
Leveraging OS-Level Primitives for Robotic Action
Management

Wenxin Zheng
Shanghai Jiao Tong University

Shanghai, China
wxzheng98@gmail.com

Boyang Li
Southern University of Science and

Technology
Shenzhen, China

12111014@mail.sustech.edu.cn

Bin Xu
Shanghai Jiao Tong University

Shanghai, China
levi.xu.bin@gmail.com

Erhu Feng
Shanghai Jiao Tong University

Shanghai, China
fengerhu1@sjtu.edu.cn

Jinyu Gu
Shanghai Jiao Tong University

Shanghai, China
gujinyu@sjtu.edu.cn

Haibo Chen
Shanghai Jiao Tong University

Shanghai, China
haibochen@sjtu.edu.cn

Abstract
End-to-end imitation learning frameworks (e.g., VLA) are
increasingly prominent in robotics, as they enable rapid task
transfer by learning directly from perception to control, elim-
inating the need for complex hand-crafted features. However,
even when employing SOTA VLA-based models, they still
exhibit limited generalization capabilities and suboptimal
action efficiency, due to the constraints imposed by insuf-
ficient robotic training datasets. In addition to addressing
this problem using model-based approaches, we observe
that robotic action slices, which consist of contiguous action
steps, exhibit strong analogies to the time slices of threads in
traditional operating systems. This insight presents a novel
opportunity to tackle the problem at the system level.

In this paper, we propose AMS, a robot action management
system enhanced with OS-level primitives like exception,
context switch and record-and-replay, that improves both exe-
cution efficiency and success rates of robotic tasks. AMS first
introduces action exception, which facilitates the immediate
interruption of robotic actions to prevent error propagation.
Secondly, AMS proposes action context, which eliminates
redundant computations for VLA-based models, thereby ac-
celerating execution efficiency in robotic actions. Finally,
AMS leverages action replay to facilitate repetitive or similar
robotic tasks without the need for re-training efforts. We im-
plement AMS in both an emulated environment and on a real
robot platform. The evaluation results demonstrate that AMS
significantly enhances the model’s generalization ability and
action efficiency, achieving task success rate improvements
ranging from 7× to 24× and saving end-to-end execution
time ranging from 29% to 74% compared to existing robotic
system without AMS support.

1 Introduction
End-to-end policy learning framework are gaining increas-
ing attention in the field of robotics. Researchers believe
that this robotic computing paradigm with imitation learn-
ing [3, 13, 17, 60] is the future for rapid task transfer because

these models can learn directly from perception to control,
eliminating the complex hand-crafted feature extraction and
modular design of traditional methods. Through training
on large-scale datasets, end-to-end models are expected to
autonomously learn to adapt in complex and changing envi-
ronments, thereby exhibiting greater flexibility and efficiency
in perception, decision-making, and action execution.
However, current robotic models still exhibit limitations

in their generalization capabilities [56, 66] and action perfor-
mance. For instance, in a typical robotic task such as pick and
place, as illustrated in Figure 1, the success rate declines dra-
matically once the number of objects exceeds the maximum
encountered in the training set, even when utilizing SOTA
robotic models [3, 7, 20, 22, 49]. This is primarily due to the
limited availability of training data for real robotic platforms,
which often leads to model overfitting and consequently re-
sults in insufficient generalization capabilities, even for tasks
that share similar characteristics. Furthermore, considering
the action efficiency, the robot’s actions are typically slower
than those of human beings. This is primarily due to the
limited actions per second (APS) during model inference, as
well as the interference of generated actions across different
objects, which results in non-optimal trajectory paths.
To address this limitation, the robotics research commu-

nity focuses on improving the model’s generalization abil-
ity from an algorithmic perspective. This includes introduc-
ing more environmental information [7, 20, 22, 49], using
LLM ability [24], optimizing model parameters [29, 41, 46,
65, 69, 72], and designing entirely new network architec-
tures to enhance the model’s adaptability in unseen situa-
tions [3, 8, 19, 49, 56]. Unfortunately, these methods still face
limitations in practical applications, such as the scarcity of
training data for real robotic platforms and the retraining
overhead associated with different tasks and robotic systems.

After a thorough analysis of the current robotic workflow,
we identify a new opportunity to enhance robotic robust-
ness and efficiency from the OS level. Although the tasks
executed in robotic systems differ from those of traditional

1

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

Move to nth object Pick and Place
During Training

STOP

Model do not know
what is n+1 object

1st ~ NthSu
cc
es
sR
at
e

Object Count

Training
Set

Out of object counts
in training set

N+1th

Figure 1. A failure case of the robot’s pick-and-place
operation. When the number of objects to be picked is
not represented in the training set, the action’s success rate
results in a significant decrease.

applications, we can still discern similarities between these
two workloads and leverage the primitives offered by classi-
cal operating systems. For example, to ensure the coherence
of robotic actions, the current robotic model outputs a fixed
number of action steps during each inference.We refer to this
sequence of action steps as an “action slice”. The action slice
is similar to the time slice allocated for application threads
in traditional operating systems, yet it lacks certain system
capabilities. For example, in the current robotic workload,
the action slice cannot be interrupted even when a fault situa-
tion arises, leading to a significant degradation in the success
rate of robotic tasks. Furthermore, after executing one action
slice, all context (e.g., intermediate result for robotic models)
are discarded, and the robot generates the next action slice
from an initialized state, which limits the performance of
robotic actions.
Inspired by traditional operating system primitives such

as context switching, exception handling, and record-and-
replay mechanisms, AMS introduces action context, action
exception, and action replay for robotic fault detection,
context saving and restoration across different action slices,
and replaying robotic actions within similar environments.
With these OS primitives, the efficiency and success rate
of robotic actions are significantly enhanced without the
necessity of retraining the model. Specifically, AMS proposes
three key technical designs:
Firstly, AMS stores and manages all action context within

a context pool. The action context encompasses all inter-
mediate inference states, such as KV caches, latent vectors,
and output embeddings for robotic models. Unlike tradi-
tional robotic systems, where each action is generated from
a clean initial state, AMS reuses the context generated from
the previous round of inference. This approach significantly
reduces redundant computations, accelerates model infer-
ence, and decreases the number of actions steps. To mitigate
storage overhead, AMS employs hierarchical and differential

storage strategies, retaining only the essential and distinc-
tive components closer to the computing resources while
evicting/offloading redundant or insignificant action context.

Secondly, AMS implements GPU-Inferencewith CPU-Action-
Fault-Detection to support action exception. It contains mul-
tiple rule-based functions that run on the CPU side to detect
any hardware/software-defined robotic exceptions, and in-
terrupt the execution of robotic action immediately. By pre-
venting the propagation of faults, robots are more likely to
fix erroneous actions with the dedicated exception handler.

Thirdly, to enhance the generalization capability in a typi-
cal robotic scenario involving long-horizon tasks that include
multiple repetitive jobs, AMS proposes action replay, which
leverages previous successful contexts to replay robot actions
in similar environments. However, unlike the fixed record-
and-replay processes in traditional operating systems, in
robotic scenarios, AMS can dynamically regenerate the replay
actions based on environmental changes.
Our prototype of AMS is implemented as an OS service

with several extensive modules, including context manager
and exception tables, etc. We effectively manage context
information by creating context pools on both the GPU and
CPU, along with the hashed action index, virtual actions, and
an automatic action eviction mechanism. Regarding model
selection, we utilize a SOTA VLA-based robotic model 𝜋0 [2]
without requiring retraining efforts for tasks. We believe that
the AMS approach is sufficiently general to be adaptable to
various models and robotic configurations.

We evaluate the AMS on a real robot platform and an emu-
lated environment. Our test results show that AMS can effec-
tively improve the model’s generalization ability, and reduce
the time needed for the model to perform whole tasks, both
achieving better and faster performance over time. In real
robot tests, the success rate of long-horizon task inference
after activating AMS is 7× to 24× higher than that of direct
model inference. Regarding the execution time of the whole
action, after activating AMS, the number of steps required
by the robot decreased by 29% to 74.4% compared to direct
model inference. Compared to the time required for the first
inference, AMS can reduce the time of subsequent inferences
by 5.7% to 20%.

2 Background and Motivation
2.1 Large Models in Robotics
As the size and capabilities of models continue to scale
up, end-to-end learning frameworks of large models be-
comes more and more important in robotic manipulations,
especially for current Vision-Language-Action (VLA) Mod-
els [1, 2, 6, 23, 35, 38, 58, 64, 67, 70, 73]. These models gen-
erally consist of three key components: natural language
processing, environment perception, and action planning.
Typically, LLMs are used for natural language processing,

2

Leveraging OS-Level Primitives for Robotic Action Management

multi-modal large models are used as environmental per-
ception components and diffusion model is used for real
action planning. Different models have different inference
frequency, as shown in Figure 2.

