
Secure and Efficient Control Data Isolation with

Register-Based Data Cloaking
Xiayang Wang , Fuqian Huang , and Haibo Chen , Senior Member, IEEE

Abstract—Attackers often exploit memory corruption vulnerabilities to overwrite control data and further gain control over victim

applications. Despite progress in advanced defensive techniques, such attacks still remain a major security threat. In this article, we

present Niffler, a new technique that provides lightweight and practical defense against such attacks. Niffler eliminates the threat of

memory corruption over control data by cloaking all control data in registers along its execution and only spilling them into a dedicated

read-only area in memory upon a shortage of registers. As an attacker cannot directly overwrite any register or read-only memory

pages, no direct memory corruption on control data is feasible. Niffler is made efficient by compactly encoding return address,

balancing register allocation, dynamically determining register spilling and leveraging the recent Intel Memory Protection Extensions

(MPX) for control data lookup during register restoring. We implement Niffler based on LLVM and conduct a set of evaluations on

SPECCPU 2006 and real-world applications. Performance evaluation shows that Niffler introduces an average of only 6.3 percent

overhead on SPECCPU 2006 C programs and an average of 28.2 percent overhead on C++ programs.

Index Terms—Control data isolation, memory error, processor registers

Ç

1 INTRODUCTION

PROGRAMS intensively use indirect control transfer like
function returns and indirect function calls. Such

instructions may use in-memory data as the destination
addresses, which, however, can easily be corrupted and
exploited through memory corruptions like buffer over-
flows. The exploited data is named control data or code
pointer. The exploits, named control data attacks, mislead
the indirect control transfer into arbitrary instructions
and ultimately execute arbitrary code [1]. Though the
classic shellcode insertion can be defeated in modern
systems with the support of W�X and Data Execution
Prevention (DEP) [2], attackers can reuse existing code
[3], [4] or even reinterpret the code [5], [6] for arbitrary
execution.

Isolating the control data protects the data from direct
memory corruption and completely defeats control data
attacks like return-oriented programming (ROP) [4], [6],
[7] and corrupting the function pointers. For example,
the isolated return addresses form a shadow stack,
which restrict any return instruction to only transfer the
control flow back to the corresponding call site. Simi-
larly, the destinations of indirect calls are restricted by
the isolated function pointers, whose values are not
affected by direct memory corruption.

Control data isolation provides stronger security guaran-
tee than related control data attack defence techniques like

code address randomization [8], [9], [10] and Control Flow
Integrity (CFI) [11]. The security guarantee of randomiza-
tion depends on information hiding. However, researchers
have developed multiple advanced attacks to disclose mem-
ory pages and break the information hiding [3], [12], [13],
[14]. Furthermore, the recent Meltdown [15] and Spectre [16]
attacks have made the community question the reliability of
information hiding given the successful exploits of leaking
data without crashing the victim program. CFI restricts the
program’s runtime execution to follow only a pre-defined
set of paths. Due to the inaccuracy of the legal paths, CFI
enforces a relaxed security guarantee, such as permitting a
function returns to multiple call sites invoking the same
function.

Code Pointer Separation (CPS) [17] and Cryptographic
Control Flow Integrity (CCFI) [18] are two examples of
control data isolation. The security guarantee provided
and performance overhead incurred depend on the tech-
nique used to enforce the isolation. CPS [17] places return
addresses and function pointer in a separate memory
region. On 32-bit x86 processors, it protects the isolated
region with segmentation. However, when an x86 processor
runs in 64-bit mode where segmentation is limitedly sup-
ported, the randomization-based CPS implementation can
be broken by information leak [13]. CCFI [18] encrypts con-
trol data to defeat direct memory corruption. However,
placing the encrypted control data into memory is poten-
tially vulnerable to replay attacks. Furthermore, CCFI incurs
an average of more than 20 percent performance overhead,
even though it leverages AES-NI [19] and processor specu-
lative execution.

Other software-based shadow stacks are vulnerable
under the threat of arbitrary memory corruption [20] or
information leak [9], depend on an obsolete hardware

� The authors are with the Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: {xywang.sjtu, sjtu.ticholas.huang, haibochen}@sjtu.edu.cn.

Manuscript received 25 Dec. 2018; revised 10 Sept. 2019; accepted 30 Sept.
2019. Date of publication 11 Oct. 2019; date of current version 13 Jan. 2020.
(Corresponding author: Xiayang Wang.)
Recommended for acceptance by T. Li.
Digital Object Identifier no. 10.1109/TC.2019.2946770

226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0002-7328-1451
https://orcid.org/0000-0002-7328-1451
https://orcid.org/0000-0002-7328-1451
https://orcid.org/0000-0002-7328-1451
https://orcid.org/0000-0002-7328-1451
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
mailto:The authors are with the Institute of Parallel and Distributed SystemsShanghai Jiao Tong UniversityShanghai200240China.

segmentation feature [11], or suffer from high performance
overhead [21], [22].

In this paper, we show that control data isolation can
be enforced both efficiently and securely by cloaking the
data into registers, which are neither vulnerable to infor-
mation leaks nor broken by replay attacks. Reading and
writing to a register have short latency. Memory corrup-
tion exploits can only be effective when the victim
data can be pointed to by an attacker-controlled pointer
variable, while processor registers are only addressable
by their names which are hard-coded in the program
instructions if no aliased register exists. Cache appears
to be another case of in-processor data storage,
which has been utilized to defend physical attacks like
cold boot. However, cache is addressable by virtual
addresses, indicating the data in cache can still be vul-
nerable to memory corruptions.

Related works like StackGhost [23] and PointGuard [24]
also embrace the benefit of processor registers. StackGhost
exploits the register window feature on SPARC architecture
to save return addresses in registers. It is also restricted by
the SPARC architecture that it traps to the kernel on every
eight consecurive function calls. PointGuard ensures the
pointers are encrypted unless they are in registers. They are
limited by the frequent time-consuming operations that
securely spill the register values.

We embody the idea of in-register control data cloaking
in Niffler, which incorporates compiler instrumentation
and works on commodity hardware. During compilation,
Niffler instruments an application to place the control
data into and retrieve it from a processor register. When
registers become full, it is necessary to spill them secur-
ely without the risk of being corrupted. The instrumented
program traps to the kernel and spills registers in a
kerne writable memory space, which is immutable in
user mode.

Though register spillings have been made secure, it will
kill the performance if the application traps to the kernel too
frequently. Niffler incorporates a series of techniques to
reduce of frequency of kernel trapping, such as efficient
data representation, balanced register allocation, dynamic
spilling detection and fast register restoring.

We implement Niffler by extending LLVM on x86 plat-
form. We utilize the MMX registers as they are rarely used.
Therefore, Niffler would not conflict with the instrumented
application in register use. We further utilize Intel Memory
Protection Extensions (MPX) to optimize register restoring.
We extend the Linux kernel to create secure memory
regions for spilled register values, respond to register spill-
ing, and support dynamic linking, multi-threaded and
multi-processed applications. The kernel-side implementa-
tion is contained in a kernel module without modifying any
kernel code.

We evaluate Niffler by instrumenting the SPECCPU 2006
benchmarks written in C/C++ and numerous real-world
applications like servers and Linux utilities. The C pro-
grams in SPECCPU 2006 show only 6.3 percent overhead,
which is much lower than the 23 percent overhead reported
by CCFI [18]. The overhead on C++ programs in SPECCPU
2006 is 28.2 percent on average, which is also lower than
CCFI.

This paper makes the following contributions:

� A novel control data isolation technique that lever-
ages the insight that registers defeat memory corrup-
tion naturally.

� The design of Niffler which embodies techniques to
increase register utilization and supports dynamic
linking, multi-threaded and multi-processed appli-
cations. We also show a novel utilization of Intel
Memory Protection Extensions to optimize function
pointer cloaking.

� Detailed analysis and evaluation of Niffler that
shows the register-based control data isolation tech-
nique provides strong security guarantee and incurs
low overhead on applications with moderate num-
ber of control transfers.

2 BACKGROUND

2.1 Memory Corruption and Control Data Attack are
Still Prevalent

Memory corruption is regarded as one of the most common
types of program vulnerabilities [1], [9], [25], [26]. An infa-
mous case of memory corruption is buffer overflow, by
which the program writes to memory beyond the end of a
buffer on the stack or the heap. Nowadays, memory corrup-
tions are still routinely discovered and reported, though
the history of buffer overflow attacks dates back to the
1980s [27]. In March 2018, a buffer overflow vulnerability
was revealed in the widely used email server, Exim, which
imperiled an estimated 400,000 email servers [28].

