
Scalable Adaptive NUMA-Aware Lock
Mingzhe Zhang, Haibo Chen, Senior Member, IEEE, Luwei Cheng,

Francis C. M. Lau, Senior Member, IEEE, and Cho-Li Wang, Senior Member, IEEE

Abstract—Scalable locking is a key building block for scalable multi-threaded software. Its performance is especially critical in multi-

socket, multi-core machines with non-uniform memory access (NUMA). Previous schemes such as in-place locks and delegation locks

only perform well under a certain level of contention, and often require non-trivial tuning for a particular configuration. Besides, in large

NUMA systems, current delegation locks cannot perform satisfactorily due to lack of optimized NUMA policies. In this work, we propose

SANL, a locking scheme that can deliver high performance under various contention levels by adaptively switching between in-place

locks and delegation locks. To optimize the performance of delegation locks, we introduce a new NUMA policy that jointly considers

node distances and server utilization when choosing lock servers. We have implemented SANL and evaluated it with four popular

multi-threaded applications (Memcached, Berkeley DB, Phoenix2 and SPLASH-2), on a 40-core Intel machine and a 64-core AMD

machine. The comparison results with seven other representative locking schemes show that SANL outperforms them in most

contention situations. For example, in one group test, SANL is 3.7 times faster than RCL lock and 17 times faster than POSIX mutex.

Index Terms—Delegation lock, adaptive synchronization

Ç

1 INTRODUCTION

DESIGNING a scalable lock primitive for multi-core
machines is challenging, especially when there is a

large number of cores and when the memory hierarchy is
complex which is typical of many NUMA machines. In
large-scale NUMA machines, to achieve scalable perfor-
mance, locking should try to avoid centralized contention
and meanwhile preserve memory-access locality across
NUMA nodes as much as possible.

In general, there are two common types of locks: in-place
locks and delegation locks. In this paper, we define in-place locks
as those that are implemented bywaiting on shared variables
before entering the critical section (CS), such as spin lock
(SL). It has been shown that waiting on shared variables is
non-scalable and could experience performance breakdown
when the number of cores increases [1]. Although numerous
designs have been proposed to try to improve in-place locks,
such as the many variants of spin locks [2], [3], [4], [5], MCS
lock [6], RCU-based locks [7], [8], and hierarchical locks [9],
[10], due to the intrinsic feature of data sharing in the critical
section, cache invalidation still occurs rather frequently,
especially when the lock contention is heavy. David
et al. [11] also point out that the performance of in-place locks
can be largely affected by the hardware architecture as well
as the runtime contention level.

Delegation locks periodically or stably rely on one dedi-
cated server thread to handle all requests to access the critical
section, and thus can avoid the problem of cache bouncing to
a large extent. Examples include OyamaAlg [12], flat combin-
ing (FC) [13], P-Sim [14], H-Synch [15] and (RCL) [16], [17].
However, delegation locks are notwithout issues: since clients
need to communicate with the server via message exchange,
the overhead can sometimes outweigh the gain when the con-
tention level is very low. Lozi et al. [16], [17] show that on a
48-core machine with four 12-core Opteron 6,172 processors,
when a program spends less than 70 percent of its execution
time inside critical sections, in-place locks such as MCS lock
and POSIX mutex are more efficient; however, when the time
spent in critical sections is larger than 70 percent, delegation
locks such as RCL start to scale better. Although the threshold
point may vary with different hardware platforms, it is evi-
dent that each type of locking scheme has its own comfort
zone in which it would scale well, and one cannot completely
replace the others. This echoes the conclusion of a recent study
onmulti-core synchronization that “every locking scheme has its
fifteenminutes of fame” [18].

Another issue that delegation locks may face in NUMA
environments is the amount of cross-node memory accesses
which, for the sake of performance, should be avoided as
much as possible. One possibility is to make clients only
send their requests to their local node, similar to the conten-
tion control technique in H-Synch [15]. But since there is
only one server thread (combiner), clients in a remote core
will have to wait until the server thread leaves its current
core (downgrades to a normal thread) and then re-nomi-
nated on the remote core, which could mean a long synchro-
nization delay. When the server’s utilization is low, server
re-nomination may happen too frequently among different
NUMA nodes, which can lead to serious cache invalidation.

To address the above challenges, this paper proposes
SANL, a locking approach that: 1) combines the in-place

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

� M. Zhang, F.C.M. Lau, and C.-L. Wang are with the Department of
Computer Science, University of Hong Kong, Hong Kong.
E-mail: {mzzhang, fcmlau, clwang}@cs.hku.hk.

� H. Chen is with the Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University, Minhang, Qu 200240, China.
E-mail: haibochen@sjtu.edu.cn.

� L. Cheng is with Facebook, Menlo Park, CA 94025.
E-mail: chengluwei@fb.com.

Manuscript received 13 Dec. 2015; revised 19 Oct. 2016; accepted 19 Oct.
2016. Date of publication 18 Nov. 2016; date of current version 17 May 2017.
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2630695

1754 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

mode and the delegation mode and their respective bene-
fits, and 2) optimizes the NUMA policy in delegation mode
to better utilize the server and reduce remote clients’ wait-
ing times. SANL is highly scalable as it can adaptively and
dynamically switch between the two locking schemes
according to the measured contention level.

To appropriately adapt between the in-place mode and
the delegation mode, SANL adopts a simple voting scheme.
When dealing with NUMA in delegation mode, SANL con-
siders both node distances and the current server’s utiliza-
tion: rather than letting each client wait passively until the
server is nominated on their local nodes, SANL allows some
clients to send requests to the remote server when the server
is not facing high contention. In this way, both starvation of
remote clients and frequent server re-nomination can be
largely avoided. To make SANL portable over different
hardware platforms, we add an easy-to-use profiler to auto-
matically determine the proper threshold for the adaptation.

We implement SANL in software for the commodity x86
multicore architectures and tested it with a set of popular
multi-threaded applications, including Memcached [19],
Berkeley DB [20], Phoenix2 [21] and SPLASH-2 [22], [23].
We have released SANL’s source code, and the testing tools
and results at https://github.com/SANL-2015.

We evaluate SANL with both micro-level benchmarks and
application-level benchmarks. Performance results on a 40-
core Intel machine and a 64-core AMD machine show that
SANL can satisfactorily adapt to various contention levels. In
one of our micro-benchmarks, SANL is 3.7 times faster than
RCL and 17 times faster than POSIX lock under high conten-
tion. Under low contention, SANL performs close to in-place
locks while shows some management overheads. In the Ber-
keley DB and Memcached tests, SANL achieves performance
improvements of up to 66 and 33 percent over RCL, and 9.5
and 3.8 times over POSIX lock respectively. In Phoenix2 and
SPLASH-2 tests, SANL also consistently outperforms the other
locks, with a speedup of up to 58 percent over POSIX lock.

The main contributions of this paper are:

� A scalable synchronization scheme that switches
adaptively between the in-place mode and the delega-
tionmode inmulti-socketmulti-core environments.

� A NUMA-aware delegation lock scheme that jointly
considers node distances and server utilization.

� A set of evaluations that confirm the effectiveness of
SANL using micro- and macro-benchmarks.

2 BACKGROUND AND MOTIVATION

2.1 In-Place Lock Synchronization

Naive spin lock is the simplest in-place lock: all threads use
an atomic exchange primitive to keep spinning on a global
lock variable until it becomes available. Naive spin locks
cannot guarantee fairness. To solve the problem, ticket lock
records the sequence of locking requests, and has been
implemented in the Linux kernel. Naive spin locks also suf-
fer from a significant amount of cache invalidation traffic.
Agarwal et al. [24] propose a class of adaptive backoff meth-
ods that can significantly reduce the memory traffic due to
accessing synchronization variables. Radovic et al. [2] pro-
pose HBO to further improve the backoff scheme for
NUMA environments by favoring local threads, which can

substantially reduce cross-node memory accesses. Vasude-
van et al. [3] propose biased-lock with lock priority to
improve cache efficiency.

A common problem of all these spin locks is that all
threads contend on a single memory location, which could
generate excessive cache invalidation and bouncing. To mit-
igate this issue, Mellor-Crummey et al. [6] propose MCS
lock: each thread lets its lock request join a request queue and
spins only on its own variable until the previous thread
hands over the lock. Auslander et al. [25] introduce the K42
lock to improve MCS lock’s compatibility with legacy code.
K42 lock is achieved by leveraging on-stack information,
which requires fewer API changes.

POSIX mutex lock (pthread_mutex_lock) adopts a different
approach: rather than busy-waiting when the lock is
unavailable, it makes the lock-acquiring thread sleep until
being woken up by the lock-holding thread. However, since
sleeping induces additional context switches, it is suggested
that POSIX mutex should only be used with a lengthy criti-
cal section.