CAM_FRONT

CAM_WRIST ViT

Instruction
Put the cubes
into the bowl.

LLM

Sample
30 Hz

Image
Embedding

Text
Embedding

Visual-Language
M
odel

Diffusion
/Transform

er

Model Inference (Generate multiple action)
~1 Hz

Map to
robot
state

Action
30 Hz

Robot performs actions that modify the environment.

Figure 2. State-of-the-art VLA model structure. It usu-
ally combines three models: visual encoders, large language
model, and action decoders (e.g., diffusion model).

The natural language processing component is responsible
for interpreting the user’s natural language commands and
converting them to text vectors. The environment percep-
tion component gathers information about the surroundings.
It collects 2D images or 3D point cloud data with depth
information by the robot’s sensors, such as cameras and
LiDAR. These 2D or 3D images are then transformed into
image vectors using Transformer-based models like Vision-
in-Transformer (ViT) [11, 48]. Building on this, the action
planning component utilizes text and image vectors to gen-
erate a series of motion commands suitable for the robot
and an optional stop flag. The action planning components
are mainly diffusion models [2, 4, 8, 25, 31, 44, 57] or auto-
regressive models [9, 18, 32, 35, 45, 61, 68, 71].

Different robotic arms have different degrees of freedom,
so the models cannot be directly shared between different
robotic arms. The model parameters from the large-scale
pre-trained model needs to be fine-tuned on each robotic
arm individually to adapt it to each robotic arm.

2.2 Current Limitation in VLA-based Robotic Models
2.2.1 Generalization Problems. Currently, the gener-
alization ability of robotic models relies mainly on fitting
limited data during training. They adjust their parameters
by learning patterns and features from this training data.
However, unlike large language models, robots operate in
complex and ever-changing environments. Gathering large
and diverse datasets of robot actions is very difficult and
requires huge human efforts, which limits the diversity and
scale of their training data. This lack of data hinders the

development of robotic models, preventing them from show-
ing new abilities in unfamiliar situations like large language
models can [15].

Due to these training data limitations, robotic models per-
form poorly when asked to do actions beyond what they’ve
seen before. For example, a long-horizon task involving mul-
tiple repetitive or similar jobs is a typical scenario in robotics,
such as the pick-and-place operation of multiple objects. The
𝜋0 models [2] typically don’t exceed the maximum number
of repetitions they encountered during training. We tested
different models with various repetition counts in their train-
ing data. The results in Figure 3 showed that models had
high success rates up to the maximum repetition seen dur-
ing training, but their accuracy dropped significantly to zero
beyond that point.

1 2 3 4 5 6 7
Object #

0

20

40

60

80

Co
m

ple
tio

n
Ra

te
 (%

)

π0 (1) π0 (6) CogACT (1) Octo (1)

1 2 3
Object #

0

200

400

600

800

Av
er

ag
e

St
ep

Figure 3. Degrading of different models. The number in
the brackets means the maximum repetition counts in the
training set.

Key Challenges: To enhance the model’s generalization
ability, our work mainly focuses on classical robotic sce-
narios, specifically long-horizon tasks that involve multiple
repetitive jobs. We first adopt a straw-man design: resetting
the model’s internal state and regenerating robotic actions.
Figure 4 illustrates a classical robotic task of “picking up all
small blocks and placing them into a bow” (“pick and place”).
In its training set, the robot learns only to place one block
into the bowl and has never encountered a situation involv-
ing two blocks. Employing the straw-man method fails to
yield even a single successful completion. This failure oc-
curs because the environmental state after placing one block
leads the model to mistakenly believe that it has completed
the entire task, thereby preventing the robot from execut-
ing subsequent actions. Consequently, the key challenge for
model generalization in these typical robotic tasks is how
to enable the model to perform repetitive and similar
jobs within a long-horizon task without the need for
retraining efforts.

2.2.2 Efficiency Problems. Efficiency is also an impor-
tant part of a model’s performance. The end-to-end time
relates to actions per second (APS) and the total number

3

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

Instruction
Put the cube
into the bowl.

Clear Model State
& Reset inference

Instruction
Put the cube
into the bowl.

Inference
Action

Inference
Action

0%
Success

Figure 4. Strawman design of resetting the model in-
ference.

of action steps. The APS is influenced by two factors: the
speed of model inference and the performance of the robotic
hardware. The minimum value among these two factors
determines the actual APS value observed in the test. As
for total number of steps, it depends on the results of each
inference. Humans learn from repeating tasks, dropping un-
necessary actions and correcting mistakes to become more
skilled over time. However, robots cannot learn from past
tasks. For instance, when the model has already kicked a ball
and its position is very close to the shortest path, the model
still cannot find that optimal path to kick the ball. They rely
heavily on the training data, which can lead to performing
tasks slower over time, as shown in Figure 3.
Key Challenges: Previous work [63] has attempted to

enhance the efficiency of robot execution by accelerating
model inference. However, in real robotic scenarios, hard-
ware performance often constitutes the primary bottleneck,
resulting in only minimal improvements from optimizing
model inference speed. Consequently, the primary challenge
for enhancing robotic efficiency lies in how to enable the
model to identify the optimal action path, thereby reducing
the total number of action steps.

3 AMS Designs
3.1 Key Insight
To enhance the efficiency and success rate of robotic ac-
tions, the core of AMS is to migrate OS-level primitives
into robotic action management. Similar to the time slice
abstraction of threads in traditional operating systems, the
action slice in the robotic system, which comprises several
contiguous action steps, serves as the minimal and atomic
execution unit. However, in traditional operating systems,
when a program encounters an exception or fault during
execution, the kernel interrupts the target program to han-
dle this exception immediately. Moreover, the kernel also
manages the context for each application thread to prevent
the need for restarting the application from scratch after
scheduling. Inspired by these, AMS introduces a comparable
mechanism for robotic model inference. First, we propose ac-
tion context, which stores the model execution state for each
action (§3.2). To mitigate storage overhead, we construct a
context pool along with a dedicated eviction strategy. Second,

En
vi
ro
nm
en
t

E0

GPU
Inference

Context
Pool (3.2)

State
Save & Load

O
ut
pu
t

A0 A1 A2 … A29 A50

Action Slice

…

GPU
VRAM

CPU
RAM

Auto-Evict

Raise Action Exception (3.3)

Exception Handler

En

Restart Inference

GPU
Inference

Reset Robot

A0 … A5

Send Replay Signal

Meaningless
Move

Action Replay (3.4)

Em

GPU
Inference

Replay (3.4)

Context
Pool

Actions

Figure 5. The overall design of AMS enabled inference
process for robotic models.

ViT

Put the cubes
into the bowl.

LLM

Visual-Language
M
odel

Diffusion
/Transform

er

{ Context Key : (Context Value...) }

Image Text
KV Cache Diffusion Noise Action, Output

Context
Pool

Save
Retrieve
CPU

Backend
G
PU
Backend

Figure 6. The structure of action context formulti-layer
storage and retrieval.
we introduce the concept of action exception for robotic ac-
tions (§3.3). It can promptly interrupt the current action slice
when any software- or hardware-defined exception is trig-
gered, analogous to the kernel’s exception handling. Third,
to manage repetitive tasks, AMS employs the action replay
mechanism (§3.4), which allows the replay of robotic actions
in a similar, albeit not identical, environment using the prior
action context. The whole process is shown in Figure 5.

3.2 Action Context
The action context is used to represent a complete action
for one task. It is a layered storage module that not only
stores memories of action execution for repeatability but also
speeds up subsequent reasoning processes. The structure of
action context is shown in Figure 6.

3.2.1 Constructing the Action Context. To efficiently
reuse information from each inference, AMS stores all cacheable
objects in the action context pool. This includes intermediate

4

Leveraging OS-Level Primitives for Robotic Action Management

states during inference and the action trajectories produced
by inference. Specifically, the intermediate states consist of
the KV Cache from the Transformer model in visual recog-
nition, latent vector generated at each time step by the Dif-
fusion model for joint action generation, and the KV Cache
from the Transformer model in the language understand-
ing module. These cached intermediate states can be reused
in future inference, thus reducing computational overhead
and speeding up the time required for a single inference.
The inference output includes data from the robot’s joints
and the output embedding obtained from the final inference.
These action trajectories can guide the model to repeat pre-
viously executed actions in future tasks, enhancing planning
efficiency and action consistency.

