
Scalable Deterministic Replay in
a Parallel Full-system Emulator ∗

Yufei Chen † Haibo Chen ‡

†School of Computer Science, Fudan University ‡Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

chenyufei@fudan.edu.cn haibochen@sjtu.edu.cn
http://ipads.se.sjtu.edu.cn/coremu

Abstract

Full-system emulation has been an extremely useful tool in devel-
oping and debugging systems software like operating systems and
hypervisors. However, current full-system emulators lack the sup-
port for deterministic replay, which limits the reproducibility of
concurrency bugs that is indispensable for analyzing and debug-
ging the essentially multi-threaded systems software.

This paper analyzes the challenges in supporting deterministic
replay in parallel full-system emulators and makes a comprehen-
sive study on the sources of non-determinism. Unlike application-
level replay systems, our system, called ReEmu, needs to log
sources of non-determinism in both the guest software stack and
the dynamic binary translator for faithful replay. To provide scal-
able and efficient record and replay on multicore machines, ReEmu
makes several notable refinements to the CREW protocol that re-
plays shared memory systems. First, being aware of the perfor-
mance bottlenecks in frequent lock operations in the CREW pro-
tocol, ReEmu refines the CREW protocol with a seqlock-like de-
sign, to avoid serious contention and possible starvation in instru-
mentation code tracking dependence of racy accesses on a shared
memory object. Second, to minimize the required log files, ReEmu
only logs minimal local information regarding accesses to a shared
memory location, but instead relies on an offline log processing
tool to derive precise shared memory dependence for faithful re-
play. Third, ReEmu adopts an automatic lock clustering mechanism
that clusters a set of uncontended memory objects to a bulk to re-
duce the frequencies of lock operations, which noticeably boost
performance.

Our prototype ReEmu is based on our open-source COREMU
system and supports scalable and efficient record and replay of full-
system environments (both x64 and ARM). Performance evaluation
shows that ReEmu has very good performance scalability on an In-
tel multicore machine. It incurs only 68.9% performance overhead

∗ This work was done when Yufei Chen was a visiting student in Institute
of Parallel and Distributed Systems, Shanghai Jiao Tong University. This
work was funded by China National Natural Science Foundation under
grant numbered 61003002, A grant from Shanghai Science and Technology
Development Funds (No. 12QA1401700) and A Foundation for the Author
of National Excellent Doctoral Dissertation of PR China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright c© 2013 ACM 978-1-4503-1922/13/02. . . $10.00

on average (ranging from 51.8% to 94.7%) over vanilla COREMU
to record five PARSEC benchmarks running on a 16-core emulated
system.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.2.5
[Software Engineering]: Testing and Debugging—Debugging aids

General Terms Algorithms, Performance, Reliability

Keywords Scalable Deterministic Replay, Full-system Emulator

1. Introduction

Full-system emulation is very useful for a number of usage scenar-
ios, including pre-silicon system software development, character-
izing performance issues, exposing and analyzing software bugs.
Compared to a real machine, a full-system emulator saves lengthy
machine rebooting by completely running in user-mode, can have
much richer runtime information via introspection, and can flex-
ibly provide an execution environment completely different from
the host platform in scales and even ISAs (Instruction Set Archi-
tecture). For these reasons, many system software developers have
chosen to use a full-system emulator in the major cycle of system
developing and debugging.

Ideally, a full system emulator should provide true parallelism
so that it can produce a comparable set of access interleavings as
a real machine. This enables it to expose many concurrency bugs
in an early stage. Further, by leveraging the abundant multicore re-
sources, the performance and scalability of a full-system emulator
can be significantly boosted. Hence, there have been several ef-
forts in building parallel full-system emulators, including Parallel
SimOS [13], COREMU [22], PQEMU [6] and HQEMU [9]. Un-
fortunately, adding parallelism to a full-system emulator makes its
execution even more non-deterministic, due to the additionally in-
troduced racy memory accesses. To enable reproducibility of guest
software stack, it is vitally important to add deterministic replay
features to parallel full-system emulators.

Previous researchers have proposed various schemes for deter-
ministic replay in both application and full-system level. There are
a number of software-based approaches that can provide relatively
low overhead to replay a multi-threaded application [21]. However,
they may not be easily adopted to efficiently support full-system
replay as system and device emulation in full-system emulators
cannot be trivially rerun and a number of racy execution will sig-
nificantly degrade performance. SMP-ReVirt [8] incorporates the
CREW protocol [14] to replay a virtual machine running atop a
virtualized platform (i.e., Xen). However, the difference between
a virtualized platform and an emulation platform makes it non-
trivial to directly apply their approach to a full-system emulator.
Besides, according to our analysis, the previous CREW protocols



suffer from performance and scalability issues when replaying a
relative large number of cores.

One possible approach to providing deterministic replay to a
full-system emulator is treating it as an application for application-
level replay systems. However, such an approach loses the capabil-
ity of incorporating debugging tools to introspect or manipulate in-
ternal information regarding guest software stack [19], as this may
change the execution behavior of the emulator and the guest soft-
ware stack.

This paper makes the first attempt to provide deterministic re-
play capability to parallel full-system emulators. Our goal is to effi-
ciently support scalable record and replay of a relative large number
of emulated cores running the entire software stack.

Our analysis indicates that there are several unique differences
between a native or virtualization platform and an emulator, which
creates both opportunities and challenges. First, there are only soft-
ware MMUs instead of hardware MMUs in an emulator, which
provides more flexibility as well as performance overhead. Second,
there is no convenient way to uniquely identify a memory instruc-
tion in an emulator1, making it costly to record the shared memory
accesses. Finally, the dynamic binary translator in an emulator can
behave differently during record and replay, yet its execution af-
fects the state of the emulated system.

As shared memory accesses are the key factor in a replay sys-
tem, we carefully study possible schemes that can be adopted in
a full-system emulator. We choose the CREW (concurrent-read,
exclusive-write) protocol, which was proposed by Courtois et
al. [5] and was first used by Leblanc and Mellor-Crummey [14]
to replay loosely-coupled message-passing applications. It has
been also used by recent systems such as SMP-Revirt [8] and
Scribe [12], to record and replay shared memory accesses. Es-
sentially, the CREW protocol serializes racy memory accesses in-
cluding write-after-write, read-after-write and write-after-read and
logs the serialized order of accesses during replay run.

To improve the performance and scalability of ReEmu, we make
a comprehensive analysis on possible issues in the previous CREW
protocols. First, previous CREW protocols either acquire a huge
system-wide lock (e.g., SMP-Revirt [8]) or a spinlock multiple
times to serialize shared memory accesses. This severely limits the
performance and scalability of a replay system. Finally, adopting
a read-write lock scheme [5, 14] may further cause write starva-
tion under heavy contention over a shared memory object. To ad-
dress this issue, we observe that the design of seqlock2 essentially
matches the design of CREW protocols as both design uses a ver-
sion number to indicate whether a memory object is contended or
not and to serialize the access order to a shared memory object.
Based on this observation, ReEmu reuses and extends the design
of seqlock to serialize and log access orders of shared memory
accesses. The resulting design allows complete lock-free read ac-
cesses and non-blocking write access to shared memory objects,
thus significantly boost performance and scalability in record and
replay runs.