There has also been much work in improving reader/
writer locks (rwlocks) that are designed for read-mostly sce-
narios [26], [27], [28], [29]. RCU-based locks [7], [8] eliminate
contention among readers through a fence-free reader-side
critical section and by copying the shared data during
updating. Arbel et al. [30] described several PRCU imple-
mentations to achieve good trade-offs between read over-
head and short wait-for-readers time. Calciu et al. [31]
present a novel family of reader/writer locks that are
designed to leverage NUMA features. However, RCU pla-
ces several constraints in the usage such as single-pointer
update and read-once semantics.

Hierarchical locks are tailored to fit today’s NUMA archi-
tectures. Luchangco et al. [9] introduce HCLH, a hierarchi-
cal version of the CLH queue-lock [32] with an in-place lock
queue for each NUMA node. Dice et al. [10] design a general
technique called “lock cohorting” to transform in-place lock
algorithms into NUMA-aware ones. Chabbi et al. [33] fur-
ther improve lock cohorting as HMCS for multi-level
NUMA systems. Based on HMCS, Chabbi et al. [34] design
an AHMCS lock with adaptive level HMCS and hardware
transactional memory, which seem to perform well under a
broad range of contention levels. Hierarchical locks show
good throughput, since synchronization local to a NUMA
node is faster than global synchronization. Critical sections
executed on the same NUMA node can reuse shared varia-
bles that are stored in their common caches. While hierar-
chical locks offer good performance, they are generally
based on traditional lock algorithms. Delegation locks can
maintain the shared variables in the server core with theo-
retically higher data locality than hierarchical locks. Accord-
ing to on our experiments, SANL shows better improvement
for NUMA with higher utilization of servers than directly
applying the lock cohorting technique on delegation locks
like H-Synch [15].

Usui et al. [35] propose an adaptive locking technique
(AL) to dynamically switch between transaction and
mutex locks according to the observed behavior of the crit-
ical section, e.g., number of blocked threads and transac-
tion retries. Dice et al. [36] introduce the ALE library to
integrate transactional locks using hardware transactional

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1755

memory and optimistic execution of operations in soft-
ware. This library provides three adaptation modes (HTM,
software optimization, and lock modes) and two policies
(static and adaptive) to help determine the adaptation val-
ues. Evidently, the research community is increasingly
interested in this idea to achieve adaptive concurrency
control in applications. We also think the idea is promis-
ing, and believe that it can help achieve higher perfor-
mance through adaptation with delegation lock in NUMA
environments.

2.2 Delegation Lock Synchronization

Delegation lock schemes periodically or stably rely on one
dedicated server thread which executes the critical section
on behalf of all other threads. Since only the server thread
accesses the critical section, data locality is better preserved
in the cache. Delegation locks can be further categorized as
static or dynamic, and their differences in execution are
illustrated in Fig. 1. In static delegation locks, one server
thread serves all lock instances, whereas, in dynamic locks,
each lock instance dynamically upgrades a normal thread
to serve as its server.

RCL [16], [17] is a static delegation lock designed for
high-contention situations. However, the static method can
cause false serialization when one server core is assigned to
multiple lock instances. For example, in Fig. 1 1, core 0 acts
as the server for both critical sections A and B; though there
is no contention between the two lock instances, all requests
must be sequentially executed. Another problem is that
excessive computing resources will be occupied if too many
servers have been assigned, which can also lead to perfor-
mance degradation.

CPHASH [37] is a scalable, concurrent hash table for
key/value caches implemented for the static delegation
lock technique. Basically, it partitions the hash table across
static server cores, and clients perform operations on a par-
tition by sending a message through shared memory to the
right partition. CPHASH achieves 1.6 to 2 times higher
throughput than LOCKHASH, an optimized fine-grained
locking implementation. However, a limitation of CPHASH
is that the optimization is specific to hash tables.

In dynamic delegation locks (e.g., [12], [13], [14], [41]), the
server thread is launched on a per-lock rather than per-core
basis; once the server thread has processed all the requests of
its lock instance, it will downgrade to a normal thread. The
execution flow is illustrated in Fig. 1 2. OyamaAlg [12] main-
tains the lock requests in a linked-list LIFO queue, with queu-
ing contention at the head node. Flat combining [13] reduces
this contention by enforcing a FIFO processing order.
P-Sim [14] further improves it with an array-based design
and an atomic Fetch-and-Add operation that manipulates the
array index. Dice et al. [38] apply the idea of FC to MCS lock
to optimize the lock request queuing operation; however,
similar to in-place lock, a thread holding the lock would exe-
cute the critical section on its own. Tomake delegation locking
easy to use, David et al. [41] provides libraries for C andC++.

Fatourou et al. [15] revisit the combining technique and
propose CC-Synch, as well as a hierarchical version called
H-Synch to take into account the CPU topology of NUMA
systems. Using H-Synch, the threads belonging to the same
NUMA node are combined as a cluster like lock cohort-
ing [10], which is protected by an extra queue lock. How-
ever, hierarchical delegation locks can suffer performance
degradation due to low server utilization.

Petrovi�c et al. [39] study how to further improve the perfor-
mance of delegation over cache-coherent shared memory by
considering the subtleties of the underlying cache coherence
protocol, and then propose two optimizations techniques:
backoff in local-spin andweakly-ordered streaming stores.

2.3 Motivation

While there has been much work aiming at improving the
performance of in-place locks, they share the same limita-
tion: all threads must fetch the shared data to their own
CPU caches when executing the critical section, making
cache bouncing a real issue.

Delegation locks on the other hand maintain data locality
in the cache of the server core, but they require message
exchange between the server thread and client threads,
which could translate into significant overhead. Lozi
et al. [16], [17] has shown that when lock contention is low,
the management overhead of delegation locks could be
even more pronounced than the cache bouncing overhead
of in-place locks. Calciu et al. [40] have the same conclusion
in their survey of three data structures for delegation lock
implementation: MPSCChannel, InletQueue, and DNCInlet-
Queue. They conclude that delegation locks can sometimes
outperform in-place locks, particularly when enough data is
accessed which ensures that the benefits of delegation lock
outweigh its communication costs; nonetheless, when criti-
cal sections are short, some in-place locks perform substan-
tially better than delegation locks. To briefly compare
in-place locks with delegation locks, we summarize the
features of existing representative locks in Table 1.

The use of delegation locks in NUMA environments
presents a challenge regarding performance optimization.
In delegation lock schemes, without NUMA policies [13],
[16], [17], both remote clients and local clients would send
requests to the server thread. Obviously, sending remote
requests take longer time than sending local requests. To be
NUMA-aware, Fatourou et al. [15] only allow the server
thread to accept the local node’s lock requests, and the

Fig. 1. Execution flows of delegation lock: Static versus dynamic.

1756 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

server thread will not be re-nominated on another NUMA
node until all local requests have been processed. This leads
to two issues: 1) if the local contention is very heavy, remote
clients will starve; 2) if the local contention is very low on
each node, the server may get re-nominated too frequently
among all the NUMA nodes such that it hurts cache locality.

To the best of our knowledge, there exist currently
very few locking schemes that are capable of performing
satisfactorily under varying contention levels. Therefore, an
adaptive locking scheme that can appropriately and auto-
matically adjust the synchronization method according to
the contention level is desired.

3 THE DESIGN OF SANL

We craft SANL to combine the benefits of in-place locks and
delegation locks. We also extend existing delegation locks
with an efficient NUMA support to work with SANL.

Fig. 2 shows the general execution flow of SANL. When
executing a critical section, a thread will profile its local
contention level (denoted by Cl), and then vote for the
global contention level (denoted by Cg). In Step �1,
if the global contention level is below a threshold ul
(which depends on the architecture), all threads will enter

in-place mode; otherwise, they enter delegation mode. In
the delegation mode, one thread first executes trylock to
attempt to upgrade itself as the server thread (Step �2);
the other unsuccessful threads will automatically become
client threads. In NUMA environments, if the contention
level is below a threshold uf , free-mode will be adopted
which means all clients are allowed to send lock requests
to the server thread, regardless of whether they are in the
same NUMA node (Step �3) or not; otherwise, when the
contention on the server node is sufficiently high, SANL
will enter restrictive-mode (Step �4), where local clients are
allowed to send requests while remote clients wait until
the server node’s contention level has come down or
server re-nomination occurs (Step �5). A thread can be in
the server’s role for only at most a limited number of
times Ts, and then it will downgrade to a normal thread
to finish its own task. This ensures that the thread will
not be occupied for too long, and server nomination can
take place fairly among all the NUMA nodes. When
server downgrading happens, if there are still unfinished
lock requests, the corresponding clients will try to
upgrade themselves as a new server thread after a time-
out of Tw in Step �7. If a remote client detects the remote
server node’s contention level has come down or a local
server node appears, the client will delegate its requests
to the server (Step �6). For convenience, the definitions of
the symbols we use can be found in Table 2.