During each inference, the system first checks the action
context pool to see if any similar and reusable intermediate
states exist by comparing the similarity of the instruction
and images. If a reusable intermediate state like KV cache
is found, the system directly retrieves and uses these states
to avoid redundant computations. If similar task trajectories
are found, the system uses these previously inference results
to guide the model by reusing latent vectors of successful
action as the start state. This encourages it to mimic these
trajectories in current inference. These approaches reuse
previously cache and provide guidance for task completion,
both increasing success rate and efficiency. After one single
inference, AMS adds the unseen vector including new KV
value and latent vector into the context pool for further use.

3.2.2 Layered Storage of Action Context. Saving all
cacheable items would consume vast amounts of GPU mem-
ory, which is unacceptable for robotic applications that re-
quire real-time processing. However, the frequency of data
usage are not uniform. As shown in Table 1, the KV cache
from the environment recognition vision transformer and
LLM KV cache occupies almost one-third of data but is ac-
cessed less frequently than the diffusion noise and output em-
beddings. Therefore, AMSmanages data based on their access
characteristics by prioritizing storage resources for caches
that are frequently used but small in size, while applying
optimized storage strategies for caches that are infrequently
used but large in size.

Table 1. Storage occupation for different cacheable
items for one single action step.

Cacheable Items 𝜋0 CogACT Use Frequency

ViT KV Cache 63MB 51MB Low
LLM KV Cache 165MB 134MB Medium
Diffusion Noise 165MB 301MB High
Output Action 14Byte 14Byte High

Specifically, AMS adopts a hierarchical storage architecture
to manage the action context. First, we determine the storage

location of data based on its use frequency. For data that is
frequently accessed, we store it in GPU memory to mini-
mize data access latency and improve system performance.
Conversely, for data that is infrequently accessed, we apply
an on-demand recomputation strategy or move it to CPU.
Additionally, we do not place data that does not participate
in computation near the computing components.

3.2.3 ActionCompression. Tominimize the storage space
occupied by the action context, AMS employs a compression
algorithm to reduce the size of the action context. We ob-
served that a single task often includes many repeated ac-
tions across different inference instances. For example, the
paths for picking up objects might be very similar when the
arm is exactly on top of the objects. Thus, we first build the
action index for quickly retrieve the action and its corre-
sponding vector and then introduce a “virtual action”, which
links repeated data with only one copy to reduce redundant
storage. Then we perform auto eviction policy to reduce the
size of the action context pool on GPU.
Virtual Action. Different action sequences and environ-
ments often share common parts that can be reused, such as
a next-step action of same task at the same location. Thus,
AMS introduces a virtual action mechanism to enable cross-
context action reuse, similar to the page table concept in
operating systems. To achieve this, AMS first creates an ac-
tion index for each action to facilitate action indexing. Once
AMS collects an input, it serializes that input into a binary
form in the background and calculates hash values for each
segment of that binary data. In the first phase of hashing,
AMS independently calculates a hash value for each segment
using parallelism. In the second phase, it merges all the seg-
ments’ hash values to generate the final hash result, serving
as the unique index for action lookup and management. The
process is listed in Algorithm 1. To minimize the complexity,
the hash functions involved are modular calculation. Since
this process is carried out asynchronously, it does not inter-
ference the normal operation of foreground tasks, thereby
enabling fast action search and reuse without adding extra
overhead.

Based on the index, AMS introduces “virtual action” mecha-
nism that minimizes repeated storage by treating the context
as a series of uniquely numbered actions with independent
reference counts. These actions are stored in a contiguous
area. Each context only keeps track of the actions it needs
by referencing their IDs. When a new context adds an ac-
tion, that action’s reference count increases. When a con-
text is evicted or deleted, its referenced actions each have
their reference count decreased. Any action whose reference
count drops to zero is removed. This design eliminates un-
needed storage overhead and boosts the AMS’s overall reuse
efficiency.

5

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

Algorithm 1 Two-Phase Hashing for Action Index
Require: • Binary input data 𝐵 of length 𝑁 .

• Segment size 𝑠 (number of bytes per segment).
• Hash functions HashFunc1 and HashFunc2.

1: Phase 1: Segment-level Hashing
1. Partition 𝐵 into 𝑘 = ⌈𝑁

𝑠
⌉ segments: 𝐵1, 𝐵2, . . . , 𝐵𝑘 ,

where each 𝐵𝑖 has size 𝑠 bytes (except possibly
the last one, if 𝑁 is not divisible by 𝑠).

2. for 𝑖 = 1 to 𝑘 do
a. ℎ𝑖 ← HashFunc1(𝐵𝑖)
b. Store ℎ𝑖 in a list 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑘]

2: Phase 2: Aggregation
1. Combine all segment-level hashes from 𝐻 using

HashFunc2:
𝐻final ← HashFunc2(ℎ1, ℎ2, . . . , ℎ𝑘)

2. return 𝐻final

Auto Eviction. As stated in §3.2.2, different types of data
occupy memory in different amount and exhibit different ac-
cess frequency. To ensure transparent management of GPU
memory and CPU memory resources, AMS employs a hybrid
cache management strategy that combines least recently
used (LRU) with a priority-based approach, using dynamic
cache eviction to improve resource utilization. Specifically,
AMS keeps a access counter for each vector, storing all vec-
tor on the GPU when sufficient space is available. If GPU
memory becomes scarce, AMS automatically initiates auto-
eviction, giving priority to objects with the smallest effect on
outcomes or the lowest computational cost, and moving the
least-used portion of data back to CPUmemory. For example,
the KV Cache in vision models can be easily recalculated.
The extra cost is less than 10%. When GPU resources are
low, AMS will first evict the KV Cache of vision models. By
balancing data distribution across different tiers and optimiz-
ing the eviction policy, AMS boosts memory efficiency and
overall performance without sacrificing the response speed
and accuracy for robots.

3.3 Action Exception
3.3.1 Exception. During the execution of real robots, er-
rors may occur. Subsequent inference steps of the model
can only correct errors produced by the algorithm in the
model’s output after the current slice has finished executing.
However, some errors that cannot be corrected or addressed
in a timely manner through model inference. We refer to
these errors as exceptions and categorize them into two
types: hardware exceptions and software exceptions. These
two types of exceptions are shown in Table 2.
Hardware Exception. The hardware exception is defined as
the robot’s abnormal mechanical state. Themodel is unaware
of these abnormal mechanical state because it did not take

Table 2. Exception types defined in AMS.

Type Exception

1

Hardware

Collision.
2 Unreachable robot state.
3 Robot crash.
4 Too big torque.
5 Too big angular momentum.

6 Software Not expected action.
7 Software defined condition violation.

such abnormal state as input to model inference. To address
this, AMS monitors the robot’s state at runtime, converting
the robot’s corresponding abnormal state into a hardware
exception and raising it to the model to immediately inter-
rupt the execution. Specifically, when AMS detects that the
physical hardware returns an abnormal state, it immediately
interrupts the remaining actions in the action slice that have
not been executed, stopping the execution of the current
action slice.
Software Exception. Software Exception means the unex-
pected state in the robot’s execution defined by software.
It has larger scope than hardware exception. For example,
when controlling the gripper for grasping, the gripper may
occasionally close without actually gripping anything, re-
sulting in a failed grasp. Although in a complete action slice,
a single failed action may not affect the normal execution
of subsequent actions, continuing to operate after an un-
corrected software exception can further cause hardware
exceptions that are difficult to handle.

Table 3. Example check of software defined condition.

Action Expected Outcomes

Gripper grasping Gripper’s minimum gap exceeds 0.
Move stick Change in the stick’s angle.

Move manipulator Change in the manipulator’s angle.
Apply force Force sensor exceed 0.
Send stop All actuators halt.

Following the principle that each action should produce
an observable effect on the environment, AMS defines a set
of expected outcomes for each action. For example, when
the gripper is grasping, the expected outcome is that the
gripper’s minimum gap exceeds 0. Such expected outcomes
can be rule-based or defined from the LLMs. Examples of the
expected outcomes is shown in Table 3.

However, raising software exception is not as straightfor-
ward as hardware exception since it requires additional time
on the critical path of action to determine whether the ac-
tion is successful or not. If the system performs checks more

6

Leveraging OS-Level Primitives for Robotic Action Management

frequently, the proportion of correct actions will increase;
however, this will also lead to slower operation of the robot.
There is a trade-off between the checking frequency and
accuracy of the action, as shown in Figure 7.

1 2 4 8 16
Sub-slice Length

10

20

30

Co
m

ple
tio

n
Ti

m
e

(s
ec

on
d)

Completion Time
Left Axis

0

10

20

Er
ro

r R
at

e
(%

)

Error Rate
Right Axis

Figure 7. Trade-off between checking frequency and
accuracy of the action.