Second, previous CREW protocols usually result in an exces-
sive number of redundant logs, which not only increase the log size,
but also cause runtime overhead in record run. Further, some pre-
vious CREW protocols requires accesses [8] to remote CPU infor-
mation, and thus may limit their performance scalability. Finally,
some schemes may result in logging overconstained access orders,
which may limit parallelism and thus performance in replay run.

1 Native systems usually leverage performance counters such as program
counter and branch counter [7, 8] to uniquely identify an instruction.
2 Seqlock is short for sequential lock, which is special locking scheme in
Linux kernel that allows fast writes to a shared memory location among
multiple racy accesses.

To reduce unnecessary logs and improve logging efficiency, ReEmu
dynamically detects version changes and only takes logs when nec-
essary. Further, it only requires accesses to mostly local CPU infor-
mation for logging, but instead relies on an offline log processing
tool to infer shared memory dependence.

Third, though ReEmu has tried to minimize the amount of lock
operations, per-update lock acquisition may still be a limiting fac-
tor to performance. To address this issue, ReEmu design and im-
plement a lock clustering mechanism that clusters multiple uncon-
tended memory accesses together into a bulk, which requires only
one lock operation. This noticeably reduces expensive lock opera-
tions.

To demonstrate the effectiveness and efficiency of our propos-
als, we have implemented our techniques based on the open-source
COREMU and support deterministic replay of full software stack
based on both x86 and ARM. Performance evaluation shows that
ReEmu incurs around an average of 68.9% (ranging from 51.8%
to 94.7%) performance overhead over COREMU to record five
PARSEC applications with different characteristics on a 16-core
emulated machine. Using the racy benchmark [23], we show that
ReEmu can faithfully reproduce concurrency bugs.

In summary, this paper makes the following contributions:

1. The first attempt to add the full-system deterministic replay fea-
ture to parallel full-system emulators, as well as a comprehen-
sive analysis of the sources of non-determinism.

2. A comprehensive analysis on issues with prior CREW proto-
cols and a set of novel refinements that provide efficient and
scalable record and replay of a full-system software stack wtih
contemporary workloads.

3. A working prototype that demonstrates both effectiveness and
efficiency of ReEmu.

In the rest of this paper, we first describe the overall de-
sign of ReEmu and how ReEmu tracks different sources of non-
determinism. Then, we describe the key part of ReEmu by illus-
trating how ReEmu logs shared memory dependence for faithful
replay. Next, we describe how ReEmu is implemented in an open-
source full-system emulator. Section 5 then evaluates the perfor-
mance overhead and scalability of ReEmu and how the refinements
to CREW contribute to the performance. We then relate ReEmu to
prior work (section 6) and conclude this paper with a brief discus-
sion on current limitation and possible future work (section 7).

2. ReEmu Overview

ReEmu is designed to support record and replay the execution of
whole guest software stack running atop, including a hypervisor,
an operating system and the applications. ReEmu can checkpoint
the states of guest software stack, start execution while logging
all sources of non-determinism and then replay the execution from
the checkpointed states. Like other full-system emulators such as
QEMU, ReEmu runs completely in user space and thus it is very
convenient to start and terminate its execution.

ReEmu records and replays sources of non-determinism by us-
ing dynamic fine-grained instrumentation. This contrasts with some
previous systems [8, 12] by leveraging hardware-based memory
protection (e.g., MMU). Using dynamic instrumentation enables
ReEmu to choose the granularities of shared memory objects. Fine-
grained tracking can avoid false sharing at the cost of increased
memory consumption due to the associated metadata, while coarse-
grained tracking may just be opposite. Further, not relying on a
specific hardware memory protection scheme makes ReEmu easily
portable among different platforms (e.g., x86 and ARM).

In the following sections, we will first review the general archi-
tecture of full-system emulators and illustrate the sources of non-



determinism. Then, we will describe how ReEmu records and re-
plays them accordingly.

2.1 Full-system Emulator

Host Operating Systems

Full-System Emulator

Runtime

Scheduling Synchronization

DBT

Translation Cache

TB

TB

TB

Soft-MMU

Processor
Models

Device 
Model

Device 
Model

Interrupt Interrupt

Interrupt Handling

Guest Software Stack

Figure 1. General architecture of full-system emulators using dy-
namic binary translation.

Figure 1 shows an overview of the general architecture of typi-
cal full-system emulators. The emulator usually runs as a user-level
program in the host operating system and emulates multiple cores
and devices for the guest software stack. State-of-the-art emulators
usually use a dynamic binary translator (DBT) to first translates
the guest machine code into a common intermediate format, which
is then translated into the host machine code. Here, an instruction
in guest machine code may be decomposed and reorganized into
several host machine instructions. The guest processor states are
also mapped into a portion of memory in the emulator. To avoid
re-translation of target code, a DBT usually maintains a transla-
tion cache that caches translated blocks (TBs). For the sake of per-
formance, a DBT usually supports chaining its translation blocks
(TBs) to allow directly jumping from one TB to another TB, with-
out the need to jump out of the translation cache.

Unlike user-level emulators, a full-system emulator also needs
to emulate the address translation from guest virtual address to
guest physical address and then to host virtual address. A software
MMU is usually used to assist such a process. A soft-TLB that re-
sembles a real TLB caching such address translation. Upon misses
in the soft-TLB, the emulator will traverse guest page table to do
address translation and raise page faults if the address mapping is
not present. In addition, the emulator needs to emulate devices such
as network interface cards and disks, as well as interrupt mecha-
nism to notify the receiving virtual cores. As a full-system emula-
tor is itself a multi-threaded program, it may also need to handle
synchronization and scheduling among virtual cores.

2.2 Sources of Non-determinism

Some sources of non-determinism are common among application-
level replay schemes. In addition, the record and replay code of
ReEmu lie in and may interact with the full-system emulator,
which is non-deterministic. Hence, other than the sources of non-
determinism inside the guest software stack, we also need a careful
examination on which sources of non-determinism in the emulator
may affect a faithful replay of guest software stack. The followings
list the sources of non-determinism:

Interrupts: Interrupts in guest software stack are asynchronous
events, whose delivery timing will affect the execution of guest
software stack. Hence, ReEmu needs to record when an interrupt
occurs and to inject the interrupt at the right time during replay.

DMA handling: Handling a typical DMA involves the follow-
ing steps: 1) CPU issues a DMA command by writing to device
registers; 2) The device starts executing the DMA command, which
reads or writes memory; 3) When the DMA operation is done, the
device will send an interrupt to CPU. Here, the timing of inter-
rupt and the access orders to the DMA memory between the device
and CPU cores may both affect guest execution, which need to be
recorded as well.

Orders of Guest Page Table Walking: The orders to walking a
shared guest page table by multiple cores may affect the execution
of guest software stack. The walking order is caused by the internal
races among multiple cores walking the same page table. If two
cores encounter TLB misses on the same address not present in
the guest page table, there will be only one core handling the page
fault. Hence, if a different core from that in the record run handles
the page fault in the replay run, the execution behavior of guest
software stack will diverge, which may lead to either unfaithful
replay or even replay failures.

