
Serialization/Deserialization-free State Transfer in Serverless
Workflows

Fangming Lu1 Xingda Wei1,2 Zhuobin Huang† 3 Rong Chen1,2 Minyu Wu1,2 Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai Artificial Intelligence Laboratory 3 University of Electronic Science and Technology of China

Abstract
Serialization and deserialization play a dominant role in the state
transfer time of serverless workflows, leading to substantial perfor-
mance penalties during workflow execution. We identify the key
reason as a lack of ability to efficiently access the (remote) mem-
ory of another function. We propose RMMAP, an OS primitive for
remote memory map. It allows a serverless function to directly ac-
cess the memory of another function, even if it is located remotely.
RMMAP is the first to completely eliminates serialization and dese-
rialization when transferring states between any pairs of functions
in (unmodified) serverless workflows. To make remote memory map
efficient and feasible, we co-design it with fast networking (RDMA),
OS, language runtime, and serverless platform. Evaluations using
real-world serverless workloads show that integrating RMMAP with
Knative reduces the serverless workflow execution time on Knative
by up to 2.6× and improves resource utilizations by 86.3%.

ACM Reference Format:
Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Minyu Wu, and
Haibo Chen. 2024. Serialization/Deserialization-free State Transfer in Server-
less Workflows. In European Conference on Computer Systems (EuroSys ’24),
April 22–25, 2024, Athens, Greece. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3627703.3629568

1 Introduction
Serverless computing is an emerging cloud computing paradigm
widely adopted by major vendors including AWS Lambda [24],
Microsoft Azure Functions [61], Alibaba Serverless Application
Engine [29] and Huawei Cloud Functions [40]. The basic unit of
serverless computing is the function, which is user code that can be
executed elastically by the platform. These functions can be com-
bined into a workflow to simplify the development of complex appli-
cations. The workflow is usually represented by a directed acyclic
graph (DAG) that specifies the execution dependencies between
functions.

† Work done while intern at Institute of Parallel and Distributed Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629568

To improve resource isolation, management, and deployment,
each function is executed in separate containers, which unfortu-
nately introduces performance penalties for state transfer in server-
less workflows. State transfer involves passing the computed state
of one function (producer) to the next function (consumer) in the
workflow. Because functions are isolated in containers, they cannot
directly transfer state using traditional shared memory, as in a normal
program. Instead, they must rely on message passing (Messaging)
or distributed storage systems (Storage), which have been shown to
account for up to 95% of the workflow execution [38, 50].

Reducing the cost of messaging or storage is challenging due to
the involvement of serialization and deserialization—(de)serialization.1

Specifically, serialization will transform the state (e.g., a Python ob-
ject) at the producer into a byte array that can be transferred through
the network (or stored in a storage). After the byte array is received
by the consumer, deserialization will reconstruct the object from
it. Our analysis (§2.3) revealed that both processes have non-trivial
computation and memory copy overheads: they occupy 42–98%
and 17–97% of the time during state transfer in real-world server-
less workflows (§2.3). The high cost can be attributed to two rea-
sons. First, serverless workflows are typically written in high-level
languages like Python [31], which means they often transfer com-
plex runtime objects. Unfortunately, complex objects have a high
(de)serialization cost. For example, serializing a 3.2 MB Python pan-
das dataframe object needs transform 401,839 sub-objects to gener-
ate the byte array, which takes 10 ms. Second, functions are typically
ephemeral. Lambda@Eedge has reported that 67% of its functions
run in less than 20 ms [31]. Thus, the overhead of (de)serialization
cannot be amortized by long-running functions.

Previous work that focuses on optimizing state transfer has largely
ignored the cost of (de)serialization [22, 49, 50, 56, 67, 79]. , which
is non-optimal. A few works eliminate (de)serialization in a re-
stricted setting, i.e., when producer and consumer run on the same
machine [50, 67]. Such a constraint is not suitable for serverless
computing because first, it restricts the maximum number of concur-
rently running functions on a single machine, since a single machine
has limited resources. Second, it may result in resource underutiliza-
tion, because we have to allocate functions from the same workflow
to a single machine, even if that machine is overloaded while others
remain idle. Unfortunately, relaxing such a constraint is non-trivial.
When running producer and consumer functions on the same ma-
chine, they are only isolated by the OS, so we can leverage existing
OS primitives (e.g., shared memory) to share state. However, when
running them on different machines, current OS lacks the ability to
directly share memory between machines.

1We use the term “(de)serialization” to refer to both serialization and deserialization.

https://doi.org/10.1145/3627703.3629568
https://doi.org/10.1145/3627703.3629568

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

In this paper, we present a systematic approach that eliminates
(de)serialization when transferring states between any pairs of func-
tions. The key observation is that as long as the consumer can
directly access the memory of the producer, we no longer need
(de)serialization to transform and reconstruct the object. The pro-
ducer only needs to send a pointer of the state to the consumer,
which is extremely efficient. Based on this observation, we propose
RMMAP: an OS primitive that can map the memory of the remote
producer container into the address space of the consumer container.
If the consumer accesses the pointer of the producer’s state (includ-
ing the pointers pointed by the state), the OS will transparently read
the mapped physical page from the producer machine.

Although the insights behind RMMAP are simple, we need to
address the following challenges to make it feasible for serverless
workflows (§3.1). First, how to efficiently read remote pages on the
OS? Transferring a 4 KB page with messaging is slow. Meanwhile,
if the state is scattered over the memory space of the producer, we
need multiple network roundtrips to read it, causing network am-
plification. To this end, we adopt a hardware-software co-designed
approach for better performance. First, we leverage RDMA (§4.1), a
modern data center networking feature that is capable of offloading
remote page reads to the hardware with high throughput and low
latency. Our co-design fully utilizes RDMA’s one-sided primitive
for high-performance remote paging. Second, we design a semantic-
aware prefetch scheme (§4.4), which precisely prefetches all the
pages of the state in one batched network request without network
amplification.

Second, the remote memory space of the producer may conflict
with the local space of the consumer, particularly when the consumer
needs to read states from multiple producers. A simple solution is to
map the remote memory to a new address space. This is incorrect
because the pointers in the remote memory space may have self-
references. RMMAP plans the address spaces of function containers
to prevent conflicts (§4.2). This is based on the observation that
the serverless platform is aware of the execution dependencies of
containers based on the dependencies of functions.

Finally, serverless functions are commonly written in high-level
languages such as Python or Java [31]. However, existing language
runtimes are unaware of RMMAP, which lacks a mechanism to
manage cross-address space objects. We propose an efficient re-
mote object management scheme for using RMMAP in serverless
functions (§4.3).

We have implemented RMMAP in Linux and extended Python
and Java—the dominating languages for serverless computing [31]
to incorporate it. To demonstrate the effectiveness, we deploy our
augmented OS and runtime on Knative, and further extend it to
support RMMAP-aware workflow execution. On Knative, RMMAP

improves the performance of representative serverless workflows
including financial regulation and machine learning tasks by 1.4–
2.6×. Under the same client request rate, it further reduces the
Knative resources to run workflows by up to 86.3%.

Efficiently eliminating (de)serialization in serverless computing
is not an easy task. Our journey towards developing RMMAP reveals
that a co-design of RDMA, OS, language runtime, and serverless
platform is necessary. This is because traditional software stacks
are not designed for (de)serialization-free execution, and traditional
networking primitives are not efficient enough for remote memory

Run
AuditRule

Merge
Results

def FetchPrivateData():
 import pandas as pd
 return pd.read_excel(...)

def RunAuditRule(rule, pd_data):
 rule(pd_data)

Fetch
PrivateData

Fetch
PublicData

> 200 rules

Figure 1. An illustration of a real-world serverless workflow [2].

accesses. One might wonder whether such a co-design is suitable
for serverless workflows, i.e., how easily they can benefit from our
approach. We believe that RMMAP is feasible because unmodified
serverless applications can seamlessly enjoy the performance ben-
efits provided by RMMAP, resulting in significant reductions in
execution time.

Contributions. Our highlighted contributions are:
• Problem: A detailed analysis of the serialization and deserializa-

tion costs in serverless workflows (§2).
• RMMAP: An efficient OS primitive that can map the memory of

a remote container to a local one with RDMA, plus a scheme to
incorporate this primitive into serverless platforms and language
runtimes to eliminate the need of (de)serialization in serverless
workflows (§4).

• Demonstration: An implementation on Linux, Python, Java and
Knative with extensive evaluations on real-world serverless work-
flows that confirm RMMAP’s efficacy (§5).

The source code of RMMAP is available at https://github.com/
ProjectMitosisOS/dmerge-eurosys24-ae.

2 Background and Motivation
2.1 Serverless computing and serverless workflow
Serverless function. Serverless computing simplifies building and
deploying cloud applications: Developers only need to write appli-
cations as functions in a high-level programming language (e.g.,
Python [31], Java [64]), upload these functions to the cloud vendors
(via containers), and specify how to invoke them. Upon invocations,
the cloud platform automatically manages the deployment of each
function, including resource allocation scaling, and load balancing.
Thus, serverless computing relieves developers from deploying and
managing containers to run functions, and scaling these resources in
case of workload increases.

Serverless workflow. A single function typically cannot encap-
sulate a complex application. Thus, serverless frameworks further
allow developers to compose multiple functions into a workflow (e.g.
AWS Step Functions [8]), where the workflow is abstracted as a
directed acyclic graph (DAG). In the DAG, each node corresponds to
one serverless function, while edges represent how states are trans-
ferred between functions. For example,A→B signifies that the return
value of function A is the input to B2. Without losing generality, we
term the function that produces the state producer (e.g., A) and the
function that consumes the state consumer (e.g., B).

To coordinate the execution of different functions, i.e., function B
must be called after function A returns. The coordination is typically

2We may use the function name to refer to its hosting container in this paper.

https://github.com/ProjectMitosisOS/dmerge-eurosys24-ae
https://github.com/ProjectMitosisOS/dmerge-eurosys24-ae

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

path = 'foo.xlsx'

def FetchPrivateData():
 import pandas as pd
 return pd.read_excel(path, ...)

data = fetchPrivateData()
bytes = data.serialize()
coordinator.send(bytes)

5
6
7

1
2
3
4

def RunAuditRule(rule, pd_data):
 rule(pd_data)

bytes = coordinator.recv()
data = bytes.deserialize()
runAuditRule(..., data)

10
11
12

8
9

Se
rv
er
le
ss
 r
un
ti
me
 c
od
e

(h
id
de
n
fr
om
 t
he
 d
ev
el
op
er
s)

(a) State transfer with message passing

1
2

3

{

{

Run
AuditRule

Fetch
PrivateData

Coordinator

Pod0

Pod1

1

3

2

{

Coordination
message

path = 'foo.xlsx'

def FetchPrivateData():
 import pandas as pd
 data = pd.read_excel(path, ...)
 bytes = data.serialize()
 s3.fput_object(..., bytes)

data = fetchPrivateData()
s3.fput_object(bytes)

7
8

1
2
3
4
5
6

def RunAuditRule(rule):
 bytes = s3.fget_object(...)
 data = bytes.deserialize()
 rule(data)

_ = coordinator.rev()
runAuditRule(...)