To address this, AMS introduces a mechanism that divides
the action into smaller sub-slices. After each sub-slice is exe-
cuted, AMS asynchronously checks the environment gathered
at the end of sub-slice to see whether the relevant robot joint
states match the expected states. All output checks only
check whether the action has taken effect, rather than deter-
mining whether the action is semantically correct or meeting
its intended goal. The length of one sub-slice is not always
fixed. Its length is related to the current action intent. If the
robot shows a very large range of movement, AMSwill reduce
the length of the sub-slice. The final length of the sub-slice is
determined to be between 2 to 5 steps. If a sub-slice is judged
to have failed, AMS will immediately raise a software action
exception to the model.

3.3.2 Handler. The exception handler of AMS is used to
recover from the abnormal state of the robotic arm. Due
to the different types of exceptions, AMS will take different
exception handlers. Among these exception handlers, there
are common parts and specific parts.
Common Part. The common part is that AMS immediately
interrupts the execution of the current action slice. AMS im-
mediately collects and updates the current environment data
and sends it to the GPU to start a new inference. Meanwhile,
to prevent previously erroneous actions from polluting fu-
ture operations, AMS discards any sub-slices that have not
yet been executed. It then leverages a newly generated in-
ference result, using the updated environment data to gen-
erate subsequent actions. This approach allows the model
to promptly correct errors and maintain stability and consis-
tency throughout the execution process.
Specific Part. The specific part is that AMS will handle the
exception differently based on the type of exception. For soft-
ware exceptions, AMS just clear the current action slice and

Start State Hardware Exception (#4)

#1: A1+0.5
#2: A2+1.0
#3: A3-0.4

#1: A1+0.3
#2: A2-1.0
#3: A3+0.2

#1: A1+0.9
#2: A2-1.3
#3: A3-0.5

Reset State

Produce
Action Slice

#1: A1-1.6
#2: A2+0.9
#3: A3+0.7

Mechanic
Reset

Figure 8. Robot physical state reset. A1, A2, A3 repre-
sent the different ankle of the model. When synthesizing
action slices, computation is based on robot configuration
and might be different from direct addition. #1, #2, #3 repre-
sent the different action atomization operations.

do not reset the robot power state. For hardware exceptions,
AMS will reset the robot to a safe state first. Then, AMS will
decide whether to restart the robot based on the severity
of the problem and exception number. For example, if the
current action causes too big torque (Exception #4) or too
big angular momentum (Exception #5), AMS will not restart
the robot. If the robot’s mechanical arm collides (Exception
#1), AMS will restart the robot.
However, resetting the robot to a safe state cannot be

achieved by merely recording every movement trajectory
of the robotic arm and rolling back these trajectories, as
the movement paths often contain a significant amount of
redundancy. AMS designs a smaller atomic action unit to
represent the robot’s physical state changes called action
atomization. Different from the traditional action chunk-
ing approach, action atomization limit the action to only 1
degree of freedom (DoF) of the robotic arm and it can de-
construct continuous movements into smaller atomic action
units that represent micro-angular displacements in joint
space and displacement vectors in the coordinate system.
During rolling back, AMS follows he concept of spatial com-
posite vectors to combine these atomic actions into a shorter
action slice. To implement this mechanism, AMS maintains a
buffer on the CPU to record these actions. When the buffer
is full, AMS automatically consolidates all actions into one
action slice. The entire process is shown in Figure 8.

3.4 Action Replay
Considering a long-horizon taskwithmultiple repetitive jobs,
when the model continuously outputs meaningless actions,
AMSwill trigger an replay signal to prevent the inference from
hanging and perform a replay to guide the model to infer
based on previously successful experiences. Different from
traditional operating systems, when meaningless actions are
detected, AMS cannot directly reuse the previous trajectories
to resume execution. This is because the current environment
and the environment in the context are not exactly the same,
which means the steps produced for the last context may
not be valid anymore. To address this, AMS adopts a hybrid

7

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

approach that combines inference with replay, combining
state reset and action regeneration.

3.4.1 Replay Signal. AMS introduces replay signal to in-
dicate the robot is actually hanging and requires additional
control. In the traditional operating system, SIGNAL is trig-
gered to force the kernel to reclaim CPU control and switch
to other processes/tasks. This prevents a single process from
hanging the CPU and exhausting all resources. In robotic
models, sometimes the model do not generate any moving
action for a long time, making the arm keep idle while the
task is not completed. This is similar to the CPU being oc-
cupied by a single process for a long time. Specifically, if all
actions within an action slice are marked as completed, or if
no actions are executed while the task remains unfinished,
AMS will send a replay signal. This prevents the inference
process from hanging indefinitely. Subsequently, AMS incor-
porates a description of the unfinished task into the prompt
and utilizes the vector from the action context in the context
pool as the initial vector for the immediate new inference,
rather than employing a random vector.

3.4.2 ActionRegeneration. AMS uses replay to stopmean-
ingless actions and use previous successful experiences to
guide further inference. However, previous experience can-
not be directly applied due to the changing of the environ-
ment, as well as factors such as the position and orientation
of target objects. When the environment undergoes slight
changes or target object positions shift, action trajectories
that were previously successful are no longer applicable.
To effectively address this issue and enhance the robust-

ness of action replay, AMS employs a guided inference strat-
egy for the action generation using a diffusion-based action
generation model, instead of directly reusing previously suc-
cessful contextual action data as direct output. Specifically,
AMS uses successful action vectors validated through prior
environmental interaction as the initial vector for the cur-
rent action diffusion process, which is equal to performing
an additional inference of diffusion steps based on the exist-
ing context. This method explicitly guides the model during
the initial phase of action generation, making the gener-
ated trajectory more likely to leverage previously effective
action features, thereby increasing success rates in similar
environments that have undergone slight modifications. Ad-
ditionally, to ensure the adjusted action sequence adapts to
changes in the environment and target objects, AMS will also
changes the prompt to include the current environment and
task description. The added prompt will clearly direct the
model to reanalyze the current environment and formulate
new action slice, rather than simply reusing previous conclu-
sions or encoded information.With this enhanced prompting
mechanism, the LLM is able to proactively utilize the cur-
rently perceived state of the environment to re-engage in
inference and action generation.

4 AMS Implementation
AMS is a module within the framework. It contains a static
auto hooking tool and a runtime library. To maintain maxi-
mum compatibility with existing systems and to minimize
interference with the inference process, AMS scans the code
and inserts hook functions to locate the action slice by static
analysis. For the runtime library, AMS include the context
cache, the exception handler, and the replay signal trigger.
We place the whole control logic of AMS on the CPU. For
context manager, we prioritize putting action context on the
GPU. If the GPU context cache runs out of space, AMS evicts
vectors which are less frequently used and have minimal
impact on inference results. For exception handler, AMS will
monitor if the action responded as expected to the action
sent to the robot. If not, AMS will immediately stop sending
further instructions, reset the robot and re-collects environ-
ment data to initiate a new inference. For action replay signal
trigger, when the model finally outputs a stop signal, AMS
will first check whether a replay should be applied. If AMS
requires replay, the replay signal is up. Then, AMS will block
the stop signal and retrieve stored contexts from the context
pool one by one to guide subsequent inferences, helping
avoid workflow disruptions caused by misjudgment or inter-
mediate errors. The whole process is shown in Figure 9.

Vision Model

Language Model
Context Cache (GPU)

Context Cache (CPU)

VLA

Evict
w
hen
full Lo

ad
on
de
m
an
d

Environment

Save
Retrieve

Software
Exception
Checker

Software
Exception
Handler

Hardware Exception
Handler

Replay Monitor

CPU

Give actionSend
Environment

Action

State

Ac
tio
n StateAction

AMS

Figure 9. Implementation of AMS. The AMS system con-
tains several key components: Action context pool manager,
action exception handler and action replay signal trigger
(replay monitor in the figure).

