
Defending against VM Rollback Attack

Yubin Xia† ‡, Yutao Liu† ‡, Haibo Chen†, Binyu Zang‡
†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

‡School of Computer Science, Fudan University

Abstract—Recently it became a hot topic to protect VMs
from a compromised or even malicious hypervisor. However,
most previous systems are vulnerable to rollback attack, since
it is hard to distinguish from normal suspend/resume and
migration operations that an IaaS platform usually offers.
Some of the previous systems simply disable these features
to defend rollback attack, while others heavily need user
involvement. In this paper, we propose a new solution to
make a balance between security and functionality. By securely
logging all the suspend/resume and migration operation inside
a small trusted computing base, a user can audit the log to
check malicious rollback and constrain the operations on the
VMs. The solution considers several practical issues including
hardware limitations and minimizing user’s interaction, and
has been implemented on a recent VM protection system.

I. INTRODUCTION

Virtualization is a key enabling technology in today’s

cloud computing platform. As the code size and complexity

of hypervisor and management VM increase constantly,

recent researchers tend to remove them from the TCB

(Trusted Computing Base) and build systems that can protect

VMs from malicious hypervisors [1], [2].

In a virtualization environment, the hypervisor is able

to suspend a VM at any point during execution, make a

snapshot of its CPU states, memory and disk, and resume

the snapshot later, without the guest VM’s awareness. This

feature supports useful functionalities such as fault tolerance

and VM maintenance, and has been widely used. Unfortu-

nately, it can also be leveraged by malicious attackers to

launch VM rollback attack.

In a VM rollback attack, a compromised hypervisor runs

a VM from an old snapshot without the user’s awareness.

Here, a user is the one who uses cloud service, and is the

owner of guest VM(s). Since a part of history of VM’s

execution is lost, an attacker can bypass some security

checks in the VM or undo some security critical updates.

For example, an attacker launches a brute-force attack to

guess the login password of a VM. Even if the guest OS

has restriction on the number of failed trials (e.g., blocking

for a while after three times, or erasing all data after ten

times), the attacker can still infinitely rollback the VM to

an initial state after each trial to clear the counter inside

the VM and bypass the restriction. Another example is that

an attacker may rollback a permission control module to

undo a user’s permission change, thus to expose user’s later

information to those who should be blocked. It is noteworthy

that rollback attack is similar with but different from replay

attack. In a replay attack, an adversary resends a previously

seen message to a VM. While in a rollback attack, the VM

itself is replayed [3].

Unfortunately, previous systems only focus on the pro-

tection of the integrity and privacy of user code and data,

leaving rollback attacks a neglected issue. Because the

snapshot itself is legal and internally consistent, the rollback

attack can penetrate these security checks. There are several

challenges to defend rollback attacks.

First, normal functionalities of virtualization must be

preserved. It is usually hard to distinguish a rollback attack

from a normal suspend/resume operation, since the cloud

platform itself has no higher level semantic information.

Some prior work simply disables the suspend/resume mech-

anism for security [4], which, however, renders some normal

operations such as snapshot or VM migration unavailable.

Second, unnecessary user interaction should be mini-

mized. Some systems, e.g., [4], require end users to get

involved during VM booting, resuming or migration to

ensure its freshness. It means every time the hypervisor

starts, reboots, resumes or migrates a VM, it has to first ask

the user for permission, which is annoying and not practical.

In this paper, we propose a solution to defend VM

rollback attack, without sacrificing normal functionalities

provided by hypervisor. The solution is based on the obser-

vation that the end user is the only one who can tell whether

a rollback is malicious or not. Thus we securely log all the

rollback activities of VM. By auditing the log, a user can

either check suspicious rollbacks and ask the cloud operator

to prove the necessity of such operations, or constrain the

operations on a VM by define rollback policy in advance,

or both. The solution also needs minimal user involvement.

The rest of the paper is organized as follows. The next

section discusses the background and related work about

researches on untrusted hypervisor and explains why they

cannot defend rollback attacks. Section III describes the

design and implementation of our solution. In section IV,

the paper presents preliminary evaluation on security and

performance impact of our solution. Finally, we summarize

our conclusion in section V.