We have studied the CVEs on memory corruptions based
on the description in the reports. As Table 1 shows, during the
first four months in 2018 alone, 280 memory corruption vul-
nerabilities are reported. In addition, memory corruption
comes in multiple variants, among which the buffer overflow
is the most common one. Notably, 106 out of the 280 memory
corruptionCVEs in Table 1 aremarked by the reporter to have
a risk of being exploited as arbitrary code execution. The sig-
nificant number of exploitable memory corruptions that still
exist nowadays calls for an effective defense on control data.

2.2 Intel MPX

Memory Protection Extensions are a set of Intel x86 processor
features, starting from the Skylake microarchitecture, and
work specifically on bound checking. MPX introduces new
instructions and registers to define, remember and compare
pointer bounds. The compiler can instrument the program

TABLE 1
Number of CVEs on Memory Corruption Reported from

January to April in 2018

Category Count

Buffer Overflow 126
Buffer Underflow 4
Double Free 17
Use-After-Free 42

Memory Corruption 280
Memory Corruption � > Code Execution 106

Many of them are not marked with a specific type of memory
corruption.

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 227

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

with the new instructions. On a bound violation, the proces-
sor triggers a #BR exception and traps to the kernel.

MPX consists of four 128-bit registers, named %bnd0-

3, to record the bounds of a pointer, which are made up
of a 64-bit upper bound and a 64-bit lower bound. The
instruction bndcn compares the pointer value in a gen-
eral purpose register against one %bndX register as the
upper bound. Similarly, bndcl compares against a lower
bound.

MPX utilizes a two-level radix tree to record the mapping
from a pointer variable, specified by its memory address, to
its bounds. When a program needs to introduce more than
four pairs of bounds, the %bnd0-3 registers are spilled into
the radix tree. MPX introduces a new instruction bndldx to
restore one MPX register from the radix tree.

MPX manages one 32-byte block for each pointer variable
in the radix tree. The block contains the upper bound, the
lower bound, the value of the pointer variable and a
reserved field. Each field has 8 bytes. The first level of the
radix tree is as large as 2 GB, consisting of 228 different
pointers to the second level. The base address of the bound
directory is kept in a register %bndcfgu. The 4 MB-sized

second level consists of 217 different 32-byte blocks.

3 OVERVIEW

Niffler ensures a shadow-stack policy for return address pro-
tection that forces each function to return to the exact corre-
sponding call site. For other types of control data like
function pointers and virtual function pointers in C++
applications, Niffler provides a write-protected policy that
only the instrumented instructions can modify the isolated
control data. Additionally, it handles stack unwinding dur-
ing C++ exception handling and ensures correct unwinding
according to the shadow stack.

Listing 1. An Example of Return Address Cloaking.
Modeled After a BROP Exploit on Nginx. The Instru-
mentations are Underlined

1 typedef struct {

2 off_t content_length_n;

3 } ngx_http_headers_in_t;

4
5 void func2(void) {

6 @asm volatile (“movq $Line8, %func1_reg”);

7 func1();

8 }

9
10 void func1(void) {

11 char buffer[NGX_HTTP_DISCARD_BUFFER_SIZE];

12 size = (size_t) ngx_min(

13 NGX_HTTP_DISCARD_BUFFER_SIZE,

14 r->headers_in.content_length_n);

15 /* attack: corrupt return address */

16 n = r->connection->recv(r->connection,

17 buffer, size);

18
19 asm volatile (“movq %func1_reg, (%rsp)”);

20 return;

21 }

We illustrate the idea of register-based control data cloak-
ing with an example. Listing 1 shows a stack buffer overflow
exploit on Nginx from an advanced ROP attack named
BROP [3]. The attacker controls content_length_nwith a
crafted HTTP request. A negative content_length_n is
selected in Lines 12-14 and is casted into a large unsigned
size. Thus Lines 16-17 write beyond the bound of buffer
and corrupt the return address on the stack with the address
of an ROP gadget. Note that BROP is able to bypass the
canary on the stack [3].

Niffler instruments the application to defeat BROP. The
instrumentation in Line 6 saves the return address in a register
named %func1_reg, which is specified in a static analysis
during compilation. The cloaked return address in register sur-
vives the buffer overflow in Lines 16-17. It is saved to the stack
in Line 19which reverts the effect of the corruption.

3.1 Challenges and Solutions

The amount of control data keeps increasing along with the
program execution. When the registers fall short to hold a
new piece of control data, Niffler makes the application to
spill all registers to memory. In order to protect the in-
memory data from memory corruptions in user space, the
application traps to the kernel and spills all registers into a
memory region, named the secure region, which is immutable
in user mode.

Constant switches between kernel and application dur-
ing register spilling are time-consuming. Niffler instru-
ments the application in a way of high register utilization to
reduce the frequency of spilling. It encodes the return
addresses into short forms, named return address IDs. Multi-
ple return address IDs can be placed into one register at the
same time. Each function is assigned one register to hold its
return address. Niffler balances the register allocation by
assigning different registers to functions along a function
call graph path.

Determining when to spill the registers at compile time
can only make conservative decisions, which leads to a large
number of spilling events even if there is no shortage of
registers at runtime. Niffler lets the program detect register
shortage dynamically. Before appending a return address
ID to a register, the instrumented program checks whether
that register has enough room for the appended data.

To reduce the cost of register restoring, Niffler maps the
kernel-writable secure region as readable in user mode to
make registers get restored without trapping to the kernel.

In addition to return addresses, Niffler instruments the
application to cloak updated function pointers and virtual
function table pointers in registers. Precisely determining
a pointer’s address during compilation is challenging.
Instead, Niffler makes the application dynamically select
one register to use.

3.2 Threat Model

We assume that the attacker is able to read and write to arbi-
trary locations in the application’s memory address space.
We trust the operating system kernel to load the instru-
mented program binary securely and set page permissions
properly. As we focus on control data attacks, corrupting
non-control data is outside our consideration.

228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

4 RETURN ADDRESS CLOAKING

Niffler assigns one register for each function to hold return
address IDs. Fig. 1 illustrates how the return address cloak-
ing works. All of the return address IDs that func1() uses
when it returns to its caller function can be found in register
reg1. All mappings from return address IDs to the corre-
sponding full-length return addresses are recorded in trans-
lation tables.

In Steps 1-3 of Fig. 1, return address IDs are pushed into
assigned registers on function invocations. Steps 4-5 pop
the return address ID on returning from func1() and
translate it back with the help of the translation table.

When the register does not have enough room to hold
another return address ID, the application traps to the ker-
nel and spills the registers into memory which is immutable
in user mode. Registers are restored when the application
tries to pop a return address ID from a register but finds
that register is empty.

4.1 Return Address Encoding

The encoding of return address ID is based on the observa-
tion that all return addresses can be enumerated finitely by
iterating over all function invocation instructions. Niffler
maps each return address to an ID, a positive integer, during
compilation. The reverse mappings from IDs to the corre-
sponding virtual return addresses are generated at compile
and link time, and recorded in translation tables. Translation
tables are read-only data and their contents are loaded into
memory during program initialization.

Niffler scans a linked program to set up the mappings. All
direct call sites with the same callee function are aggregated
into one set. Niffler assigns a set-unique ID to each call site in
the set, starting from one, as the return address ID. Each
callee function is associated with one translation table. Note
that ranges of return address IDs in different sets can overlap.
For example in Fig. 1, func1_ret_1 and func2_ret_1 are
both encoded as 1. Thanks to different translation tables used
by func1() and func2(), Niffler ensures the two IDs are
translated back differently as long as they come from differ-
ent direct call site sets.

For an indirect call site like callq *%rax, Niffler does
not infer its possible destinations. Instead, Niffler treats all

indirect call sites in the same linkage unit into a single set
and assigns a return address ID to each of them in this
range. A function is address-taken when its symbol or
address is referred in statements like assignments. The
callee of an indirect call site must be an address-taken func-
tion. All address-taken functions share the single translation
table. Due to the uniqueness of return address IDs, they can
be translated back differently even though they share the
same table.

Supporting Dynamic Linking. The application and its
dependent libraries are compiled and instrumented sepa-
rately. However, the set of indirect call sites are collected
locally in one linkage unit, which makes the application and
shared libraries create separate translation tables for address-
taken functions. Return address IDs for indirect call sites
assigned within different linkage units may well collide after
linking and loading.

Niffler solves the issue by renaming all indirect call sites in
shared libraries after loading. All translation tables for indi-
rect call sites from all linkage units are merged before pro-
gram execution. The instrumented shared library remembers
the offset to the beginning of the merged translation table,
where its part of translation table resides. When pushing a
return address ID on an indirect call site in a shared library,
Niffler adds the offset to the locally assigned ID, which
results in a globally unique ID. The per-shared-library offset
value is kept read-only after merging.