5 Evaluation
To show the performance of AMS, we conducted both real-
world robotics and simulation with the models below. We
seek to answer the following three questions.
• Can AMS accelerate the task completion? (§5.1)
• Can AMS improve the task success rate? (§5.2)
• How does the AMS perform in comparison to tradi-
tional algorithm-based methods? (§5.4)

8

Leveraging OS-Level Primitives for Robotic Action Management

Setup.We selected real-world robotics (JAKA s5 [28]) and
simulation robotics (WidowX [50] in SimplerEnv [37]) as our
testbed. We use three SOTA models, Octo [55], CogACT [36]
and 𝜋0 [2], to evaluate the performance of AMS. To evaluate
the generalization capabilities of the models, these models
are not fine-tuned for our test jobs; instead, they are pre-
trained to adapt to our robotic platforms. We use direct in-
ference without AMS and VLA-Cache [63] as our baseline.
We use three representative tasks from Basic Manipulations
and Multiple Object Interactions of RoboMind dataset [59],
which is consistent with algorithmic solution evaluation [56].
Given that there may be multiple objects on the desk, these
long-horizon tasks can be structured to several repetitive
jobs for different objects.
Metrics. To evaluate the performance and efficiency of AMS,
we report the success rate, average finish step and end-to-
end latency. Success rate refers to the ratio of the number of
times a robot successfully completes a task to the total num-
ber of trials. Average completion step refers to the average
number of action steps required for the robot to successfully
complete a task, excluding the first execution. End-to-end
latency refers to the time required for one successful exe-
cution. It depends on the time taken for each step and the
number of steps required. We set a limit of 1500 steps for
each task, which is twice the size needed to complete a single
task.

π0

Pull
π0

Pick
CogACT

Pick
Octo
Pick

1st operation

0

10

20

30

E
nd

to
en

d
tim

e
(s

)

π0

Pull
π0

Pick
CogACT

Pick
Octo
Pick

2nd operation

0

10

20

30

Direct VLA-Cache AMS

Figure 10. End-to-end efficiency evaluation for the first
and second time execution.

5.1 End-to-end efficiency evaluation
We tested the AMS for end-to-end execution time in both
real-world and simulation scenario. The overall end-to-end
efficiency evaluation is shown in Figure 10.

The total execution time is related to the Actions Per Sec-
ond (APS) metric and the overall number of action steps
required to complete the task. The overall APS is defined as
the minimum value between the maximum hardware APS
of the robot and the APS of the model inference. In practical
scenarios, the hardware APS of the robot is usually lower

than that of the model in most situations. Therefore, enhanc-
ing the model’s APS exerts a lesser influence on the results
compared to reducing the number of action steps. To compre-
hensively evaluate AMS, we measured the execution time for
both the first and second executions of the robotic task. In the
first execution, AMS achieves a modest acceleration, reducing
the execution time by 7% to 15%. This limited improvement
is attributed to the fact that the cache can enhance model
inference but does not decrease the total number of action
steps during the first execution. For the second execution,
AMS shows significant acceleration due to the reused context,
reducing execution time by 29% to 74.4%. This is because the
combination of action context and action interrupt, which
allows for direct use of cached previous context information
during inference and reduces invalid hanging steps.
To show why AMS can accelerate the execution of robot-

ics, we breakdown the performance with the effects of the
number of total steps and the actions per second of AMS.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Action Per Second to Direct Inference.

Smaller is better.

Real-world

Simulation

Direct VLA-Cache AMS

Figure 11. Actions Per Second test. Evaluate the overall
APS of the robotic system with and w/o AMS support.

APS (Actions Per Second) We measured the APS to test
how AMS accelerates individual step inference. The results
are shown in Figure 11. In real-world environments, the in-
herent limitations of hardware in robotic arms restrict the
overall performance. Accelerating model inference speed
has a minimal impact on the actual speed of robotic actions;
therefore, AMS only achieves an average improvement of
5%. In simulation environments or future robots equipped
with higher hardware APS, the acceleration effect achieved
by increasing the model inference APS becomes increas-
ingly significant. AMS demonstrates a 19% improvement in
single-step performance compared to the baseline model,
as it effectively manages the action context, which reduces
redundant computations for the KV cache and latent vectors
in VLA-based robotic models.
The number of steps Another factor that influences end-
to-end efficiency is the total number of action steps. We
conducted steps count for both real-world and simulation
case, and the result is shown in Figure 12 and 13. For the real-
world case, AMS sustains excellent performance compared
to direct inference. In the number of steps needed, the AMS
system reduces the steps by 29% for picking the cubes and

9

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

1 2
(a) Cubes

0

200

400

600

800

Av
er

ag
e

St
ep

s

Direct VLA-Cache AMS

1 2
(b) Cups

0

200

400

1 2
(c) Mixed

0

200

400

Figure 12. Execution steps of 𝜋0 model for different
tasks in real-world scenario. “Cubes” represents picking
all cubes and placing into the bowl. “Cups” represents pulling
down all cups. “Mixed” represents arranging the whole desk
which contains cubes and cups.

1 2
(a) CogACT

0

20

40

60

Av
er

ag
e

St
ep

s

Direct VLA-Cache AMS

1 2
(b) Octo

0

20

40

60

80

Figure 13. Execution steps in the simulation scenario
with CogACT and Octo model for picking the spoons.

74.4% for pulling the cups in the second step compared to a
inference without AMS. Additionally, compared to the first
execution of the task using AMS, the average number of steps
in the second execution decreased by 5.7% for picking up the
cubes and by 20% for pulling the cups. For the simulation
case, AMS also performs significant steps improvement. Com-
pared to the baseline model using direct inference, AMS can
reduce the number of steps required to complete the task by
29% to 45%, and compared to the solution using VLA-cache,
AMS can reduce the number of steps by 28% to 43%. This per-
formance improvement is attributed to the caching and reuse
of the latent vector for VLA models, which enables the ro-
bot’s subsequent actions to align with previous trajectories,
thereby minimizing hanging and disorderly actions.

5.2 Task success rate evaluation
Another important factor affecting the model’s performance
is the task success rate. To evaluate the generalization capa-
bility of repetitive/similar tasks for AMS, we test the robot on
tasks that are both within and outside the training dataset.

In this section, the original model is trained on the manip-
ulation of a single cup or cube, yet it is expected to handle
multiple objects during operation.

In real-world scenarios, the AMS can achieve 7× in success
rate for desk arranging task via picking. It can also achieve
up to 24× increase in accuracy for single-arm movement job
via pulling. As shown in Figure 14, for objects more than
two or for different shaped objects, AMS can still improve the
task success rate significantly.

1 2 3
(a) Cubes

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Direct VLA-Cache AMS

1 2 3
(b) Cups

0

25

50

75

100

1 2 3
(c) Mixed

0

25

50

75

100

Figure 14. Success rates of 𝜋0 model for different tasks
in real-world scenario. “Cubes” represents picking all
cubes and placing into the bowl. “Cups” represents pulling
down all cups. “Mixed” represents arranging the whole desk
which contains cubes and cups.

In simulation environment, the success rate of the task
is not as high as in the real-world environment, but com-
pared to the baseline model using direct inference, AMS still
achieves a 5 to 12× improvement in accuracy, and a 2× per-
formance improvement compared to the baseline model. The
results are shown in Figure 15. We analyzed the execution
process of the task and identified that this drop in success
rate is primarily attributable to two factors. First, the simula-
tion environment is unable to detect all hardware exceptions.
Consequently, AMS cannot promptly trigger an interrupt for
fault actions, which may cause the error propagation. Sec-
ond, the limited space within the simulation environment
increases the interference from other objects during model
inference, in contrast to the real-world environment.

5.3 Case Study: Picking two cubes on the desk
We further conducted a detailed step-level evaluation of
AMS’s performance in object-picking tasks, as illustrated
in Figure 16. Completing the first task, which is picking up
the first small cube, the baseline model and AMS performed
similarly, both successfully accomplishing the task between
steps 1 and 301. At step 361, AMS detected that all actions
in the current action slice were producing no valuable ef-
fects, and AMS immediately triggered an replay signal and
performed a context switch. This process was immediately

10

Leveraging OS-Level Primitives for Robotic Action Management

1 2 3
(a) CogACT

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Direct VLA-Cache AMS

1 2 3
(b) Octo

0

25

50

75

100

Figure 15. Success rates in simulation scenario with
CogACT and Octo model for picking the spoons.

reflected at step 361 as a system reset: the robotic arm re-
turned to its initial position. Subsequently, in the next action
slice, AMS successfully reoriented towards the yellow cube
using the prior action context, allowing the task to continue.
By reusing the action context, AMS can pick up the second
cube more efficiently, requiring fewer action steps compared
to the first pickup. In contrast, the baseline model became
stuck, with no changes in its actions from step 361, unable
to further progress the task, ultimately leading to failure.
Furthermore, when AMS utilized the previous context for
inference, it identified a fault at step 451. AMS promptly in-
terrupted the subsequent actions and executed an exception
handler to revert to step 446, ultimately enabling the suc-
cessful completion of the entire task.

5.4 Comparison with algorithmic solutions
We further compared AMSwith algorithmic solutions, such as
retraining the model to address a greater number of repeated
tasks. Specifically, we evaluated the success rates of AMS
against those achieved by using retrained models to accom-
plish varying numbers of tasks. For single-arm movement
job, AMS is compared with scenarios where the model was
trained to pull down 1, 3 or 6 objects.