Non-deterministic Instructions: The guest software stack
may also issue some non-deterministic instructions, including syn-
chronous accesses to device states (e.g., I/O instructions such as
in/out and accesses to memory mapped region), and reading non-
deterministic CPU states (e.g., “rdtsc”). These instructions will
happen in fixed point in guest instruction stream. However, the
execution result is non-deterministic.

Shared Memory Accesses: ReEmu also needs to handle mem-
ory accesses from the translation cache. The access orders from
multiple cores to a shared memory object may affect the execution
of guest software stack, especially for racy accesses.

Unnecessary Non-determinism: The accesses to guest state
from the DBT may be different between the record and the re-
play run. Such accesses include code translation and guest page
table walking in soft-MMU. Code translation needs to read guest
memory to translate guest instruction stream. However, the code
generation strategy may be different due to optimization policies
and code cache flush behavior are not the same. It could happen
that some guest code is translated only once during recording, but
is translated twice during replay. As translation need to read guest
memory, this will affect the state of soft-TLB. Hence, the soft-TLB
state may also be different between record and replay. Fortunately,
code translation only reads guest memory states, and the soft-TLB
state should be transparent to guest software stack. Hence, such ac-
cesses need not to be handled.

2.3 Record and Replay Non-determinism

Identifying Guest Execution: Previous native or virtualized sys-
tems usually use some performance counters to accurately iden-
tify the location of guest execution. For example, SMP-ReVirt [8]
leverages a combination of the program counter and branch coun-
ters to uniquely identify the timing of an interrupt and memory in-
structions. However, the program counters are not updated upon the
execution of every instruction and there is no branch counter main-
tained to save performance overhead in a full-system emulator.

ReEmu uses two mechanisms to identify guest execution. First,
as most full-system emulators using binary translator only in-
ject interrupts in a basic block (i.e., translation block or TB in
QEMU) boundary. Hence, ReEmu maintains a per-core counter
(BB Counter) that counts the number of executed basic blocks in
software and use the BB Counter to record the timing for inter-
rupts. Second, to identify a memory instruction, ReEmu maintains
a per-core memory counter that counts the number of memory in-



structions executed in each emulated core. Note that, as these two
counters are per-core based, updates to these counters are normal
memory operations, instead or being protected using either locks
or atomic instructions.

Handling Interrupts: ReEmu logs the timing of interrupts by
recording the BB counter of the corresponding virtual core. In
addition, ReEmu records the interrupt number as well. In replay
run, ReEmu checks whether the number of executed TBs reaches
the recorded number before jumping to the successive translated
block. If an interrupt should be injected, ReEmu jumps to the
corresponding interrupt handler code and unchains the translated
blocks.

Handling DMA: The interrupt can be recorded and replayed
using the mechanism described above. As DMA also has memory
operations, the access order between the device and cores also need
to be recorded.

Typically, during the execution of a DMA command, the DMA
memory region should only be accessed by the device, otherwise
the memory content may be corrupted because of concurrent mem-
ory accesses. One way to record memory orders between device
and CPU cores is to treat DMA device as a special core, which only
accesses memory when it receives DMA commands [8, 23]. This
will record the order between memory accesses for CPU and de-
vices. However, this may prevent the opportunity of using a replay
scheme to detect DMA related bugs as the memory accesses be-
tween CPU and device to the DMA memory region are serialized.
If the operating system is buggy and allows concurrent accesses to
DMA memory region, such concurrent accesses will not manifest
during the record run.

Instead, ReEmu does not enforce such an order but instead add
checking code to detect such parallel accesses. ReEmu utilizes the
memory order recording mechanism (see section 3) to detect con-
current accesses to the DMA memory region. If the operating sys-
tem is correct and guarantees no concurrent access to DMA mem-
ory region, by correctly replaying the execution of the operating
system, the order of memory access for CPU and device should
be exactly the same with the original run. Hence, we just need to
ensure that the interrupt indicating the completion of a DMA oper-
ation happens after the corresponding DMA has completed. If the
OS does not enforce such a DMA access order, then the record and
replay run may diverge and thus we can detect such a bug.

To detect such bugs during recording, a DMA read request
(which writes memory) will first acquire write locks for each shared
object which it is trying to access, and mark the shared object as
being under DMA operations. Any memory accesses to the shared
objects with DMA operations marked are concurrent accesses to
DMA memory regions. In such cases, ReEmu will report the prob-
lem and continue recording.

To track when a DMA request completes, ReEmu maintains a
DMA completion counter for each DMA device. The counter is
updated each time a DMA operation completes. When recording a
DMA interrupt, we also record the corresponding device’s DMA
completion counter. During replay, before injecting a DMA inter-
rupt, ReEmu should wait until the corresponding device’s DMA
completion counter reaches the recorded value.

Access order to MMU: To enforce the same order of page
faults during record and replay runs, ReEmu logs each page fault
by recording the memory count, the faulting address and the core
ID. In replay run, ReEmu checks if the core ID corresponding to a
page fault matches the current running core ID when the memory
count and fault address match. If the core ID matches, ReEmu will
inject the page fault. Otherwise, this core should wait until another
core has handled the page fault before it can proceed.

Non-deterministic Instructions: For non-deterministic in-
structions, ReEmu simply logs the return results of the correspond-

ing emulation functions in the DBT in record run. In replay run,
ReEmu just returns the logged results to the calling functions and
does not actually execute the functions for most applications. How-
ever, there are some functions like reading some device register
may have side effects. ReEmu still needs to execute such functions.

Shared Memory Accesses: ReEmu leverages the CREW pro-
tocol [5, 14] to record orders of shared memory accesses, but with
a notable redesign and optimizations, which will be detailed in the
following section.

3. Replaying Shared Memory Systems

A key challenge in a replay system is to replay shared memory
accesses. One approach is recording the first read values of mem-
ory locations (e.g., BugNet[17]). However, it cannot infer shared
memory access orders and thus cannot provide much information
for debugging. Another approach is serializing and logging the or-
der of read and write accesses to each shared memory object, so
that it is possible to infer the partial or total order among mem-
ory accesses to a shared memory object among different cores. The
CREW protocol [5, 14] serializes accesses to a shared object by
enforcing and logging a total order among writers and a total order
of readers with respect to writers. However, it places no constraints
among multiple readers. We choose such a protocol as it is very
suitable for dynamic instrumentation (e.g., InstantReplay [14]).

However, most previous software-based work only applies the
CREW protocol on a few number of cores (e.g., 4 cores in SMP-
Revirt [8] and 2 cores (4 threads) in Scribe [12]), without the con-
sideration of scalable record and replay of running on a machine
with a relatively large number of cores with non-trivial racy execu-
tion3.

In this section, we first examine the performance and scalability
issues with the original CREW protocol and its variants. Then, we
propose our refinements and optimizations that significantly boost
performance and scalability.