3.1 Adaptation Scheme

Under low contention, in-place locks are more efficient, so
SANL switches to the in-place mode; when lock contention
is high, SANL switches to the delegation mode. In order to
determine when to switch, SANL relies on the global conten-
tion level Cg, which can be derived from each thread’s local

TABLE 1
Comparison of Representative Lock Primitives and SANL

SL Backoff HBO Ticket POSIX MCS K42 PRCU HCLH Cohort lock AL ALE FC FC-MCS H-Synch RCL SANL

Low racing on lock variables @ @ @ @ @y

Good shared data locality @ @ @ @y

Conditional wait support @ @ @ @ @ @ @ @ @ @ @ @ @ @
NUMA-aware @ @ @ @ @ @
Apply adaptive scheme @ @ @ @ @
Unchanged lock fairness @ @ @ @ @ @ @ @ @ @ @ @ @ @
low code complexity @ @ @ @ @ @ @ @ @ @
Number of tuning parameters 0 1 2 0 0 0 0 1 1 1 3 2 1 1 2 0 3

y Delegation-lock mode of SANL under high contention for critical sections.

Fig. 2. The execution flow of critical sections of SANL.

TABLE 2
The Descriptions of the Symbols We Use in SANL

Symbols Descriptions

ul The threshold of In-place-Delegationmode transition

uf The threshold of free-restrictivemode transition

Ls Dynamic limit of the server’s iteration times

Ts Static limit of the server’s iteration times

Tw Maximum spinning times of client threads

Cl The percentage of time executing critical sections for a given thread

Cg The global contention, voted from all contending threads

Cnti; Cntd Cumulative counters about whether Cl is smaller than ul

Cntr Cumulative counter about requests served in one serving iteration

Cntd Cumulative counter about whether RequestDensity is low

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1757

contention level Cl. Cl is defined as the ratio of time in criti-
cal sections over a certain past period:

ClðiÞ ¼ a � CSði� 1Þ:end� CSði� 1Þ:begin
CSðiÞ:begin� CSði� 1Þ:begin þ ð1 � aÞ

� Clði� 1Þ;
(1)

where a is a weight factor (0.5 by default), and CSðiÞ and
CSði� 1Þ represent the current and the previous critical
section respectively. ðCSði� 1Þ:end� CSði� 1Þ:beginÞ is the
time spent in last CS. ðCSðiÞ:begin� CSði� 1Þ:beginÞ is
the time spent between last CS and current CS. The result
of the division represents the ratio of time spent in CS. In
order to appropriately adjust the contention level, Cl consid-
ers the new ratio and former ratio together with a weight
factor a. The equation applies floating point computation.
In both Intel and AMD machines, the multiplication takes
three cycles and division takes about 27 cycles. For short
critical section under high contention, the floating point
computation only accounts for 0.13 percent execution time
of a critical section. While under low contention, it is non-
trivial (6.25 percent of a critical section on average). For
applications with short critical sections under stable low
contention, we can configure SANL to compute ClðiÞ every
N (e.g., 3) critical sections to reduce this overhead. For other
cases, we suggest to make SANL compute ClðiÞ every critical
section because the overhead of the floating point computa-
tion is acceptable whereas sampling computation could
lead to inaccurate computation of contention and degrade
the performance.

Algorithm 1. SANL Voting Algorithm

Global variables: int Cg = 0;
Per-thread variables: int Cnti = 0, Cntd = 0; bool local_vote
= false;
1 if local_vote then
2 if Cl < ul then
3 increment Cnti; /* Buffer to reduce thrashing */
4 if Cnti > Boundary then
5 local_vote ¼ FALSE; /* Support in-place mode */
6 atomic decrement Cg;
7 Cnti ¼ 0;
8 else if Cnti > 0 then
9 decrement Cnti;
10 else
11 if Cl � ul then
12 increment Cntd; /* Buffer to reduce thrashing */
13 if Cntd > Boundary then
14 local_vote ¼ TRUE; /* Support delegation-lock

mode */
15 atomic increment Cg;
16 Cntd ¼ 0;
17 else if Cntd > 0 then
18 decrement Cntd;

Ideally, the value of Cg should be the average of all Cl

values, but such a global computation could be expensive.
Another problem is that if the two locking schemes perform
similarly when the contention lingers around a certain level,
threads may thrash between two modes. To reduce the

computing overhead of Cg and to tolerate the sudden devia-
tion in contention level, SANL adopts a voting scheme, treat-
ing Cg as a global vote value from all contending threads.
As described in Algorithm 1, for a given thread, if its local
contention level Cl is below a pre-determined threshold ul
(Line 2), it will increment its counter (Line 3); if the counter
value exceeds a boundary, the thread begins to vote for the
in-place mode (Lines 4-7). It uses fetch-and-add atomic
instruction to update Cg. The steps of voting for the delega-
tion mode are similar (Lines 11-18). This design effectively
accommodates the sudden changes of Cl and reduces the
atomic operations on Cg. When the global vote Cg is greater
than half of the number of contending threads, threads will
enter the delegation mode; otherwise, they stay in the in-
place mode. Every thread decides the lock mode depending
on the temporal Cg, requiring no global barrier for transi-
tion. Fig. 3 shows an example of execution timeline for
Algorithm 1. Suppose there are three threads and five stages
(for simplicity, in each stage, the sequence of execution is
T1 > T2 > T3), and suppose the boundary is 1: each
thread votes for Cg depending on Cl; during stage 2 and 5,
due to Cg’s change, SANL adapts between in-place mode
and delegation mode. As SANL adopts Algorithm 1, Cg can
tolerate sudden deviation in contention level. The scenarios
of coexisting lock modes like stage 2 only happen in lock
mode adaptation when the contention stably changes.
Although different threads can choose different lock modes,

Fig. 3. An example of SANL voting algorithm.

1758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

SANL is always safe. Mutual exclusion is guaranteed even
for such cases as when there are both in-place-mode and
delegation-mode threads (stage 2 and 5): when an in-place-
mode thread holds the lock, all delegation-mode threads
repeatedly tryLock until a server thread appears (after the
lock-holder leaves the critical section). When the lock is
held by a delegation-mode thread (server), all in-place-
mode threads will wait until the server thread releases it.

3.2 SANL’s Delegation Lock

Previous dynamic delegation locks such as FC [13] and
H-Synch [10] adopt linked-list based queueing to manage
client requests. Fig. 4 1 shows the design of FC’s request
queue (FCQueue), which is a FIFO-like scheme to avoid the
synchronization overhead between the server and the cli-
ents. Each thread can upgrade itself as a server via a suc-
cessful CAS operation, while the other unsuccessful threads
enqueue their requests to the head and update themselves
as the head node. The server traverses the FCQueue from
head to tail, conducts all non-null requests, sets the age of
each of these requests to the current count, and sends
responses to the corresponding clients. If the age indicates
that a cleanup is needed, the server will traverse the
FCQueue to remove all the requests whose ages are older
than a certain value. Unfortunately, FC needs to actively
insert request nodes into the queue. Although FC avoids
the synchronization overhead between the server and the
clients, the clients still have to contend with each other to
enqueue their requests into FCQueue, which could be a
performance bottleneck. In addition, the server traverses
FCQueue from head to tail for a fixed number of retry times.
Without dynamic policies, this could waste serving time
under low contention. Under high contention, this limits
the server utilization. Thus, server downgrading and
re-nomination can happen very frequently in FC, generating
much management overhead. To overcome the above limi-
tations, SANL improves dynamic delegation lock with two
approaches. First, a request array together with a global Id
Manager are used to avoid contention among the clients.
Second, we introduce a new server downgrade policy to
improve the server’s utilization and reduce the frequency of
server re-nomination.

Fig. 4 2 illustrates the design of the request array. The
request array is a per-lock data structure. The array size is a
constant value corresponding to the maximum allowed
number of clients (256 � the number of cores, the same as
RCL’s). The Id Manager is a global data structure for all
threads which records and supervises all request arrays’

information. It maintains a bitmap with the same size as a
request array to record active indices of threads. When a
contending thread comes around, the Id Manager assigns
the thread a free index from the bitmap and updates the bit-
map. When a thread exits, the corresponding index will be
recycled by the Id Manager. Hence, the Id Manager can easily
compute the number of contending threads from the bit-
map. The Id Manager scans the bitmap only when new
threads are created and the size of the bitmap is a suffi-
ciently large constant. In this way, no thread needs to busy-
scan the bitmap for an available index.

The indices First and FirstFree represent the begin-
ning of the active and inactive request arrays respectively,
while Last always points to the end of the request array.
Since each client has a unique index in the request array, it
can directly communicate with the server without addi-
tional lock operations. In this way, the contention for the
request array among clients can be gracefully avoided.
Every thread can upgrade to a server through a successful
trylock and then iterate over the requests to check the critical
section pointers and execute them on behalf of the other
threads. To support conditional functions, the lock request
includes a conditional wait variable. The server updates this
variable to notify the client that its request is being handled.
Thus the client waits for the response without timeout. We
are aware that RCL [16], [17] and P-sim [14] also have a sim-
ilar request array design. However, since RCL enforces a
static server thread, it poses the problem of false seriali-
zation (as has been discussed in Section 2.2). In P-sim, since
the server does not have pre-assigned indices for the
threads, each thread has to acquire an index through a
Fetch-and-Add atomic primitive, which may cause conten-
tion among the clients with extra overheads.