The results in Figure 17 show that AMS effectively improves
the model’s ability to generalize when performing repetitive
tasks. When the required number of repetitions exceeds the
maximum included in the training data, the success rate of
the model declines sharply. In the task, the model’s accuracy
decreases from 92% to 16% for the original model or fine-
tuned model (3 objects). The model’s accuracy also decreases
from 96% to 72% for the fine-tuned model with 6 objects.
However, with AMS support, the model’s accuracy only de-
creases by up to 8%, indicating that AMS effectively maintains
the model’s accuracy as the number of repetitions increases.
Furthermore, even when employing the original model (1
object), the AMS demonstrates a higher success rate compared
to the fine-tuned model (6 objects) when attempting to pull

the seventh cube (out of dataset), and a comparable success
rate when pulling the first to sixth cubes (in dataset).

5.5 Ablation Study
To demonstrate the impact of each module on the model’s
final inference results, we conducted an ablation study to
show how different modules affect accuracy and the number
of steps completed.

5.5.1 Performance breakdown. In this part, we will ana-
lyze impact of different parts on AMS. The results are shown
in Figure 18.
For correctness, AMS’s context reuse effectiveness varies

by action type. In “pick and place” tasks, it improves success
by 20%, while in “single-arm movement” tasks, it boosts
success by 48%, quadrupling the original rate. After adding
an action fault mechanism, “pick and place” success rose
by 40%, reaching 5 times the original rate, but “single-arm
movement” only increased to 72% due to already low error
rates for such job. With an action interrupt mechanism, AMS
detects task termination signals and switches context, raising
success rates to 70% for “pick and place” and 92% for “single-
arm movement”, increasing to 7 to 23 ×, respectively.

For efficiency, the main improvement of AMS in real-world
environments comes from reducing the number of steps. The
reduction varies by task. For pick and place tasks (like picking
up cubes or arranging mixed objects), action context can
reduce steps by 10.1%. For single-arm movement tasks (like
pulling down cups), AMS can improve by 20%. This is because
action context can more easily reuse previous experiences
for pull tasks. Adding action exception can further reduce
steps by 24.2% and 40.3%, respectively, while adding action
replay can reduce steps by 29.2% and 74%.

5.5.2 Sensitivity of Replay Signal Threshold. Judging
when the model should replay is an important part for ac-
tion replay. The model does not output whether the current
action is completed. We need to determine whether the cur-
rent model has completed current task based on the current
state of the robotic arm. Therefore, we analyzed various pa-
rameters for raising replay signal and the results are shown
in Table 4. We use a task that involves picking up and placing
balls using a gripper. There are two balls on the table in total
that need to be placed.
We tested that the setting of the replay signal threshold

affects the model’s success rate and average number of steps,
and that the replay signal settings for different physical com-
ponents are not the same. We divided the test into two cat-
egories based on the type of action: joint movement (Case
1-3) and gripper movement (Case 4-6). The setting of the
threshold is not simple, and there is a trade-off between false
positive and false negative. When the model’s threshold is
set too low, it results in a low occurrence of false positives,
but there may be some undetected false negatives. When
the model’s threshold is set too high, it can almost avoid

11

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

Step 1 Step 61 Step 121 Step 181 Step 241 Step 301 Step 361 Step 421 Step 451 Step 481 Step 541 Step 561 Step 580

Step 1 Step 61 Step 121 Step 181 Step 241 Step 301 Step 361 Step 421 Step 481 Step 541 Step 601 Step 661 Step 721
Action Replay Action Exception Picked up.

Empty Pick. Stuck Here.

AMS

Direct

Figure 16. Model output action for “picking all cubes and placing into the bowl” job by model 𝜋0.

Table 4. Sensitivity of action replay signal threshold. “Arm” refers to the rotation angles of each joint in the robotic arm,
which are passed as parameters to control the robotic arm. “Gripper” refers to the minimum distance between the gripper
fingers.

No. Signal Threshold Trial
Success

↑ Average Steps Replay Signal
Arm Gripper 1st↓ 2nd↓ Total False Positive↓ False Negative↓

1 1e-5 1 7 / 10 555.5 (288 - 1387) 523.7 (299 - 1010) 8 0 2
2 1e-4 1 6 / 10 709.57 (304 - 1590) 614 (576 - 602) 37 31 1
3 1e-1 1 6 / 10 482.83 (317 - 654) 449.67 (311 - 601) 40 34 0

4 1e-5 0.5 6 / 10 1129.25 (299 - 1659) 515.8 (353 - 752) 4 3 7
5 1e-5 5 3 / 10 691.28 (277 - 1470) 322.3 (293 - 363) 49 43 0
6 1e-5 10 3 / 10 1283.7 (250 - 3358) 519.6 (354 - 652) 68 61 0

1 2 3 4 5 6 7
Object #

0

25

50

75

100

Su
cc

es
s R

at
e

(%
) w/o AMS (1)

w/o AMS (3)
w/o AMS (6)
w/ AMS (1)
w/ AMS (3)
w/ AMS (6)

Figure 17. Comparison between AMS and algorithm-
based solution in real-world robots.Number in the brack-
ets means the maximum repetition counts of pulling in the
training set.

false negatives, but the occurrence of false positives is high,
which can affect performance and even lead to an up to 50%
decrease in accuracy due to excessive replay action.

6 Discussion
Integrating with LLMs. Currently, AMS uses a numerical
threshold method to determine replay signals. Although this

Pick and
Place

Single-arm
Movement

Higher is better

0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

Direct Inference
+Context

+Context+Exception
+Context+Exception+Replay (AMS)

Pick and
Place

Single-arm
Movement

Lower is better

0

200

400

600

Av
er

ag
e

St
ep

s

Figure 18. Impact on success rate and average steps of
AMS. “Single-arm movement” is pulling down the cups.

approach is straightforward and effective, it still demands sig-
nificant human effort for setup and calibration. In the future,
we plan to integrate AMSwith LLMs to automatically identify
and add new action exception event classifications. Such
integration requires no change to AMS. Specifically, AMS will
utilize LLMs and MLLMs during action to intelligently fuse

12

Leveraging OS-Level Primitives for Robotic Action Management

multi-sensor data and semantic information, allowing for
real-time judgment and decision-making on replay signals.
Context Transfer capability. Relying on context alone
doesn’t help with unfamiliar tasks due to the crucial role of
LLM and ViTs mapping in fine-tuning. Without a unified
representation for new visual inputs and language instruc-
tions, the model struggles with unseen tasks. While AMS
successfully enhances overall capabilities in long-horizon
known tasks, improving performance on previously unseen
scenarios demands targeted algorithmic modifications.
Resource Limitation. AMS doesn’t significantly raise compu-
tational costs during inference because it only caches inter-
mediate states, needing no more memory than a single infer-
ence. More GPU memory allows us to store additional action
sequences, enhancing efficiency by quick action reuse. Lim-
ited GPU memory might prompt extra CPU-GPU data trans-
fers over PCIe, but these have minimal impact. As shown
in Figure 2, a single inference takes roughly 200 millisec-
onds, whereas executing these action takes about 1 second.
Therefore, the PCIe transfer delay is negligible and unlikely
to affect overall task performance.

7 Related Work
VLA Acceleration. VLA-Cache [63] accelerate inference by
reusing similar vectors from similar inputs. PD-VLA [54]
uses parallel decode with mathematical properties to accel-
erate VLA inference. FAST [47] accelerates VLA training
by using a new form of action tokenization and transform
the training to auto-regressive training. RoboMamba [42]
reduces the complexity of model by adapting Mamba [21] to
robotics. TinyVLA [58] introduces compat vision-language-
action model to reduce the calculation size. QAIL [46] and
quantization [41] reduce the robotic model size by quantizing
the model weights. Deer-vla [65] adjusts depth during infer-
ence to reduce redundant computation. Token-pruning [5,
72] prunes the tokens to reduce the inference time. Sparse-
VLM [69] uses sparsity to reduce the computation. OFT [34]
enhances inference efficiency and policy performance by us-
ing a new form of fine-tuning. Actra [43] gives an optimized
Transformer architecture to reduce the computation.
Robotic Generalization. Some work [10, 16, 62] introduce
agent to improve the generalization ability of robotic mod-
els. Some work [10, 51, 53] adds interactive environment
to enhance the robot action in unseen states. Papras [33]
designs a plug-and-play system for robot arm system to en-
hance the ability across different arms. BC-Z [30] introduces
zero-shot task generalization method for robotic imitation
learning by algorithm. Perceiver [52] designs a multi-task
transformer for robotic manipulation. Copa [26], Rise [56]
and Rh20t [14] use spatial constraints to improve generaliza-
tion. RST [40] designed another data generalization method
by self-teaching. Some work [12, 27, 39] optimize the diffu-
sion policy to make it more robust.