3.1 Previous CREW Protocols

Generally, there are two states for each shared memory object in
the CREW protocol: 1) concurrent-read, where all cores can read
but none can write; 2) exclusive-write, where only one core can
read and write, while other cores cannot access that shared object.
Algorithm 1 shows the original design of the CREW protocol in
Instant Replay [14]. The essence of the protocol is the incorporation
of the Read-Write Lock with the logging of object versions, and
leverage the object versions to infer and enforce access orders
of read/write accesses to a shared memory object. This design
protects every read and write instruction with a read-write lock.
One interesting point of the CREW protocol in Instant Replay is
that version information itself is enough to define orders between
read-after-write and write-after-write memory accesses.

Our analysis shows that such a protocol has significant perfor-
mance and scalability issues when replaying contemporary multi-
threaded applications on commodity multicore processors. First, it
requires taking a log on every memory access, which will cause
a huge per-access overhead for memory instructions. Second, the
locks and atomic instructions associated with instrumentation may
incur huge runtime overhead and scalability issues when replaying
systems with multiple cores. Third, as the writer needs to wait un-
til there is no reader accessing the memory object, it will be easily

3 Though Instant Replay reported the results on a machine with a relatively
large number of processors. The target applications are based on message-
passing, which have very little contention on shared memory. Further, it is
based on a machine in 25 years ago, at which the memory wall was not a
problem.



1 Read object begin
2 P(object.lock)

3 AtomicAdd(object.activeReader, 1)
4 V(object.lock)

// Write to core local log file

5 WriteLog(object.version)

6 Do Actual Read

7 AtomicAdd(object.totalReaders, 1)
8 AtomicAdd(object.activeReaders, −1)
9 end

10 Write object begin
11 P(object.lock)

12 while object.activeReaders 6= 0 do delay

13 WriteLog(object.version)

14 WriteLog(object.totalReaders)

15 Do Actual Write

16 object.totalReaders ← 0
17 object.version← object.version

18 V(object.lock)

19 end

Algorithm 1: InstantReplay Record Algorithm [14]

starved, especially given the fact that the reader-side critical section
in this protocol is quite lengthy.

1 Read object begin
2 version← ReadLog

// wait write to this object

3 while object.version 6= version do delay

4 Do Actual Read

5 AtomicAdd(object.totalReaders, 1)
6 end

7 Write object begin
// Read recorded version and totalReaders

8 version← ReadLog

9 totalReaders ← ReadLog

// wait write to this object

10 while object.version 6= version do delay

// wait reads to this object

11 while object.totalReaders 6= totalReaders do delay

12 Do Actual Write

13 object.totalReaders ← 0
14 AtomicAdd(object.version, 1)
15 end

Algorithm 2: InstantReplay Replay Algorithm

To reduce the per-access overhead associated with each memory
access, recent virtualization-based [8] and application-level [12] re-
play systems have leveraged hardware MMUs to enforce and track
access orders among shared memory accesses. When a memory
page is in the concurrent-read state, the page table entry of that
page in each core has read-only permission. When a memory page
is in exclusive-write state, only one core’s page table entry has read-
write permission to that page, while all other cores have no permis-
sion to that page. A CREW fault will be raised if a memory write
has no sufficient permission, where the memory access ordering
constraints (i.e., “happen-before” relationships) can be logged.

For example, as shown in Figure 2, a shared object X is first
concurrently read by three cores. At time t7, Core0 wants to write
the shared object, at which a CREW fault happens as Core1 does

Time

S:CR R:b=X+1

R:b=X-1

R:a=X+2

S:EW W:X=0

R:c=X+1

S:CR R:b=X+1

R:c=X+2

Core Core Core

X

X

X

LOG1:C1 

LOG2:C2 

LOG3:C1 

LOG4:C2 

LOG1:C0  

LOG3:C0 

LOG2:C0  

LOG4:C0 

Y=0

...

t0

t1

t2

t7

t8

t9

t12

t13

t14

Figure 2. An overview of the CREW protocol based on MMU
protection: left squares are a shared object in different states:
concurrent-read (CR) and exclusive-write (EW); top squrares are
CPU cores accessing the shared object. The solid arrows indicate
the captured “happen-before” relationship between two memory
operations. Log2 is a redundant log and LOG3 is an overcontrained
log.

not have sufficient permission. Hence, the record system has to first
decrease permission on Core1 and Core2 and then increase the per-
mission on Core0. The record system then logs that the permission
decrease happens before the permission increases and the replay
system enforces such orders during replay. Once Core0 has both
read and write permission with the shared object, the following
read operation at t8 can go without further CREW faults. However,
when Core1 tries to read the object at time t13, a CREW fault again
happens due to insufficient permission. Here, Core0 will decrease
its permission before Core1 can increase their permissions. Core1
needs to notify all other cores to increase their permission after
Core0 decreases its permission. As Core2 has already increased its
permission in t3, subsequent read access at t4 can proceed without
CREW faults.

It should be noted that upon a CREW fault, though only the
faulting core needs to acquire a lock and remove other cores’
permission, it needs to send IPIs (Inter-Processor Interrupts) to all
other cores to take logs and flush TLB, as it is uncertain whether
other cores are sharing the current object or not. Hence, such a
design may cause scalability issues for a large number of cores and
may cause frequent CREW faults upon non-trivial racy execution.

Further, it may also record over-constrained order as well as un-
necessary logs. For example, LOG3 in the above example records
that the read instruction at t13 of Core1 should happen after the
instruction in t12, which actually should happen after t7 precisely.
This is because there is no easy way for the MMU to identify the
last writer of a shared object. Though the logged order is sufficient
to ensure correct replay, this decreases parallelism as instructions
between t7 and t13 can be executed in parallel for all cores, but is
unfortunately serialized by this overconstrained log.

As the above MMU-based CREW protocol has no idea of which
core may access a shared memory object, it may also take a lot of
unnecessary logs. For the above example, LOG2 is unnecessary as
core2 is not sharing X at that time. Suppose there are 16 cores in the
above example and only 3 cores will share X, all other cores will
have to be interrupted and take unnecessary logs. This will greatly
impact performance.



3.2 A Scalable CREW Protocol

Being aware of the performance and scalability with prior CREW
protocols, we propose a scalable and efficient CREW protocol. As
ReEmu is based on a full-system emulator, where hardware MMU
is not available, we mainly rely on dynamic binary instrumentation
to enforce and log orders among concurrent accesses to a shared
memory object.

The key idea under the new CREW protocol is that the seqlock
used in Linux essentially matches the design of the CREW proto-
col. Hence, we redesign the CREW protocol by reusing the seqlock.

3.2.1 Data Structures

For each core, ReEmu maintains a memop describing the total num-
ber of memory accesses in each core. This can uniquely identify the
timestamp of a memory access. For each memory object, ReEmu
maintains a version number, which remains even and unchanged
for a read access, but is increased twice for a write access. The first
increment during a write access indicates that a write operation is in
progress, while the second increment indicates that the write opera-
tion has finished. Thus, the odd or even value of the version number
indicates whether there is a write access in progress.

For each memory object on each (virtual) core, ReEmu main-
tains a last seen structure that describes the last access to a shared
memory object, including the version number (i.e., version) and the
timestamp (i.e., memop). The last seen structure is used to avoid
unnecessary and overconstained logs mentioned in previous CREW
protocols.