Niffler treats all direct invocations to shared library func-
tions as indirect calls, as these call sites are invisible to the
callee function during the process of assigning return
address IDs.

Length of Return Address IDs. Niffler determines the
lengths of all return address IDs at compile time. The return
address IDs for direct call sites are encoded with just enough
bits, as the total number of direct call sites to the same func-
tion within a linkage unit is known at compile time. For
example, if callq bar is assigned ID 5 in a total of 7 peer
call sites, Niffler encodes all IDs in this range with only three
bits, and this call site is represented as 101 in binary.

For all indirect call sites and external function call sites
among all linkage units, return address IDs are encoded
with the same number of bits, as the total amount of call
sites cannot be determined at compile time.

4.2 Register Allocation

Each function is assigned one register to hold all return
address IDs used by this function to return to the caller.
Multiple functions may be assigned the same register. With
the help of the compressed encoding scheme, a single regis-
ter is able to hold multiple return address IDs at the same
time. Each ID can be distinguished as its length is known at
compile time.

Function invocations can be nested and recursive, which
may form a deep call stack of dozens of functions during
execution. The worst register allocation assigns all functions
with the same register. As the result, each call site puts the
return address ID into that register, which makes it quickly
become full and trigger a spilling, a time-consuming opera-
tion in Niffler.

A better register allocation balances the chance that each
register is pushedwith a return address ID during execution,

Fig. 1. Direct calls and returns in instrumented programs. Labels after
the callsites to the same function are displayed in the same color in this
figure. We assume that func1() returns after Step 3 rather than
stepping into func2().

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 229

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

which increases the chance that the assigned register has
enough room and needs no spilling. Thus, along each pro-
gram execution path, the different return address IDs should
be equally distributed to different registers.

To balance register allocation, Niffler utilizes the function
call graph extracted from the source program to predict all
possible execution paths. Niffler colors the call graph in a
topological order which colors the two consecutive nodes in
an execution path differently. Thus it maps color numbers
to registers with modulo operations. All cycles in the call
graph are eliminated before the topological ordering.

An indirect call site can reach multiple callee functions
depending on the value of the function pointer. It is challeng-
ing to determine the exact register to place the return address
ID at compile time if the possible callees are assigned differ-
ent registers. Instead, Niffler assigns the same register to all
address-taken functions.

As mentioned in Section 4.1, Niffler treats direct calls to
externally defined functions as indirect calls. Similarly, Nif-
fler assigns all functions that can be the callees of an external
call site the same register. Thus the instrumentations are the
same around an indirect call cite and an external call site.

By pinning all return addresses IDs for indirect and
external call sites into the same register, Niffler can correctly
handle application callbacks from shared libraries. The
instrumentations around these two types of call sites are
the same, as they are indirect call sites from the view of the
shared library. Furthermore, a callback function is assigned
the same register as it must be address-taken and passed to
the shared library as a function pointer.

4.3 Register Spilling and Restoring

Before pushing another return address ID on a function
invocation, regardless of being direct or indirect, Niffler
instruments the program to check whether the register has
room for it. If not, the program traps to kernel and saves
registers to the kernel writable secure region. The kernel
clears all registers and the application continues pushing
return address IDs then. The secure region is reclaimed after
the process exits.

Before a function returns, the instrumentation restores
the registers if the register assigned to that function is
empty. To reduce kernel trappings, Niffler maps the secure
region read-only in user mode so that the registers can be
restored by directly reading into the secure region.

On forking a process, the kernel unmaps all pages of the
secure region inherited from the parent process in the child
process and maps new ones. The secure region in the child
process is initialized with the same content as its parent pro-
cess. Similarly, Niffler creates a new secure region of spilled
return address IDs for a new thread.

5 FUNCTION POINTER CLOAKING

To prevent function pointers from being corrupted, Niffler
allocates registers to cloak function pointers and forces the
application to read from and write to the set of registers.

A static register allocation requires an accurate point-to
analysis to determine which variable an instruction accesses.
Considering a function pointer variable fptr assigned with
register %R. On instrumenting an instruction that accesses

fptr, we must hard-code the register name as %R. Instru-
menting with a wrong registermay crash the program.

Instead, unlike return address cloaking, Niffler dynami-
cally allocates registers for function pointers. Niffler packs
the address of the function pointer variable and its value
into one register. For a function pointer variable fptr,
located at &fptr and holding the address of function
func1, the register will be filled with the pair of (&fptr,
func1).

Niffler identifies all function pointer read and write oper-
ations and instruments them. For a function write operation
*fptr = func1, the instrumented program scans all regis-
ters for a vacancy. If there is one, it saves the pair of (&fptr,
func1) in that register. When there is not, the instrumented
program traps to the kernel and spills the registers into the
kernel writable secure region. It is remapped as read-only
in user mode and shared between all threads in the same
process.

Reading a function pointer requires a scan over all dirty
registers. Intuitively, function pointer read operations are
more common than write operations. Niffler instruments
the application with a fast path of directly reading from the
secure region. To determine whether the function pointer
variable is being cloaked in some register at this moment,
the instrumented application also reads the function pointer
variable and compares the two read results. Note that Nif-
fler does not eliminate the function pointer write operation
in the application after instrumentation. The function
pointer variable is updated anyway. If the two values are
different, the instrumented program will fall back into a
slow path and scan over all dirty registers. If no dirty regis-
ter holds the function pointer, the instrumented program
will treat it as a case of function pointer corruption.

In this design, if a function pointer is cloaked in a regis-
ter, but the in-memory variable is unfortunately corrupted
back to the previous value, the instrumented program will
not detect this case, as the value read from the secure region
matches the corruption result. To mitigate this issue, the
kernel checks the dirty registers with the corresponding
function pointer variables in memory on spilling. A mis-
match will indicate that the function pointer has been
corrupted.

Synchronization in Multi-Threaded Program. Registers are
private to a thread. If a function pointer is updated by one
thread, it is temporarily invisible to its peer threads until
the dirty register is spilled. Niffler makes the program spill
all of the registers that belong to the thread and cloak func-
tion pointers when the program releases a lock by calling
the thread synchronization library functions. We expect the
developers to explicitly invoke the synchronization func-
tions if multiple threads race on function pointer variables.

6 IMPLEMENTATION

Niffler is implemented on x86 platform as extensions and
modifications to LLVM 3.9.0. Niffler analyzes and instru-
ments each application and its dependencies at interme-
diate representation (IR) level after each compilation unit
is linked. Different compilation units can be analyzed
and instrumented separately as Niffler supports dynamic
linking.

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

Niffler also provides a character device driver, a type of
kernel module, which works with unmodified Linux 4.8.11.
All kernel-side implementations of Niffler are contained in
the module without modifying any code of Linux kernel.

In the prototype, we pick MMX registers %mm0-7, a set of
64-bit registers provided by x86 single instruction multiple
data (SIMD) instruction set, for return address cloaking.
MMX registers are aliased to the x87 register stack which is
arguably obsolete [29]. We disable the usage of the x87 reg-
ister stack. We also reserve %xmm15 to save spilled %mm6.
Function pointer cloaking is supported by 128-bit Memory
Protection Extensions registers.

6.1 Extracting Function Call Graph

When extracting the call graph, Niffler infers the possible
callees for an indirect call site by matching the function sig-
nature. Though such inference overly approximates the set
of possible callee functions, it does not impact the correct-
ness of the instrumentation. Whether a pair of caller and
callee functions are assigned the same register only affects
the frequency of register spilling.

A function may act as the callee of both a direct call and
an indirect call. However, the instrumentations are different
between these two types of calls. For example, they push
the return address IDs to different registers. Niffler dupli-
cates any function that is possibly an indirect call target and
modifies all address-taking sites to use this duplicate.

To handle the functions that can be the callees of external
call sites, Niffler duplicates all functions exported by a
shared library and replaces the internal direct invocations
inside the shared library with a call to the duplicate.

6.2 Cloaking Return Address ID

Niffler reserves six MMX registers, %mm0-5, to hold return
address IDs for direct calls. Another register %mm6 is
reserved for indirect and external function calls. The kernel
maintains a stack in the secure memory region for the
spilled MMX registers. The top of the stack is kept in %mm7.