13
14

9
10
11
12

(b) State transfer with shared storage

1
2

3

Run
AuditRule

Fetch
PrivateData

Coordinator

Pod0

Pod1

1

3

2

{

Storage(e.g., S3)

Invoke Invoke Invoke Invoke

Serialized
state

Figure 2. An overview of state transfer between two functions using (a) messaging and (b) shared storage. Functions are executed in containers at each
machine (pod). The serverless runtime code will be called after receiving the coordinator message.

done by a central component we term coordinator (e.g., broker in
Knative [15]).

Motivating example: FINRA. Figure 1 shows a real-world server-
less workflow from AWS Lambda [2]. It is a financial application
that validates trades based on different sources of data. The workflow
has four types of functions: two functions to prepare the input data
(FetchPrivateData and FetchPublicData), one function
to validate the data (RunAuditRule), and one to collect the vali-
dation results (MergeResults). Note that a single function type
can be concurrently invoked, e.g., FINRA will concurrently invoke
more than 200RunAuditRules to validate different rules concur-
rently [12]. Different types of functions may have dependencies.
For example, FetchPrivateData will prepare the fetched data
to a Python pandas dataframe [17] to simplify RunAuditRule
processing [50].

2.2 State transfer in serverless workflows

As we have mentioned in §1, existing systems have to deploy heavy-
weight mechanisms, namely, message passing and shared storage,
to transfer states between functions that run in different containers.

State sharing in serverless workflows. More specifically, Figure 2
illustrates how existing serverless functions share states with mes-
sage passing and shared storage. Without losing generality, we only
consider two instances of function that need state transfer, i.e., one
FetchPrivateData (producer) and one RunAuditRule (con-
sumer) described in our motivating example. Note that how the
function is invoked with the help of the coordinator is typically hid-
den from the developers through serverless framework code (e.g.,
Line 5–7 in Figure 2 (a)).

• Message passing (Messaging). As shown in Figure 2 (a), different
functions share states by piggybacking states in the messages
exchanged with the coordinator. The framework first uses a serial-
ization tool (e.g., pickle [18] in Python) to generate the message
from the object (❶). After receiving the message, the framework
will further deserialize the message (❸) with the same tool to
reconstruct the object. An important feature of messaging is that
the message exchanged has a long execution path (❷): it will
pass multiple components (e.g., gateways) before reaching the
coordinator (and vice verse). As a result, sending a large message
will significantly slowdown the workflow execution.

Figure 3. Analysis of the state transfer costs in representative serverless
workflows: (a) using messaging and (b) shared storage. Func: function
execution time, Ratio: the ratio of time of state transfer in the end-to-end
time.

• Shared storage (Storage). Since sending large data with messag-
ing is slow, the platform typically limits the maximum payload,
e.g., 256 KB in AWS [25]. For large states, functions need to trans-
fer them with shared storage (e.g., S3 [3]). As shown in Figure 2
(b), the FetchPrivateData will first serialize the data into a
file (❶) and upload it to the storage (❷). On the RunAuditRule
side, it will read the file, deserialize the state from the file(❸) and
finally execute the function. Note that, unlike messaging, trans-
ferring state with storage typically requires additional coding and
configuration, as the storage is not free.

2.3 Analysis of the costs in serverless workflow
Figure 3 shows the breakdown of the state transfer costs to the end-
to-end latency of representative realistic serverless workflows.3 We
deploy workflows on Knative [15], a state-of-the-art open-source
serverless platform. For messaging, functions use cloudevents [10]—
the default messaging primitive of Knative. For shared storage, we
deploy Pocket [49], a state-of-the-art storage system for serverless
computing. We pre-warm the evaluated functions to rule out interfer-
ence from coldstart. We can see that the state transfer takes 42–98%
and 17–97% of the workflow execution time for message passing
and shared storage, respectively. We have identified the following
major sources of costs:

Source #1. Platform overhead. The time required for the coordi-
nator to invoke functions, as well as the time needed to schedule
the functions for execution, accounts for 0.6–44% of the overall

3 Detailed setups are listed in §5.1.

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

def A():
 a = {"12" : 3 }

 b = "Hello, world!"

 data = [a, b]

 return data

def B(data):
 print(data)

data = (PyOBjectList *)ptr;

class PyObjectList {
 PyObject **ob_item;

 ...;

}

B

A

local execution

B(A()) # no

(de)serialization

(a) Function code (b) Internal of function (Python runtime) (c) Local execution

Virtual
memory
(VM)

(d) Distributed execution

A

B

(e) (De)serialization

S

CoordinatorCoordinator

A B

VM of A

D

data a b

data a b

heap: 0x20000-0x40000

data a b
1

heap: 0x20000-0x40000

{ VM of B

2

3 heap: 0x40000-0x80000

b data a

{

1

2

3

Figure 4. An overview of serialization (S) and deserialization (D) for functions that share state across machines.

Figure 5. End to end analysis of (de)serialization cost in serverless work-
flows excluding the messaging (a) and storage overhead (b).

workflow execution time. These overheads are inherent to the plat-
form [68] and are orthogonal to our work.

Source #2. Messaging and storage software overhead. Messag-
ing and storage take 35–69% and 22–93% of the workflow execution
time for various workflows, respectively. For messaging, the time is
spent on sending/receiving messages with the coordinator, which is
non-trivial since the message passes many components in Knative.
For storage, the time is dominated by storage protocol overheads.

Reducing state transfer cost is an active research topic [22, 49, 50,
56, 67, 79, 91]. Most of them focus on reducing the aforementioned
software costs. Nevertheless, they are far from optimal because they
cannot eliminate the (de)serialization costs described below.

Source #3. (De)serialization overhead. To highlight the limitation
of solely optimizing messaging or storage, Figure 5 shows an em-
ulated setup where the software overhead of messaging or storage
overhead is made zero. Even under such a setup, (de)serialization
take 17–58% and 22–72% of the workflow execution time. We do
the emulation by sending a zero byte message and not reading/write
the storage. (De)serialization involves complex calculations on data
types and extensive memory copies to compact a data type into a
continuous by binary, whose overhead is more challenging to reduce
than messaging or storage.

2.4 The necessities and costs of (de)serialization
(De)serialization is necessary because the producer’s memory cannot
be accessed by the consumer. Figure 4 (a) shows an example where
function A shares a python list (data) with B. For functions written
in python, the data is internally represented as multiple PyOBject on
the runtime’s heap (Figure 4 (b)). If A and B are executed on a single
machine within a container (see Figure 4 (c)), B can directly access
the pointer of data since they share the same address space. However,
if we run these functions on different machines (Figure 4 (d)), B
cannot access the pointer of data due to physically isolated address

path = 'foo.xlsx'
def fetchPrivateData(): # F
 import pandas as pd
 return pd.read_excel(path, ...)

data = fetchPrivateData()
meta = os.register_mem(...)
coordinator.send(meta, &data)

5
6
7

1
2
3
4

def runAuditRule(rule, pd_data): # R
 rule(pd_data)

meta, data_ptr = coordinator.recv()
os.rmap(meta)
runAuditRule(..., *data_ptr)

10
11
12

8
9

1
2

3

Pod0

Pod1
1

32

{

Invoke

Coordinator

Memory
pages

VM of Pod1

VM of Pod0

VM of Pod1

RF

3 Map to

(a) (b)

(c)

Figure 6. An overview of serverless workflow with RMMap. (a) How
serverless framework leverages RMMap to transfer state. (b) The detailed
execution flow of state transfer and (c) How pod’s virtual memory space
changes with RMMap.

spaces. Thus, as shown in Figure 4 (e), we have to first serialize the
data into a byte array (❶) that can be transferred through the network
(❷). After receiving the array, B can reconstruct the list in its address
space with deserialization (❸).

The performance penalties of (de)serialization are twofolds. First,
it has computation costs for transforming/reconstructing an object
to/from a byte array. Specifically, serialization will traverse all the
reachable objects pointed by the root object of the state. In our
FINRA example, serializing a 3.2 MB dataframe needs traversing
401,839 sub-objects. Moreover, copying objects to a continuous
buffer has huge memory copy overhead. For reference, copying a
4 MB object takes 2.5 ms.4

3 Overview of RMMAP

Our approach: remote memory map. To eliminate (de)serialization,
we propose a new OS primitive—RMMAP—an extension to local
mmap that can map a remote range of memory into a local process,
inspired by recent abstraction for using RDMA [21]. The goal is to
bridge the address spaces of containers (run as processes) together.
RMMAP has two core system calls (§4.1). The producer can call
register_mem to register its virtual memory space on the caller
machine. After knowing the producer’s space information, a con-
sumer can call rmap to map the producer space into its own. Finally,
the consumer can read and write the state in the remote memory in a
shared memory paradigm without (de)serialization.

4Note that since the copies in serialization are typically performed by a single thread
with cache misses, the achieved bandwidth is much smaller than the DRAM bandwidth.

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

Execution flow with RMMAP. Figure 6 (a) illustrates how func-
tions leverage RMMAP to transfer state and (b) shows the detailed
execution flow, where the producer (FetchPrivateData) and
consumer (RunAuditRule) run on two machines (pod0 and pod1),
respectively. To share data, pod0 first calls register_mem (Line
6) to expose its memory to future consumers (❶). Afterward, it sends
the memory information (meta)—including the starting address and
size, together with the pointer of the state to the coordinator (❷).
Next, the coordinator sends these information to pod1 for the con-
sumer function. Finally, the consumer calls rmap (❸) to map the
producer’s memory to consumer’s address space (see Figure 6 (c)).
With the mapped remote memory, the consumer can directly access
state (data_ptr) like a local object: if it touches a virtual memory be-
longing to the producer, the pod1’s kernel will use a network request
to read the physical page from the producer’s machine.

3.1 Challenges and solutions

How to reduce the costs of remote page fetch? In RMMAP, the
consumer can issue multiple network requests to fetch the remote
pages associated with a state. Following the traditional networking
primitive—sending a message to the producer to read the page is
slow, since messaging involves extensive memory copies and huge
CPU occupations. Meanwhile, it introduces network amplification,
i.e., using multiple network requests to read a single state. To make
RMMAP practical, we need to implement a fast remote paging
mechanism and minimize network amplification.
Solution: RDMA (§4.1) with semantic-aware prefetch (§4.4). First,
we co-design RMMAP with RDMA, a networking feature that en-
ables zero-copy and CPU-bypassing remote read with extremely
high performance. Second, we adopt a semantic-aware prefetching
method. This method is based on the observation that, with the help
of language runtime, we can discover most pages that are related
to the state. Thus, we can use one RDMA request to read these
pages [45, 89].