In order to avoid the server frequently switching between
different threads, SANL introduces RequestDensity for the
server tomanage its downgrade time, which is defined as

RequestDensity ¼ num of requests

num of contending threads
; (2)

which can be easily calculatedwhen a server iterates over the
request array. If RequestDensity is less than or equal to a
threshold (zero by default), the server switches to a normal
thread. To deal with sudden fluctuations of request density,
server downgrade will not happen immediately when low
request density is detected. We define Ls to represent the
threshold on the number of times that request density is
detected low. Each time the server iterates over the request
array, it would recompute RequestDensity and then incre-
ment or decrement the corresponding counter’s value. The
server downgrades to normal thread only when the counter
exceeds Ls. In fact, Ls is related to the contention level of
each thread Cl. It also influences the serving time. If Ls is too
large, a servermaywaste timewaiting for just a few requests,
whereas if Ls is too small, the server switches too frequently.
SANL provides a profiler to automatically determine the
proper value forLs, which is introduced in Section 3.4.3.

3.3 SANL’s NUMA Policy

Prior work [15] tends to limit contention in the local node.
According to this, we implement a similar distance-first policy

Fig. 4. Comparison between FCQueue in FC and request array in SANL.
Every instance of SANL has a request array and they share a global Id
manager.

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1759

in SANL: client threads are only allowed to send requests to
their local servers in order to avoid the penalty of cross-node
memory access, as illustrated in Fig. 5 1’s node A. If a client is
far away from a server, it keeps waiting under the dynamic
server nomination scheme, such as clients in nodes B, C
andD. Onlywhen the server in node A has downgradedwill
another thread in another node upgrade to serve its local
requests. In the distance-first scheme, the server thread
adopts the downgrade policy presented in Section 3.2 with
RequestDensity computation and proper Ls configuration.
When node-local contention is low, the distance-first scheme
suffers from one of two limitations: 1) the server thread
spends a lot of time idle waiting for node-local requests
while a remote client starves (the same case as Ls is too
large); 2) if a server downgrades itself because it receives too
few requests, frequent downgrading and nomination can
cause frequent cache invalidation of shared data in critical
sections (the same case as whenLs is too small).

3.3.1 Serving-First Policy

Based on SANL’s dynamic delegation lock, we design a serv-
ing-first policy to deal with the problems of the distance-first
policy. The idea is illustrated in Fig. 5 2. Basically, a local cli-
ent would always send requests to its local server if one
exists, like clients in node A. For a remote client, a second
voting is applied to determine whether it should send
requests to the current server, like some of the clients in
nodes B, C and D. The voting method is the same as that in
Algorithm 1. In the voting process, we define another
threshold uf to compare with each client’s thread-local con-
tention level Cl. If half of the clients’ Cl values are below uf ,
which means the global contention is not very high, the
server will accept requests from all remote clients; we call
this free-mode. Otherwise, in the second case, only the
remote clients with lower Cl than uf will be admitted, which
we call restrictive-mode. By improving the server’s utiliza-
tion, SANL avoids the situation that the server would fre-
quently downgrade when the global contention is mild, and
meanwhile, reduces the remote clients’ starvation.

3.3.2 Execution Flow of Server and Client

SANL nominates a server through two methods in a
dynamic manner. First, a client thread will automatically
become the server via a successful trylock. Second, SANL

maintains a FIFO queue Q, a standard lock-based linked-
list, to monitor the remote clients; if Q is not empty, the
server will hand over its role to the first thread in Q when it
downgrades; otherwise, a server releases SANL directly. A
client will enqueue itself to Q only when two conditions are
satisfied: 1) a client has been waiting for a local server for a
certain time Tw; 2) there are no local threads in Q. If a local
thread is already in Q, it is guaranteed that after a certain
time,1 SANL will nominate a local server. To ensure only
one thread of a NUMA-node can join the queue, each node
has a node-CAS-lock. A thread must successfully acquire
the node-CAS-lock before joining. The node-CAS-lock effec-
tively limits the contention to only the local NUMA-node,
without impacting the server’s performance.

The server-side algorithm is shown in Algorithm 2, adopt-
ing PAPI library. A server iterates through the request array
to finish delegations for at most Ts times and profiles the
request density to determine whether it should finish serving
(Fig. 2�8). A special case of a server would be if it blocks on
conditional variables in a critical section. Every time a server
handles a request, it first updates cond (Line 8) to notify the
corresponding client.When a critical section calls a SANL con-
ditional wait function, the server downgrades itself, acquires
a POSIX mutex lock and executes the POSIX conditional wait
function. After beingwokenupby a signal, the thread releases
the POSIX mutex lock, upgrades itself as a server and contin-
ues serving the requests. During conditional wait, another
thread can upgrade to become a new server.

The client-side algorithm is shown in Algorithm 3. A
client first conducts the second voting to make the NUMA
decision of serving-first delegation lock. It checks both local
and global votes. If a client has waited for more than Tw

times, it follows the dynamic server nomination scheme
to upgrade to a server Fig. 2�7. During the upgrade (Lines
16-18), if a server has handled the client’s request and
downgraded to a normal thread, the client does not need to
execute its own critical section again.

3.4 Other Considerations

3.4.1 Ensuring Responsiveness

Since every server in the delegation mode is upgraded
from a normal thread, it is important that the thread does
not act as the server forever. Besides, a client needs the
guarantee that it never waits too long in order to enter
the critical section. There are two strategies in SANL to
ensure responsiveness.

A Server Never Serves for Too Long. An application may
have its custom maximum response time. Therefore, a
server should downgrade and revert back to a normal
thread within the required response time. For example, in
Memcached, if a thread does not respond after a certain
time, Memcached will throw a timeout exception. SANL

provides Ts as a tunable threshold to ensure a server would
download appropriately. In our evaluation, by setting Ts

with our default value, even under the highest contention,
we find that the average serving time of the server thread is
less than one millisecond, which should have a negligible
impact on most applications’ response times.

Fig. 5. Distance-first delegation lock and serving-first delegation lock.

1. At most Ts �max time of iterating the request array once � index
in Q.

1760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

Algorithm 2. The Execution of SANL’s Server Thread

structures:
lock_t: {int server_state, request_t� request_array,
locallock� ll};
request_t: {void� code, void� context, int cond};
profiler_t: {long start, long end};

Input variables: lock_t� gl; void� code, � context;
Global variables: queue� Q;
Per-thread variables: request_t� last, � req; profiler_t� p;

1 p.start ¼ PAPI_get_real_cyc();
2 res ¼ code(context) /* Execute own critical section*/
3 gl!server_state ¼ UP /* Update server state */
4 while gl!server_state = UP do /* Iteratively serve

requests of clients */
5 last ¼ gl!request_array[firstFree];
6 for req ¼ gl!request_array[first] to last do
7 if req!code then
8 req!cond ¼ TRUE;
9 req!context ¼ req!code(req!context);
10 req!code ¼NULL;
11 req!cond ¼ FALSE;
12 Cntr++ /* Update request counter */
13 Update request density and density counter Cntd;
14 Tserving++;
15 Cntr ¼ 0;
16 if Cntd > Ls jj Tserving > Ts then /* Check density

counter and serving times */
17 gl!server_state ¼ DOWN;
18 if Q not empty then
19 hand gl!ll to the head thread of Q;

else
20 unlock(gl!ll);
21 p.end ¼ PAPI_get_real_cyc();
22 return res;

Clients Never Wait for Too Long. Normally, a client’s
request will be processed very quickly, at worst after the
serving time of one iteration through the request array.
However, as mentioned in Section 3.3, a client may not be
allowed to send requests to a remote server, and many have
to wait for a local server. SANL solves this case with the
dynamic server nomination scheme, which guarantees that
the client or a local thread will become a server within a cer-
tain time. For client threads, SANL provides Tw as a tunable
upper-bound timeout value. In our evaluation, we find that
the average waiting time is only a few microseconds even
under very high contention.

3.4.2 Ensuring Fairness

SANL’s fairness is guaranteed in both the in-place mode
and the delegation mode. In the in-place mode, the com-
bined in-place lock is responsible to ensure fairness. Thus,
we recommend combining SANL with a fair in-place lock.
In the delegation mode, a server thread iteratively pro-
cesses requests in its request array, guaranteeing that
every client can be served within one iteration. Under the
serving-first NUMA policy, SANL ensures global fairness
via dynamic server nomination. Using Q, every thread far
away from the server either enqueues itself and becomes
a server or finds a local thread that can upgrade to a
server within a certain time. Therefore, no client will
starve in SANL.

