of some commodity. The key secret of

the scenario is the detail of the purchase including

the price, the quantity and maybe some promo-

tion strategy in some complicated cases, while the

result (i.e., the total ether transferred) which will

eventually be reflected on the Ethereum is not pro-

tected. The approximate code is shown in Algo-

rithm 2. To ensure the efficacy of the contract, the

seller is required to deposit some funds as balance

before making a purchase, which is done by in-

voking the deposit() and send corresponding ether

to the bounty contract. Once the both parties

are prepared to make a deal, they can invoke the

purchase() with the negotiated price and quantity.

The invocation of purchase() requires to be signed

by both parties. Either party can invoke the set-

tlement() for a refund. The bounty contract will

check the total amount of refund before generating

the settlement transaction.

The example can be extended to a multi-

participants scenario which can hide the detail of

transactions among the participants and do settle-
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ment regularly. Although the transfer of ether is

public on Ethereum, it is acceptable in many cases

because the privacy of transaction details is much

more important. And users can do a settlement af-

ter a number of transactions, which mixes up the

results of these transactions and makes it difficult

to resolve.

5.3 Second-Price Auction

In a second-price auction, the bidder who of-

fers the highest price wins but pays the second

highest price. The essential element of second-

price auctions is that bidders offer bids without

knowing the bid of other bidders.

We implements an example auction program

using the ShadowEth, as shown in Algorithm 3.

The code above is an approximation of our real im-

plementation. There are two different roles in this

case: the manager and the bidders. First the man-

ager can start an auction with the seller’s address

so that the fund can be transferred to the seller

immediately once the auction ends. After the auc-

tion starts successfully, each bidder can offer their

price by invoking bid(). Since the ether transfer

on Ethereum is public, from which the bid price

could be inferred, so we allow a user to obfuscate

the real price by sending an arbitrary (but more

than the real price) amount of ether to bounty con-

tract, and the excess will be returned to the user

after the auction ends. The manager will decide

when to conclude the auction and invoke the con-

clude() to transfer the money from the winner to

the seller and refund other bidders’ funds.

ShadowEth guarantees the input independent

privacy that each user can never see others’ bids

even after the auction. In this way, users’ bids are

independent of others’ bids. Also, the manager’s

function is limited to starting and terminating the

auction. Even if the manager is malicious, he/she

cannot disclose any information of the auction.

6 Evaluation

We implemented a prototype using Intel SGX

on the Ethereum testnet. We demonstrated that

ShadowEth achieves security and availability with

acceptable overhead in this section.

6.1 Prototype

The prototype contains the three major com-

ponents: the bounty contract on Ethereum, the

user client and the worker client.

The bounty contract is written in Solid-

ity, a high-level language designed to target the

Ethereum Virtual Machine. We implemented the

deploy, invoke, submit interfaces for off-chain users

and workers. The bounty contract holds the funds

deposited by all private contracts and can generate

Ethereum transactions to redistribute them.

The user client and the worker client are writ-

ten mainly in C and C++. Both communicate

with Ethereum nodes through JSON-RPC inter-

faces including eth sign, eth sendTransactions and

eth call. For the worker client, we implemented

a more complete and usable software stack than
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the official SDK (Software Development Kit) and

ported a memcached instance into an SGX enclave

which is used as a distributed storage. We also im-

plemented the contract gate inside the enclave to

load and execute contracts. For asymmetric en-

cryption between the outside and the inside of the

enclaves, we used RSA with 4096-bit keys.

In contrast to some performance optimization

solutions such as TEEchan [16], each execution

in ShadowEth needs the intervention of Ethereum

which is the performance bottleneck. Each trans-

action in Ethereum takes about 12 seconds to be

packaged into a block and the time is always ex-

tended to about 1 minute for 5 confirmations. Fur-

thermore, the confirmation time is related to the

fee paid to the Ethereum miners. For some simple

contracts, the off-chain computation costs seconds

of time (mainly for the decryption and signature

in our current implementation), which is an or-

der of magnitude less than the confirmation time.

So we can measure the performance by the times

that off-chain components communicate with the

on-chain components. Currently, it is required to

wait for two transactions to be acknowledged in

each execution which is acceptable in most cases.

6.2 Security Analysis

In this subsection, we discuss how ShadowEth

mitigates potential attacks. Each party may send,

drop, modify, record arbitrary messages in the pro-

tocol at any time during the contract deployment

and invocation. So we discuss and evaluate the

security of ShadowEth .