Listing 2. Instrumentations before a Direct Call

1 movq %mm0, %rsi

2 shrq $60, %rsi

3 je no_need_to_spill

4 ... # trap to kernel

5 no_need_to_spill:

6 movq %mm0, %rsi

7 salq $4, %rsi

8 orq %rdi, %rsi

9 movq %rsi, %mm0

Listing 2 shows an example of how Niffler instruments
the program to dynamically determine when to spill. The
number of bits of a return address ID is statically determined
during compiling. In this example, the return address ID is
encoded in 4 bits. Lines 2-3 decide whether there is enough
room in %mm0 for another 4-bit return address ID by checking
whether the 4 leading bits of %mm0 are zero. Niffler reserves
the return address ID zero so that the 4 leading bits of zero
cannot be any return address ID in use.

In the prototype, we fix the length of all return address IDs
for indirect calls and external calls to 16 bits, which support

at most 216 � 1 ¼ 65535 different call sites. We use the 64-bit
register %mm6 to hold these fixed-length IDs. To reduce the
frequency of %mm6 spilling, Niffler instruments the applica-
tion to copy %mm6 to %xmm15 once %mm6 needs to spill. The
application traps to the kernel if %xmm15 is not empty. For
applications with more than 65,535 indirect call sites, we can
set the ID length to 32 bits and use a 128-bit XMM register. A
second option is to reserve both %mm5 and %mm6 for non-
direct calls and leave %mm0-mm4 for direct calls.

Listing 3. Instrumentations Before a Return Instruction

1 movq %mm0, %rdi

2 testq %rdi, %rdi

3 jne no_need_to_restore

4 ... # restore MMXs in user mode

5 no_need_to_restore:

6 movq %mm0, %rdi

7 andq 0xf, %rdi

8 movq func1_tbl(,%rdi,8), %rdi

9 movq %rdi, (%rsp)

10 movq %mm0, %rdi

11 shrq 4, %rdi

12 movq %rdi, %mm0

Listing 3 shows the instrumentation before a return
instruction. Similar to Listing 2, the return address ID is
also encoded in 4 bits. Lines 1-3 check whether %mm0 is
zero. An empty %mm0 indicates all registers must be
restored from the secure region. The following instructions
translate the return address ID, overwrite the return address
on the stack and update %mm0.

Handling setjmp()/longjmp().Niffler instruments the appli-
cation to trap to the kernel on setjmp() and save the cur-
rent state of all MMX registers and %xmm15 in kernel
writable memory. The kernel keeps track of all setjmp()
records with a map structure, which is indexed by the
record pointer accepted by setjmp(). On longjmp(), the
registers are restored with the record pointer accepted by
longjmp().

6.3 Optimization With MPX

Niffler’s function pointer protection is optimized with Intel
Memory Protection Extensions. We use the radix tree of
MPX as the secure region for spilled registers. Niffler maps
the whole radix tree as read-only in user mode and remaps
it as writable in kernel mode.

We list the instrumented instructions after a function
pointer read operation in Listing 4. %rdi holds the address
of function pointer variable and %rsi holds the content of
function pointer variable. Line 1 clears %bnd0. bndldx in
Line 2 loads %bnd0with two 8-byte values stored in the radix
tree, which are set by the kernel on MPX register spilling.
During spilling, the kernel sets the first and second 8 bytes of
the 32-byte block with the same value func1, if the spilled
register contains the pair (&fptr, func1). These two values
are treated as the upper bound and the lower bound inMPX.
If %rsi matches the pointer variable’s content loaded from
the radix tree, the bound checks in Lines 3-4 will succeed.

If there is another MPX register cloaking the pointer vari-
able, either Line 3 or Line 4 will detect a mismatch. A #BR

exception is triggered by the processor. The character device

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 231

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

driver extends the #BR exception handler, spills all MPX
registers to the radix tree and clears all MPX registers if it
finds the cloaked function pointer variable in any MPX reg-
ister. Otherwise, it kills the process.

Listing 4. Instrumentations to Verify a Function Pointer

1 bndmov zero, %bnd0

2 bndldx (%rdi), %bnd0

3 bndcn (%rsi), %bnd0

4 bndcl (%rsi), %bnd0

Listing 4 shows the fast path of function pointer verifica-
tion. Note that though bndcn and bndcl compare the two
operands, they bring no branch to the control flow. In com-
parison, accesses to the MPX registers form the slow path as
x86 requires saving the 128-bit MPX registers to memory
and reading the in-memory data. Furthermore, matching
the MPX register value brings conditional branches.

Niffler reserves three MPX registers %bnd1-%bnd3 to
cloak an updated function pointer variable. A free MPX reg-
ister is found by scanning over all MPX registers. The appli-
cation traps to the kernel when no MPX register is empty.

The radix tree does not require to be fully backed up by
physical pages. The pages of the radix tree are not physi-
cally allocated until a first access. Additionally, function
pointers variables are allocated only in a few memory
regions like the stack and heap, which limits the range of
memory containing function pointers. Even if some pages
are unintentionally touched, the Linux kernel maps all
empty read-only pages to the same physical page.

6.4 Identifying Function Pointer Access

Niffler identifies function pointer accesses in the LLVM
intermediate representation by looking for load and store

instructions with function type. In-register values like func-
tion arguments are not specially considered in our proto-
type as the attacker cannot directly corrupt any general
purpose register value through memory corruption. In
order to capture type information from source code without
being optimized away, we identify function pointer
accesses before running -O2 mode optimizations. We trans-
form some indirect calls into direct ones if the destinations
can be determined with an intra-procedural analysis, to
eliminate unnecessary function pointer variable accesses.

Niffler instruments the libc function sigaction() to
explicitly save the registered signal handler in a processor
register. Programs may statically initialize function pointers
in global variables, without any store instruction. Niffler
collects all global variables and generates the corresponding
store operations. For other implicit function pointer
update like memcpy(), Niffler depends on the programmer
to explicitly mark them and generates the store instruc-
tions. We expect pointer analysis [30], [31] would help to
infer the type of copied memory data.

6.5 Instrumenting C++ Program

Virtual Function Table Pointers. C++ virtual function table
(VTable) pointers are identified by their types. As Niffler
keeps the 48-bit address and 64-bit value in MPX registers,

the VTable pointers are treated similarly in the way of han-
dling function pointers.

We make an optimization based on an observation that a
C++ program may store a VTable pointer and read it just
after a few instructions, which reflects that the program initi-
alizes an object and invokes one virtual function immedi-
ately. Niffler instruments the VTable pointer read operations
by directly reading and checking the latest updated MPX
register. Then it turns to other registers. This optimization
avoids a #BR exception if there is a matched register.

Stack Unwinding During Exception Handling.Niffler instru-
ments each functionwith stack unwinding operations to pop
the return address IDs from the assigned register which
holds the return address used by this function. Furthermore,
Niffler also ensures the integrity of the return addresses on
the stack which are used during exception handling by
replacing the return address on the stack with the one trans-
lated from the in-register return address ID.

7 EVALUATION

In this section, we analyze the design and implementation
of Niffler to discuss its security guarantees and evaluate the
performance overhead it incurs.

7.1 Security Analysis

We demonstrate how an application instrumented by Niffler
defeats control data attacks. First of all, Niffler ensures the
registers that cloak the control data can only be modified by
the instrumented instructions. No memory corruption can
forge a virtual address that targets a register. Niffler reserves
the use of those registers so that the compilerwill neither spill
them into memory nor use them intentionally. Furthermore,
as Niffler instruments the application to get control data like
return addresses and function pointers from registers, the
attacker has no chance to directly manipulate the control
data and mislead the program to jump into the middle of an
instruction to reinterpret the instructions. In addition, we
assume the integrity of code pages so that it is impossible to
create new instructions thatmodify the reserved registers.

Second, the return address IDs are hard-coded in instru-
mented instructions, which are determined during compila-
tion. For indirect calls in shared libraries and direct calls to
shared library functions, the added offset values are pro-
tected with read-only page permission. Then the return
address IDs pushed to registers are immutable to memory
corruptions. The function addresses used to update MPX
registers are either initialized by taking a function’s address
or copied from a function pointer variable. The initial value
is an operand of the instruction, which is hard-coded in
code pages. Niffler forces a load from a function pointer var-
iable to read fromMPX registers or the secure region, which
restricts the result to values that reside in the secure region.

Third, the spilled register values are either cached in
XMM registers or write-protected by page permission. The
attacker cannot corrupt the content of the secure region in
user mode.

Lastly, the instrumented application distinguishes all
return address IDs by interpreting them with different
translation tables. Though all IDs for indirect call sites are
translated with the same table, each of them is globally

232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

unique with the help of the different offset values among
shared libraries.