Algorithm 3. The Execution of SANL’s Client Thread

Input variables: lock_t� gl; void� code, � context;
Global variables: int Cg; queue� Q; intNt; /* Number

of threads */
Per-thread variables: request_t� req; profiler_t� p; bool

local_vote;
1 p.start ¼ PAPI_get_real_cyc();
2 vote for free-restrictive adaptation; /*Make a decision

between free and restrictive modes */
3 while local_vote && Cg > Nt=2 && isRemoteServer() do
4 Twait++;
5 if Twait > Tw then
6 if No local threads in Q && enqueue successfully then
7 lock(gl!ll) /*Wait a server to hand lock */
8 dequeue(Q);
9 upgrade as server;
10 req ¼ gl!request_array[selfId] /* Send request to server */
11 req!context ¼ context;
12 req!code ¼ code;
13 while req!code do
14 Twait++;
15 if req!cond 6¼ TRUE then
16 if gl!server_state = DOWN then
17 if Twait > Tw then
18 if trylock(gl!ll) then
19 if req!code then/* Request not finished */
20 req!code ¼ NULL;
21 upgrade as server;
22 else /* Request finished by server */
23 res ¼ req!context;
24 upgrade as server;
25 p.end ¼ PAPI_get_real_cyc();
26 return req!context;

3.4.3 Automatic Parameter Determination

Threshold values are important for SANL to appropriately
apply different policies. ul, uf and Ls are related to both
hardware features and the combined in-place lock. To avoid
the chore of tuning them, SANL provides a profiler to auto-
matically detect the proper values for them. For a given
machine and the combined in-place lock, SANL only needs
to execute the profiler once. The profiler determines ul, the
threshold of In-place-Delegation mode transition, by execut-
ing a micro-benchmark with the combined in-place lock.
The proper value is the average of Cl when the in-place lock
and delegation lock have the same performance. uf , the
threshold of free-restrictive mode transition, is determined
by comparing SANL’s delegation lock without NUMA-
aware policy with distance-first delegation lock. The profiler
sets uf as the value when the two locks perform equally.

Ls, the dynamic limit of the server’s iteration times,
dynamically changes according to the contention level Cl.
SANL defines Ls as a threshold of the number of times the
request density as detected is considered low. An adaptive
function should be able to capture the relationship between
Ls and Cl

Ls ¼ fðC�1
l Þ: (3)

We use the inverse value of Cl for simplicity to avoid frac-
tions. The profiler computes the adaptive function f by run-
ning a micro-benchmark with different Ls values and

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1761

different interval times between critical sections. During
an application’s execution, SANL dynamically computes
Cl

-1 with recorded cycle numbers (Algorithm 2’s lines 1
and 20, and Algorithm 3’s lines 1 and 25). Depending on
Cl

-1 at runtime, SANL dynamically adjusts Ls accordingly.
We show details and experiments of the profiler in the
evaluation section.

4 EVALUATION

We evaluate SANL’s performance using both micro-
benchmarks and application benchmarks. The micro-
benchmarks are the same as those in [16], [17]. The
micro-benchmarks include a master thread that dynami-
cally creates a set of of slaves to repeatedly contend for
one critical section. The critical section includes acquir-
ing lock, changing data in shared cache lines and releas-
ing lock. After all contending threads have terminated,
the master thread will compute the throughput results.
The contention level is controlled by varying the interval
between accessing the critical section per thread: the shorter
the interval, the higher the contention. In all tests, we
vary the interval from 100 to 2,000,000 cycles. For applic-
ation benchmarks, we reuse RCL’s re-engineering tool to
apply SANL to four popular multi-threaded applications:
Berkeley DB, Memcached, Phoenix2 and SPLASH-2.

We conduct experiments on two NUMA machines. One
is a 40-core machine with four 10-core Intel Xeon E7-4850
processors, running Debian 7. The other is a 64-core
machine with eight 8-core AMD Opteron 6,274 processors,
running Ubuntu 12.04. Their hardware characteristics are
detailed in Tables 3 and 4. In both machines, we run Linux
3.14.3 + gcc 4.8.0 + glibc 2.19, with hyper-threading (HT)
disabled on the Intel machine (AMD has no HT technology).
We use the Pthread library to support multi-threaded

execution. We bind each thread to a dedicated core, and
thereby the thread number represents the number of testing
cores. When assigning threads to cores, we adopt the com-
mon proximity-first policy: one thread will not be bound to
another NUMA node until the current node is full.

4.1 In-Place Lock Selection and Parameter
Determination

SANL relies on an existing lock scheme when it switches to
the in-place mode. Although SANL can work with any in-
place lock in principle, it is important to select the most effi-
cient one to achieve high performance under low contention.
In Fig. 6, we evaluate six representative in-place locks: naive
spin lock, ticket lock, POSIX mutex, MCS lock, K42 lock and
C-TKT-MCS cohort lock. To maximize C-TKT-MCS’s perfor-
mance, we adopt the “may-pass-local” method with the
cohorting-threshold set as “infinite”. MCS and C-TKT-MCS
locks are the best ones under various contention levels.
Although C-TKT-MCS lock performs better thanMCS under
medium contention (e.g., when the interval is around 10,000
cycles), when the contention is low (e.g., the interval >
100,000 cycles), MCS is 1.25 times faster than C-TKT-MCS
lock. Therefore, we selectMCS toworkwith SANL.

To determine the proper threshold values for ul, Ls and
uf (as shown in Fig. 2), which are all related to the CPU’s
architecture, SANL’s profiler is executed in three steps: 1)
For ul, the threshold of In-place-Delegation mode transition,
the profiler runs the micro-benchmark with the selected in-
place lock and with SANL without NUMA-aware policy
(represented as non-NUMA); ul is set as the average of Cl

when the delegation lock just outperforms the in-place lock;
in our evaluation, ul is 17 percent for the Intel machine and
6 percent for the AMD machine. 2) To determine Ls, the
dynamic limit of the server’s iteration times, the profiler
runs non-NUMA-aware SANL with Ls varying from 0 to
1,000. According to the results, we find that Ls is highly
related to Cl

-1, which is shown in Fig. 7 with secondary
polynomial fitting. Thus, Ls can be derived from Cl using
the fitting function f at runtime. 3) To determine uf , the
threshold of free-restrictivemode transition, the profiler com-
pares the non-NUMA-aware policy with the distance-first
NUMA policy, and uf is set as the average of Cl when
the two policies perform equally; in our evaluation, uf is
56 percent for the Intel machine and 40 percent for the
AMD machine. The exact results on the two platforms are

TABLE 3
Hardware Characteristics of Our Two Testbeds

Name Intel Westmere-EX AMD Interlagos

Processors 4 � Xeon E7-4850 8 � Opteron 6274
cores 40 64
Clock rate 2.0 GHz 2.2 GHz
L1 Cache 32/32 KiB I/D 64/16 KiB I/D
L2 Cache 256 KiB 2,048 KiB
Last-level Cache 24 MiB (shared) 2 � 8 MiB (shared)

Cache
Coherency Protocol

MESIF MOESI

Interconnect
6.4 GT/s QuickPath
Interconnect (QPI)

6.4 GT/s HyperTransport
(HT) 3.0

Memory
#Channels / #Nodes

64 GiB Sync DDR3
4 per socket / 4

128 GiB Sync DIMM
4 per socket / 8

TABLE 4
Latencies (Cycles) of the Cache Coherence to Load/Store a

Modified Cache Line with Difference Distances

Name Xeon Opteron

Hops same die one hop same die one hop two hops

Load 100 281 228 419 498
Store 105 302 256 463 544

Fig. 6. Performance comparison results of six representative in-place
locks.

1762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

shown in Table 5. In both machines, the profiler takes an
average of 45 minutes. In Fig. 8, we show the performance
results of the non-NUMA-aware, distance-first and serv-
ing-first delegation lock schemes with the interval varying
from 100 to 25,000 cycles. It can be seen that under very
high contention (e.g., 100 cycles to 3,000 cycles), distance-
first policy and serving-first policy perform similarly; but
when the node-level contention slackens off, the efficiency
of distance-first policy starts to decline significantly,
becoming even worse than non-NUMA-aware policy. The
reason is that when there are only a few requests in
the local node, the server frequently becomes idle and is
re-nominated in another NUMA node, generating exces-
sive cache misses.

To determine the proper default value for Ts, the static
limit of the server’s iteration times, and Tw, the maximum
spinning times of client threads, we conduct a micro-bench-
mark on the AMD machine with varied Ts and Tw respec-
tively, shown in Fig. 9. The longer a server thread serves,
the higher data locality SANL achieves. Specifically, when Ts

is small (e.g., 1 or 10), SANL cannot make good use of the
delegation mode, because a server thread conducts limited
requests from clients and it downgrades. In contrast, when
Ts is larger than 100, a server thread is highly utilized.
Fig. 10 shows the results with varied Tw. Tw is a tunable
upper-bound timeout value for clients and determines the
response time of threads. We can see that a small value for
Tw causes high contention for upgrading to a server thread,
while a large value has little influence on the performance
of SANL. Based on Figs. 9 and 10, we set Ts to 100 and Tw to
10,000 as the default values. In our evaluation, we find that
the average serving time is less than one millisecond, and
the average waiting time is only a few microseconds even
under very high contention.