8 Conclusion
This paper introduces AMS, enhancing robotic efficiency and
success rate via OS-level primitives. It uses action excep-
tion for quick action interruption, action context to avoid
redundant computations, and action replay for effortless rep-
etition. Evaluations reveal AMS boosts performance by 7-24
× compared to the robotic system without AMS support.

References
[1] Adilzhan Adilkhanov, Amir Yelenov, Assylkhan Seitzhanov, Ayan

Mazhitov, Azamat Abdikarimov, Danissa Sandykbayeva, Daryn Ken-
zhebek, Dinmukhammed Mukashev, Ilyas Umurbekov, Jabrail Chu-
makov, et al. 2025. Survey on Vision-Language-Action Models. arXiv
preprint arXiv:2502.06851 (2025).

[2] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael
Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman,
Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch,
Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Hao-
huan Wang, and Ury Zhilinsky. 2024. 𝜋0: A Vision-Language-Action
Flow Model for General Robot Control. arXiv:2410.24164 [cs.LG]
https://arxiv.org/abs/2410.24164

[3] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar,
Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Jasmine Hsu, et al. 2022. Rt-1: Robotics transformer
for real-world control at scale. arXiv preprint arXiv:2212.06817 (2022).

[4] Joao Carvalho, A Le, Piotr Kicki, Dorothea Koert, and Jan Peters.
2024. Motion planning diffusion: Learning and adapting robot motion
planningwith diffusionmodels. arXiv preprint arXiv:2412.19948 (2024).

[5] Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang
Zhou, and Baobao Chang. 2024. An image is worth 1/2 tokens after
layer 2: Plug-and-play inference acceleration for large vision-language
models. In European Conference on Computer Vision. Springer, 19–35.

[6] Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun
Fu, Fukun Yin, Billzb Wang, Jingyi Yu, Gang Yu, et al. 2024. Meshxl:
Neural coordinate field for generative 3d foundation models. Advances
in Neural Information Processing Systems 37 (2024), 97141–97166.

[7] Shizhe Chen, Ricardo Garcia, Cordelia Schmid, and Ivan Laptev. 2023.
Polarnet: 3d point clouds for language-guided robotic manipulation.
arXiv preprint arXiv:2309.15596 (2023).

[8] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Ben-
jamin Burchfiel, Russ Tedrake, and Shuran Song. 2023. Diffusion
policy: Visuomotor policy learning via action diffusion. The Interna-
tional Journal of Robotics Research (2023), 02783649241273668.

[9] Suhyung Choi, Youngseok Joo, Jun Ki Lee, and Byoung-Tak Zhang.
2025. Mixture of Action Expert Embeddings: Multi-Task ACT. (2025).

[10] Sharmita Dey. 2025. Redefining Robot Generalization Through Inter-
active Intelligence. arXiv preprint arXiv:2502.05963 (2025).

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. arXiv:2010.11929 [cs.CV]
https://arxiv.org/abs/2010.11929

[12] Oluwami Dosunmu-Ogunbi, Aayushi Shrivastava, and JessyWGrizzle.
2024. Demonstrating a Robust Walking Algorithm for Underactuated
Bipedal Robots in Non-flat, Non-stationary Environments. In 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 11210–11217.

[13] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, et al. 2023. Palm-e: An embodied multimodal

13

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

Wenxin Zheng, Boyang Li, Bin Xu, Erhu Feng, Jinyu Gu, Haibo Chen

language model. (2023).
[14] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang,

Junbo Wang, Haoyi Zhu, and Cewu Lu. 2024. Rh20t: A comprehensive
robotic dataset for learning diverse skills in one-shot. In 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
653–660.

[15] Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar,
Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran Song, Ashish Kapoor, Karol
Hausman, et al. 2023. Foundation models in robotics: Applications,
challenges, and the future. The International Journal of Robotics Re-
search (2023), 02783649241281508.

[16] Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque,
Weihao Zeng, Wei Wang, Jingang Wang, Xunliang Cai, and Weiran
Xu. 2025. AgentRefine: Enhancing Agent Generalization through
Refinement Tuning. arXiv preprint arXiv:2501.01702 (2025).

[17] Zipeng Fu, Tony Z Zhao, and Chelsea Finn. 2024. Mobile aloha: Learn-
ing bimanual mobile manipulation with low-cost whole-body teleop-
eration. arXiv preprint arXiv:2401.02117 (2024).

[18] Abraham George and Amir Barati Farimani. 2023. One act play: Single
demonstration behavior cloning with action chunking transformers.
arXiv preprint arXiv:2309.10175 (2023).

[19] Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina
Fragkiadaki. 2023. Act3d: 3d feature field transformers for multi-task
robotic manipulation. arXiv preprint arXiv:2306.17817 (2023).

[20] Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter
Fox. 2023. Rvt: Robotic view transformer for 3d object manipulation.
In Conference on Robot Learning. PMLR, 694–710.

[21] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling
with selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[22] Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel, Makarand
Tapaswi, Ivan Laptev, and Cordelia Schmid. 2023. Instruction-driven
history-aware policies for robotic manipulations. In Conference on
Robot Learning. PMLR, 175–187.

[23] Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang,
Yucheng Hu, and Jianyu Chen. 2025. Improving Vision-Language-
Action Model with Online Reinforcement Learning. arXiv preprint
arXiv:2501.16664 (2025).

[24] HuyHa, Pete Florence, and Shuran Song. 2023. Scaling up and distilling
down: Language-guided robot skill acquisition. In Conference on Robot
Learning. PMLR, 3766–3777.

[25] Zhi Hou, Tianyi Zhang, Yuwen Xiong, Haonan Duan, Hengjun Pu,
Ronglei Tong, Chengyang Zhao, Xizhou Zhu, Yu Qiao, Jifeng Dai,
et al. 2025. Dita: Scaling Diffusion Transformer for Generalist Vision-
Language-Action Policy. arXiv preprint arXiv:2503.19757 (2025).

[26] Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang
Gao. 2024. Copa: General robotic manipulation through spatial con-
straints of parts with foundationmodels. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 9488–9495.

[27] Yutaro Ishida, Yuki Noguchi, Takayuki Kanai, Kazuhiro Shintani, and
Hiroshi Bito. 2024. Robust Imitation Learning for Mobile Manipulator
Focusing on Task-Related Viewpoints and Regions. In 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
2885–2892.

[28] JAKA. 2025. JAKA Robots. https://www.jaka.com/en/index [Online;
accessed 2025-04-18].

[29] Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J Davi-
son. 2022. Coarse-to-fine q-attention: Efficient learning for visual
robotic manipulation via discretisation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13739–13748.

[30] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert,
Corey Lynch, Sergey Levine, and Chelsea Finn. 2022. Bc-z: Zero-shot
task generalization with robotic imitation learning. In Conference on
Robot Learning. PMLR, 991–1002.

[31] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine.
2022. Planning with diffusion for flexible behavior synthesis. arXiv
preprint arXiv:2205.09991 (2022).

[32] Kai Jiang and Jiaxing Huang. 2024. A Survey on Vision Autoregressive
Model. arXiv preprint arXiv:2411.08666 (2024).

[33] Joohyung Kim, Dhruv C Mathur, Kazuki Shin, and Sean Taylor.
2023. Papras: Plug-and-play robotic arm system. arXiv preprint
arXiv:2302.09655 (2023).

[34] Moo Jin Kim, Chelsea Finn, and Percy Liang. 2025. Fine-tuning vision-
language-action models: Optimizing speed and success. arXiv preprint
arXiv:2502.19645 (2025).

[35] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin
Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam,
Pannag Sanketi, et al. 2024. Openvla: An open-source vision-language-
action model. arXiv preprint arXiv:2406.09246 (2024).

[36] Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao,
Fangyun Wei, Yu Deng, Sicheng Xu, Yizhong Zhang, et al. 2024.
Cogact: A foundational vision-language-action model for synergiz-
ing cognition and action in robotic manipulation. arXiv preprint
arXiv:2411.19650 (2024).

[37] Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich
Walke, Chuyuan Fu, Ishikaa Lunawat, Isabel Sieh, Sean Kirmani,
Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan Vuong, and
Ted Xiao. 2024. Evaluating Real-World Robot Manipulation Policies
in Simulation. arXiv preprint arXiv:2405.05941 (2024).

[38] Xiang Li, Cristina Mata, Jongwoo Park, Kumara Kahatapitiya,
Yoo Sung Jang, Jinghuan Shang, Kanchana Ranasinghe, Ryan Burgert,
Mu Cai, Yong Jae Lee, et al. 2024. Llara: Supercharging robot learn-
ing data for vision-language policy. arXiv preprint arXiv:2406.20095
(2024).