How to prevent map address conflicts? Unlike local mmap, we
can only map the remote memory to the original remote address,
since the state in the memory may points to other objects in the same
address range. Thus, RMMAP alone is insufficient for serverless
workflows.
Solution: co-designed address planning (§4.2). We co-design RMMAP

with the serverless framework to pre-plan the address space for each
workflow function, thereby preventing address conflicts. Specifically,
each function is assigned a unique address space that doesn’t overlap
with others. Address space planning is always possible because first,
serverless workflow graph is known beforehand. Second, serverless
function must run with fixed memory budget [9, 11].

How to support high-level languages? RMMAP changes the
scope of object management in high-level languages’ runtime (e.g.,
Python): the managed objects may span on multiple heaps instead
of the local heap. Executing the object management procedures
(e.g., garbage collection, GC) naively on remote objects is inefficient
because it involves extra remote memory reads [88].
Solution: a hybrid GC (§4.3). We adopt a hybrid GC that incorpo-
rates a corse-grained GC to manage the remote heap. The idea is to
leverage the semantic of serverless workflow to reduce GC overhead:
in a workflow, we only need to trace the lifecycle of the shared state.

…

Functions (unmodified)Workflow

Serverless framework

Language runtime (§4.3)

rrmap-aware exe (Figure 6)

Multi-heap management

OS kernel (§4.1)
Remote merge primitiveUser module Kernel module

Coordinator (§4.2)

Workflow execution

Resource reclaim

Coordinator Pods

Plan

Figure 7. System architecture and key roles of each module.

Thus, we can manage the remote heap by only focusing on the root
object of the state, which is simple and efficient.

3.2 System architecture
Figure 7 gives an overview of the system components of RMMAP.
Following a common setup [15, 53, 57], each workflow is executed
by a coordinator, invoking functions on multiple worker nodes (i.e.,
pods).

When a developer uploads a workflow to the platform, we first
generate a plan (§4.2) assigning non-conflicting address range to
each function in the workflow. This plan is enforced by the container
that execute the function such that the coordinator can map the mem-
ory of one function to another during its execution. The coordinator
also monitors the lifecycle of the mapped memory and reclaim them
if necessary.

Each function executing on the pod is wrapped with a library
provided by our extended serverless framework, abstracting the
workflow coordination from the function developers. It will call
RMMAP primitives to enable (de)serialization-free state sharing
between functions (see Figure 6). The framework as well as the
user function is executed on our extended language runtime (§4.3),
supporting accessing objects in multiple heaps. Finally, the language
runtime is layered on our extended kernel that supports the RMMAP

primitive (§4.1).

Security and network model. Our security model is the same as
that of containers: we trust the OS and the hardware, but assumes
malicious functions may exist. Besides, to use RMMAP, the pro-
ducer function must trust the consumer function, i.e., the consumer
function is allowed to read the producer’s memory. This is a common
case since most workflow functions are from the same application. If
not, developers can annotate their workflow graph so that we can fall-
back to traditional methods, i.e., messaging. Finally, we assume that
machines executing serverless functions are connected via RDMA,
which is widely deployed in modern data centers [37, 83].

4 Detailed Design
4.1 The RMMAP operating system primitive
Major interfaces (Table 1). Producer function calls register_-
mem to register its memory to the RMMAP kernel. To uniquely
identify the registered memory, we require a function ID and a key
from the caller. These fields will be further stored at the kernel for
future authentication. A successful registration returns the informa-
tion required for a later rmap, e.g., the registered virtual address

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

Table 1: Main interfaces exposed by RMMap kernel.

System call interface Description Caller in Serverless

register_mem(id, key, vm_start, vm_end)->vm_meta Register a virtual memory range of the caller to the kernel. Function

Returns an identifier of the registered memory.

Note that the memory range will be marked as copy-on-write.

rmap(mac_addr, id, key, vm_start, vm_end)-> result Map the remote virtual memory at the caller process. Function

deregister_mem(job_id, key)-> result Reclaim the registered memory from the kernel. Framework

set_segment(seg, vm_start, vm_end) Set the segment of of the process in a fixed memory range. Function

Page table

RDMA

register_mem(,0x40000 - 0x60000)

0x
40
00
0
-

 0
x6
00
00

Pod0

Pod1

0x
40
00
0
-

 0
x6
00
00

Mark as COW

rmap(mac_addr, ,)

Remotely mapped

RPC

Access 0x4000

1
2

3

RDMA4

auth info mem page

vm meta

Function execution

Figure 8. An illustration of major RMMap system call (see Table 1)
execution, i.e., register_mem and rmap.

space range. Note that our kernel will keep the registered memory
even if the caller exits.

Given the information of the registered memory, the consumer can
call rmap to map the remote memory to its own address space. The
ID and key are also needed for the authentication. Such a metadata
can be known by exchanging messages with the coordinator (see
Figure 6). rmap may fail due to failed authentication or memory
space conflicts, i.e., some addresses between vm_start and vm_-
end has been mapped by the consumer container. If rmap succeeds,
the consumer can access the pointers in the remotely mapped range
just like its local memory.
set_segment allows setting the container segment (e.g., stack

or heap) of the registered memory to a fixed position. This gives the
coordinator the ability to assign disjoint address spaces to functions
to prevent conflicts. Note that though we can leverage the link script
to set the address of segments like .txt or .data, setting the
ranges of heap and stack still requires kernel involvement.

Finally, we don’t reclaim the registered memory unless some
authenticated process (e.g., serverless framework) explicitly calls
deregister_mem. The invocation process must be authenticated
because this system call will deregister memory of other processes.

Coherency. Since a function’s memory can be shared by the others
via RMMAP, we must provide a coherency model, i.e., what will
the consumer see if the produce modifies the registered memory.
Providing strong coherency is slow due to extensive synchronization
over the network [39, 47, 52]. For efficiency, RMMAP provides a
simple copy-on-write (CoW) model: after registering the memory,
we will mark the memory pages as CoW to isolate the modifications
of the producer from the consumers. This model is sufficient for
serverless computing because the consumer only accesses the state
of the producer in a read-only fashion.

Detailed execution flow (Figure 8). After the producer calls the
register_mem, its hosting kernel will mark the corresponding

page table entries as CoW (❶). Besides, we also store the ID and
key (auth info) in kernel for future authentication. When con-
sumer invokes rmap, its kernel first issues an RPC to the producer
machine (mac_addr) for authentication (❷). The auth info
is piggybacked in the RPC so that remote kernel can validate the
request. If the authentication succeeds, the remote kernel sends an
acknowledgement back, and we will create a new virtual memory
area (VMA) for the consumer container (❸) with a special (logical)
device. This device hooks the page fault handler for this VMA to
handle remote page read (❹). Specifically, if the consumer touches
a page in the mapped memory, the kernel will call in the hooked
handler and the device will send a network request to read remote
physical page.

RDMA-based remote paging. The key requirement of RMMAP

is high performance. For the producer, the overhead is small because
it only involves marking page table entries (1–5 ms). Therefore, the
dominating performance factor is the networked request to read
the memory pages (❹ in Figure 8), which includes the following
two aspects: First, we should efficiently read the memory pages
through the network. Second, we should quickly establish a network
connection between two machines.

RMMAP chooses a solution based on kernel-space RDMA. RDMA
is a high speed (up to 400 Gbps [60]) and low latency (lower than
2 µs) networking feature supporting reading the memory of remote
machine in a CPU-bypassing way. Specifically, given the physical
address of the remote machine, the kernel can directly access this
address with it [83, 91]. Therefore, using RDMA to read remote
pages when handling page faults is extremely efficient. Kernel-space
RDMA further supports establishing RDMA connection within
10 µs, which is orders of magnitude faster than user-space RDMA
(10 ms) [90]. As a result, the cost of network connection is negligible
with it.

To read a remote page with the best performance of RDMA (i.e.,
one-sided RDMA), the consumer kernel needs to know its physical
address. Hence, we further retrieve the page table corresponding to
the registered memory during the authentication RPC (❷ in Figure 8).
With the help of RDMA, reading a 4 KB page only takes 3.7 µs in
RMMAP, which is comparable with the time of handling a page
fault (1.7 µs).

Note that unlike user-space RDMA, kernel-space RDMA does
not need memory registration [83]. To validate the access permission
of remote memory accesses, we follow MITOSIS [91] and adopt a
connection-based permission control mechanism to isolate access
from different functions.

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

(3) Run
AuditRule

(4) Merge
Results

(1) Fetch
PrivateData

(2) Fetch
PublicData

3 rules

(a) Serverless workflow (c) Vrtual memory space (100GB-800GB)

(b) Virtual memory plan

<1, 100GB-200GB>

<2, 200GB-400GB>

<3, 400GB-500GB>

800GB

700GB

.txt, .data

.heap

.stack

1 2 3 43 …

…
<4, 700GB-800GB>

Figure 9. An illustration of generating virtual memory (VM) plan (b)
given a serverless workflow (a). The plan will partition a virtual memory
space for different functions (c).

Management of the producer’s memory lifecycle. In a distributed
setting, the OS on the producer’s host machine alone cannot solely
manage the lifecycle of the registered memory, i.e., deciding when
the CoWed pages can be reclaimed or not. This is because the mem-
ory can be accessed by another function on a different machine using
RDMA, which bypasses the CPU (and thus, the OS). Meanwhile,
after the producer container exits, the registered memory can still
be accessed by the others. Therefore, we always keep the regis-
tered memory alive by recording a shadow copy of the registered
pages in the kernel upon calling register_memory. On Linux,
the shadow copy can be efficiently implemented by increasing the
reference counter in page_t. These shadow copies are stored in the
kernel and can be explicitly freed later by the deregister_mem.

4.2 Virtual memory plan and memory reclamation
Static virtual memory address space planning. The platform
generates a plan for a workflow after it is uploaded. The plan contains
a list of ⟨ID,Ranдe⟩ pairs (Figure 9): the ID represents the function
type and the ranдe specifies that the virtual memory space of the
container executing the function.

Since the (maximum) memory requirement of each function must
be configured or determined by the platform [9, 11], it is straightfor-
ward to generate the plan. First we traverse the DAG of the workflow
to find all type of functions that need state transfer between them.
Note that the same type of function can be concurrently invoked
(the RunAuditRule in Figure 9): they must be assigned differ-
ent address space if they have the same downstream function (the
MergeResults). A problem is that the detailed concurrency can
be determined at runtime. To this end, we take a conservative ap-
proach that count the maximum concurrency for each function type.
After determining the number of space to divide, we choose a max-
imum memory budget (say 100 GB) for each function type, and
equally assign partition an entire address space to them. Such a
partition can support up to 2,814 different types of functions on 64-
bit servers5, which is sufficient for all known serverless workflows.
After the plan has been generated, we will store it together with the
workflow to facilitate future executions.

Realizing the plan. Each machine must ensure the virtual address
space of the container running the function conforms to the plan. We
achieve so by compiling the binaries of each function type statically
with the augmented link script, i.e., set the base address of the elf file
to the start address of the range. Though linking can place the code

5 For example, x86-64 servers support an 248 B user virtual address space.

or data segments to appropriate address, the OS may dynamically
assign the heap and stack. Therefore, we also leverage the set_-
segment interface described in §4.1 such that the OS can adjust
the heap and stack to the space within the range.