ReEmu divides log entries into two types: wait-version log,
and wait-read log. As shown in the LogOrder function, each wait-
version log item is a tuple of (memop, version). Each core has such
a version log recording every memory access that needs to obey
the write/read-after-write order. During replay, when the memop
reaches a recorded memop, the virtual core must wait until the
accessing object’s version reaches the recorded version.

Each wait-read log entry contains a tuple of (object id, version
memop, coreid). For example, a log tuple (3, 141, 59, 2) means that,
if there is any write to a shared object with ID 3 at version 141 on
other cores, it must wait until core 2 has done 59 memory accesses.
Hence, this log ensures the write-after-read order.

3.2.2 Record Phase

Algorithm 3 illustrates the main algorithm of the record phase in
ReEmu. Line 1 to line 16 in the Read function show how ReEmu
logs read accesses to a shared memory object. ReEmu reads the
global object version and checks if there is a pending write access
by checking if the version number is odd or not. ReEmu repeats
this process until the version number becomes even (line 4-7). Then
ReEmu performs the actual read (line 8) and checks if there is or
has been any write access during the read operation and retries the
read if so (line 9).

If the memory object has been updated by other cores since
last access in this core (line 10), ReEmu needs to log the shared
memory dependence (line 11) and refresh the version last seen by
this core for the object (line 12). Finally, ReEmu updates the last
access memory operation count (memop) (line 14) and increases
the memory operation count (line 15).

To track and log a write access, ReEmu first acquires the per-
object lock to prevent concurrent write accesses to an object (line
18) and takes a snapshot of current version of the memory object
(line 19). It then increases the object version to an odd value to
exclude a potential read access (line 20), performs the actual write
(line 21), increase the object version to an even value so that a
potential read can proceed, and finally release the per-object lock.
ReEmu checks if there is any other write access to this object (line
24) and takes a log on such a write/read-after-write dependence

if so (line 25). ReEmu finally flips the memop in the last seen to
indicate that this access is a write operation, updates the version
number seen by this core to the object, and increases the memory
operation count.

The LogOrder function takes logs by writing the memory opera-
tion count and version to the per-core wait-version log file (line 32).
If the last access to this object is a read operation (line 33), ReEmu
takes an additional wait-read log that records the write-after-read
dependence as well.

1 Read (object, last seen) begin
// last seen contains info about last access, local to core

2 repeat
3 version← object.version

4 while version is odd do
5 version← object.version

6 delay

7 end

8 Do Actual Read

9 until version = object.version

// Version change means modified by other core

10 if last seen.version 6= version then
11 LogOrder(object, last seen)

12 last seen.version← version

13 end

// memop is also local to core

14 last seen.memop← memop

15 memop← memop + 1
16 end

17 Write (object, last seen) begin
18 SpinLock (object.lock)

19 version← object.version

// Odd version locks reader

20 object.version← object.version+ 1
21 Do Actual Write

22 object.version← object.version+ 1
23 SpinUnlock (object.lock)

24 if last seen.version 6= version then
25 LogOrder(object, last seen)

26 end

// Complement to be negative, mark last access as write

27 last seen.memop←∼ memop

28 last seen.version← version+ 2
29 memop← memop + 1
30 end

31 LogOrder(object, last seen) begin
32 WriteVersionLog(memop, version)

33 if last seen.memop ≥ 0 then
34 WriteReadLog(object.id, last seen.version,

last seen.memop)
35 end

36 end

Algorithm 3: ReEmu Record Algorithm

3.2.3 Log Processing

As ReEmu takes a per-core log scheme and each log only contains
local access information, an offline log processing algorithm is
necessary to combine log files and infer access orders of a shared
memory object. ReEmu only needs to process the wait-read log as
each core only needs to read its local wait-version log sequentially.



ReEmu first sorts the wait-read log of each core and then merges
all logs together into a single file ordered by object ID and version.
ReEmu will also generate another index file that contains the start-
ing location of the wait-read log for each object. During replay, a
core performing a write access only needs to do a single sequential
search to find the dependent read accesses by other cores to this
object.

3.2.4 Replay Phase

Algorithm 4 shows the replay algorithm in ReEmu. For each read
access, ReEmu needs to wait until the version of the object has
reached to a logged version (line 2). This ensures that a read access
can get the same value as in record run. Then, it performs the
actual read operation (line 3) and updates the memory operation
count (line 4). For each write access, ReEmu needs to first wait
until other write accesses before this access have happened (line
7). Then, it needs to ensure all other dependent readers have done
the read accesses (line 8). Finally, ReEmu performs the actual write
and updates object version and memory operation count.

1 Read (object) begin
2 WaitVersion(object)

3 Do Actual Read

4 memop← memop + 1
5 end

6 Write (object) begin
7 WaitVersion(object)

8 WaitRead(object)

9 Do Actual Write

10 object.version← object.version+ 2
11 memop← memop + 1
12 end

13 WaitVersion(object) begin
14 version← ReadLog()

// wait write to this object

15 while object.version 6= version do delay

16 end

17 WaitRead(object) begin
// wait all reads to the object at the current version

18 for each tuple in the form of

(object.id, object.version, readmemop, readcoreid)
in read log do

19 while readcoreid’s memop ≤ readmemop do
delay

20 end

21 end

Algorithm 4: ReEmu Replay Algorithm

3.2.5 Performance and Scalability Analysis

As shown in the previous algorithms, ReEmu has several good
properties that make it efficient and scalable. First, there is only one
variable (i.e., object.version) shared among multiple cores, which
may reduce unnecessary cache ping-ponging. Second, all logs are
taken with only local information (except object.version) to per-
core log files, this makes the logging process pretty fast and scal-
able. Third, there is only one lock to serialize multiple writers and
the read side is completely lock-free. Fourth, the logs are taken only
when necessary and the logged order contains no overconstained
order but is precise to reflect the exact access orders.

3.3 Lock Clustering

Even though ReEmu has been designed to minimize synchroniza-
tion operations, there is still some overhead related to each memory

access, especially write accesses. In some cases, it is possible that
for some periods of time, some memory objects are only accessed
by one core. In such cases, it would be beneficial to acquire the
shared object with exclusive write permission, then do all the fol-
lowing access directly without the need to acquire the lock again.

To enable such an optimization, ReEmu associates an owner
information to each shared object. The owner information indicates
which core is currently holding the write lock. On acquiring a write
lock, a virtual core can hold the lock and set the owner to itself.
Each memory access first checks if the owner of the shared object is
itself. If so, it then can access the shared memory directly with only
the need to update the memop and update last seen information.
Otherwise, it goes through the original recording algorithm.

ReEmu needs to avoid possible deadlocks. Deadlock will occur
if Core1 holds the lock of shared object A, and then try to access
shared object B, whose lock is hold by Core2 and Core2 is trying
to access shared object A. To avoid such a deadlock, each core
has a mailbox. When a core tries to access a shared object that is
hold by other cores, it will send a message to the owner’s mailbox
with the contending shared object ID, and then wait until the lock
is released. Each core will check this mailbox and release the
contending shared objects at the end of each basic block or when it
is contending shared memory objects with other cores.

A successive access from another core to a shared object cannot
release the lock, as the owning core may be doing memory access
at that time. However, waiting for the owner to release the lock
would incur performance overhead when there are many shared
accesses. To reduce this overhead, each core is only allowed to
hold a predefined number of shared objects and ReEmu tries to
detect contention and disable lazy lock release when there is heavy
contention.