II. BACKGROUND

A. Protection against Untrusted Hypervisor

Recently there has been plenty of research interest on de-

fending malicious hypervisor [1], [5], [4], [2]. For example,

CloudVisor [1] leverages a tiny nested hypervisor to isolate

and conceal the states of guest VMs from the hypervisor

layer. The tiny hypervisor protects the privacy and integrity

of guest VMs by interposing the control transferring between

the hypervisor and VMs to check each operation of the

hypervisor is legal. It controls the EPT (Extended Page

Table) of both guest VM and hypervisor to isolate their

memory space, and encrypts guest memory page before

hypervisor accessing. It uses a MHT (Merkel Hash Tree)

to protect the integrity of VM’s disk image, which is also

encrypted. Figure 1 shows the architecture of CloudVisor.

Encrypted

VM Image

Nested VMM of CloudVisor

Hypervisor Control VM Guest VM

TPM
Secure Boot Encrypted

VM-key

Hash Root

Figure 1: Architecture of CloudVisor

H-SVM [2] also separates the management of memory

resources from the security protection. It uses microcode

programs in hardware to enforce the memory protection.

The hardware encrypts each memory page of guest VMs

before it is accessed by the hypervisor, and leverages a

hash tree to ensure the integrity of guest memory. The root

of the hash tree is saved in protected memory region. H-

SVM does not protect data in external devices but insists

the guest VM itself to secure its I/O data. HyperWall [4] is

another similar work. It extended hardware architecture to

support fine-grained ownership control. A guest VM needs

to specify explicitly which memory pages are private, and

the architecture protects these pages from being accessed by

the hypervisor. Those protected memory pages can never be

accessed by the hypervisor.

B. Defending VM Rollback Attack

Both CloudVisor and H-SVM suffer from rollback attacks.

Since both of them support VM suspend/resume and migra-

tion operations, a malicious hypervisor can easily leverage

such operations to manipulate rollback attacks mentioned

in section I. The VM rollback attack can be manipulated

in multiple forms. For example, a hypervisor can resume a

stale snapshot of a VM. It can also clone a VM to another

machine by VM migration and control different versions.

It is difficult to distinguish rollback attack from normal

VM operations such as suspend/resume, boot/shutdown or

migration.

Meanwhile, few details of the operations’ implementation

are described in previous researches, e.g., where is the roots

of MHT (for memory, disk image and CPU state) saved

when making VM snapshot, how to ensure the internal

consistency of a snapshot, etc. These details are critical to

VM security. For example, a malicious hypervisor may try

to restore an old version of CPU state when scheduling a

VM in. Previous researches prevented this attack by keep

a hash of CPU state in protected area to ensure it is

latest. However, an attacker can achieve the same goal by

making two snapshots OLD and NEW, then uses snapshot-

OLD’s CPU state to replace the one of snapshot-NEW, and

resumes snapshot-NEW. Therefore, protecting the integrity

and continuity of memory, CPU state and disk alone is not

enough, which, unfortunately, is not mentioned by previous

researches.

In order to prevent rollback attack, some systems sim-

ply disable the function of suspend/resume or hypervisor

controlled migration. For example, HyperWall [4] provides

no way to make snapshot, since the hypervisor cannot

access the memory pages that guest VM asks to protect.

The hypervisor can not migrate a VM neither. Only self-

migration [6] is supported, which is done by the guest VM

itself. Therefore some features of modern cloud center based

on suspend/resume are disabled. HyperWall also requires

user to be involved during VM booting and resuming, which

makes it annoying and not practical.

C. Threat Model

The threat model in this paper is similar as CloudVisor [1].

The hypervisor is untrusted since its code size is increasing

so tremendously that it contains more and more bugs and

vulnerabilities [7], [8]. Thus we remove it from the trust

computing base (TCB). In addition, we assume that the VMs

are running in a hardware-safe environment, so that physical

attacks such as cold-boot attack [9] or intentional power-off

attack are not considered. It is also not our goal to protect

from side-channel attacks [10], DoS attack or inside-VM

bugs.

III. DESIGN AND IMPLEMENTATION

In this section, we present a solution to defend rollback

attack from untrusted hypervisor while still provide the

abilities of VM suspend/resume and migration. The solution

is implemented based on CloudVisor [1].