Static vs. Dynamic. Choosing a static plan generation strategy is
our explicit design choice. Dynamic plan generation—generate the
plan after the coordinator have received the workflow requests—
cannot work with the caching techniques [5, 13, 22, 35, 42, 43,
63, 74] widely adopted by serverless platforms. With caching, the
coordinator will reuse a container that previously runs the same
type of function to hide the startup cost. If the reused container has
an overlapped address space with the producer function, it cannot
leverage remote memory map to bypass the (de)serialization. With
static plan generation, we can ensure the reused container will have
a distinct address space. Note that static planning is always possible
on current platforms since they require a static configuration of
function’s maximum memory usage and concurrency [26, 30, 73].

Registered memory reclamation. Since we onload the memory
management of the producer to the serverless framework, the coor-
dinator needs to track the execution status of workflow functions to
reclaim their registered memory in time. Specifically, if a function
calls register_mem, it will send the key and metadata of the
memory to the coordinator so that it can calls deregister_mem
when needed. If the coordinator finds the registered memory is no
longer needed, e.g., all its dependent function reports completion,
we send an RPC to the pod holding the memory to reclaim it via
deregister_mem.

One issue of a coordinator-centric resource reclamation is dealing
with the coordinator failure. Persisting the recorded heap on the disk
may significantly slowdown the execution of the coordinator. Ob-
serving the fact that serverless function has a maximum lifetime [7],
we adopt a simple solution to avoid the overhead of the tolerating
coordinator failure: we let each pod periodically scan registered
memory that stayed longer than a threshold (the maximum lifetime
plus a grace period). If they find one, they will directly reclaim it. By
doing so, we no longer need to persist or replicate the coordinator’s
states.

Discussion on extra memory usage. To use RMMAP, we keep
the producer function’s memory alive for a slightly longer time,
which results in additional memory usage. Fortunately, the caching
technique widely used by serverless platforms can hide the extra
memory usage [5, 13, 22, 35, 42, 43, 63, 74]. Specifically, after a
function finishes execution, the platform will cache its host container
in memory for a period to accelerate future function invocations.
Therefore, even without RMMAP, the producer’s memory will be
retained in memory. Since the cache period is typically much longer
than the ephemeral function execution time, we found no additional
memory usage for RMMAP empirically (§5.6).

4.3 Supporting high-level language

This section describes how to co-design language runtime with
RMMAP. We assume the producer and consumer functions share
the same version of language runtime.

Remote object management. A key aspect when considering re-
mote mapped memory is how to manage the remote object—the

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

0 1
…

Input
Partition

Load ML model

Predict

…

(b) ML prediction

PCA

Train

Validation

(a) ML training

Image
…

…

(c) Word count

Split Combine

Mapper Reducer

Tensor

Model

Tensor

Model
list(str)

dict(str, int) dict(str, int)

Partition

Tensor

File

Figure 10. The DAGs of our evaluated workflows. The DAG of FINRA is shown in Figure 1.

object stored on the remote heap. For example, if the remote object
is no longer used, we must release its local memory to avoid mem-
ory leakage. Existing runtime adopts garbage collection (GC) for
this purpose. However, naively executing GC on the remote heap is
inefficient since the GC states, e.g., tracing set is also on the remote
heap. To conduct the GC, we must additionally fetch these states
with RDMA, causing additional overhead.

Our observation is that for the consumer, we only need to care
about the lifecycle of the transferred state, not the others. Therefore,
we can manage the remote heap in a coarse-grained way: we can
release all memory related to the remote heap if the root object of
the transferred state is no longer used. The GC for the remote heap is
executed as follows: after mapping the remote memory and acquire
the state pointer, we will create a special object on the local heap
pointing to the root object of the state. If this object is destroyed later,
we will unmap the remote heap from the consumer. This scheme
enables zero-cost GC on the remote heap. Note that if the local GC
traces a object on the remote heap, we will simply skip it.

The above scheme is unable to handle a corner case where a
remote sub-object is assigned to a local object. If the root of the
sub-object is deleted, the local reference will then point to an invalid
heap. Fortunately, such assignments are rare in serverless workflows.
Therefore, we adopt a simple solution: when assigning a remote
object locally, we will make a copy of it onto the local heap.

Type safety. To ensure the type safety of the accessed remotely
mapped object, we share the type metadata (e.g., Java klass) among
different function instances. For statically-typed language (e.g.,
Java), we leverage class data sharing (CDS) technique [6] that maps
type metadata to the same address for all functions, similar to a
priori work [93]. For dynamically-typed languages (e.g., Python),
since their type metadata is stored on the heap and is accessed via
shared memory, we can directly use RMMAP’s on-demand paging
to access it.

4.4 Prefetching and cascading state transfer

Semantic-aware prefetching. RMMAP trades network operations
for (de)serialization: for each remote page access, the function will
trap into the kernel and issue one RDMA to read the page. The over-
head of RDMA and page faults will accumulate if an object’s sub-
objects span multiple memory pages, even RDMA is extremely fast.
To hide these cost, we leverage prefetch to read all the sub-object
pages in advance. The challenge is determining what to prefetch:
reading the entire memory space to the consumer not only waste
network bandwidth but also waste the memory.

Our observation is that for functions written in a high-level lan-
guage (common in serverless), we can leverage the language runtime
to precisely calculated the pages that store a given object. This can
be done by traversing objects pointed by the root object of the state

at the producer. With the traversed objects, we can derive the vir-
tual pages they belong and send their addresses to the consumers.
Based on these addresses, consumer can leverage doorbell batch-
ing [45]—an RDMA technique to read multiple memory pages in
one roundtrip—to prefetch the pages efficiently.

Note that in most cases, we don’t require developers writing extra
codes for semantic-aware prefetching. For example, all Python built-
in objects have provided __iter__ and __next__ functions to
facilitate the object traversal. Nevertheless, third-party objects may
miss such an implementation (e.g., Python numpy). In such a case,
we fallback to non-prefetch mode or ask the developers to provide
the implementation. The additional development cost is typically
small. For example, numpy arrays have already implemented an
internal iterator so we only need to wrap it, which has only 12 LoC
modifications.

Finally, an interesting phenomenon we found is that prefetching
is not always better (§5.2), because traversing the objects incurs
additional computation costs at the producer-side, i.e., traversing the
objects. Note that prefetching will add no computation overhead at
the consumer-side. To balance the overhead for calculating objects
to prefetch, we can set a threshold to limit the number of objects
traversed. The detailed policy to set the threshold is left as our future
work.

Handling cascading state transfer. The state transfer cascades if
the transferred state is forwarded to another function. For example,
suppose we have a workflow A→B→C, and the state from B→C
may depend on objects stored on A. One naive solution would be
map A’s virtual memory to C’s address space, but it would make
memory management more complex.

We adopt a simple copy scheme similar to how we handle remote
GC object described in the previous section. Since it is common
that the transferred object is created from scratch, we will copy the
remote object to the local heap if it is assigned to a local object. Note
that if the same object is passed between the function chain (e.g., B
passes A’s input toC), we will also copy A’s input to a local object of
B in order to serve as C’s input. In evaluations, we found no copy is
needed in our workloads (§5). If the copy overhead is significant, we
can adopt a multi-hops remote memory map design, e.g., by assign-
ing unique IDs to remote addresses, similar to how MITOSIS [91]
handles multi-hops remote fork. We leave the detailed design as our
future work.

5 Evaluation
Our evaluations aim to answer the following questions:

• Can RMMAP reduce the serialization and deserialization costs
for transferring various states? (§5.2)

• How effective is RMMAP to serverless workflows? (§5.3)
• How workflow configurations affect RMMAP? (§5.4)
• What are the performance trade-off of RMMAP? (§5.5)

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 11. Latency breakdown for (a) different data types and (b) different payload sizes under a Python dataframe type. T: The time to transform an
object to be ready to send. N: The network time to send the transformed the object. R: The time to reconstruct the object. E2E: summed up time of T, N and
R. Note that the units of the labeled number in (a) are millisecond and the y-axis in (b) is log-scale.

5.1 Evaluation setup

We implement the core RMMAP primitive as a loadable Linux
module (on 4.15.0-46-generic) in 3,600 LoC rust code, excluding
tests, benchmark code and RDMA support. We use KRCore [90] to
support efficient kernel-space RDMA. We also extend Python 3.7 [1]
and JDK 11.0.18 [14] runtime to support RMMAP, with about 2,300
and 1,800 LoC, respectively. We execute serverless workflows on
Knative with cloudevent [10] to support workflow coordination, with
about 1,000 LoC to support RMMAP-aware function execution.

Evaluated worfkflow applications. Figure 10 shows the DAGs of
our evaluated workflows. FINRA [2] is a real word financial work-
flow that validates 3.5 MB trades data (stored via Python dataframe
objects) based on rules. We configure it to run 200RunAuditRules
as reported by the AWS [12]. ML training [27, 57] is adopted from
ORION [57]. It is a machine learning training workflow aiming to
train a random forest on images. The training proceeds proceeds in
three phases: image set partition, PCA for feature extraction, ran-
dom forest training and validation. We follow the setup of ORION
and run with 2 PCA function and 8 parallel training functions. The
overall workflow is trained on 10 K images (total 42 MB) (from
MNIST [51]) and will combine 64 decision trees as a random forest.
The model is trained via the LightGBM [16] library. The ML pre-
diction is a model serving workflow that utilize the above trained
model to do the prediction. It will first partition the input images
(total 30 MB) to 16 partitions and then run 16 parallel predictors
for the prediction. The prediction results are then combined for all
images. Finally, WordCount is a serverless MapReduce workflow
adopted from FunctionBench [48], which counts the frequency of
words in a book. We configure 8 mapper and one reducer function.
The input is a French version of Oliver Twist (13 MB).

Without explicit notation, we implement all the workflows in
Python because first, Python is the dominant serverless language [31]
and second, some workflow requires specific python library to run
(e.g., numpy, pandas and LightGBM). We also evaluate the RMMAP

on a Java workflow in §5.7.

Comparing targets. We compare RMMAP with: Messaging: Func-
tions share states with cloudevents [10], the built-in messaging
primitive in Knative. The state is serialized and deserialized with
pickle [18], the de facto (de)serialization library in Python. Shared
storage: Functions transfer states with Pocket [49], the state of the
art storage for serverless. It also uses pickle to serialize/deserialize
states to the underlying storage. Shared storage (RDMA): since
Pocket is not optimized for RDMA, we evaluate an optimized shared
storage with DrTM-KV [92], a state-of-the-art distributed key-value
store on RDMA. DrTM-KV is 64.6× faster than Pocket, which
we believe it can serve as the optimal performance for transferring
state with shared storage. Since shared storage (RDMA) is much
faster than without RDMA, we will only discuss it and leave the
results without RDMA as a reference. Note that we can’t optimize
messaging with RDMA because it is currently tightly coupled with
the Knative runtime. Finally, RMMAP (no-prefetch) and RMMAP

(prefetch) are the variants of RMMAP without and with our prefetch
optimization, respectively.