4.2 Micro-Benchmark

We evaluate both non-NUMA-aware SANL (SANL) and
NUMA-aware SANL (NUMA-SANL) with seven other repre-
sentative locks: SL, POSIX mutex, MCS, C-TKT-MCS cohort
lock, Flat Combining, H-Synch and RCL. Since RCL requires
a static core to act as the server, the number of client threads
is N-1. In the other locks (including SANL), N-1 threads run
simultaneously to contend for the critical section. Thus, the
micro-benchmark measures the execution time of N-1 client
threads and a server thread for RCL, and N-1 threads for
the other locks. On the Intel machine, N is 40. For the AMD
machine, N is 64. The configuration confirms RCL and other

Fig. 7. The relation between Ls and Cl
-1 with a secondary polynomial fit-

ting function f.

TABLE 5
The Profiled Values of ul and uf

in Our Two Testbeds

ul uf

Intel 17% 56%

ul uf

AMD 6% 40%

Fig. 8. Performance comparison results of non-NUMA-aware, distance-
first and serving-first delegation lock schemes.

Fig. 9. Execution times with varied Ts under different thread numbers on
the AMD machine (eight NUMA nodes). The number of shared cache
lines in the critical section is 1 and the interval is 103 cycles.

Fig. 10. Execution times with varied Tw under different thread numbers
on the AMD machine (eight NUMA nodes). The number of shared cache
lines in the critical section is 1 and the interval is 103 cycles.

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1763

locks have the same number of clients. Besides, RCL has one
more core for the server. RCL actually utilizes more hard-
ware resources. In the experiments, we also measure the
effect of data locality by varying the number of shared cache
lines from 1 to 5 when accessing the critical section.

Figs. 11 and 12 show the results of the Intel machine with
four NUMA nodes. Taking Fig. 11 as an example, SANL’s
performance changes in three phases: 1) When the conten-
tion is high (e.g., when the interval is smaller than 30,000
cycles), in-place locks (SL, POSIX mutex, etc.) scale very
poorly: at one or two orders slower than SANL. Even com-
pared with C-TKT-MCS lock and MCS lock, the two best in-
place locks, non-NUMA SANL is 3.2 and 2.0 times faster;
and the speedup of our NUMA-SANL is much larger: 7.2
and 4.6 times respectively. Though H-Synch is also a
NUMA-aware delegation lock, its performance is even
lower than POSIX mutex and FC. 2) When the contention is
mild (e.g., between 30,000 and 100,000 cycles), SANL shows
some limitations, probably because SANL has the frequent
server nomination in delegation mode. 3) When the conten-
tion is low (e.g., when the interval is larger than 100,000
cycles), SANL is slower than MCS lock (1,573 cycles versus
803 cycles). For RCL, the execution time is 3,642 cycles.
From the experimental results of the following application
benchmarks, we conclude SANL’s overhead under low con-
tention should be acceptable for most contended lock
instances in multi-thread applications. The results with five

shared cache lines, as shown in Fig. 12, are similar. The
results indicate that SANL has good data locality of shared
cache lines as the data in delegation mode mostly remains
on the server thread.

On the AMD machine with eight NUMA nodes, Figs. 13
and 14 show that SANL’s advantage is more apparent: it out-
performs the others in almost all contention levels. Under
high contentions, compared with in-place locks, SANL is
14 times faster than POSIX mutex, 2.4 times faster than
C-TKT-MCS lock and 3.8 times faster than MCS lock. When
compared with delegation locks, SANL is around 5.9 times
and 2.3 times faster than FC and RCL respectively. Under
low contentions, SANL performs very closely to MCS
(2,520 cycle versus 2,368 cycles). The results show that SANL
is very suitable for large NUMA systems. Through evaluat-
ing the number of L2 cache misses, we find SANL in both
machines show similar cache miss improvement than other
locks. Because the AMD machine has longer latencies of
cache coherence to load/store a modified cache line than
the Intel one as shown in Table 4, the latency benefits of
SANL are higher on AMD than on Intel.

To investigate SANL’s limitation when the contention is
mild, we analyze the switch times between in-place mode
and delegation mode, and the server nomination times in
delegation mode. For the switch times, the results show that
SANL is stable in either in-place mode or delegation mode
and cases like Stage 2 in Fig. 3 happen less than 2 times.

Fig. 11. Execution times under different contention levels on the Intel
machine (four NUMA nodes). The number of shared cache lines in the
critical section is 1.

Fig. 12. Execution times under different contention levels on the Intel
machine (four NUMA nodes). The number of shared cache lines in the
critical section is 5.

Fig. 13. Execution times under different contention levels on the AMD
machine (eight NUMA nodes). The number of shared cache lines in the
critical section is 1.

Fig. 14. Execution times under different contention levels on the AMD
machine (eight NUMA nodes). The number of shared cache lines in the
critical section is 5.

1764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

This confirms the effectiveness of our voting algorithm
(Algorithm 1). For the server nomination times, Fig. 19
shows the results on the AMD machine: when the interval
is between 30,000 and 100,000 cycles, the number of server
nomination increases rapidly. This illustrates that the con-
tention is higher than ul and SANL turns to delegation
mode. However, when the contention is not high enough
and the server is not fully utilized by requests from clients,
frequent server nominations decrease the data locality in
delegation mode and bring forth more cache misses. This
explains the reason why SANL’s performance decreases and
approaches Flat Combining’s. Both delegation mode and in-
place mode are not efficient for mild contention levels (e.g.,
the interval between 30,000 and 100,000 cycles). It is our
future work to address this problem to achieve seamless
adaptation between delegation mode and in-place mode.

We also evaluate the overhead of SANL’s profiling
scheme, voting scheme and the Id manager. Under both
high and low contentions when accessing 1 shared cache
line, the profiling scheme takes around 100 cycles, calling
PAPI interfaces to get time information; the voting
scheme takes around 217 cycles. Even under high conten-
tion, the overheads only account for 0.39 and 0.84 percent
of the critical section’s execution time respectively. We
attribute the efficiency of the voting scheme to the bound-
ary optimization in Algorithm 1. For the Id manager, we
evaluate it with a micro-benchmark in which 64 threads

repeatedly require Id and release Id. We find that under
high contention, a pair of the Id manager’s acquire and
release operations takes 3518.51 cycles; under low conten-
tion, it takes only 102 cycles.

In Figs. 15 and 16, we show the effect of data locality based
on the number of L2 cache misses. Fig. 17 shows the differ-
ence of L2 cache misses when the shared cached line
increases from 1 to 5. The results of C-TKT-MCS lock, MCS
lock and POSIX mutex show that in-place locks cause higher
caches misses because of either lock request contention or
shared data contention. In Fig. 17, their cache miss differen-
ces are all above 0. RCL incurs very few cachemisses because
its server thread never changes the core, maintaining good
data locality. Like RCL, FC also has a low cache miss rate at
high contention, because most of the time the critical section
can stay with the same server; however, under low conten-
tion, the number of cachemisses increases because the server
frequently downgrades when there are not many requests to
process. With SANL, regardless of the size of the shared data,
it maintains a reasonable number of cache misses in almost
all scenarios; when the critical section becomes longer
(Fig. 16), SANL’s cache miss is very similar to RCL because it
behaves much like a static delegation lock. In Fig. 17, under
high contention, the number of cache misses of SANL even
decreases due to increased server utilization and fewer
server re-nominations. With low contention, SANL adapts to
in-place lock and so it brings a similar number of cache

Fig. 15. The number of L2 cache misses on the Intel machine, with one
shared cache line in the critical section.

Fig. 16. The number of L2 cache misses on the Intel machine, with five
shared cache lines in the critical section.

Fig. 17. Difference between the number of L2 cache misses on Intel
machine between 5 and 1 shared cache lines in the critical section.

Fig. 18. Execution times under different thread numbers on the AMD
machine (eight NUMA nodes). The number of shared cache lines in the
critical section is 1 and the interval is 103 cycles.

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1765

misses to MCS. On the AMDmachine, Fig. 18 shows the exe-
cution time of varied client threads. When the number of
threads is small, SANL performs very closely to MCS (593
cycle versus 350 cycles). When the number of threads is
large, SANL is more than 3.5 times faster than in-place locks,
and 1.3 times faster than delegation locks. However, when
the number of threads is 4, SANL is 1.37 times slower than
RCL because of the frequent server nominations of dynamic
delegation lock. From the results of the micro-benchmarks,
we conclude that SANL outperforms its counterparts under
high contention and has moderate overhead in low conten-
tion situations.

For memory footprint, SANL is similar to RCL. The main
usage of memory is the request array. On the Intel machine
with 40 cores, the memory footprint is around 1.25 MiB; on
the AMD machine with 64 cores, the memory footprint is
around 2 MiB.

4.3 Application Performance

To investigate SANL’s performance in real applications,
we apply it to four popular multi-threaded applications:
BerkeleyDB, Memcached, Phoenix2 suite and SPLASH-2
suite. We select the benchmarks with high lock contention in
Phoenix2 suite and SPLASH-2 suite. In our 40-core Intel
machine, Table 6 shows the profiling results of the percent-
age of time they spend executing the critical section with
their default POSIX mutex lock.2 In all applications, lock
contending time occupies more than half of the execution
time. In Memcached, the GET operation spends nearly 90
percent of the time in the critical section. We configure RCL
and other locks with the same number of clients for all appli-
cations. In Phoenix2, SPLASH-2 andMemcached, since there
is only one lock, RCL is configured with N+1 cores (one
server plus N clients) while the other locks are configured
with N cores (N clients); in Berkeley DB which contains 11
locks, RCL is configuredwithN+2 cores, reserving two cores
for server threads to process the requests and leaving the
remaining N cores for the clients. Because the applications
have more servers for RCL, RCL utilizes more hardware
resources than other locks in our application evaluations.