ReEmu currently sets the maximum number of shared object
each core can hold to 32. Setting this value too low may miss the
opportunity to reduce overhead of lock operations, while a large
value may incur excessive waiting overhead.

ReEmu tries to detect contention by recording the memop in a
contending point for each shared object for each core. The contend-
ing memop is recorded whenever a core sends a shared object ID to
the mailbox of the owning core, or when the owning core releases
contending objects. This contending memop acts like a timestamp
of last contention. A core performing write access will release the
lock lazily only if the current memop is greater than the contend-
ing memop by a predefined number (e.g., 10 in our implementa-
tion). This means that some certain time has elapsed since last con-
tention.

4. Implementation

We have implemented ReEmu based on COREMU 0.1.2 [22], an
open-source parallel full-system emulator based on QEMU [2]. The
implementation adds around 2500 SLOCs to COREMU. ReEmu
checkpoints the guest stack by leveraging the qcow [16] support
in QEMU to checkpoint guest states. ReEmu divides memory into
equally-sized memory chuncks, each chunk maps to an object ID.
The memory access recording algorithm uses this ID to identify a
shared object. The chunk size can be changed at compile time. As
object ID is accessed very frequently, ReEmu uses fixed mapping
from memory address for fast object ID calculation. The object ID
is calculated as (address >> CHUNK BITS)& OBJID MASK.
For a 4 KB chunk size, the CHUNK BITS is 12. To bound the
number of object id used, ReEmu fixes the OBJID MASK to be
an integer with the lowest 21-bit set. When chunk size is small, it
is possible that multiple memory chunk may map to the same ID.
However, this will not affect the correctness of the order recording
algorithm as those chunks will be considered as a single combined
shared object.



Port to ARM: To demonostrate the portability of ReEmu, we
further port ReEmu to support deterministic replay of ARM. As the
algorithms and instrumentation code is almost the same for ARM
and x86, only around 120 SLOCs are added, which mainly lie in
the atomic instruction emulation in ARM to support memory order
recording.

Validating Correctness: During development, ReEmu records
the PC of each executed basic block. This log defines an execution
path that must be identical between record and replay. During
replay, ReEmu reads the recorded PC before executing a basic
block and checks if the PC are the same. Hence, we can check if
the replay run is the same with the record run.

ReEmu also uses memory value verification that records the
value of each read/write instruction and verifies the value during
replay, which validates that shared memory accesses are recorded
correctly.

5. Evaluation

Performance evaluation is done on a 20-core Intel x64 machine
(2 GHZ, 2 processors with each having 10 cores with 32KB L1,
256KB private L2 and 24MB shared L3 cache) running Debian 6
with Linux kernel version 2.6.38.5. The guest OS is also a Debian 6
with kernel version 2.6.32.5. The host machine has 64GB memory
and the guest is configured with 2GB memory.

For the x86 guest machine, we use int $0x77 as a backdoor
instruction marking the start and end of timing. For the ARM
guest machine, we use the atomic instruction swp as the backdoor
instruction because it’s not used normally. (Neither Linux kernel or
the tested application uses swp instruction.) All tests were executed
at least four times and we report the arithmetic average of them.

5.1 Workload Characteristics

For x86 architecture, we choose five applications from the PAR-
SEC benchmark suite (version 2.1) [3]: blackscholes, bodytrack,
canneal, fluidanimate, swaptions. All applications are tested with
the simlarge input size. PARSEC can be treated as worst-case
applications due to pervasive shared memory accesses, causing
larger overhead and log size. (For system applications like kernel
build, ReEmu has about 50% overhead on average compared to
COREMU.)

application #sync #shared memop working set

blackscholes very few a few grow with #core
canneal a few a few large

swaptions a few many small
bodytrack medium large small

fluidanimate large very few large

Table 1. Selected PARSEC applications characteristics

As shown in Table 1, the five applications are chosen based
on their differences in the amount of synchronization primitives,
shared memory accesses and the working set size: blackscholes has
very few synchronization primitives, a number of shared memory
accesses among two threads and a small working wet; canneal has a
few number of synchronization primitives, a few amount of shared
memory access and a relatively large working set; swaptions has
a few number of synchronization primitives, many shared memory
accesses, and a small working set; bodytrack has a medium amount
of synchronization primitives, a large amount of shared memory
accesses and a small working set; fluidanimate has a very large
number of synchronization primitives, very few shared memory
access and a large working set.

Unless otherwise noted, we use 1KB as the default memory
chunk size. As we assign 2 Gbyte memory to the guest, and use

the 21-bit object ID mask, there is exactly one memory chunk
mapped to the same shared object ID. As some applications require
the number of threads to be the power of 2, we only report the
performance results for an emulated system with the number of
cores be power of 2.

5.2 Performance Slowdown

Slowdown in Record Run: Figure 3 shows performance slow-
down in record run compared to COREMU. The average slow-
downs are 60.2%, 74.8%, 77.7%, 74.5%, 68.9% for recording these
applications on 1, 2, 4, 8, and 16 cores. Among them, swaptions
has a relatively large overhead (94.7% at 16 cores) due to the rel-
atively large amount of shared write memory accesses [3], which
is a limiting factor to performance. For other four applications, the
performance overhead is relatively small and mostly less than 80%.
The small overhead is attributed to the efficient and scalable design
in the recording algorithm of ReEmu.

40%

50%

60%

70%

80%

90%

100%

blackscholes

canneal

sw
aptions

bodytrake

fluidanim
ate

average

P
e
rf

o
rm

a
n
c
e
 S

lo
w

d
o
w

n

core 1
core 2
core 4
core 8

core 16

Figure 3. Record slowdown compared to COREMU

Slowdown in Replay Run: Figure 4 shows replay performance
slowdown compared to COREMU. Currently, we have not done
any optimization for replay. Hence, some applications are still with
a very large performance overhead during replay. The main reason
may be that a relatively large number of waiting operations get
aggregated together to degrade the replay performance. Swaptions
is with a relatively large overhead on 16 cores, probably due to the
fact that a large number of shared write accesses need to wait for
its dependent readers to finish.

Scalability: To see whether ReEmu has a good performance
scalability on a multicore machine, we also plot the execution time
of ReEmu and COREMU with the increasing amount of cores. As
shown in figure 5, we can see that ReEmu in record run has similar
performance scalability with COREMU. ReEmu in replay run also
has good performance scalability before 8 cores but stops scaling
in 16 cores due to performance degradation caused by aggregated
waiting, which we will optimize in our future work.