Testbed setup. We evaluate all the approaches on a Knative cluster
deployed on a K8S cluster with 10 physical machines. Each machine
is equipped with two 12 core Intel Xeon E5-2650 v4 processors
and two 100 Gbps ConnectX-4 MCX455A InfiniBand NICs. To
prevent the interference from coldstart, we pre-warm all the functions
without explicit notation.

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

Figure 12. (a) Throughput, (b) resource usage and (c) latency CDF of ML prediction workflow. Upper row: results with all resources utilized and bottom
row: results with a fixed 70 request rate.

5.2 Microbenchmark performance

First, we conduct a microbenchmark that compares the latency of
transferring different python objects. Figure 11 (a) shows the latency
breakdown of the end to end (E2E) transfer time, which we break-
down it into transform, network and reconstruct stages. For variants
of RMMAP, T includes the time to mark its memory as copy-on-
write. For others, T is the serialization time. The N in RMMAP

means the time to fetch the remote mapping information as well as
reading pages with RDMA. For messaging, it is the time to transfer
the message from the producer to the consumer in Knative. For stor-
age, it is the time to put and read the serialized data from the storage.
Finally, the R in RMMAP is the time to do the remote mapping,
while it is the deserialization time in other approaches.

Performance with various data types. The (de)serialization time
is sensitive to data types, e.g., simple data like integer has a trivial
or no (de)serialization cost. We first compare different approaches
to transfer common python data types in Figure 11 (a). The repre-
sentative types (also used in the evaluated workflows) are: str is a
13 MB string, which is the input used in WordCount. list(str)
is generated by delimiting the above 13 MB string with \n. dict is
a nested map with a depth of six (total 380 B). numpy ndarray
is a data matrix with shape (7000, 785). We reshape the numpy
ndarray into one-dimensional to generate list(int). pandas
dataframe is a dataframe that encapsulates a (524,28, 8) shape
CSV file. Pillow Image is obtained by utilizing PIL library with
images size of 5.3 MB. Finally, ML model is a pre-trained Light-
GBM tree (8.6 MB) used in ML inference.

At the transform stage, RMMAP (with or without prefetch) is
19.8–99.8% faster than messaging and shared storage (with or with-
out RDMA) except for int, since serializing it has negligible over-
head. The time of RMMAP (no prefetch) is dominated by mark the
process memory as copy-on-write. Some data type needs a longer
transform time since their used virtual memory is larger due to a
large dependent library. When adding the prefetch (RMMAP), we
can reduce the copy-on-write overheads since we can precisely trace
which pages are needed. However, the cost of its transformation is
higher due to additional object traversals.

At the network stage, RMMAP (no prefetch) is 86.5–96.4% faster
than messaging, except for int, since piggybacking a small integer
in the cloudevent message is trivial. Nevertheless, for large data,

messaging is slow because the data must passes many system com-
ponents in Knative, which has non-trivial software cost. Compared
to shared storage (RDMA), RMMAP is slower without prefetch and
is faster with prefetch. RMMAP (no prefetch) is slower due to the
extra page faults and extra network roundtrips to read the data.

At the reconstruct stage, variants of RMMAP has nearly no cost
while others takes a non-trivial time for deserialization the data.
For example, de-serializing a 3.2 MB dataframe object takes 12 ms,
which is significant compared to the execution time of its used
function (0.3 ms in the FINRA workflow).

For the end to end time, RMMAP (no prefetch) is 54.1–99.2%
faster than other approaches except for int. Add prefetching fur-
ther improves RMMAP by 43.8–72.2% except for list(int),
list(str), dict. For these types, we need to traverse multi-
ple objects to find which page to prefetch, e.g., traversing a 50 MB
list(int) will touch 5,000,000 objects. Compared to the others,
the performance benefit of RMMAP mainly comes from the reduced
serialization cost at the transform stage, as well as no deserialization
at the reconstruct stage. On the other hand, we should mention that
RMMAP is not beneficial for transferring simple objects like int.
This is because it is trivial to serialize or deserialize them. Thus, the
copy-on-write and RPC overhead in RMMAP will dominate the state
transfer. For such objects, workflows can directly use messaging to
transfer them.

Performance with different data paylaod sizes. Another impor-
tant factor for state transfer is the data payload size, especially for
collection types (e.g., lists or dataframes). We present the perfor-
mance of different approaches by varying the data payload sizes in
Figure 11 (b). We choose list(int) as our evaluating type and
vary the entry number to change the payload. The results for other
types are similar.

The takeaways from Figure 11 (b) are twofolds. First, RMMAP

has a smaller per-sub-object overhead than others for payloads larger
than 1 KB: it is 66.4–82.3% faster shan Storage (RDMA) in the end-
to-end time thanks to the eliminated (de)serialization. Nevertheless,
RMMAP has a relative large startup cost—issuing an additional
RPC to fetch the page table (10 µs) as well as trapping in the kernel
to mark the pages as copy-on-write (1 µs). Thus, it is 9.2× slower
on shared storage (RDMA) with less than 1 KB payloads.

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 13. Sensitive analysis about (a) transferred data ratio, (b) workflow width and (c) training epochs. (d) The Java workflow performance.

Figure 14. Execution time of different serverless workflows.

5.3 End-to-end application performance
End-to-end latency. Figure 14 compares the average latency of dif-
ferent serverless workflows. To rule out interference from resource
contentions, we first run one workflow at a time and measure its exe-
cution time. Overall, RMMAP is faster than messaging and variants
of shared storage, reducing the execution time of different workflows
by 14–97.8%. For brevity, we focus on discussing how RMMAP

compares with shared storage (RDMA), as it is the fastest com-
petitor. The benefit of RMMAP mainly comes from the eliminated
(de)serialization, which takes 24.6%, 16.2%, 68%, 28.7% of the end-
to-end time for FINRA, ML training, ML prediction, WordCount,
respectively. Meanwhile, the additional cost (e.g., RPC) is negligible
compared to the function execution time.

Throughput, resource usage and latency CDF. The throughput of
workflows depends on two factors: the number of machine instances
(pods) used and the request rate of the clients. The first row in
Figure 12 presents the throughput of workflow with all machines
saturated. The second row shows the throughput with a fixed 70
request rate. To saturate all the machines, we increasing the number
of clients until the measured throughput won’t increase. To fix the
request rate, we deploy one client with an open-loop harness for the
evaluation. For the throughput timelines, we spawn the configured
clients at time 0 to emulate the elasticity of serverless requests.
Finally, we only present the ML prediction results for brevity as
others are similar.

When the machines are saturated (see the upper row (a)), RMMAP

has a 1.2–1.6× higher peak throughput than the other counterparts
due to the lower per-workflow execution time. Moreover, when
different approaches are under the same request rate (see the lower
row), RMMAP has a much better resource utilization. If the rate is
smaller than the minimum peak throughput of different approaches,
all of them reach the same throughput. Nevertheless, RMMAP only
utilizes 64.3–86.3% of the available pods since it is much faster.
Note that other approaches gradually increase resource utilization
(see (c) of the lower row) because Knative will scale more pods to

Figure 15. Factor analysis of the transferring state between the PCA
and partition functions in the ML training workflow.

handle the incoming requests. Besides, the medium, 90th and 99th

latencies of RMMAP are 66.1–99.2%, 69.3–99.4%, and 72.6–99.5%
lower comparing to the others.

5.4 Sensitive analysis
The speedup of RMMAP can be affected by several factors, e.g.,
function execution time, transferred data payload and the concur-
rency of executed functions (workflow width). This section evaluates
the sensitiveness of these configurations using the ML training since
we can adjust its execution time by varying the number of training
epochs.

Figure 13 (a) first shows the ML training time with various train-
ing epochs. When increasing the epochs from 5 to 30, the perfor-
mance improvement of RMMAP (compared with Storage (RDMA))
decreases from 23.9% to 8%. A longer execution time will amortize
the cost of (de)serialization so the benefits of RMMAP diminishes.
Figure 13 (b) further evaluates the workflow’s sensitiveness with the
transferred tensor size. When increasing the payload, the improve-
ment of RMMAP does not always increase or decrease: a larger
payload is more costly for traditional approach for (de)serialization;
yet, it also enlarge the workflow execution time (more data to train).
We draw a similar observation in Figure 13 (c).

5.5 Factor analysis
RMMAP can slowdown the function execution due to RPC latency
to map the remote pages as well as RDMA to read these pages.
This section conducts a factor analysis of the above overheads by
factoring out the execution of train function in ML training. The
results are shown in Figure 15.

Compared with the optimal case where the function completely
reads a local state, the end-to-end execution time of RMMAP is
1.4× and 1.7× longer with and without prefetch, respectively. First,
the overheads are dominated by the RDMA to read the data pages,
as remote memory read is still orders of magnitude slower than local
read even with fast networking [32]. Second, prefetching signifi-
cantly reduces the data read time due to (1) reduced page fault and
(2) sending RDMA requests in batches is more CPU friendly [45].

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

Figure 16. (a) Analysis of memory consumptions and (b) comparison
with Naos [80], a library for optimizing (de)serialization in Java.

Third, RPC to pull the remote memory information to setup the page
table has negligible overhead. Finally, not using RDMA—implement
remote page fetch with RPC slowdown the execution of RMMAP

by 62.2%, showing the necessities of co-designing with RDMA.
Note that we have adopted an optimized RPC on the same RDMA
network fabric (Fasst-RPC [46]) to read pages.

5.6 Memory consumption
As discussed in §4.2, RMMAP may cause additional memory con-
sumption. However, our empirical evaluation, as shown in Fig-
ure 16, indicates that RMMAP consumes negligible extra memory.
In this experiment, we measured the peak memory usage during a
workflow execution. The workflow involved transferring a Python
list(int) with varying payloads, using one producer and one
consumer. The extra memory used by RMMAP is at most 4% of
the optimal, where the producer does not transfer the state. Since
the platform caches the producer container after it finishes, it helps
to amortize the extra memory left by the RMMAP after the pro-
ducer finishes. Interestingly, RMMAP even requires up to 20% less
memory compared to messaging and shared storage, as they need
additional memory to store the message buffers.

5.7 Performance on Java
Application performance. We evaluate how RMMAP performs
for a Java workflow that implements WordCount (§5.1) in Figure 13
(d). Other workflows have a similar result. As expected, the results
of RMMAP is similar to that of Python: it is 77.4%, 55.2%, 39.0%
faster than messaging, storage with and without RDMA, respectively.
RMMAP is a general design that is agnostic to the language.

Comparison to Naos [80]. Finally, we compare RMMAP with
Naos, a Java library optimized for (de)serialization. Since Naos does
not support serverless, we use the microbenchmark described in
his paper to compare the performance of transferring a Java map
that stores (Integer, char[]) pairs. The integers are 4 B and
the char[]s are 5 B, whose setup is the same as Nao’s original
paper. As we can see in Figure 16 (b), RMMAP outperforms Naos
by 42–64% because Naos still needs to traverse and modify pointers
of Java objects, while we completely eliminate this step.