4.3.1 Berkeley DB

We record the performance of two TPC-C transaction
types: StockLevel and OrderStatus. In the tests of
StockLevel on the Intel machine, Fig. 20 shows that
SANL delivers the highest throughput in almost all tests.
Among the other seven selected locks, RCL and C-TKT-
MCS lock perform the best. Compared to RCL, SANL

achieves at least 1.64 times higher throughput when the
number of clients is smaller than 5 (low contention),
because it combines with MCS lock in the in-place mode;
when there are 10 clients (medium contention), SANL is
still 10 percent better than RCL; when the number of cli-
ents further increases (high contention), SANL outper-
forms RCL by 24 to 49 percent. C-TKT-MCS lock
performs similarly with SANL when the number of clients
is smaller than 20; but SANL shows 15-25 percent higher
throughput when there are more than 25 clients. The
results on the AMD machine (Fig. 21) also show that
SANL outperforms the other locks in most settings.

With OrderStatus transactions, SANL performs at least
16 percent better than the other locks on the Intel machine,
and achieves up to 66 percent throughput improvement on
the AMD machine (the comparison results are very similar
to Figs. 20 and 21, so we do not display them here). Unlike
RCL which reserves cores for servers and may introduce
the false serialization problem, SANL dynamically

TABLE 6
Profiling Results of the Evaluated Applications on

Our 40-Core Intel Machine

Application Lock usage with 40 cores

Description # locks % in CS

Berkeley DB with TPC-C Order Status DB struct. access 11 59.1%
Stock Level DB struct. access 11 76.2%

Memcachedy Get Hashtable access 1 84.7%
Set Hashtable access 1 61.6%

Phoenix 2 Linear Regression Task queue access 1 88.7%
String Match Task queue access 1 69.6%
Matrix Multiply Task queue access 1 65.9%

SPLASH-2 Radiosity Linked list access 1 56.5%
Raytrace/Balls4 Counter increment 1 85.1%
Raytrace/Car Counter increment 1 91.3%

y 18 cores are used for the server and the other 18 cores are used for clients.

Fig. 19. Number of server nomination under different contention levels
on the AMD machine (eight NUMA nodes). The number of shared cache
lines in the critical section is 1.

2. Similar results are also reported in [16], [17] with a 48-core
machine.

1766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

nominates server threads for different lock instances. Since
all server threads can process lock requests at the same
time, SANL can more efficiently handle nested critical sec-
tions. In addition, SANL’s server thread can downgrade at
an appropriate time to save core resources. For in-place
locks, the throughput decreases considerably when the con-
tention becomes high.

4.3.2 Memcached

In Memcached, we evaluate pure GET and pure SET

requests. To avoid the bottleneck from the network, we put

clients and servers on the same machine, with an evenly
allocated number of cores. The results with Flat Combining
and H-Synch are omitted because Memcached requires
periodically blocking on condition variables, which is not
supported in FC and H-Synch. When testing the GET opera-
tion, we find that all locks perform similarly (so the figures
are not displayed here). A possible explanation is that its
critical sections are long and thus acquiring and releasing
locks is less likely to become a bottleneck than in other
applications. The results of SET operation with the Intel and
AMD machine are shown in Figs. 22 and 23 respectively.
On both platforms, SANL consistently outperforms the
others in almost all contention levels. For example, in
Fig. 22, SANL performs better than MCS and RCL by 6 to 33
percent respectively. SANL only experiences performance
regression when there are four threads, which is caused by

Fig. 21. Throughput results of BerkelyDB’s StockLevel transaction on
the AMD machine.

Fig. 22. Speedup of Memcached’s SET on the Intel machine. Single-
thread POSIX as baseline.

Fig. 23. Speedup of Memcached’s SET on the AMD machine. Single-
thread POSIX as baseline.

Fig. 24. Phoenix results on the Intel machine: Best performance of each
lock relative to POSIX mutex.

Fig. 25. Phoenix results on the AMD machine: Best performance of each
lock relative to POSIX mutex.

Fig. 20. Throughput results of BerkelyDB’s StockLevel transaction on
the Intel machine.

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1767

the overhead of frequent server nominations of dynamic
delegation locks.

4.3.3 Phoenix2

The results of Phoenix2 tests are shown in Figs. 24
and 25. At the top of each figure, (� a : n) reports the
maximum speedup of a over the single-thread execution
time, achieved with n threads/cores. The results are nor-
malized to POSIX mutex’s performance. In the String-

Match tests, SANL has similar performance to MCS lock
when the number of cores is small and has similar per-
formance to RCL and FC when the number of cores
increases. With LinearRegression, SANL shows imp-
rovement over other locks by up to 58 percent. In the
MatrixMultiply tests, the advantage of SANL over the
others is marginal on the Intel machine, but on the AMD
machine, SANL achieves more than 50 percent perfor-
mance improvement.

4.3.4 SPLASH-2

SPLASH-2 is a benchmark suite to evaluate parallel scien-
tific applications for cache-coherent architectures. The
results with SANL are shown in Figs. 26 and 27. In the Ray-
trace/Balls4 and Raytrace/car tests, the maximum
speedup of tested locks are similar. In the Radiosity tests,
SANL performs 7-25 percent faster than MCS lock. In gen-
eral, SANL consistently performs as the best one among all
lock schemes in SPLASH-2.

5 CONCLUSION AND FUTURE WORK

This paper describes SANL, a scalable adaptive NUMA-
aware locking mechanism that combines the advantages

of in-place lock for low contention and delegation lock
for high contention. SANL uses a voting algorithm to prof-
itably switch between the two lock schemes during run-
time. In addition, we design and implement a more
scalable NUMA-aware policy to work with SANL in its
delegation-lock mode. Evaluations based on a set of
multi-threaded applications show that SANL outperforms
state-of-the-art lock algorithms under both low and high
contentions.

In future, we plan to focus on the mitigation of the situa-
tions in which there is frequent switching between locking
schemes. We could also enhance the re-engineering tool we
used in the evaluation to support codes with thrown excep-
tions, non-lexically scoped locking, etc. Furthermore, as
power management becomes increasingly important, it
would be meaningful to investigate the tradeoff between a
lock’s performance and power consumption with finer-
grained power tuning knobs.

REFERENCES

[1] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Non-scalable locks are dangerous,” in Proc. Linux Symp., 2012,
pp. 119–130.

[2] Z. Radovic and E. Hagersten, “Hierarchical backoff locks for non-
uniform communication architectures,” in Proc. 9th Int. Symp.
High-Performance Comput. Archit., 2003, Art. no. 241.

[3] N. Vasudevan, K. S. Namjoshi, and S. A. Edwards, “Simple and
fast biased locks,” in Proc. 19th Int. Conf. Parallel Archit. Compila-
tion Techn., 2010, pp. 65–74.

[4] Y. Cui, et al., “Reducing scalability collapse via requester-based
locking on multicore systems,” in Proc. IEEE 20th Int. Symp. Model.
Anal. Simul. Comput. Telecommun. Syst., 2012, pp. 298–307.

[5] J. L. Abell�an, J. Fern�andez, and M. E. Acacio, “GLocks: Efficient
support for highly-contended locks in many-core CMPs,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2011, pp. 893–905.

[6] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM
Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, Feb. 1991.

[7] P. E. McKenney, et al., “Read-copy update,” in Proc. Linux
Symp., 2001, pp. 175–184.

[8] A. T. Clements,M. F.Kaashoek, andN. Zeldovich, “Scalable address
spaces using RCU balanced trees,” in Proc. 17th Int. Conf. Archit.
Support Program. Languages Operating Syst., 2012, pp. 199–210.

[9] V. Luchangco, D. Nussbaum, and N. Shavit, “A hierarchical
CLH queue lock,” in Proc. 12th Int. Conf. Parallel Process., 2006,
pp. 801–810.

[10] D. Dice, V. J. Marathe, and N. Shavit, “Lock cohorting: A general
technique for designing NUMA locks,” in Proc. 17th ACM SIGPLAN
Symp. Principles Practice Parallel Program., 2012, pp. 247–256.

[11] T. David, R. Guerraoui, and V. Trigonakis, “Everything you
always wanted to know about synchronization but were afraid to
ask,” in Proc. 24th ACM Symp. Operating Syst. Principles, 2013,
pp. 33–48.

[12] Y. Oyama, K. Taura, and A. Yonezawa, “Executing parallel pro-
grams with synchronization bottlenecks efficiently,” in Proc. Int.
Workshop Parallel Distrib. Comput. Symbolic Irregular Appl., 1999,
pp. 182–204.