Though the memory region holding spilled register is
accessible in user and kernel mode, there is no risk of leak-
ing the kernel information as no kernel internal data will be
saved in this region. The address of the read-only memory
region is in the user space as the region is allocated by mmap

(). Niffler does not prevent any unintentional read to the
read-only region as it does not rely on information hiding to
ensure data isolation.

Case Study: Defending Memory Corruptions in Nginx. We
use Nginx as an example to show how Niffler helps applica-
tions defeat memory corruptions. We use gdb to inject mem-
ory corruptions, which are tougher than real-world exploits
as we are free to inject memory corruptions at any time and
address. We randomly pick 15 places of code pointer read
operations that are surely executed during the test. They
include 5 direct function call returns, 5 indirect function call
returns, and 5 indirect function calls. We set breakpoints
before the Nginx worker process reaching the code pointer
read operation. We then use set command to emulate a
memory corruption. We change the 10 return address and
the 5 function pointers to an invalid address.

After the execution continues, we find as expected that
the worker process is not affected if the return address is
corrupted. This is because the corrupted return addresses
have been overridden by the correct ones in register. For the
corrupted function pointers, we find Niffler always kills the
victim worker process at the address of bndcn or bndcl,
which indicates Niffler has identified the corrupted function
pointer and prevented the corrupted value to be used.

Limitations. In the prototype, Niffler defends control data
attacks. The attacker may corrupt the parameters used to
update the radix tree to trick the instrumented code towrite to
arbitrary entry [32], [33]. Protecting parameters is an example
of non-control data attacks [34], [35], [36], [37]. Neither CPS
nor CCFI considers such data pointer corruption attackswhile
the enhanced CPI isolates the data pointers into a randomize-
address memory region. Additionally, the prototype does not
consider the spilled general purpose registers on the stack. It
might be corrupted if the attacker reveals its spilled location.

As a possible mitigation, we can cloak these data in a
way similar to function pointers and VTable pointers. It
requires additional typed data to be marked and the

function type information to be passed to the backend com-
piler. The amount of data and the frequency of access events
have effects in terms of performance, as the pressure on
registers may increase and more spilling events are needed.

Niffler compares the function pointer variable and the
read-only copy from the radix-tree on reading the function
pointer. It detects a mismatch if the function pointer variable
is corrupted into a different value. The only case that
bypasses this check is that the updated function pointer value
cloaked in a register has not been spilled but the function
pointer variable is changed to the previous value, which is
the same as the in-radix-tree copy. As discussed in Section 5,
Niffler mitigates this case by checking the in-register value
and the in-memory variable during register spilling. And the
corrupted value is no longer valid after register spilling.

Niffler requires all compilation units to be recompiled
and instrumented. An uninstrumented binary file may con-
tain unprotected return address usage and accesses to the
reserved registers.

7.2 Performance

We evaluate the instrumented SPECCPU 2006 benchmarks
and real-world applications. We use a machine with a quad-
core Intel Core i5-6600 CPU running at 3.80 GHz, 8 GB
memory and Samsung SSD 850. The kernel is Linux 4.8.11.
All evaluations in this section are based on an unmodified
Linux kernel where all the kernel-side implementations of
Niffler are enabled by dynamically loading a kernel module.

We have compiled and instrumented musl libc [38] as
Clang, the LLVM frontend, is not able to parse glibc [39].
We use the uninstrumented application as the baseline. The
instrumented programs are dynamically linked to the
instrumented musl libc, while the baseline programs are
linked to the uninstrumented musl libc.

For all programs, the instrumented one and the baseline
are compiled with the same optimization level, as defined
in the Makefile provided in the application source code.

In the prototype, we disable the tail call optimization in
the compiler backend as it makes a nested callee function
use the caller’s return address, conflicting with the instru-
mentations at intermediate representation level. We find it
has insignificant performance impact.

SPECCPU 2006 Benchmarks in C. We recompile the 12 C
programs in SPECCPU 2006 benchmark set. The results for

Fig. 2. SPECCPU 2006 benchmarks in C execution time overhead. The dashed horizonal line indicates the normalized execution time of baseline.
The normalized execution time overhead relative to baseline is labelled above each bar. CPS: the overhead incurred by CPS as we measure. fptr:
the overhead incurred by Niffler function pointer protection. ret+fptr: the total overhead incurred by Niffler return address and function pointer
protection. CCFI: the overhead of CCFI as reported in the paper.

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 233

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

workload ref are displayed in Fig. 2. The y-axis indicates the
normalized execution time of the instrumented application
relative to baseline. The geometric average overhead of the
12 benchmark programs is 6.3 percent.

We also recompile the benchmarks with CPS under the
same optimization level. The evaluation results for CPS are
shown in Fig. 2 as the left-most bar in each cluster. The geo-
metric average overhead of CPS is 2.0 percent. We find CPS
brings a smaller performance overhead than Niffler while
its simple design sacrifices security guarantee, as CPS can
be broken by information leak [13].

We fail to port CCFI to our evaluation environment as it
is implemented on FreeBSD. Fig. 2 shows the CCFI over-
head reported in the CCFI paper. We find Niffler’s overhead
is much smaller than CCFI [18] which reports an average
overhead of 23 percent for C programs.

We further break down our implementation and evaluate
the performance overhead for SPECCPU 2006 benchmarks
with only function pointer cloaking enabled. The results are
presented in Fig. 2 as the second bar in each cluster.

We try to understand the performance overhead of the
benchmarks by studying the frequency of executing the
instrumented operations. The results are shown in Table 2.
The unit for all event counts is the number of events per sec-
ond. We find that the benchmarks with the larger overhead
(Row 2-6) have a higher frequency of function calls and
function pointer accesses (Column 2-5) than the other two
(Row 7-8). We calculate the frequency of register spilling
against the register update events. The results in Column
MMX Sp.% of Table 2 indicate an efficient utilization of
MMX registers as the frequency of spilling registers is very
low. For example, the 87.5 million invocations per second in
perlbench only trap to the kernel for register spilling less
than 3,000 times per second.

We further measure the benefit of copying %mm6 to
%xmm15 in perlbench, the recursion-intensive benchmark in
SPECCPU 2006. If the instrumented program spills all regis-
ter once %mm6 is full, the MMX spilling frequency signifi-
cantly increases from 2.3 thousand to 1.6 million per second.
The overall execution time overhead of perlbench increases
from 29.3 to 34.6 percent.

To study the performance benefit of dynamically detect-
ing register shortage rather than statically inserting spilling
into the program, we have implemented the latter and eval-
uated on SPECCPU 2006 benchmarks. We find that most

benchmarks perform much worse with static detection. For
example, perlbench has 362 percent overhead and gcc has
208 percent overhead. 27.4 percent overhead for gobmk and
sjeng has 16.6 percent overhead. The outlier h264ref per-
forms better with about 10 percent overhead. We think the
improvement comes from the fact that h264ref does not spill
MMX registers in both implementations, while the static
detection implementation takes fewer instructions, which
appends to a register without any check.

To study the performance benefit of ID encoding, we
evaluate gobmk, which is a SPECCPU 2006 benchmark
whose overhead mainly comes from return address cloak-
ing, to bring some insights. We implement a naive encoding
that assigns ID for all direct jumps as a single set. The per-
formance overhead increases to 20.5 percent, comparing to
7.0 percent in Niffler, as it needs 13 bits for each encoded ID
and the registers are easier to get full.

To see the benefit of the balanced register allocation, we
compare Niffler’s algorithm with a simple round-robin allo-
cation algorithm, which assigns IDs in the order of iterating
over all functions. The result of the simple round-robin is
close to Niffler’s result. However, it will be different if LLVM
keeps a different order of all functions. We made another
evaluationwhere the probability that three consecutive nodes
in a callgraph share the same color is less than 50 percent.
The performance overhead increases to 8.86 percent, which is
higher thanNiffler’s result (7.0 percent).

SPECCPU 2006 Benchmarks in C++. To compare the per-
formance impact in C++ programs, we recompile all C++
programs in SPECCPU 2006 benchmark set. We also recom-
pile and instrument all shared libraries that the C++ pro-
grams depend, namely libc++, libunwind and libc++abi,
which are LLVM-implemented C++ standard and runtime
libraries. All programs and shared libraries are dynamically
linked to instrumented musl libc. We fail to build dealII due
to a missing class implementation. The evaluation results of
ref workload are shown in Fig. 3 as the cluster of bars on the
left-hand side. Niffler incurs a geometric average overhead
of 28.2 percent on the six benchmarks. We break down the
overhead incurred by different parts of the instrumentation.
Shadow stack unwinding incurs negligible overhead among
the six benchmarks that we evaluate.