We first define a running epoch of a VM as a period that

starts from booting or resuming and ends with shutdown

or suspending, as shown in Figure 2. In order to defend

rollback attack in virtualized environment, the underlying

secure mechanism assures following two properties:



out in

VM boot/resume VM shutdown/suspend

timeslice timeslice timeslice timeslice

running epoch

boot/resume, shutdown/suspend

schedule in/out

VM crash / power off

out in out in

time

logged rollback

forbidden rollback

Figure 2: Running Epoch of VM

• It is forbidden to rollback a VM to the middle of an

epoch.

• The start and end of epoch are safely logged.

By defining and logging the running epoch of VM, the

rollback process is auditable. A user can analyze the log to

detect rollback attack, or to constrain the behavior of cloud

providers to prevent rollback attack.

A. VM Operations

We add four hypercalls in CloudVisor: vmboot, vmshut-

down, vmsuspend and vmresume. The four hypercalls are

all invoked by the control domain (domain-0), and thus the

hypervisor is kept unmodified. The control domain cannot

bypass the hypercalls, otherwise the operations would fail.

VM Suspend: When a hypervisor suspends a running

VM, it creates a snapshot of the VM, which is composed

of three parts: the states of register, the content in memory

and the image on disk. During runtime, all the three parts

are encrypted and protected by hash trees or hash, and the

roots of the hash trees are kept in protected memory zones

of CloudVisor, as shown in Figure 3. When vmsuspend is

invoked, CloudVisor calculates a snapshot hash out of the

three hash values. The hash is then encrypted with the VM

key. The encrypted snapshot hash is unique to each snapshot

and is used as the version for identification.

VM Resume: When the hypervisor resumes a VM,

vmresume is called with the snapshot and snapshot hash

as parameters. Before resuming, CloudVisor first checks the

snapshot hash is legal by calculating and comparing with the

hash of the snapshot. Thus a malicious hypervisor cannot use

snapshot-A’s CPU states and snapshot-B’s memory and disk

to resume a VM, It cannot resume a VM into the middle of

an epoch as well. CloudVisor then logs the operations just

as in VM suspend operation.

VM Boot: vmboot is invoked when a VM is booting.

It uses a predefined memory image and CPU state. The

memory image contains only the vmloader, and the CPU

state contains EIP pointing to a fixed address to the first

instruction. Thus the hashes of both are also fixed and have

already been known by CloudVisor. Therefore, the vmboot

needs only the hash of disk image to identify the version of

the VM.

VM Shutdown: Similarly, when shutting a VM down, the

CloudVisor will purify all its memory and CPU registers,

thus the snapshot hash is just the hash of disk image.

However, a VM may be shut down in an abnormal way, e.g.,

server crashing or power failure. In such cases, vmshutdown

is not invoked, which means the root hash of disk is not

logged. A user can easily detect such failure by the log, as

shown in section IV.

VM Migration: The process of migration can be seen as

first suspending on the source node, then resuming on the

destination node. In live migration, the suspend/resume hap-

pens at last iteration. Meanwhile, the source node needs to

transfer the snapshot hash to the destination node along with

the snapshot. The physical server must has the corresponding

VM key, which is done through the process of secure key-

switching that is already supported by CloudVisor.

B. Secure Logging

The logging is done by CloudVisor within the four

hypercalls. Every single entry of the log contains a triple

of {operation, timestamp, snapshot version}. The operation

is either ”boot”, ”shutdown”, suspend” or ”resume”. In order

to get trusted timestamp, we cannot depend on the clock of

the hardware which is controlled by the potentially malicious

hypervisor. Instead, a commercial secure time service [11],

or a dedicated secure server can be used to offer real time.

The snapshot version is composed of three parts: the root

hash of disk image, memory content and CPU state, as

illustrated in Figure 3.

CPU 

Regs VM Memory VM Disk

TPM
Protected 

Memory

MHT MHT

Snapshot 

Hash

MHT

+ +

MHT Root

of memory

snapshot

MHT Root

of disk

snapshot

Hash of 

registers

snapshot

Op. Log

Figure 3: Root of Snapshot

To make the log tamper resistant, we leverage TPM to

protect its integrity. Continuous integrity measurement is

used that every time a new entry is appended to the log, a

hash saved in NVRAM of TPM is updated according to the

value of the new item. TPM is also used to make signature

on the log as reply to user’s challenges. The logging does



not depend heavily on NVRAM of TPM since such VM

operations are rare. Assuming a VM runs one epoch on a

platform per day, and 16 VMs running on a single platform,

then the TPM can be used for more than 17 years.