[39] Yinghui Li, Jinze Wu, Xin Liu, Weizhong Guo, and Yufei Xue. 2024.
Experience-Learning Inspired Two-Step Reward Method for Efficient
Legged Locomotion Learning Towards Natural and Robust Gaits. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 13297–13302.

[40] Yunfei Li, Ying Yuan, Jingzhi Cui, Haoran Huan, Wei Fu, Jiaxuan Gao,
Zekai Xu, and Yi Wu. 2024. Robot Generating Data for Learning Gen-
eralizable Visual Robotic Manipulation. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 5813–5820.

[41] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Guangxuan Xiao,
and Song Han. 2025. AWQ: Activation-aware Weight Quantization
for On-Device LLM Compression and Acceleration. GetMobile: Mobile
Computing and Communications 28, 4 (2025), 12–17.

[42] Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou,
Pengju An, Senqiao Yang, Renrui Zhang, Yandong Guo, and Shang-
hang Zhang. 2024. Robomamba: Multimodal state space model
for efficient robot reasoning and manipulation. arXiv preprint
arXiv:2406.04339 (2024).

[43] Yueen Ma, Dafeng Chi, ShiguangWu, Yuecheng Liu, Yuzheng Zhuang,
Jianye Hao, and Irwin King. 2024. Actra: Optimized transformer ar-
chitecture for vision-language-action models in robot learning. arXiv
preprint arXiv:2408.01147 (2024).

[44] Cheng Pan, Kai Junge, and Josie Hughes. 2024. Vision-language-action
model and diffusion policy switching enables dexterous control of an
anthropomorphic hand. arXiv preprint arXiv:2410.14022 (2024).

[45] J Hyeon Park, Wonhyuk Choi, Sunpyo Hong, Hoseong Seo, Joonmo
Ahn, Changsu Ha, Heungwoo Han, and Junghyun Kwon. 2024. Hi-
erarchical Action Chunking Transformer: Learning Temporal Multi-
modality from Demonstrations with Fast Imitation Behavior. In 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 12648–12654.

[46] Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang,
Byeongwook Jeon, Yoonseon Oh, and Jungwook Choi. 2024.
Quantization-Aware Imitation-Learning for Resource-Efficient

14

https://www.jaka.com/en/index

Leveraging OS-Level Primitives for Robotic Action Management

Robotic Control. arXiv preprint arXiv:2412.01034 (2024).
[47] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair,

Quan Vuong, Oier Mees, Chelsea Finn, and Sergey Levine. 2025. Fast:
Efficient action tokenization for vision-language-action models. arXiv
preprint arXiv:2501.09747 (2025).

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Language Supervision.
arXiv:2103.00020 [cs.CV] https://arxiv.org/abs/2103.00020

[49] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet:
Learning deep 3d representations at high resolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 3577–
3586.

[50] Trossen Robotics. 2025. Trossen Robotics. https://www.
trossenrobotics.com/ [Online; accessed 2025-04-18].

[51] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language agents
with verbal reinforcement learning. Advances in Neural Information
Processing Systems 36 (2023), 8634–8652.

[52] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2023. Perceiver-actor:
A multi-task transformer for robotic manipulation. In Conference on
Robot Learning. PMLR, 785–799.

[53] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk,
Adam Trischler, and Matthew Hausknecht. 2020. Alfworld: Align-
ing text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768 (2020).

[54] Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao,
Zhide Zhong, ZongyuanGe, JunMa, andHaoang Li. 2025. Accelerating
Vision-Language-Action Model Integrated with Action Chunking via
Parallel Decoding. arXiv preprint arXiv:2503.02310 (2025).

[55] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin
Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles
Xu, et al. 2024. Octo: An open-source generalist robot policy. arXiv
preprint arXiv:2405.12213 (2024).

[56] Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. 2024. Rise:
3d perception makes real-world robot imitation simple and effective.
In 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2870–2877.

[57] Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi
Zhou, Chengmeng Li, Xiaoyu Liu, Yaxin Peng, Chaomin Shen, et al.
2024. Diffusion-VLA: Scaling Robot Foundation Models via Unified
Diffusion and Autoregression. arXiv preprint arXiv:2412.03293 (2024).

[58] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun
Wu, Zhiyuan Xu, Ning Liu, Ran Cheng, Chaomin Shen, et al. 2025.
Tinyvla: Towards fast, data-efficient vision-language-action models
for robotic manipulation. IEEE Robotics and Automation Letters (2025).

[59] Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju,
Zhuqin Yang, Meng Li, Yinuo Zhao, Zhiyuan Xu, Guang Yang, et al.
2024. Robomind: Benchmark on multi-embodiment intelligence nor-
mative data for robot manipulation. arXiv preprint arXiv:2412.13877
(2024).

[60] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang
Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2025.
The rise and potential of large language model based agents: A survey.
Science China Information Sciences 68, 2 (2025), 121101.

[61] Shenghao Xie, Wenqiang Zu, Mingyang Zhao, Duo Su, Shilong Liu,
Ruohua Shi, Guoqi Li, Shanghang Zhang, and Lei Ma. 2024. Towards
Unifying Understanding and Generation in the Era of Vision Foun-
dation Models: A Survey from the Autoregression Perspective. arXiv
preprint arXiv:2410.22217 (2024).

[62] Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang,
Ke Wang, Cheng Li, Wei Peng, and Sujian Li. 2024. Watch every step!
llm agent learning via iterative step-level process refinement. arXiv

preprint arXiv:2406.11176 (2024).
[63] Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and

Chang Xu. 2025. VLA-Cache: Towards Efficient Vision-Language-
Action Model via Adaptive Token Caching in Robotic Manipulation.
arXiv preprint arXiv:2502.02175 (2025).

[64] Xinyu Xu, Yizheng Zhang, Yong-Lu Li, Lei Han, and Cewu Lu. 2024.
Humanvla: Towards vision-language directed object rearrangement
by physical humanoid. arXiv preprint arXiv:2406.19972 (2024).

[65] Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji
Song, Jiashi Feng, and Gao Huang. 2024. Deer-vla: Dynamic inference
of multimodal large language models for efficient robot execution.
Advances in Neural Information Processing Systems 37 (2024), 56619–
56643.

[66] Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He, Ying
Yuan, Xue Bin Peng, and Jiajun Wu. 2024. Generalizable humanoid
manipulation with improved 3d diffusion policies. arXiv preprint
arXiv:2410.10803 (2024).

[67] Jianke Zhang, Yanjiang Guo, Yucheng Hu, Xiaoyu Chen, Xiang Zhu,
and Jianyu Chen. 2025. UP-VLA: A Unified Understanding and Pre-
diction Model for Embodied Agent. arXiv preprint arXiv:2501.18867
(2025).

[68] Xinyu Zhang, Yuhan Liu, Haonan Chang, Liam Schramm, and Ab-
deslam Boularias. 2025. Autoregressive action sequence learning for
robotic manipulation. IEEE Robotics and Automation Letters (2025).

[69] Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang,
Kuan Cheng, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt
Keutzer, et al. 2024. Sparsevlm: Visual token sparsification for efficient
vision-language model inference. arXiv preprint arXiv:2410.04417
(2024).

[70] Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang,
Yecheng Wu, Zhaoshuo Li, Qianli Ma, Song Han, Chelsea Finn, et al.
2025. CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-
Language-Action Models. arXiv preprint arXiv:2503.22020 (2025).

[71] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. 2023.
Learning fine-grained bimanual manipulation with low-cost hardware.
arXiv preprint arXiv:2304.13705 (2023).

[72] Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang,
Gao Huang, Fan Wang, and Yang You. 2024. Dynamic tuning towards
parameter and inference efficiency for vit adaptation. arXiv preprint
arXiv:2403.11808 (2024).

[73] Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan,
Yilun Du, Yining Hong, and Chuang Gan. 2024. 3d-vla: A 3d
vision-language-action generative world model. arXiv preprint
arXiv:2403.09631 (2024).

15

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://www.trossenrobotics.com/
https://www.trossenrobotics.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Large Models in Robotics
	2.2 Current Limitation in VLA-based Robotic Models

	3 AMS Designs
	3.1 Key Insight
	3.2 Action Context
	3.3 Action Exception
	3.4 Action Replay

	4 AMS Implementation
	5 Evaluation
	5.1 End-to-end efficiency evaluation
	5.2 Task success rate evaluation
	5.3 Case Study: Picking two cubes on the desk
	5.4 Comparison with algorithmic solutions
	5.5 Ablation Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References