We also list the two benchmarks that CCFI evaluated,
namely astar and xalancbmk in Fig. 3, as the cluster of two
bars on the right-hand side of the figure. These results are

TABLE 2
The Frequency of Executing the Instrumented Operations

Benchmarks Drt. Call Id./Ex. Call Read FP Write FP MMX Sp. MPX Sp. #BR MMX Sp.% MPX Sp.%

perlbench 65.8m 21.7m 18.4m 483.2k 2.3k 36.3k 88.5 0.002% 7.512%
h264ref 46.1m 51.4m 51.4m 834.0k 0 208.5k 41.9k 0 30.0%
sjeng 51.2m 16.0m 16.0m 23.1 45.9k 5.8 0 0.068% –
gobmk 37.6m 616.5k 186.6k 182.3 112.5k 45.6 0 0.294% –
gcc 40.3m 5.0m 2.0m 18.9k 23.5k 4.7k 139.3 0.052% 24.868%

bzip2 17.3m 4.6 0.73 0.70 0 0.175 0.12 0 17.1%
libquantum 3.6m 3.004 0 0.07 0 0.016 0 0 0

The unit of the numbers is number of events per second. Suffix-m: million. Suffix-k: thousand. Drt. Call: direct calls. Id./Ex. Call: indirect/external
calls. Read FP: reading function pointers.Write FP: writing function pointers. MMX Sp.: MMX register spilling.MPX Sp.: MPX register spilling. #BR: #BR
exceptions triggered.MMX Sp.% = (MMX Sp.)/(Drt. Call + Id./Ex. Call): the percentage of function call events that trigger MMX spilling.MPX Sp.% = (#BR
+MPX Sp.)/(Write Fp): the percentage of function pointer writes that eventually trap to kernel.

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

reported in the CCFI paper. For these two benchmarks, Nif-
fler incurs much lower overhead than CCFI does.

Microbenchmarks. We have evaluated the number of
cycles used for executing each piece of the instrumented
code. We put the inserted assembly into a tight loop and
capture the average CPU cycles among 1 million iterations.

From the results in Table 3, we find Niffler instruments
the applications with lightweight operations, most of which
are around 10 cycles and more efficient than the encryption
and decryption operations in CCFI [18]. Though spilling
MMX registers requires a context switch between the user
mode application and the kernel, we find the evaluation
platform that we use, i.e., Intel Core i5-6600 CPU, performs
well on executing the system call, with merely 155 cycles to
trap into and exit from the kernel. The most time-consum-
ing operation is handling a #BR exception. However, as the
analysis results in Table 2 show, the #BR exceptions are
infrequent events.

We study the performance benefit we gain from Intel
MPX. We implement the function table lookup without
using MPX’s bndldx and compare it with MPX-based
implementation. Both of the implementations are executed
in a tight loop 10 million times. The evaluation results listed
in Table 4 show that MPX-based implementation uses fewer
CPU cycles and is much simpler.

Real-world Applications. We recompile two commonly
used server programs, the web server Nginx and the in-
memory database Redis. Nginx is evaluated with the Apa-
cheBench benchmarking tool, which sends 100 thousand
requests to download small files in 4 KB and large files in

80 MB. To evaluate Redis, we use its own benchmarking
tool [40]. The two servers are on the same machine as the
benchmark tool. We start up the two servers with their
default configuration files. The evaluation results are dis-
played in Table 5. For transferring small web pages in 4 KB,
the instrumented Nginx serves 2.2 percent fewer requests in
one second on average than the uninstrumented one. For
larger file transfer requests, the instrumented Nginx per-
forms essentially the same with the uninstrumented one.
The Redis benchmark sends 17 different types of request to
the server from 50 clients. Each type includes 100,000
requests. The reported throughput fluctuates among differ-
ent evaluations. The performance difference is between
�1.4 and 7.9 percent. We list the medium throughput for
two types of requests in Table 5. GET retrieves the value of
one key and MSET stores 10 keys in each request. We find
the instrumented Redis server has a comparable throughput
to the uninstrumented one.

We evaluate three commonly used Linux utility programs
dd, tar andmake.We use dd to copy two files of size 90MB and
630MB respectively, tar to pack 6,082 files from three directo-
ries in total of 785 MB, and make to instruct the compiling
toolchain to build two non-trivial projects, Nginx and musl
libc. dd and tar are single-threaded programs,whilemake exe-
cutes in 4 jobs and spawns child processes from time to time.
The performance difference between the instrumented and
baseline presented in Table 6 shows Niffler incurs insignifi-
cant overhead, though dd’s performance fluctuates.

8 RELATED WORK

Data Protection with Registers. StackGhost [23] exploits the
register window feature on SPARC architecture and is

Fig. 3. SPECCPU 2006 benchmarks in C++ execution time overhead.
ret, fptr, VTptr, excp: the overhead of Niffler in return address, function
pointer, VTable pointer cloaking and shadow stack unwinding during
exception handling. fptr+VTptr+excp: the total overhead of these parts
reported in CCFI paper. CCFI doesn’t further breakdown them.

TABLE 3
Time Cost of Instrument Operations

Operation Num. of Instr. Cycles

Direct Call 7 6.3
Indirect Call 15 11.5
Return 8 8.8
Read Function Pointer 4 7.5
Write Function Pointer 10 13.3
Spill+Restore MMX Registers 8* 155
Handle #BR Exception 4* 723

Values marked with * only consider instructions in user mode.

TABLE 4
Cycles and Instructions Reduced with MPX

Criterion No-MPX MPX

Total Cycles 12.4 7.5
Number of Instructions 17 4

TABLE 5
Performance of Servers in Requests/Second

Nginx Redis

4KB 80MB GET MSET

Baseline 34655 � 14.5 74.99 � 0.6 296399 � 3438 148309 � 5003
Niffler 33909 � 37.5 75.00 � 0.05 299601 � 6027 136671 � 4631

Overhead 2.2% �0.01% �1.1% 7.9%

TABLE 6
Performance of Instrumented Linux Utilities

make dd tar

Nginx musl 90 MB 630 MB Files in 785 MB

Baseline 3.07s 11.87s 0.18s 2.23s 1.806s
Niffler 3.10s 11.98s 0.17s 2.13s 1.812s

Overhead 1.2% 0.95% �5.6% �4.3% 0.3%

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 235

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

restricted that it traps to the kernel on every eight consecur-
ive function calls. In comparison, Niffler works on a plat-
form without the register window feature. As registers can
easily become full of code pointers, Niffler instruments the
applicatiom to explicitly trap to kernel to save registers and
provides several mechanisms to reduce the frequency of
kernel trapping.

PointGuard [24] encrypts the spilled registers in mem-
ory. In order to reduce overhead, it uses XOR to encrypt
memory data where the secret value can be inferred by com-
paring the raw code pointer value and encrypted value. In
comparison, Niffler sets read-only memory permission for
the spilled register data to exclude any chance of memory
corruption in user space.

TRESOR [41] builds a cryptographic key storage to
achieve out-of-RAM encryption by pinning the encryption
keys in x86 debug registers. In comparison, Niffler addresses
a different problem and utilizes a different set of processor
registers.

Though all them of them have leveraged processor regis-
ters to protect security data to some degrees, they use regis-
ters in straightforward ways which are either incomplete or
insecure on a commercial platform like x86. Niffler provides
a life-time protection to control data and makes a novel
reuse of MPX for efficient lookup.

Control Data Isolation. Like Niffler, CPS and CCFI force
the application to take indirect control transfers based on
isolated control data. In x86-64 that has no segmentation
support, CPS hides the control data in a region with a ran-
domized base address. It does not prevent the attacker from
reading the in-memory pointers to the region, which breaks
the information hiding. Though the enhanced CPI addition-
ally isolates these pointers, recent studies have provided
multiple exploits to leak the region’s address anyway [12],
[13]. In contrast, Niffler is secure under the threat of infor-
mation leak. Neither leaking which registers are used nor
the location of the secure region holding spilled registers
makes the isolated data corruptable.

CPS is possible to be implement in other ways like Soft-
ware Fault Isolation (SFI) [42] which is enhanced in security
guarantee but loses its simplicity in design. SFI instruments
all memory writes with a bound check to ensure only certain
writes can access the secure region. Additionally, though
there is an optimization suggesting to use simple instrumen-
tation of erasing the most-significant bit and to isolate code
pointers in the upper half of virtual memory, it significantly
changes the process virtual memory layout which requires
complex kernel modification. Furthermore, as SFI is broken
when any memory write misses a bound check, the SFI-
based CPS is hard to be implemented flawlessly as LLVM
cannot instrumentmemorywrites in assembly.