Because a VM can be migrated or cloned to different

physical machines, it log may be distributed on multiple

machines. Once the user asks for log to audit, the cloud

provider should provide the entire set of log. However, a

malicious cloud operator may hide some log from user,

which may contains evidence of rollback attacks.

In order to keep the integrity of the whole log set, we need

to record all the physical machines that have ever hosted the

VM. At deploying phase, the user sends an encrypted VM

image to a physical machine, as well as the key of VM

image, which is encrypted by the public key of the TPM of

the machine. The machine is considered as the root node.

Once the VM is migrated or cloned from the root node to

other nodes, the VM-key is transferred in advance. During

this key transferring, both the source and destination nodes

are logged. Thus the user can get the full set of nodes one

by one alone the log chain as long as he knows the root

node, and a malicious operator cannot hide any node.

C. Discussion

There are two potential approaches: one is to always

verify a snapshot by CloudVisor, the other is to make a

snapshot “self-proven”. The major difference is that whether

the snapshot hash is under the full control of CloudVisor. In

the first method, CloudVisor never exposes snapshot hash

to the hypervisor. The hypervisor gets only the snapshot

content when it suspends a VM, while the hash of the

snapshot is saved inside CloudVisor’s memory and disk, both

of which are protected from the access of the hypervisor.

During resuming, CloudVisor will recalculate the hash of

the snapshot and compare with the hash it saved before.

Since there maybe multiple snapshots of a single VM, a list

of snapshot hash must be saved for verification. Meanwhile,

CloudVisor also needs to send the corresponding hash to the

destination nodes before migration.

In the second way, the snapshot hash is encrypted with

the VM-key and exposed to the hypervisor as well as the

snapshot itself. Then the hypervisor can copy the both to

any node that has the corresponding VM-key and resume

the snapshot. The integrity of both are ensured since they

are co-related with each other and are encrypted. Thus no

other information of the snapshot needs to be maintained by

CloudVisor except the log. In this paper we adopt the second

method because it is more simple, flexible and practical.

IV. PRELIMINARY EVALUATION

A. Security Evaluation

Once a user gets the log set of a VM, he can check the

log and analyze the number, frequency, and timestamps of

TimestampOperation Snapshot Version

120310235959Boot DiskImage-1

120313030530Shutdown

120313031023Boot

Suspend 120316021201

... ... ...

120310230210Suspend

... ... ...

120310230221Resume

120310230221Resume

120310230221Resume

120310235959Resume

120313030530Suspend

120313031023Resume
... ... ...

VM Migration

(destination)

VM Suspend

VM Reboot

Suspicious

Rollback

Brute-force

Attack by

Rollback

(a)

(e)

(f)

... ... ...

DiskImage-2

DiskImage-2

Snapshot-3

Snapshot-10

Snapshot-10

Snapshot-10

Snapshot-10

Snapshot-11

Snapshot-12

Snapshot-11

Resume 120318043204 Snapshot-5

VM Boot

VM Shutdown

... ... ...

VM Migration

(source)

Suspend 120318043203 Snapshot-5

120317031023Boot DiskImage-4

Resume 120316021632 Snapshot-3 VM Resume

... ... ...
VM Clone

(destination-1)

Resume 120320044223 Snapshot-7

... ... ...

VM Clone

(source)

Suspend 120320043203 Snapshot-7

120319031023Boot DiskImage-6

Resume 120320045204 Snapshot-7

... ... ...
VM Clone

(destination-2)

Resume 120320045022 Snapshot-7

(b)

(c)

... ... ...

Abnormal

Shutdown
Boot 120321223203 DiskImage-9

120321091023Boot DiskImage-8
(d)

Figure 4: Log Samples

VM behaviors to audit the operations on the VM and detect

malicious rollbacks.

Figure 4-a shows a log of normal VM execution process.

The frequency of logging is quite low since it is rare to

reboot or migrate a VM. Figure 4-b shows the process of

VM migration. When the VM is migrated, it is suspended

at the source node and resumed at the destine node. If the

VM resumes to run after migration, it is called VM clone,

as illustrated in figure 4-c. The snapshot from one source

node can be cloned to multiple destination nodes.

Figure 4-d presents the case of abnormal shutdown, e.g.,

power failure or whole system crash. Thus the end of the

epoch is not logged. A malicious operator can fake a system

crash to do rollback attack. A user can then ask for other



evidence to show the reason of such unexpected situation.