6 Discussion and Limitation
RMMAP does not compromise on small object performance. As
we have shown in §5.2, the overhead of small and simple types
(e.g., int) is negligible. Therefore, the overhead of executing sys-
tem calls (as well as RDMA) outpaces the benefits of eliminating
(de)serialization for such objects. Nevertheless, since RMMAP is
compatible with existing techniques like messaging, we can fallback
to messaging for them to hide the overhead of RMMAP on small

objects. Determining which types to fallback is trivial since we can
leverage the semantics given by the language runtime.

Support functions written in different languages. Eliminate the
(de)serialization for workflow functions written in different lan-
guages is not supported by RMMAP. It is more challenging since
the object layout of different languages is different. Though common
serverless workflow is composed of functions written in the same
language, RMMAP can fallback to (de)serialization if not so.

Comparison to specialized libraries for exchanging objects. Al-
though libraries like Apache Arrow [4] can enhance portability be-
tween different languages and improve efficiency of (de)serialization,
they still need to transform a regular runtime object to its internal
layout (and vice versa). In contrast, RMMAP completely eliminates
the need for such transformation.

Map the heap vs. Map the whole address space. An initial ver-
sion of RMMAP only maps the heap, since most of the state is allo-
cated on the heap. However, we found complex objects in Python
may span on multiple locations (e.g., .txt to store the callbacks)
other than the heap. So we eventually fallback to map the whole
address space. The drawback of our choice is that it needs to trans-
fer extra page table and unnecessary marked copy-on-write pages.
This overhead is significant when the producer imports a huge dy-
namic library. Techniques like on-demand page table access [100]
can possibly help and we will explore them in the future.

Data compression in (de)serialization. Several libraries will ag-
gressively compress the data to reduce network bandwidth usage [19].
Supporting compression needs extra computation, which we believe
is not suitable for serverless since compressing and de-compressing
the data on the function’s critical path. We leave compression support
as our future work.

Security of RDMA. RMMAP leverages RDMA for high perfor-
mance state share. However, current RDMA implementations lack
security enhancements, such as encryption [81]. Securing RDMA
is an orthogonal to our design and is currently an active research
topic [71, 81, 94]. We believe works on RDMA security will further
complement RMMAP.

7 Related work
Optimizing serverless computing. Many works have been con-
ducted on optimizing applications that run in a serverless paradigm.
They can be categorized as accelerating function startups [22, 28, 34,
63, 72, 76, 85, 86, 91], supporting stateful serverless functions [42,
66, 97], accelerating workflow execution strategies [57, 58] and oth-
ers [20, 33, 43, 44, 54, 55, 65, 70, 77, 78, 82, 87, 95, 99, 101]. Most
of them focus on optimizing a single function, an orthogonal topic
to us. Orion [57] proposes various strategies for faster workflow exe-
cution. Our focus is on the mechanism their strategies complement
RMMAP. A recent work MITOSIS eliminates (de)serialization via
remote fork. However, fork cannot support state transfer if the con-
sumer function need to read states from multiple producers, which
is now supported by RMMAP.

Optimizing (de)serialization. Reducing the (de)serialization over-
head is an active research topic beyond serverless [41, 62, 69, 80, 84,
93, 96, 98]. For example, Hgum [98] offloads the (de)serialization to

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

the FPGA for acceleration. We completely eliminate the (de)serialization
by co-designing the serverless framework with a new remote mem-
ory map primitive. RMMAP does not rely on specialized hardware,
and we believe RMMAP can be made even faster by offloading sev-
eral parts of the RMMAP to the programmable hardware. ZCOT [93]
als avoids (de)serialization for Java-based big data applications with
a global exchange space. RMMAP instead provides a remote mem-
ory map abstraction for any languages and tackle the problem of
adapting the remote map to serverless workflows.

RDMA-based remote paging. Reading pages from remote hosts
via RDMA is not a so new technique in modern OSes [21, 23, 36, 59,
75, 91]. MITOSIS [91] co-designs RDMA to realize a fast remote
fork primitive. RMMAP further builds an efficient remote memory
map primitive to eliminate (de)serialization for serverless workflows.

8 Conclusion and Future Work
We present RMMAP, an operating system primitive to enable serial-
ization and deserialization-free state transfer in serverless workflows
with a distributed shared memory-like abstraction. We show that such
an abstraction can be made efficient and feasible by co-designing
with the serverless platform, the language runtime, the OS and fast
interconnect like RDMA. Specifically, unmodified real-world server-
less workflows can enjoy up to 2.6× speedup and 86.3% better
resource utilizations on Knative.

Although RMMAP currently focuses on serverless computing, we
believe that several of its main techniques, including RDMA-based
remote memory map for data transfer and semantic-aware prefetch-
ing, are generally applicable. On the other hand, when applying
them in other scenarios, system designers must derive mechanisms
for correct address planning, efficient remote memory reclamation,
and effective garbage collection strategies. We will explore how
RMMAP can be effectively applied in scenarios other than server-
less in the future.

Acknowledgment
We sincerely thank our shepherd Marcos Aguilera and the anony-
mous reviewers, whose reviews and suggestions greatly strengthened
our work. We also thank Zhe Li and Hongtao Lv for porting applica-
tions on the Java, Hongrui Xie for proof reading, and Yuhan Yang for
discussing the assumptions made by serverless platforms. This work
was supported in part by the National Key Research & Development
Program of China (No. 2022YFB4500700), the National Natural
Science Foundation of China (No. 62202291, 62272291, 61925206),
the HighTech Support Program from STCSM (No. 22511106200)
as well as research grants from Huawei Technologies and Shanghai
Artificial Intelligence Laboratory. Corresponding author: Xingda
Wei (wxdwfc@sjtu.edu.cn).

References
[1] Python3.7. https://github.com/python/cpython/tree/3.7, 2018.
[2] United States Financial Industry Regulatory Authority. https://aws.amazon.com/

cn/solutions/case-studies/finra-data-validation/, 2022.
[3] Amazon s3. https://aws.amazon.com/s3, 2023.
[4] Apache arrow. https://arrow.apache.org, 2023.
[5] Apache openwhisk website. https://openwhisk.apache.org, 2023.
[6] Application class-data sharing. https://openjdk.org/jeps/310, 2023.
[7] AWS Lambda FAQs. https://aws.amazon.com/en/lambda/faqs/, 2023.
[8] AWS Step Functions. https://aws.amazon.com/step-functions/, 2023.
[9] Cloud functions pricing. https://cloud.google.com/functions/pricing, 2023.

[10] cloudevents. https://github.com/cloudevents/spec, 2023.
[11] Configuring lambda function options. https://docs.aws.amazon.com/lambda/

latest/dg/configuration-function-common.html, 2023.
[12] FINRA adopts AWS to perform 500 billion validation checks daily. https:

//aws.amazon.com/solutions/case-studies/finra-data-validation/, 2023.
[13] Fn project website. https://fnproject.io, 2023.
[14] JDK 11.0.18. https://www.oracle.com/java/technologies/javase/11-0-18-relnotes.

html, 2023.
[15] Knative. https://knative.dev, 2023.
[16] Lightgbm. https://github.com/microsoft/LightGBM, 2023.
[17] pandas. https://pandas.pydata.org, 2023.
[18] pickle. https://github.com/python/cpython/blob/main/Lib/pickle.py, 2023.
[19] Protocol Buffers. https://protobuf.dev, 2023.
[20] AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI, A., NEUGEBAUER,

R., PIWONKA, P., AND POPA, D. Firecracker: Lightweight virtualization for
serverless applications. In 17th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020 (2020), R. Bhagwan and G. Porter, Eds., USENIX Association, pp. 419–
434.

[21] AGUILERA, M. K., AMIT, N., CALCIU, I., DEGUILLARD, X., GANDHI, J.,
NOVAKOVIC, S., RAMANATHAN, A., SUBRAHMANYAM, P., SURESH, L.,
TATI, K., VENKATASUBRAMANIAN, R., AND WEI, M. Remote regions: a
simple abstraction for remote memory. In 2018 USENIX Annual Technical
Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018 (2018),
H. S. Gunawi and B. Reed, Eds., USENIX Association, pp. 775–787.

[22] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE, K., BECK, A.,
ADITYA, P., AND HILT, V. SAND: towards high-performance serverless com-
puting. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13, 2018 (2018), H. S. Gunawi and B. Reed, Eds.,
USENIX Association, pp. 923–935.

[23] AMARO, E., BRANNER-AUGMON, C., LUO, Z., OUSTERHOUT, A., AGUIL-
ERA, M. K., PANDA, A., RATNASAMY, S., AND SHENKER, S. Can far mem-
ory improve job throughput? In EuroSys ’20: Fifteenth EuroSys Conference
2020, Heraklion, Greece, April 27-30, 2020 (2020), A. Bilas, K. Magoutis, E. P.
Markatos, D. Kostic, and M. I. Seltzer, Eds., ACM, pp. 14:1–14:16.

[24] AWS. Aws lambda. https://aws.amazon.com/lambda, 2023.
[25] AWS. Aws step functions limits. https://docs.aws.amazon.com/step-functions/

latest/dg/limits-overview.html, 2023.
[26] AZURE, M. Azure functions hosting options. https://learn.microsoft.com/en-

us/azure/azure-functions/functions-scale, 2023.
[27] CARREIRA, J., FONSECA, P., TUMANOV, A., ZHANG, A., AND KATZ, R.

Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings of
the ACM Symposium on Cloud Computing (New York, NY, USA, 2019), SoCC
’19, Association for Computing Machinery, p. 13–24.

[28] CARREIRA, J., KOHLI, S., BRUNO, R., AND FONSECA, P. From warm to hot
starts: leveraging runtimes for the serverless era. In HotOS ’21: Workshop on
Hot Topics in Operating Systems, Ann Arbor, Michigan, USA, June, 1-3, 2021
(2021), S. Angel, B. Kasikci, and E. Kohler, Eds., ACM, pp. 58–64.

[29] CLOUD, A. Alibaba serverless application engine. https://www.aliyun.com/
product/aliware/sae, 2023.

[30] CLOUD, A. Manage functions. https://www.alibabacloud.com/help/en/fc/
manage-functions?spm=a2c63.p38356.0.0.14dd3213mted5w, 2023.

[31] DATADOG. The state of serverless. https://www.datadoghq.com/state-of-
serverless/, 2022.

[32] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HODSON, O. Farm:
Fast remote memory. In Proceedings of the 11th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2014, Seattle, WA, USA,
April 2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX Association,
pp. 401–414.

[33] DU, D., LIU, Q., JIANG, X., XIA, Y., ZANG, B., AND CHEN, H. Serverless
computing on heterogeneous computers. In ASPLOS ’22: 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022
(2022), B. Falsafi, M. Ferdman, S. Lu, and T. F. Wenisch, Eds., ACM, pp. 797–
813.

[34] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU, Q., AND CHEN, H.
Catalyzer: Sub-millisecond startup for serverless computing with initialization-
less booting. In ASPLOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20, 2020 (2020), J. R.
Larus, L. Ceze, and K. Strauss, Eds., ACM, pp. 467–481.