Malicious Worker: During the contract de-

ployment, an attacker may pretend to be a worker

and defraud the user of the code of his/her private

contract. To defend this attack, remote attestation

is required before the communication. The worker

must provide a report which is signed by hardware-

protected key to prove that he/she runs the un-

modified worker client in enclave indeed. Even if

the attacker has compromised the network, he/she

cannot spy or tamper any message because the

communication between the user and the worker

is based on a secure channel which is protected by

a session key after remote attestation. If the user

who performs the deployment is dishonest, he/she

cannot get any more privileges than other users in

that the secret key of the contract is generated and

kept by enclaves.

Stealing Invocation Information: The

contract invocation is mediated by bounty contract

which is publicly visible on the Ethereum. An at-

tacker may try to steal the invocation information

by spying the bounty contract. But this will not

work because all the secrets of invocation are en-

crypted. The user encrypts the arguments with the

public key of the contract, and oppositely, the en-

clave will encrypt the corresponding return value

by another key which is transferred along with the

arguments by the user. So the attacker can only

see the inessential information such as the amount

of the remuneration. Since the secrets of an invoca-

tion are fully hidden except for the invoker, Shad-
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owEth can guarantee the personal privacy with-

out any exposure risk from a malicious manager,

which is a potential concern of some other private

blockchain system such as Hawk [8].

Integrity of Invocation: There are po-

tential attackers including dishonest workers who

want to compromise the integrity of the invoca-

tion by tampering invocation requests or commit-

ting fake results. Since the invocation requests are

acknowledged on Ethereum, attackers can manip-

ulate them only by controlling more than half of

the computing power of Ethereum, which is consid-

ered impossible. The response of an invocation in-

cludes IVS which contains the hash of correspond-

ing arguments and is signed with the contract’s

private key by the enclave. The bounty contract

can check the IVS with the contract’s public key

to verify that the worker executes the contract cor-

rectly with the given arguments inside an enclave.

So no one can fake a response to the bounty con-

tract.

Replay Attack: To protect the private con-

tract from the replay attack, each message will be

endowed with a timestamp. When the bounty con-

tract receives an invoke message, it will first check

the timestamp and refuse the old requests. The

communication between users and workers will be

protected in the same manner. Furthermore, the

response of an invocation must specify the corre-

sponding task in the todolist of the bounty con-

tract. Thus the only one response will be accepted

by the bounty contract for one task. It is worth

noting that the worker’s address inside the IVS de-

cides who will gain the remuneration so it is no use

for attackers to intercept the IVS.

We implement ShadowEth using Intel SGX

which guarantees the integrity and confidentiality

of the execution. Intel SGX can protect the ex-

ecution of smart contracts from attackers on the

same host, even those who compromise the OS

or control physical access. All the data of the

contract is encrypted except inside the enclaves.

Malicious workers or attackers on the same ma-

chine can only stop service, modify or record the

encrypted messages, which will not harm the in-

tegrity and confidentiality of our system. For the

attacks which exploit the hardware vulnerabilities

(e.g., Meltdown and Spectre CPU security flaws),

Intel has submitted patches to fix the problems.

Actually, most side-channel attacks require multi-

ple attempts to steal information from the enclave,

so we can prevent these attacks effectively by lim-

iting the execution times. This is a good idea we

will probably implement in the future.

It is worth noting that our protocol is not In-

tel specific and we can implement out system easily

on the base of another trusted hardware.

7 Discussion

Availability: Currently, the availability of a

blockchain system depends on the participation to

a large extend. Similarly, ShadowEth needs a num-

ber of workers to comprise the TEE-DS and pro-

vide services for private contracts. A nascent sys-
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tem always lacks user participation and few work-

ers are willing to work, and it will take a long time

to develop to maturation. So we choose to build

our system on the base of the mature Ethereum

system and make use of its availability without any

modification to the Ethereum.

In addition to Ethereum, we also need to es-

tablish a public platform to provide related ser-

vices such as the client download (both the user

client and the worker client) and maintaining the

information of TEE-DS. With these services, any-

one who has a machine with enclave can down-

load a worker client, and then find and join the

TEE-DS as a worker. At the beginning, we may

build the TEE-DS with few nodes as a test version.

With the broad participation of Ethereum, we an-

ticipate that the requirement of private smart con-

tracts and the remuneration will draw more users

and workers in.

Incentive Mechanism: In current design of

ShadowEth, workers only get remuneration for ex-

ecuting contracts. But there is no incentive mech-

anism for storing private contracts. Thus some

utilitarian workers may stop their machines imme-

diately after one task, and keep waiting until new

tasks are sent to bounty contract. Since the remu-

neration is only gained by the fastest worker, the

time of execution is closely connected with profit.

If a worker only executes contracts without stor-

ing them, the latency of synchronizing data (e.g.,

binary of contracts) from other workers will add

more overhead to execution time and reduce ex-

pected profit, which motivates workers storing pri-

vate contracts locally. Furthermore, the worker

client is executed as a whole and the response is

generated only after all the work is done (including

spreading data to other TEE-DS nodes), which is

ensured by enclave, and hence no worker can per-

form part of the execution to maximize profit.