Figure 4-e shows the log of brute force password attack as

mentioned before. The attacker tries to bypass the limitation

of false password, since all the rollback will be logged, the

attacker cannot hide his behavior. The user can easily finds

that there are abnormally large number of rollback and thus

detect the attack.

Once the cloud operator make a rollback, the user can only

consider it as a suspicious action, as shown in Figure 4-f. It

is the cloud provider’s responsibility to prove the rollback

is benign by showing other evidence to explain why it is

necessary to do so, e.g., the log of crash or record of power

failure.

Although the mechanism cannot ensure 100% security

that a sophistic attacker may still bypass the log checking

once knows user’s policy, our solution offers users a meaning

to constrain the behavior of cloud provider. For example,

a user may require that a VM cannot be rollbacked to a

version earlier than some timestamp, since after that time

several security critical configurations have been changed.

Meanwhile, the solution also make the attack significantly

harder, and thus increase the cost of attack.

B. Performance Impact

Overhead of Suspending: In original CloudVisor, when

a VM is being suspended, all of its memory pages are

encrypted and a hash tree is calculated. The hash of CPU

state is already there during the VMEXIT, and the disk

hash is always kept fresh as every disk write. Thus the

only additional work is to get a snapshot hash out of the

three hash values, get a timestamp and log the corresponding

operation.

Overhead of Resuming: When resuming a VM, Cloud-

Visor needs to calculate the hash of the snapshot before

continue the execution of the VM, which would take long

time, especially if the VM has been configured with large

memory. It may increase the downtime of live migration. As

an optimization, the hash tree of memory and the disk are

kept with the contents. Thus for memory, the check can be

delayed until the first access of the page, similar with the

process of disk access.

Overhead of Boot and Shutdown: For VM booting and

shutdown, since no hash check is needed for CPU state and

memory, the only new overhead comes from the logging,

which needs to access the disk and update storage in TPM.

Finally, we argue that these VM operations are rare in

common use. Thus the overhead is not critical. Meanwhile,

the log size is small enough to be ignored which takes little

disk space.

V. CONCLUSION

In this paper, we discussedd the issue of VM rollback

attack from malicious hypervisor in a virtualization execu-

tion environment. We showed that the biggest challenge is to

identify rollback attacks from normal VM operations such

as suspend/resume for fault tolerance or VM migrations.

It needed to make a tradeoff between security and func-

tionality. We have made the following two observations:

First, the most significant characteristic of rollback attack

is “user-unawareness”. By safe logging start/resume and

suspend/shutdown operation of a VM, a user can audit the

log to detect rollback attack, and can constrain the operations

on a VM in advance. Second, normal suspend/resume op-

eration for VM maintenance is rare. Multiple factors were

considered in the solution, including hardware limitations,

unnecessary user interaction minimizing, and overhead on

performance and storage. We implemented the solution

based on CloudVisor and did some preliminary evaluation

of its security and performance impact.

REFERENCES

[1] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor :
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization,” in Proc. SOSP, 2011, pp.
203–216.

[2] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural Support
for Secure Virtualization under a Vulnerable Hypervisor,” in
Proc. MICRO, 2011.

[3] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune, “Memoir : Practical state continuity for protected
modules,” in IEEE Symposium on Security and Privacy, 2011.

[4] J. Szefer and R. B. Lee, “Architectural Support for
Hypervisor-Secure Virtualization,” in Proc. ASPLOS, 2012.

[5] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating
the Hypervisor Attack Surface for a More Secure Cloud,” in
Proc. CCS, 2011.

[6] J. G. Hansen and E. Jul, “Self-migration of operating sys-
tems,” in Proc. of the 11th ACM SIGOPS European Workshop,
2004.

[7] N. V. Database, “Cve and cce statistics query page,”
http://web.nvd.nist.gov/view/vuln/statistics.

[8] J. Rutkowska and A. Tereshkin, “Bluepilling the Xen Hyper-
visor,” Black Hat USA, 2008.

[9] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. Calandrino, A. Feldman, J. Appelbaum, and E. Felten,
“Lest we remember: cold-boot attacks on encryption keys,”
Communications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in Proc. CCS. ACM, 2009, pp.
199–212.

[11] “e-timestamp: A web-based security service for data authen-
tication,” http://www.digistamp.com.