[35] FOR AWS LAMBDA CONTAINER REUSE, B. P. https://medium.com/capital-
one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e, 2022.

[36] GU, J., LEE, Y., ZHANG, Y., CHOWDHURY, M., AND SHIN, K. G. Efficient
memory disaggregation with infiniswap. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017 (2017), A. Akella and J. Howell, Eds., USENIX Association,
pp. 649–667.

wxdwfc@sjtu.edu.cn
https://github.com/python/cpython/tree/3.7
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/s3
https://arrow.apache.org
https://openwhisk.apache.org
https://openjdk.org/jeps/310
https://aws.amazon.com/en/lambda/faqs/
https://aws.amazon.com/step-functions/
https://cloud.google.com/functions/pricing
https://github.com/cloudevents/spec
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://fnproject.io
https://www.oracle.com/java/technologies/javase/11-0-18-relnotes.html
https://www.oracle.com/java/technologies/javase/11-0-18-relnotes.html
https://knative.dev
https://github.com/microsoft/LightGBM
https://pandas.pydata.org
https://github.com/python/cpython/blob/main/Lib/pickle.py
https://protobuf.dev
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://www.aliyun.com/product/aliware/sae
https://www.aliyun.com/product/aliware/sae
https://www.alibabacloud.com/help/en/fc/manage-functions?spm=a2c63.p38356.0.0.14dd3213mted5w
https://www.alibabacloud.com/help/en/fc/manage-functions?spm=a2c63.p38356.0.0.14dd3213mted5w
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

[37] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE, J., AND LIPSHTEYN,
M. RDMA over commodity ethernet at scale. In Proceedings of the ACM
SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016 (2016),
M. P. Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM, pp. 202–215.

[38] HELLERSTEIN, J. M., FALEIRO, J. M., GONZALEZ, J., SCHLEIER-SMITH,
J., SREEKANTI, V., TUMANOV, A., AND WU, C. Serverless computing: One
step forward, two steps back. In 9th Biennial Conference on Innovative Data
Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings (2019), www.cidrdb.org.

[39] HONG, Y., ZHENG, Y., YANG, F., ZANG, B., GUAN, H., AND CHEN, H.
Scaling out numa-aware applications with rdma-based distributed shared memory.
J. Comput. Sci. Technol. 34, 1 (2019), 94–112.

[40] HUAWEI. Huawei clound functions. https://developer.huawei.com/consumer/en/
agconnect/cloud-function/, 2023.

[41] JANG, J., JUNG, S., JEONG, S., HEO, J., SHIN, H., HAM, T. J., AND LEE,
J. W. A specialized architecture for object serialization with applications to big
data analytics. In 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020 (2020), IEEE,
pp. 322–334.

[42] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless computing with shared logs.
In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles,
Virtual Event / Koblenz, Germany, October 26-29, 2021 (2021), R. van Renesse
and N. Zeldovich, Eds., ACM, pp. 691–707.

[43] JIA, Z., AND WITCHEL, E. Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices. In ASPLOS ’21: 26th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Virtual Event, USA, April 19-23, 2021 (2021),
T. Sherwood, E. D. Berger, and C. Kozyrakis, Eds., ACM, pp. 152–166.

[44] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C., KHANDELWAL,
A., PU, Q., SHANKAR, V., CARREIRA, J., KRAUTH, K., YADWADKAR, N. J.,
GONZALEZ, J. E., POPA, R. A., STOICA, I., AND PATTERSON, D. A. Cloud
programming simplified: A berkeley view on serverless computing. CoRR
abs/1902.03383 (2019).

[45] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design guidelines for high
performance RDMA systems. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association, pp. 437–450.

[46] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram rpcs. In
12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton and
T. Roscoe, Eds., USENIX Association, pp. 185–201.

[47] KELEHER, P. J., COX, A. L., DWARKADAS, S., AND ZWAENEPOEL, W. Tread-
marks: Distributed shared memory on standard workstations and operating sys-
tems. In USENIX Winter 1994 Technical Conference, San Francisco, California,
USA, January 17-21, 1994, Conference Proceedings (1994), USENIX Associa-
tion, pp. 115–132.

[48] KIM, J., AND LEE, K. Practical cloud workloads for serverless faas. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA,
USA, November 20-23, 2019 (2019), ACM, p. 477.

[49] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEFFERLE, J., AND
KOZYRAKIS, C. Pocket: Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Association, pp. 427–444.

[50] KOTNI, S., NAYAK, A., GANAPATHY, V., AND BASU, A. Faastlane: Accel-
erating Function-as-a-Service workflows. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21) (July 2021), USENIX Association, pp. 805–820.

[51] LECUN, Y., AND CORTES, C. MNIST handwritten digit database.
[52] LI, K. IVY: A shared virtual memory system for parallel computing. In Pro-

ceedings of the International Conference on Parallel Processing, ICPP ’88, The
Pennsylvania State University, University Park, PA, USA, August 1988. Volume
2: Software (1988), Pennsylvania State University Press, pp. 94–101.

[53] LI, Z., LIU, Y., GUO, L., CHEN, Q., CHENG, J., ZHENG, W., AND GUO,
M. Faasflow: enable efficient workflow execution for function-as-a-service. In
ASPLOS ’22: 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzerland, 28
February 2022 - 4 March 2022 (2022), B. Falsafi, M. Ferdman, S. Lu, and T. F.
Wenisch, Eds., ACM, pp. 782–796.

[54] LYKHENKO, T., SOARES, R., AND RODRIGUES, L. Faastcc: Efficient transac-
tional causal consistency for serverless computing. In Proceedings of the 22nd
International Middleware Conference (New York, NY, USA, 2021), Middleware
’21, Association for Computing Machinery, p. 159–171.

[55] LYU, X., CHERKASOVA, L., AITKEN, R. C., PARMER, G., AND WOOD, T.
Towards efficient processing of latency-sensitive serverless dags at the edge. In
EdgeSys@EuroSys 2022: Proceedings of the 5th International Workshop on Edge
Systems, Analytics and Networking, Rennes, France, April 5 - 8, 2022 (2022),
A. Y. Ding and V. Hilt, Eds., ACM, pp. 49–54.

[56] MAHGOUB, A., SHANKAR, K., MITRA, S., KLIMOVIC, A., CHATERJI, S.,
AND BAGCHI, S. SONIC: application-aware data passing for chained serverless

applications. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021,
July 14-16, 2021 (2021), I. Calciu and G. Kuenning, Eds., USENIX Association,
pp. 285–301.

[57] MAHGOUB, A., YI, E. B., SHANKAR, K., ELNIKETY, S., CHATERJI, S., AND
BAGCHI, S. ORION and the three rights: Sizing, bundling, and prewarming for
serverless DAGs. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22) (Carlsbad, CA, July 2022), USENIX Association,
pp. 303–320.

[58] MAHGOUB, A., YI, E. B., SHANKAR, K., MINOCHA, E., ELNIKETY, S.,
BAGCHI, S., AND CHATERJI, S. WISEFUSE: workload characterization and
DAG transformation for serverless workflows. In SIGMETRICS/PERFOR-
MANCE ’22: ACM SIGMETRICS/IFIP PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, Mumbai, India,
June 6 - 10, 2022 (2022), D. Manjunath, J. Nair, N. Carlsson, E. Cohen, and
P. Robert, Eds., ACM, pp. 57–58.

[59] MARUF, H. A., AND CHOWDHURY, M. Effectively prefetching remote mem-
ory with leap. In 2020 USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 843–857.

[60] MELLANOX. ConnectX-7 product brief. https://www.nvidia.com/content/dam/
en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf,
2023.

[61] MICROSOFT. Azure functions. https://azure.microsoft.com/en-us/services/
functions/, 2023.

[62] NGUYEN, K., FANG, L., NAVASCA, C., XU, G., DEMSKY, B., AND LU, S.
Skyway: Connecting managed heaps in distributed big data systems. In Pro-
ceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2018, Williams-
burg, VA, USA, March 24-28, 2018 (2018), X. Shen, J. Tuck, R. Bianchini, and
V. Sarkar, Eds., ACM, pp. 56–69.

[63] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. SOCK: Rapid task provisioning
with serverless-optimized containers. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18) (Boston, MA, July 2018), USENIX Association,
pp. 57–70.

[64] ORACLE. Java. https://www.java.com/, 2023.
[65] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuffling, fast and slow:

Scalable analytics on serverless infrastructure. In 16th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019 (2019), J. R. Lorch and M. Yu, Eds., USENIX Association,
pp. 193–206.

[66] QI, S., LIU, X., AND JIN, X. Halfmoon: Log-optimal fault-tolerant stateful
serverless computing. In Proceedings of the 29th Symposium on Operating
Systems Principles (New York, NY, USA, 2023), SOSP ’23, Association for
Computing Machinery, p. 314–330.

[67] QI, S., MONIS, L., ZENG, Z., WANG, I., AND RAMAKRISHNAN, K. K.
SPRIGHT: extracting the server from serverless computing! high-performance
ebpf-based event-driven, shared-memory processing. In SIGCOMM ’22: ACM
SIGCOMM 2022 Conference, Amsterdam, The Netherlands, August 22 - 26, 2022
(2022), F. Kuipers and A. Orda, Eds., ACM, pp. 780–794.

[68] QINGYUAN, L., DONG, D., YUBIN, X., PING, Z., AND HAIBO, C. The
gap between serverless research and real-world systems. In Proceedings of the
14th Symposium on Cloud Computing (New York, NY, USA, 2023), SoCC ’23,
Association for Computing Machinery.

[69] RAGHAVAN, D., RAVI, S., YUAN, G., THAKER, P., SRIVASTAVA, S., MURRAY,
M., PENNA, P. H., OUSTERHOUT, A., LEVIS, P., ZAHARIA, M., AND ZHANG,
I. Cornflakes: Zero-copy serialization for microsecond-scale networking. In
Proceedings of the 29th Symposium on Operating Systems Principles (New York,
NY, USA, 2023), SOSP ’23, Association for Computing Machinery, p. 200–215.

[70] ROMERO, F., CHAUDHRY, G. I., GOIRI, I., GOPA, P., BATUM, P., YADWAD-
KAR, N. J., FONSECA, R., KOZYRAKIS, C., AND BIANCHINI, R. Faa$t: A
transparent auto-scaling cache for serverless applications. In SoCC ’21: ACM
Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021 (2021),
C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 122–137.

[71] ROTHENBERGER, B., TARANOV, K., PERRIG, A., AND HOEFLER, T. Redmark:
Bypassing RDMA security mechanisms. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021 (2021), M. Bailey and R. Greenstadt,
Eds., USENIX Association, pp. 4277–4292.

[72] SAXENA, D., JI, T., SINGHVI, A., KHALID, J., AND AKELLA, A. Memory
deduplication for serverless computing with medes. In EuroSys ’22: Seventeenth
European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022
(2022), Y. Bromberg, A. Kermarrec, and C. Kozyrakis, Eds., ACM, pp. 714–729.