Workload Measurement: Ethereum pro-

vides a gas mechanism, which endows every oper-

ation a fixed price. With Ethereum’s runtime en-

vironment (EVM), the workload of each execution

can be measured and then the gas consumption

can be calculated with the gas price. The execu-

tion will exit immediately once the gas is run out.

This mechanism can prevent DoS attacks such as

requests for executing some infinite loop within

smart contracts. In our current implementation,

the contract is executed in the native environment

without a similar monitoring mechanism. To solve

this problem, we can measure the workload by exe-

cution time. Each invocation task will be endowed

with a timeout corresponding to the amount of re-

muneration. If some workers finish the execution

before timeout, the first one will win. If the work-

load of the execution is so heavy that no worker

can finish it within before timeout, workers can

still gain the remuneration with a measurement

to prove that the execution indeed exits after a

timeout. The measurement can be generated by

enclave, which is similar to Proof of Elapsed Time

(PoET) used by Hyperledger Sawtooth [17].
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8 Related Work

Several proposals address the privacy issues of

blockchain system. The cryptocurrencies such as

Menero and Zcash [5] improve the confidentiality

in some degree. Most of them totally depend on

cryptographic methods to hide the information of

transactions but with notable limitation such as

high computing overhead or partial confidential-

ity. And they forgo programmability and cannot

support smart contracts.

Hawk [8] and Towncrier [18] use Intel SGX as

a technology to improve the privacy of off-chain

contracts. Hawk is a decentralized smart contract

framework that processes financial transactions off

chain and hides the secret on the blockchain, thus

providing transaction privacy. It divides the smart

contract into two parts: the private portion and

the public portion, and the execution is facilitated

by a special party called manager which is pro-

tected by SGX. In contrast to Hawk, numerous

workers in ShadowEth comprise a network for exe-

cution and storage of private contracts, which pro-

vides increased reliablity. Towncrier is a data feed

system that serves as a high-trust bridge between

Ethereum blockchain and existing websites. It re-

trieves website data and serves it to contracts in

need on the blockchain and enables private data re-

quests with encrypted parameters. It executes its

core functionality inside an SGX enclave to protect

data against malicious attackers.

Coco is a high-scale, confidential blockchain

framework. It is a license chain other than public

chain and is designed for enterprise requirements.

Each node in the Coco network is protected by

TEE such as Intel SGX and verified before joining

in the network. So each node is assumed to be not

malicious and there is no need to defend against

Byzantine faults. The advantage is that Coco can

adopt simple and quick consensus algorithm such

as Raft instead of wasteful and compute-intensive

algorithms like PoW. So Coco can provide higher

throughput and lower latency than general public

blockchain such as Ethereum. Also, the TEE can

guarantee the confidentiality of transactions and

smart contracts. However, Coco is not suitable for

building public blockchain systems in that not ev-

eryone is free to join. In contrast, ShadowEth is

built on existing public blockchains like Ethereum

and can provide higher fault-tolerance.

Teechan [16] and Teechain [19] establish high-

performance and secure micropayment channel for

the Bitcoin network. Users that need frequent mu-

tual transactions can set up a channel and perform

fund transfer through the channel without sending

transactions onto the blockchain, which can im-

prove the throughput and lower the latency. Only

the setup and settlement will be reflected as trans-

actions on the chain. Teechan and Teechain lever-

age TEEs to guarantee the security and the con-

fidentiality of the channel without any modifica-

tion to the Bitcoin network. But they only provide

enhancement for simple bitcoin transactions while

ShadowEth applies to any smart contract system.
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9 Conclusions

We introduced ShadowEth, a system that ad-

dresses a major concern about the current smart

contract systems based on the blockchain—the

lack of confidentiality. Unlike the pure and com-

putationally complex solution (such as Zcash) and

the reconstructed licensing chain (such as Coco),

ShadowEth can guarantee the confidentiality of ex-

isting public blockchains like Ethereum without

any modification. ShadowEth separates the pro-

cess of the verification of a smart contract from

the private execution, and only puts the verifica-

tion onto the blockchain, without revealing any se-

crets. The actual logic of smart contracts is exe-

cuted by off-chain TEE and the communication is

encrypted by a secret key only kept by the TEE.

We used a native Ethereum smart contract named

bounty contract to handle the publishing, verifi-

cation and settlement of a private contract, which

ensures the integrity and coerciveness. Then we

presented the applicability by case studies. We

also implemented a prototype using Intel SGX on

the Ethereum network and analyzed the security

and availability. We believe that ShadowEth is a

practical approach to building a confidential public

smart contract systems.
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