In comparison, the complexity brought by SFI can be
eliminated by Niffler with the help of architectural features
available on commodity hardware. In addition, Niffler’s
kernel support can be simply implemented into a kernel
module without modifying any kernel code.

CCFI’s encrypted control data suffers from replay attacks,
which replace encrypted datawith another piece of encrypted
data. Though CCFI mitigates this vulnerability by encrypting
the control data address, it does not reject the encrypted data
located at the same address. In contrast, Niffler simply rejects

the direct writes. Even the optimization on function pointer
restoring allows one recent value of the variable content, it
accepts no other corrupted value. Furthermore, Niffler incurs
much lower performance overhead thanCCFI.

Intel has released a new technology named Control-flow
Integrity Technology (CET) [43] to prevent ROP by keeping
the return addresses on a shadow stack. The shadow stack
is protected by a new set of page permissions, indicated by
some newly added bits in page table entries. CET also intro-
duces a mark instruction to specify valid indirect control
transfer target. As the hardware has not been released to the
market, it cannot be adopted at the moment.

Shadow Stack. Shadow stacks vary on the mechanisms to
enforce the memory isolation, such as placing the shadow
stack into a separate segment [11], memory area with ran-
domized base address [9], [17], [44], and memory area pro-
tected by guard pages [20]. However, segmentation support
is limited in x86_64. Randomization-based techniques are
vulnerable to information leak [12], [13].

Software Enforced Control Flow Integrity. Control Flow
Integrity can be implemented either at binary level or at
source code level. Binary instrumentation ensures CFI in
legacy software in case that source code is unavailable [45],
[46], [47]. Program analysis at binary level is hard as the
compiler has removed most of the type information and
control flow structure.

Compiling the source code with CFI enforcement has the
advantage of the abundant information collected from the
source code. IFCC [48] provides only forward-edge restric-
tion. pCFI [49] incrementally expand CFI checks and valid
indirect jump targets by patching the program on the fly. Its
protection falls back to a relaxed CFI policy if all edges from
the statically defined CFG graph are activated.

Hardware Enforced Control Flow Integrity. Researchers
have proposed hardware extensions to restrict program exe-
cution paths [50] and detect code reuse attacks [51]. In com-
parison, Niffler is designed to work on commodity
hardware. Researchers have also explored the processor fea-
tures in a special way, such as Branch Tracing Store
(BTS) [52], Indirect Branch Tracing (IBT) [53], [54], [55] and
Intel Processor Trace (IPT) [56], [57], [58], to dynamically
check the execution trace with pre-defined control flow poli-
cies. Hardware support does not come at no cost. BTS and
IBT have limited storage space for trace while IPT-based
systems rely on additional core to parse the IPT packets par-
allelly. Most systems can only enforce a relaxed CFI policy,
restricted by the offline static analysis.

9 CONCLUSION

Niffler is a novel approach to efficiently enforce control data
isolation in applications and defeat memory corruptions on
control data. Niffler cloaks control data into registers and
spills the registers securely. With the help of techniques to
increase register utilization, the performance overhead is low
on applicationswithmoderate number of control transfers.

ACKNOWLEDGMENTS

This work is supported in part by the National Key
Research & Development Program (No. 2016YFB1000104).

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Proc. IEEE Symp. Security Privacy, 2013, pp. 48–62.
[Online]. Available: http://dx.doi.org/10.1109/SP.2013.13

[2] Data execution prevention, 2018. [Online]. Available: https://
msdn.microsoft.com/en-us/library/windows/desktop/aa366553
(v=vs.85).aspx

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazi�eres, and D. Boneh,
“Hacking blind,” in Proc. IEEE Symp. Security Privacy, 2014,
pp. 227–242. [Online]. Available: http://dx.doi.org/10.1109/
SP.2014.22

[4] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms,” in Proc.
18th Conf. USENIX Security Symp., 2009, pp. 383–398. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855768.1855792

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proc. 6th
ACM Symp. Inf. Comput. Commun. Security, 2011, pp. 30–40.

[6] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proc. 14th ACM
Conf. Comput. Commun. Security, 2007, pp. 552–561. [Online].
Available: http://doi.acm.org/10.1145/1315245.1315313

[7] J. Lee, et al., “Hacking in darkness: Return-oriented programming
against secure enclaves,” in Proc. 26th USENIX Security Symp.,
Aug. 2017, pp. 523–539. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/hacking-darkness-r
eturn-oriented-programming-secure-enclaves/

[8] PaX address space layout randomization (ASLR), 2004. [Online].
Available: http://pax.grsecurity.net/docs/aslr.txt

[9] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techni-
ques for comprehensive protection from memory error
exploits,” in Proc. 14th Conf. USENIX Security Symp., 2005,
pp. 17–17. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1251398.1251415

[10] D. Williams-King, et al., “Shuffler: Fast and deployable continuous
code re-randomization,” in Proc. 12th USENIX Symp. Operating
Syst. Design Implementation, 2016, pp. 367–382. [Online]. Available:
https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/williams-king

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. 12th ACM Conf. Comput. Commun. Security,
2005, pp. 340–353.

[12] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel TSX,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Security, 2016, pp. 380–392. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978321

[13] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi,
“Missing the point(er): On the effectiveness of code pointer integ-
rity,” in Proc. IEEE Symp. Security Privacy, 2015, pp. 781–796.
[Online]. Available: http://dx.doi.org/10.1109/SP.2015.53

[14] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in Proc. IEEE Symp. Security
Privacy, 2013, pp. 191–205. [Online]. Available: http://dx.doi.org/
10.1109/SP.2013.23

[15] M. Lipp, et al., “Meltdown: Reading kernel memory from user
space,” 27th USENIX Secur. Symp., 2018.

[16] P. Kocher, et al., “Spectre attacks: Exploiting speculative exe-
cution,” 40th IEEE Symp. Secur. Privacy, 2019.

[17] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in Proc. 11th Symp. Operating
Syst. Design Implementation, 2014, vol. 14, pp. 147–163.

[18] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazi�eres, “CCFI:
Cryptographically enforced control flow integrity,” in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Security, 2015, pp. 941–951.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813676

[19] K. Akdemir, et al., “Breakthrough AES performance with intel
AES new instructions,”White Paper, June, p. 11, 2010.

[20] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proc. 10th ACM Symp. Inf.
Comput. Commun. Security, 2015, pp. 555–566. [Online]. Available:
http://doi.acm.org/10.1145/2714576.2714635

[21] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to pro-
vide lifetime hypervisor control-flow integrity,” in Proc. IEEE
Symp. Security Privacy, 2010, pp. 380–395. [Online]. Available:
http://dx.doi.org/10.1109/SP.2010.30

[22] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in Proc. 7th Symp.
Operating Syst. Design Implementation, 2006, pp. 75–88. [Online].
Available: http://dl.acm.org/citation.cfm?id=1298455.1298463

[23] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated
stack protection,” in Proc. 10th Conf. USENIX Security Symp., 2001,
Art. no. 5. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1251327.1251332

[24] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuardtm:
Protecting pointers from buffer overflow vulnerabilities,” in Proc.
12th Conf. USENIX Security Symp., 2003, pp. 7–7. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1251353.1251360

[25] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos,
“Memory errors: The past, the present, and the future,” in Proc.
15th Int. Conf. Res. Attacks Intrusions Defenses, 2012, pp. 86–106.

[26] M. Castro, M. Costa, and T. Harris, “Securing software by enforc-
ing data-flow integrity,” in Proc. 7th USENIX Symp. Operating
Syst. Design Implementation, 2006, pp. 11–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267319

[27] Morris worm, 2018. [Online]. Available: https://en.wikipedia.
org/wiki/Morris_worm

[28] 400k servers may be at risk of serious code-execution attacks.
patch now, 2018. [Online]. Available: https://arstechnica.com/
information-technology/2018/03/code-execution-flaw-in-exim-
imperils-400k-machines-have-you-patched/

[29] A. Fog, “Stop the instruction set war,” 2009. [Online]. Available:
http://www.agner.org/optimize/blog/read.php?i=25

[30] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for mil-
lions of lines of code,” in Proc. 9th Annu. IEEE/ACM Int. Symp.
Code Generation Optim., 2011, pp. 289–298. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2190025.2190075

[31] B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code,” in Proc.
28th ACM SIGPLAN Conf. Program. Lang. Design Implementation,
2007, pp. 290–299. [Online]. Available: http://doi.acm.org/
10.1145/1250734.1250767

[32] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity,” in Proc. Netw.
Distrib. Syst. Security Symp., San Diego, CA, Feb. 2016.