[73] SERVICES, A. W. Configuring function memory (console).
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-
common.html#configuration-memory-console, 2023.

[74] SHAHRAD, M., FONSECA, R., GOIRI, I., CHAUDHRY, G., BATUM, P., COOKE,
J., LAUREANO, E., TRESNESS, C., RUSSINOVICH, M., AND BIANCHINI, R.

https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.java.com/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console

Serialization/Deserialization-free State Transfer in Serverless Workflows EuroSys ’24, April 22–25, 2024, Athens, Greece

Serverless in the wild: Characterizing and optimizing the serverless workload at
a large cloud provider. In 2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 205–218.

[75] SHAN, Y., HUANG, Y., CHEN, Y., AND ZHANG, Y. Legoos: A disseminated,
distributed OS for hardware resource disaggregation. In 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 69–87.

[76] SHILLAKER, S., AND PIETZUCH, P. Faasm: Lightweight isolation for efficient
stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20) (July 2020), USENIX Association, pp. 419–433.

[77] SINGHVI, A., BALASUBRAMANIAN, A., HOUCK, K., SHAIKH, M. D.,
VENKATARAMAN, S., AND AKELLA, A. Atoll: A scalable low-latency server-
less platform. In Proceedings of the ACM Symposium on Cloud Computing
(New York, NY, USA, 2021), SoCC ’21, Association for Computing Machinery,
p. 138–152.

[78] SREEKANTI, V., WU, C., CHHATRAPATI, S., GONZALEZ, J. E., HELLER-
STEIN, J. M., AND FALEIRO, J. M. A fault-tolerance shim for serverless com-
puting. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020 (2020), A. Bilas, K. Magoutis, E. P. Markatos, D. Kostic, and
M. I. Seltzer, Eds., ACM, pp. 15:1–15:15.

[79] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-SMITH, J., GONZALEZ, J. E.,
HELLERSTEIN, J. M., AND TUMANOV, A. Cloudburst: Stateful functions-as-a-
service. Proc. VLDB Endow. 13, 12 (jul 2020), 2438–2452.

[80] TARANOV, K., BRUNO, R., ALONSO, G., AND HOEFLER, T. Naos:
Serialization-free RDMA networking in java. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21) (July 2021), USENIX Association, pp. 1–14.

[81] TARANOV, K., ROTHENBERGER, B., PERRIG, A., AND HOEFLER, T. srdma
- efficient nic-based authentication and encryption for remote direct memory
access. In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July
15-17, 2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX Association,
pp. 691–704.

[82] THORPE, J., QIAO, Y., EYOLFSON, J., TENG, S., HU, G., JIA, Z., WEI, J.,
VORA, K., NETRAVALI, R., KIM, M., AND XU, G. H. Dorylus: Affordable,
scalable, and accurate GNN training with distributed CPU servers and serverless
threads. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2021, July 14-16, 2021 (2021), A. D. Brown and J. R. Lorch,
Eds., USENIX Association, pp. 495–514.

[83] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for datacenter applica-
tions. In Proceedings of the 26th Symposium on Operating Systems Principles
(New York, NY, USA, 2017), SOSP ’17, Association for Computing Machinery,
p. 306–324.

[84] TSENG, H., ZHAO, Q., ZHOU, Y., GAHAGAN, M., AND SWANSON, S. Mor-
pheus: Creating application objects efficiently for heterogeneous computing.
In 43rd ACM/IEEE Annual International Symposium on Computer Architec-
ture, ISCA 2016, Seoul, South Korea, June 18-22, 2016 (2016), IEEE Computer
Society, pp. 53–65.

[85] USTIUGOV, D., PETROV, P., KOGIAS, M., BUGNION, E., AND GROT, B.
Benchmarking, analysis, and optimization of serverless function snapshots. In
ASPLOS ’21: 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual Event, USA, April
19-23, 2021 (2021), T. Sherwood, E. D. Berger, and C. Kozyrakis, Eds., ACM,
pp. 559–572.

[86] WANG, A., CHANG, S., TIAN, H., WANG, H., YANG, H., LI, H., DU, R.,
AND CHENG, Y. Faasnet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021 (2021), I. Calciu
and G. Kuenning, Eds., USENIX Association, pp. 443–457.

[87] WANG, A., ZHANG, J., MA, X., ANWAR, A., RUPPRECHT, L., SKOURTIS, D.,
TARASOV, V., YAN, F., AND CHENG, Y. InfiniCache: Exploiting ephemeral
serverless functions to build a Cost-Effective memory cache. In 18th USENIX

Conference on File and Storage Technologies (FAST 20) (Santa Clara, CA, Feb.
2020), USENIX Association, pp. 267–281.

[88] WANG, C., MA, H., LIU, S., LI, Y., RUAN, Z., NGUYEN, K., BOND, M. D.,
NETRAVALI, R., KIM, M., AND XU, G. H. Semeru: A memory-disaggregated
managed runtime. In 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020 (2020),
USENIX Association, pp. 261–280.

[89] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstructing rdma-enabled
distributed transactions: Hybrid is better! In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (2018), OSDI ’18, pp. 233–251.

[90] WEI, X., LU, F., CHEN, R., AND CHEN, H. KRCORE: A microsecond-scale
RDMA control plane for elastic computing. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22) (Carlsbad, CA, July 2022), USENIX Association,
pp. 121–136.

[91] WEI, X., LU, F., WANG, T., GU, J., YANG, Y., CHEN, R., AND CHEN, H.
No provisioned concurrency: Fast RDMA-codesigned remote fork for serverless
computing. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23) (Boston, MA, July 2023), USENIX Association,
pp. 497–517.

[92] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-memory trans-
action processing using rdma and htm. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, ACM,
pp. 87–104.

[93] WU, M., WANG, S., CHEN, H., AND ZANG, B. Zero-Change object trans-
mission for distributed big data analytics. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22) (Carlsbad, CA, July 2022), USENIX Association,
pp. 137–150.

[94] XING, J., HSU, K., QIU, Y., YANG, Z., LIU, H., AND CHEN, A. Bedrock:
Programmable network support for secure RDMA systems. In 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-
12, 2022 (2022), K. R. B. Butler and K. Thomas, Eds., USENIX Association,
pp. 2585–2600.

[95] YANG, Y., ZHAO, L., LI, Y., ZHANG, H., LI, J., ZHAO, M., CHEN, X., AND LI,
K. Infless: a native serverless system for low-latency, high-throughput inference.
In ASPLOS ’22: 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland, 28
February 2022 - 4 March 2022 (2022), B. Falsafi, M. Ferdman, S. Lu, and T. F.
Wenisch, Eds., ACM, pp. 768–781.

[96] ZARANDI, A. P., GUPTA, S., KASSIR, H., SUTHERLAND, M., TIAN, Z., DRU-
MOND, M. P., FALSAFI, B., AND KOCH, C. Optimus prime: Accelerating data
transformation in servers. In ASPLOS ’20: Architectural Support for Program-
ming Languages and Operating Systems, Lausanne, Switzerland, March 16-20,
2020 (2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM, pp. 1203–1216.

[97] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND LIU, V. Fault-
tolerant and transactional stateful serverless workflows. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020 (2020), USENIX Association, pp. 1187–1204.

[98] ZHANG, S., ANGEPAT, H., AND CHIOU, D. Hgum: Messaging framework for
hardware accelerators. CoRR abs/1801.06541 (2018).

[99] ZHANG, W., FANG, V., PANDA, A., AND SHENKER, S. Kappa: a program-
ming framework for serverless computing. In SoCC ’20: ACM Symposium on
Cloud Computing, Virtual Event, USA, October 19-21, 2020 (2020), R. Fonseca,
C. Delimitrou, and B. C. Ooi, Eds., ACM, pp. 328–343.

[100] ZHAO, K., GONG, S., AND FONSECA, P. On-demand-fork: A microsecond
fork for memory-intensive and latency-sensitive applications. In Proceedings of
the Sixteenth European Conference on Computer Systems (New York, NY, USA,
2021), EuroSys ’21, Association for Computing Machinery, p. 540–555.

[101] ZHAO, L., YANG, Y., LI, Y., ZHOU, X., AND LI, K. Understanding, predicting
and scheduling serverless workloads under partial interference. In SC ’21: The
International Conference for High Performance Computing, Networking, Storage
and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021 (2021), B. R.
de Supinski, M. W. Hall, and T. Gamblin, Eds., ACM, pp. 22:1–22:15.

EuroSys ’24, April 22–25, 2024, Athens, Greece F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen

A Artifact Appendix
A.1 Abstract
The artifact for the EuroSys 2024 paper—“Serialization/Deserialization-free
State Transfer in Serverless Workflows”—provides the necessary resources
for reproducing the main experiment results presented in the paper. It includes
the source code and setup and reproduce instructions. The DOI of the artifact
is at https://zenodo.org/doi/10.5281/zenodo.10078917.

A.2 Description

A.2.1 How to access All the source code and instructions can be ac-
cessed through the following git repository: https://github.com/ProjectMitosisOS/
dmerge-eurosys24-ae.

A.2.2 Hardware dependencies The experiments require multi-core
server machines equipped with RDMA NICs. InfiniBand is the preferred
RDMA protocol.

A.2.3 Software dependencies The RMMAP artifact can only run on
the Linux platform. Several software packages are required for compiling
and running the experiments, as detailed in the README.md.

A.2.4 Benchmarks No special benchmarks are required. The artifact
includes four different benchmark applications, as described in §5.1.

A.3 Setup
The artifact is self-contained and includes all necessary steps for hardware
and software preparations, as documented in the README.md. The docs/-
exp.md file provides instructions for setting up the experiment environment,
including the integration of the four workflow applications described in §5.1.

A.4 Experiment Workflow
The process for reproducing the results of all experiments is documented in
the docs/exp.md. By following the provided instructions, experiment results
in §5.2–§5.7 can be successfully reproduced.

https://zenodo.org/doi/10.5281/zenodo.10078917
https://github.com/ProjectMitosisOS/dmerge-eurosys24-ae
https://github.com/ProjectMitosisOS/dmerge-eurosys24-ae

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless computing and serverless workflow
	2.2 State transfer in serverless workflows
	2.3 Analysis of the costs in serverless workflow
	2.4 The necessities and costs of (de)serialization

	3 Overview of RMMap
	3.1 Challenges and solutions
	3.2 System architecture

	4 Detailed Design
	4.1 The RMMap operating system primitive
	4.2 Virtual memory plan and memory reclamation
	4.3 Supporting high-level language
	4.4 Prefetching and cascading state transfer

	5 Evaluation
	5.1 Evaluation setup
	5.2 Microbenchmark performance
	5.3 End-to-end application performance
	5.4 Sensitive analysis
	5.5 Factor analysis
	5.6 Memory consumption
	5.7 Performance on Java

	6 Discussion and Limitation
	7 Related work
	8 Conclusion and Future Work
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description
	A.3 Setup
	A.4 Experiment Workflow