[13] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combin-
ing and the synchronization-parallelism tradeoff,” in Proc.
22nd Annu. ACM Symp. Parallelism Algorithms Archit., 2010,
pp. 355–364.

[14] P. Fatourou and N. D. Kallimanis, “A highly-efficient wait-free
universal construction,” in Proc. 23rd Annu. ACM Symp. Parallelism
Algorithms Archit., 2011, pp. 325–334.

[15] P. Fatourou and N. D. Kallimanis, “Revisiting the combining syn-
chronization technique,” in Proc. 17th ACM SIGPLAN Symp. Prin-
ciples Practice Parallel Program., 2012, pp. 257–266.

[16] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote
core locking: Migrating critical-section execution to improve the
performance of multithreaded applications,” in Proc. USENIX
Conf. Annu. Tech. Conf., 2012, pp. 6–6.

Fig. 26. SPLASH-2 results on the Intel machine: Best performance of
each lock relative to POSIX mutex.

Fig. 27. SPLASH-2 results on the AMD machine: Best performance of
each lock relative to POSIX mutex.

1768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

[17] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Fast and
portable locking for multicore architectures,” ACM Trans. Comput.
Syst., vol. 33, no. 4, pp. 13:1–13:62, Jan. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2845079

[18] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in
Proc. 24th ACMSymp.Operating Syst. Principles, 2013, pp. 33–48.

[19] B. Fitzpatrick, “Memcached: A distributed memory object caching
system,” 2011. [Online]. Available: http://memcached.org/

[20] M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley DB,” in Proc.
Annu. Conf. USENIX Annu. Tech. Conf., 1999, pp. 43–43.

[21] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for multi-core and multi-
processor systems,” in Proc. IEEE 13th Int. Symp. High Performance
Comput. Archit., 2007, pp. 13–24.

[22] U. of Delaware, “The modified splash-2 home page,” 2007.
[Online]. Available: http://www.capsl.udel.edu/splash

[23] J. P. Singh, W. Weber, and A. Gupta, “SPLASH: Stanford parallel
applications for shared-memory,” Stanford Univ., Stanford, CA,
USA, Tech. Rep. CSL-TR-91–469, 1992.

[24] A. Agarwal and M. Cherian, “Adaptive backoff synchronization
techniques,” in Proc. 16th Annu. Int. Symp. Comput. Archit., 1989,
pp. 396–406.

[25] M. Auslander, D. Edelsohn, O. Krieger, B. Rosenburg, and
R. Wisniewski, “Enhancement to the MCS lock for increased func-
tionality and improved programmability,” U.S. Pantent Appl.
US20030200457 A1, 2002.

[26] P. J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent control
with “Readers” and “Writers”,” Commun. ACM, vol. 14, no. 10,
pp. 667–668, Oct. 1971.

[27] R. Liu, H. Zhang, and H. Chen, “Scalable read-mostly synchroni-
zation using passive reader-writer locks,” in Proc. USENIX Conf.
Annu. Tech. Conf., 2014, pp. 219–230.

[28] Y. Lev, V. Luchangco, and M. Olszewski, “Scalable reader-writer
locks,” in Proc. 21st Annu. Symp. Parallelism Algorithms Archit.,
2009, pp. 101–110.

[29] S. S. Bhat, “percpu_rwlock: Implement the core design of Per-
CPU Reader-Writer Locks,” 2013. [Online]. Available: https://
patchwork.kernel.org/patch/2157401

[30] M. Arbel and A. Morrison, “Predicate RCU: An RCU for scalable
concurrent updates,” in Proc. 20th ACM SIGPLAN Symp. Principles
Practice Parallel Program., 2015, pp. 21–30.

[31] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and
N. Shavit, “NUMA-aware reader-writer locks,” in Proc. 18th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2013,
pp. 157–166.

[32] T. Craig, “Building FIFO and priority queuing spin locks from
atomic swap,” Univ. Washington, Seattle, WA, USA, Tech. Rep. 93–
02-02, Feb., 1993.

[33] M. Chabbi, M. Fagan, and J. Mellor-Crummey, “High
performance locks for multi-level NUMA systems,” in Proc. 20th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2015,
pp. 215–226.

[34] M. Chabbi and J. Mellor-Crummey, “Contention-conscious, local-
ity-preserving locks,” in Proc. 21st ACM SIGPLAN Symp. Principles
Practice Parallel Program., 2016, Art. no. 22.

[35] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis, “Adaptive
locks: Combining transactions and locks for efficient con-
currency,” in Proc. 18th Int. Conf. Parallel Archit. Compilation Techn.,
2009, pp. 3–14.

[36] D. Dice, A. Kogan, Y. Lev, T. Merrifield, and M. Moir, “Adaptive
integration of hardware and software lock elision techniques,”
in Proc. 26th ACM Symp. Parallelism Algorithms Archit., 2014,
pp. 188–197.

[37] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek, “CPHASH: A
cache-partitioned hash table,” in Proc. 17th ACM SIGPLAN Symp.
Principles Practice Parallel Program., 2012, pp. 319–320.

[38] D.Dice,V. J.Marathe, andN.Shavit, “Flat-combiningNUMAlocks,”
inProc.23rdACMSymp.ParallelismAlgorithmsArchit., 2011,pp.65–74.

[39] D. Petrovi�c, T. Ropars, and A. Schiper, “On the performance of
delegation over cache-coherent shared memory,” in Proc. Int.
Conf. Distrib. Comput. Netw., 2015, Art. no. 17.

[40] I. Calciu, et al., “Message passing or shared memory: Evaluating
the delegation abstraction for multicores,” in Proc. 17th Int. Conf.
Principles Distrib. Syst., 2013, pp. 83–97.

[41] D. Klaftenegger, K. Sagonas, and K. Winblad, “Delegation locking
libraries for improved performance of multithreaded programs,”
in Proc. Euro-Par, 2014, pp. 572–583.

Mingzhe Zhang received the BEng degree (rank
1st out of 82) in software engineering from Fudan
University, Shanghai, China, in 2013. He is cur-
rently working toward the PhD degree in com-
puter science at the University of Hong Kong. His
research interests include mainly in multi-core
synchronization technologies and fault tolerance
technologies, including highly scalable lock algo-
rithms, and fault tolerance techniques based on
non-volatile memory. He received the China
National Scholarship in 2011 and the Google
Excellence Scholarship in 2012.

Haibo Chen received the BEng and PhD
degrees in computer science from Fudan Univer-
sity. He is a professor in the School of Software,
Shanghai Jiao Tong University. His research
interests include improving the performance and
dependability of computer systems. He has pub-
lished more than 50 papers in various reputable
conference proceedings, such as SOSP, USE-
NIX ATC, EuroSys, PPoPP, HPCA, ISCA, etc.
He is a senior member of the IEEE and the ACM.

Luwei Cheng received the PhD degree in com-
puter science from the University of Hong Kong,
in 2015. He is currently a research scientist
with Facebook’s Data Infrastructure Team. His
research interests include mainly in performance-
related things of cloud data centers, including
operating systems, virtual machines, datacenter
networking, and distributed computing/storage
frameworks. He received the Best Student Paper
Award in IEEE/ACM UCC in 2011, the Hong
Kong PhD Fellowship Award in 2012, the Micro-

soft Research Asia Fellowship Award in 2013, and Best Paper Award in
APSys in 2016.

Francis C. M. Lau received the PhD degree in
computer science from the University of Waterloo,
Waterloo, Canada, in 1986. He has been a faculty
member in the Department of Computer Science,
University of Hong Kong, Hong Kong, since 1987,
where he served as the department chair from
2000 to 2005 and is now an associate dean of the
Faculty of Engineering. He was an honorary chair
professor in the Institute of Theoretical Computer
Science, Tsinghua University, Beijing, China,
from 2007 to 2010, and is currently a visiting chair

professor with Jinan University, Guangzhou, China. He is the editor-in-
chief of the Journal of Interconnection Networks. His research interests
include computer systems and networking, algorithms, HCI, and applica-
tion of IT to arts. He is a senior member of the IEEE

Cho-Li Wang recevied the BS degree in computer
science and information engineering from National
Taiwan University, in 1985 and the PhD degree in
computer engineering from the University of South-
ern California, in 1995. He is currently a professor
in the Department of Computer Science, University
of Hong Kong. His research is broadly in the areas
of parallel architecture, software systems for cluster
computing, and virtualization techniques for cloud
computing. His recent research projects involve the
development of parallel software systems for multi-

core/GPU computing and multi-kernel operating systems for future many-
core processor. He has published more than 150 papers in various peer
reviewed journals and conference proceedings. He is/was on the editorial
boards of several scholarly journals, including the IEEE Transactions on
Cloud Computing, the IEEE Transactions on Computers, and the Journal
of Information Science and Engineering. He also serves as a coordinator
(China) of the IEEE Technical Committee on Parallel Processing. He is a
senior member of the IEEE

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: SCALABLE ADAPTIVE NUMA-AWARE LOCK 1769

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