Slowdown to Native Execution: We also compare the perfor-
mance of ReEmu to native execution. The average record and re-
play slowdown for 1, 2, 4, 8 and 16 cores are 17X, 16X, 14X, 14X,
18X and 16X, 15X, 14X, 17X and 33X accordingly, while the slow-
down caused by COREMU is 11X, 10X, 8X, 8X and 12X accord-
ingly. Though the slowdown is still relatively large, it is still much
smaller than prior user-level replay system such as PinPlay [19],
which more than 80X even for recording an application with a small
number of cores. Further, the performance slowdown can be further
reduced if the overhead of COREMU/QEMU has been reduced.
Actually, recent work over QEMU shows that, by integrating an



 0

 10

 20

 30

 40

 50

 60

 1  2  4  8  16

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
)

Cores

blackscholes

COREMU
Record
Replay

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  4  8  16

Cores

bodytrack

 0

 5

 10

 15

 20

 25

 30

 1  2  4  8  16

Cores

canneal

 0

 10

 20

 30

 40

 50

 60

 1  2  4  8  16

Cores

fluidanimate

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  4  8  16

Cores

swaptions

Figure 5. Performance and scalability of the PARSEC benchmark

50 %

100 %

150 %

200 %

blackscholes

canneal

sw
aptions

bodytrake

fluidanim
ate

average

P
e
rf

o
rm

a
n
c
e
 S

lo
w

d
o
w

n

416.69%
core 1
core 2
core 4
core 8

core 16

Figure 4. Replay slowdown compared to COREMU

optimized backend compiler (e.g., LLVM) with optimizations, the
performance of QEMU can be reduced by 2.4X to 4X. With a more
optimized DBT, the overhead of ReEmu can be similarly reduced.

5.3 Benefits of Performance Optimization

Compared with Prior CREW Protocols: To compare the CREW
protocol in ReEmu with prior ones, we implement the CREW pro-
tocol in SMP-Revirt [8] in ReEmu with a few changes: 1) retrieving
remote core information for logging is done by directly accessing
the fields in remote cores, instead of sending IPIs; 2) a read-write
lock is used to guarantee that the remote core information is un-
changed, instead of using a system-wide lock (i.e., shadow lock).
We tried to implement the original CREW protocol in Instant Re-
play [14], but it turns to be too slow to boot Linux.

ReEmu with this CREW protocol takes around 122.6s, 343.6s
912.3s 1343.5s to record the execution of blackscholes on 1, 2, 4
and 8 cores. When using 16 cores, the system runs too slowly that
it still fails to boot Linux after 1 hour. In contrast to the CREW
protocol in ReEmu, it has significantly worse performance and
scalability.

Benefits of Lock Clustering: Due to space constraints, we
present three applications that are with performance speedup and
slowdown due to the lock clustering algorithm. As shown in Ta-
ble 2, the execution time of swaptions is reduced from 27.3% to
19.2% when the number of cores increased from 1 to 16. When
there is contention on an object, lock clustering will not be applied
for that object. This explains why the improvement is reduced when
the number of cores increases. blackscholes also gets some speedup
with lock clustering, but not that much as swaptions. canneal is
the only tested application with performance slowdown with lock
clustering. Though lock clustering can avoid repeatedly acquiring
the same lock, it needs extra work like recording which locks are
hold by self and releasing hold locks when there is contention. To
avoid holding too much locks and hurt performance when there’s

contention on many shared object, each emulated core can hold at
most 32 locks. When this number increases to 64, canneal will also
show a little speedup running 1 emulated core, but more slowdown
when running more emulated cores.

app #core w/o opt with opt reduction

swaptions 1 143.38 104.18 27.3%
2 75.10 59.42 20.9%
4 38.56 30.76 20.2%
8 24.23 18.39 24.1%
16 13.08 10.57 19.2%

blackscholes 1 52.57 46.43 11.7%
2 27.28 25.08 8.1%
4 13.72 12.30 10.3%
8 8.12 6.90 15.0%
16 4.02 3.67 8.5%

canneal 1 26.92 27.44 -1.9%
2 14.56 15.68 -7.7%
4 7.61 8.24 -8.4%
8 4.56 4.86 -6.6%
16 4.02 4.41 -9.9%

Table 2. Optimization effect of lock clustering

5.4 Impact of Object Size

0%

20%

40%

60%

80%

100%

120%

140%

1 2 4 8 16

s
w

a
p
ti
o
n
s
 P

e
rf

o
rm

a
n
c
e
 S

lo
w

d
o
w

n

Number of Cores

64B
128B

256B
512B

1kB
2kB

4kB

Figure 6. Impact of memory chunk size (record performance slow-
down compared to COREMU)

Figure 6 shows the performance impact of different memory
chunk sizes for the swaptions application. (swaptions has many
shared memory operations thus the impact would be bigger.) This
result is tested with lock clustering enabled. For 1 core configura-
tion, a larger memory chunk size reduces the number of lock op-
erations thus setting it to 4K has the smallest slowdown (70.5%),



while 64byte has the largest slowdown (112.7%). For 16-core con-
figuration, as there are more concurrent accesses to the same page,
the performance of 4 Kbyte memory chunk size degrades, and
the slowdown increases to 141.6% (while the lowest slowdown is
94.7%). To get a consistent performance, we set the default mem-
ory chunk size to 1 KByte, which shows good performance from
small number of of emulated cores to larger number of emulated
cores. We will apply an adaptive approach by assigning the chunk
size according to the number of cores in future.

5.5 Log Size

To collect log size for an application, we modified ReEmu to start
take log after the timing backdoor has triggered. So the data here
are only for the log taken when executing region of interest.

Table 3 shows low size for all the benchmarks applications
and Linux kernel boot. For single core recording, as no memory
ordering needs to be logged, the log size is very small. The log
size grows as number of cores grows. The log size for bodytrack
and swaptions grows much slower than other applications. These
2 applications has small working sets, they touch less memory
chunks and thus less memory ordering logs are required. While
canneal and fluidanimate has very large working set, as the number
of cores grow to 16, the log size grows to more than 20MB.
blackscholes’ working set size grows with core number thus the
log size also grows a lot.

Note that working set size is not an accurate indicator of log
size. Memory access pattern is also a deciding factor to log size. In
the worst case, two cores writing to a single shared object in turn,
every write needs to take log. So even for working set as small as a
single page, the runtime overhead and log size could still be big.

application 1 core 2 cores 16 cores

blackscholes 123K 398K 18M
canneal 346K 1.5M 26M

swaptions 67K 149K 2.3M
bodytrack 12K 209K 2.7M

fluidanimate 54K 687K 24M
kernel boot 1.2M 1.5M 6M

Table 3. Log size of ReEmu (compressed with gzip)

5.6 ARM Performance

We ported one MapReduce application in the Phoenix test suite [20]
to ARM platform to study the performance and scalability of
ReEmu on ARM record and replay. The guest version of Linux
is 2.6.28 which is provided by ARM corporation. We tested Word-
Count with 10 Mbyte file running on a 1, 2, 4 core configuration4.
The average slowdowns caused by ReEmu in record and replay
run are 2.1X, 1.9X, 1.9X and 3.3X, 3.4X, 3.8X accordingly. It also
exhibits good performance scalability: the execution time is 32.1s,
12.6s, 5.8s and 50.5s, 21.8s, 11.4s to record and replay WordCount
under 1, 2, and 4 core configuration accordingly.

5.7 Bug Reproducibility

To evaluate the bug reproducibility of ReEmu, we record and replay
the racy benchmark [23] on ReEmu. We validate the signature
generated from record and replay runs and find that the signature
is the same. Hence, ReEmu can faithfully reproduce concurrency
bugs.