[33] I. Evans, et al., “Control jujutsu: On the weaknesses of fine-gra-
ined control flow integrity,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Security, 2015, pp. 901–913. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813646

[34] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in Proc. 14th Conf. USE-
NIX Security Symp., 2005, pp. 12–12. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1251398.1251410

[35] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-
control data attacks,” in Proc. IEEE Symp. Security Privacy,
May 2016, pp. 969–986.

[36] S. Vogl, et al., “Dynamic hooks: Hiding control flow changes
within non-control data,” in Proc. 23rd Conf. USENIX Security
Symp., 2014, pp. 813–328. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/vogl

[37] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in Proc. 24th USENIX Secu-
rity Symp., 2015, pp. 177–192. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/hu

[38] musl libc, 2016. [Online]. Available: https://www.musl-libc.org/
[39] W. Arthur, B. Mehne, R. Das, and T. Austin, “Getting in control of

your control flow with control-data isolation,” in Proc. 13th Annu.
IEEE/ACM Int. Symp. Code Gener. Optim., 2015, pp. 79–90. [Online].
Available: http://dl.acm.org/citation.cfm?id=2738600.2738611

[40] “How fast is redis?” 2018. [Online]. Available: https://redis.io/
topics/benchmarks

[41] T. M€uller, F. C. Freiling, and A. Dewald, “TRESOR runs encryp-
tion securely outside RAM,” in Proc. 20th USENIX Conf. Security,
2011, pp. 17–17. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2028067.2028084

[42] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Poster: Getting the point(er): On the feasibility of attacks
on code-pointer integrity,” 2015. [Online]. Available: http://
dslab.epfl.ch/pubs/cpi-getting-the-pointer.pdf

WANG ET AL.: SECURE AND EFFICIENT CONTROL DATA ISOLATIONWITH REGISTER-BASED DATA CLOAKING 237

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/SP.2013.13
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
http://dx.doi.org/10.1109/SP.2014.22
http://dx.doi.org/10.1109/SP.2014.22
http://dl.acm.org/citation.cfm?id=1855768.1855792
http://doi.acm.org/10.1145/1315245.1315313
https://www.microsoft.com/en-us/research/publication/hacking-darkness-r eturn-oriented-programming-secure-enclaves/
https://www.microsoft.com/en-us/research/publication/hacking-darkness-r eturn-oriented-programming-secure-enclaves/
https://www.microsoft.com/en-us/research/publication/hacking-darkness-r eturn-oriented-programming-secure-enclaves/
http://pax.grsecurity.net/docs/aslr.txt
http://dl.acm.org/citation.cfm?id=1251398.1251415
http://dl.acm.org/citation.cfm?id=1251398.1251415
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/williams-king
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/williams-king
http://doi.acm.org/10.1145/2976749.2978321
http://dx.doi.org/10.1109/SP.2015.53
http://dx.doi.org/10.1109/SP.2013.23
http://dx.doi.org/10.1109/SP.2013.23
http://doi.acm.org/10.1145/2810103.2813676
http://doi.acm.org/10.1145/2714576.2714635
http://dx.doi.org/10.1109/SP.2010.30
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1251327.1251332
http://dl.acm.org/citation.cfm?id=1251327.1251332
http://dl.acm.org/citation.cfm?id=1251353.1251360
http://dl.acm.org/citation.cfm?id=1267308.1267319
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Morris_worm
https://arstechnica.com/information-technology/2018/03/code-execution-flaw-in-exim-imperils-400k-machines-have-you-patched/
https://arstechnica.com/information-technology/2018/03/code-execution-flaw-in-exim-imperils-400k-machines-have-you-patched/
https://arstechnica.com/information-technology/2018/03/code-execution-flaw-in-exim-imperils-400k-machines-have-you-patched/
http://www.agner.org/optimize/blog/read.php?i=25
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://doi.acm.org/10.1145/1250734.1250767
http://doi.acm.org/10.1145/1250734.1250767
http://doi.acm.org/10.1145/2810103.2813646
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dl.acm.org/citation.cfm?id=1251398.1251410
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/vogl
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/vogl
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/vogl
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.musl-libc.org/
http://dl.acm.org/citation.cfm?id=2738600.2738611
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
http://dl.acm.org/citation.cfm?id=2028067.2028084
http://dl.acm.org/citation.cfm?id=2028067.2028084
http://dslab.epfl.ch/pubs/cpi-getting-the-pointer.pdf
http://dslab.epfl.ch/pubs/cpi-getting-the-pointer.pdf

[43] “Intel releases new technology specifications to protect against
ROP attacks,” 2016. [Online]. Available: https://software.intel.
com/en-us/blogs/2016/06/09/intel-release-new-technology-
specifications-protect-rop-attacks

[44] “Clang 7 documentation,” 2018. [Online]. Available: http://clang.
llvm.org/docs/SafeStack.html

[45] C. Zhang, et al., “Practical control flow integrity and randomiza-
tion for binary executables,” in Proc. IEEE Symp. Security Privacy,
2013, pp. 559–573. [Online]. Available: http://dx.doi.org/
10.1109/SP.2013.44

[46] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,”
in Proc. 22nd USENIX Conf. Security, 2013, pp. 337–352. [Online].
Available: http://dl.acm.org/citation.cfm?id=2534766.2534796

[47] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“G-free: Defeating return-oriented programming through gadget-
less binaries,” in Proc. 26th Annu. Comput. Security Appl. Conf.,
2010, pp. 49–58. [Online]. Available: http://doi.acm.org/10.1145/
1920261.1920269

[48] C. Tice, et al., “Enforcing forward-edge control-flow integrity in
GCC & LLVM,” in Proc. 23rd USENIX Conf. Security Symp., 2014,
vol. 26, pp. 27–40.

[49] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Security, 2015, pp. 914–926.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813644

[50] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev,
“Branch regulation: Low-overhead protection from code reuse
attacks,” in Proc. 39th Annu. Int. Symp. Comput. Architecture, 2012,
pp. 94–105. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2337159.2337171

[51] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and
N. Abu-Ghazaleh, “SCRAP: Architecture for signature-based
protection from code reuse attacks,” in Proc. IEEE 19th Int.
Symp. High Perform. Comput. Archit., Feb. 2013, pp. 258–269.

[52] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation
of control flow integrity using performance counters,” in Proc. 42nd
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2012, pp. 1–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2354410.
2355130

[53] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent
ROP exploit mitigation using indirect branch tracing,” in Proc.
22nd USENIX Conf. Security, 2013, pp. 447–462. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2534766.2534805

[54] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG, et al., “ROPecker:
A generic and practical approach for defending against ROP
attack,” in Proc. Netw. Distrib. Syst. Security Symp., 2014, pp. 1–14.

[55] V. van der Veen, D. Andriesse, E. G€oktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensi-
tive CFI,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secu-
rity, 2015, pp. 927–940.

[56] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan,
“Transparent and efficient CFI enforcement with intel processor
trace,” in Proc. 23rd IEEE Symp. High Perform. Comput. Archit.,
2017, pp. 529–540.

[57] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding control flows
using intel processor trace,” in Proc. 22nd Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2017, pp. 585–598.

[58] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in Proc. 26th USE-
NIX Security Symp., 2017, pp. 131–148. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/ding

Xiayang Wang received the BS degree in soft-
ware engineering from Fudan University, China,
in 2014. He is now working toward the PhD
degree with the School of Software, Shanghai
Jiao Tong University. His research interests
include program analysis and software security.

FuqianHuang received the BSdegree in software
engineering from Shanghai Jiao Tong University,
China, in 2018. He is nowworking toward themas-
ter’s degree with the School of Software, Shanghai
Jiao Tong University. His research interests
include programanalysis and software security.

Haibo Chen received the PhD degree in com-
puter science from Fudan University, in 2009. He
is currently a tenured full professor at the School
of Software, Shanghai Jiao Tong University. His
research interests include operating systems and
parallel and distributed systems. He is a senior
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 14,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
http://clang.llvm.org/docs/SafeStack.html
http://clang.llvm.org/docs/SafeStack.html
http://dx.doi.org/10.1109/SP.2013.44
http://dx.doi.org/10.1109/SP.2013.44
http://dl.acm.org/citation.cfm?id=2534766.2534796
http://doi.acm.org/10.1145/1920261.1920269
http://doi.acm.org/10.1145/1920261.1920269
http://doi.acm.org/10.1145/2810103.2813644
http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dl.acm.org/citation.cfm?id=2354410.2355130
http://dl.acm.org/citation.cfm?id=2354410.2355130
http://dl.acm.org/citation.cfm?id=2534766.2534805
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