4 The maximum number of cores supported in ARM Cortex-A9 is 4.

6. Related Work

Replaying in the Virtual World: There has been some prior work
in supporting execution replay of virtual machines. Bressoud et
al. [4] are the first to provide execution replay for virtual machines,
but their techniques target at single-core VM and are used for fault-
tolerance in between a primary machine and the backup. Revirt [7]
logs external inputs and source of non-determinism in a single-core
VM and replays the execution mainly for intrusion analysis. The
time-travel VM [11] and ReTrace [24] leverages execution replay
of single-core virtual machines to debug operating systems and col-
lect execution trace respectively, which can also be similarly ap-
plied to ReEmu. SMP-Revirt [8] is the first to provide execution re-
play of multiprocessor VMs by leveraging the CREW protocol [5]
to record orders of shared memory accesses. ReEmu also lever-
ages the CREW protocol, but with notable refinements that enable
ReEmu to be scalable and efficient to replay multicore systems.

Leap [10] and ORDER [25] are two recent systems supporting
deterministic replay in Java virtual machines (JVMs). Like ReEmu,
replaying in JVM can do fine-grained instrumentation and track
memory accesses in fine-granularity. For example, ORDER takes
an object-centric approach that records shared memory accesses in
object-level. However, execution in a full-system emulator has no
such good locality with objects, for which reasons ReEmu tracks
memory objects at a fixed size.

Replaying Natively in the User Land: Similarly to ReEmu,
Scribe [12] also leverages the CREW protocol to record shared
memory accesses. However, Scribe defers page ownership transi-
tion at sync points (e.g., system calls), which is not appealing for
ReEmu as the delayed memory access interleaving may hide many
data races that occurs in a real machine. Compared to Scribe, the
CREW protocol in ReEmu has been refined to be scalable and ef-
ficient by precise and scalable tracking of access orders to shared
memory objects. Finally, tracking memory accesses in page gran-
ularity in Scribe may suffer from false sharing, while ReEmu is
more flexible in choosing tracing granularity. DoublePlay takes
an approach called uniparallelism that uses serialized execution to
check the memory ordering of parallel execution. However, uni-
parallelism may be hard to be efficient for a full-system emulator,
which may cause frequent rollback and it is not easily to efficiently
rollback the execution of a full-system stack.

There are also efforts in trading determinism and recording
overhead. ODR [1] reduces the overhead by only guaranteeing
output deterministic at the benefit of ignoring the outcomes of data-
races, while takes more time and space to search the execution path
during replay to ensure output-determinism. PRES [18] also only
records a “sketches” during record run, and instead leverages the
replayer to explore possible execution spaces to reproduce bugs.
Respec [15] combines speculative execution for logging and replies
on the replayer to detect and recover if the replay session diverges.
There techniques should also be able to be integrated into ReEmu
to further reduce the overhead of ReEmu, which will be our future
work.

7. Conclusion and Future Work

In this paper, we made the first attempt to provide deterministic
replay features to parallel full-system emulators. Based on a com-
phrensive analysis on issues with prior CREW protocols, we make
several refinements that made ReEmu scalable on multicore plat-
forms and efficient. Evaluation showed that ReEmu incurs modest
runtime and space overhead and can faithfully replay the whole
software stack.

There are still plentiful research opportunities for us to explore
in future. First, we plan to incorporate debugging and analysis
tools into ReEmu so that it can seamlessly work with existing tools
like gdb. Second, we will study the performance and scalability of



our refined CREW protocol to record and replay user-level system
such as user-mode QEMU and Pin, which should bennefit from
the scalable design. Third, as we currently only evaluate ReEmu
on a small amount of cores, we plan to study the performance and
scalability of ReEmu on a machine with hundreds of cores.

References

[1] G. Altekar and I. Stoica. ODR: output-deterministic replay for multi-
core debugging. In Proc. SOSP, 2009.

[2] F. Bellard. Qemu, a fast and portable dynamic translator. In Proc.

USENIX ATC, 2005.

[3] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proc. PACT,
2008.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
In Proc. SOSP, 1995.

[5] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with
readers and writers. Comm. of the ACM, 14(10):667–668, 1971.

[6] J. Ding, P. Chang, W. Hsu, and Y. Chung. PQEMU: A parallel system
emulator based on QEMU. In Proc. ICPADS, 2011.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: enabling intrusion analysis through virtual-machine logging
and replay. In Proc. OSDI, 2002.

[8] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution replay of multiprocessor virtual machines. In Proc. VEE,
2008.

[9] D. Hong, C. Hsu, P. Yew, J. Wu, W. Hsu, P. Liu, C. Wang, and
Y. Chung. HQEMU: a multi-threaded and retargetable dynamic binary
translator on multicores. In Proc. CGO, 2012.

[10] J. Huang, P. Liu, and C. Zhang. LEAP: lightweight deterministic
multi-processor replay of concurrent java programs. In Proc. SIG-

SOFT FSE, 2010.

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proc. USENIX ATC,
2005.

[12] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight appli-
cation execution replay on commodity multiprocessor operating sys-
tems. In Proc. SIGMETRICS, 2010.

[13] R. Lantz. Parallel SimOS - Performance and Scalability for Large

System. PhD thesis, Stanford University, 2007.

[14] T. Leblanc and J. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. Computers, IEEE Transactions on Computers,
C-36(4):471–482, 1987.

[15] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: efficient online multiprocessor replayvia specu-
lation and external determinism. In Proc. ASPLOS, 2010.

[16] M. McLoughlin. The qcow image format, 2008.

[17] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging.
In Proc. ISCA, 2005.

[18] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. Lee, and S. Lu.
PRES: probabilistic replay with execution sketching on multiproces-
sors. In Proc. SOSP, 2009.

[19] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay:
a framework for deterministic replay and reproducible analysis of
parallel programs. In Proc. CGO, 2010.

[20] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and multiproces-
sor systems. In Proc. HPCA, pages 13–24, 2007.

[21] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: parallelizing sequential logging
and replay. In Proc. ASPLOS, 2011.

[22] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, Z. W., and B. Zang.
Coremu: a scalable and portable parallel full-system emulator. In Proc.

PPoPP, 2011.

[23] M. Xu, R. Bodik, and M. Hill. A “flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proc. ISCA, 2003.

[24] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
Retrace: Collecting execution trace with virtual machine deterministic
replay. In Proceedings of the Third Annual Workshop on Modeling,

Benchmarking and Simulation, 2007.

[25] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER: object
centric deterministic replay for java. In Proc. USENIX ATC, 2011.


	Introduction
	ReEmu Overview
	Full-system Emulator
	Sources of Non-determinism
	Record and Replay Non-determinism

	Replaying Shared Memory Systems
	Previous CREW Protocols
	A Scalable CREW Protocol
	Data Structures
	Record Phase
	Log Processing
	Replay Phase
	Performance and Scalability Analysis

	Lock Clustering

	Implementation
	Evaluation
	Workload Characteristics
	Performance Slowdown
	Benefits of Performance Optimization
	Impact of Object Size
	Log Size
	ARM Performance
	Bug Reproducibility

	Related Work
	Conclusion and Future Work

