
Using Dynamically Layered Definite Releases for Verifying the RefFS File System

Mo Zou1,2, Dong Du1,2, Mingkai Dong1,2, Haibo Chen1,2

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
RefFS is the first concurrent file system that guarantees

both liveness and safety, backed by a machine-checkable
proof in Coq. Unlike earlier concurrent file systems, RefFS
provably avoids termination bugs such as livelocks and dead-
locks, through its innovative introduction and use of the dy-
namically layered definite releases specification. This spec-
ification enables handling of blocking scenarios, facilitates
modular reasoning for nested blocking, and effectively elimi-
nates the possibility of circular blocking.

The approaches underlying the aforementioned specifica-
tion are integrated into a framework called MVT1. This frame-
work serves as a guide for developers in verifying concurrent
file systems. By extending the specification, we further vali-
dated the correctness of the locking scheme for Linux Virtual
File System (VFS). Remarkably, even without conducting
code proofs, we uncovered a critical flaw in a recent version of
the locking scheme, which could potentially lead to deadlocks
of the entire OS2. Overall, RefFS achieves better performance
than AtomFS, a state-of-the-art verified concurrent file system
without the liveness guarantee.

1 Introduction

This paper presents RefFS, a concurrent file system with a
machine-checkable proof of both safety and liveness prop-
erties. Ensuring liveness means the operations of RefFS are
guaranteed to terminate under the condition that no thread
would be starved due to unfair scheduling. The proof rules
out a wide range of bugs that are common in concurrent file
systems [68], such as deadlocks, livelocks and infinite loops
caused by other reasons (e.g., overflow).

Proving the absence of termination bugs is important be-
cause they are too subtle to be correctly handled by develop-
ers. For instance [3], a task does not directly deadlock with
another task by forming a simple ABBA3 deadlock pattern,
but instead, it may deadlock through a complex circular de-
pendency chain involving multiple tasks. A wide range of
other termination bugs [52] continue to be reported, indicat-
ing potentially more undiscovered termination bugs that pose
a threat to our software system. Once triggered, these bugs
can lead to serious consequences, such as system hangs [12].

1Modular Verification of Termination
2Confirmed by Linux maintainers including Linus Torvalds.
3One acquires locks in the order of AB while another in the order of BA.

Testing and program analysis techniques (see §2 for more
details) have been used to detect (a subclass of) termination
bugs. Although effective in practice, they cannot cover all pos-
sible cases to guarantee a system’s liveness. Formal verifica-
tion is a promising approach. Researchers have made tremen-
dous progress in concurrent file system verification [17, 104]
and liveness verification [42, 55, 77]. However, as we dis-
cuss below, none of existing efforts are capable of modularly
verifying the liveness of concurrent file systems.

In principle, proving liveness requires a well-foundedness
argument [1, 59], i.e., within a finite number of steps, some-
thing must happen. For a sequential program, we may use
a well-founded metric as a specification to measure its
progress [44, 66]. For instance, we can define the metric by
calculating the total steps of the program. With each step, the
metric must decrease but cannot infinitely decrease. Hence,
the program must terminate after running out the metric.

Unfortunately, defining a specification that can account for
the progress of a concurrent file system still faces the fol-
lowing challenges. First, the specification should support the
reasoning of blocking scenarios. For a thread that is blocked
in a busy waiting loop (e.g., to acquire a lock), its progress
cannot be achieved by its own steps but relies on the steps
of other threads (e.g., the thread owning the lock). Note that
we aim for general busy waiting loops. This should be distin-
guished with efforts [8,46] that only recognize lock primitives
but miss blocking scenarios from ad-hoc synchronizations,
which are also quite common in file systems (see §2).

Second, it is important that the specification allows modular
reasoning of nested blocking. Consider the following case. An
unlink operation owns parent and requests for child. So
thread t1 that tries to acquire parent is blocked by unlink,
which is nestedly blocked by another thread t2 that owns
child. Naively, the well-founded metric for t1’s progress
on acquiring parent may not only include unlink’s steps
to release parent but also t2’s steps to release child. The
latter creates progress for the former, thus contributes to t1’s
progress indirectly. This issue becomes more pronounced
with more levels of nested blocking and more threads in-
volved, which makes the reasoning not modular.

Last but not least, the specification should help rule out
circular nested blocking (i.e., deadlock). While an intuitive
approach might specify a static order for nested blocking, the
complexity of file systems introduces diverse and dynamic
locking orders that are extremely challenging to formally cap-

1

ture. Specifically, file systems exhibit a wide range of nested
blocking scenarios, each with its own locking order and con-
currently executed by multiple threads. It is essential to estab-
lish a total order that justifies the absence of cycles. However,
these nested blocking scenarios exhibit not static but dynamic
orders, complicating the construction of such a total order. For
instance, two inodes that are with parent-child relation may
swap their positions as a file system evolves, therefore ex-
hibiting different orders in the parent-child nested blocking of
unlink. In addition, rename alone contains multiple nested
blocking cases, some of which establish non-deterministic
orders between unrelated inodes (e.g., source and target di-
rectories may be two arbitrary directories and their locking
order is dynamic).

Although state-of-the-art efforts have provided insights into
the first two challenges, few offer an approach for both. In
addition, none can be applied for the diverse and dynamic
blocking scenarios in file systems.

To meet such challenges, this paper first proposes the dy-
namically layered definite releases (DLDR) specification,
which can account for the progress of RefFS. Definite re-
lease specifies that an acquired lock (e.g., per-inode lock) will
always be released, which assists to reason about lock-based
blocking by establishing a rely-guarantee style protocol be-
tween threads that wait for the lock and the thread that owns
the lock. Definite release can be specified on concrete (lock)
state without assuming locks as primitives, therefore the idea
is applicable to ad-hoc synchronizations as well.

The key to modular reasoning is to assign definite releases
layers that represent their orders in nested blocking. The ac-
quisition of a lock only waits for the definite release of the
lock (direct steps). How the definite release is fulfilled (indi-
rect steps) is decoupled and reasoned separately using layers.

Because nested blocking exhibits dynamic orders, the lay-
ers are dynamically specified according to the file system
state. For the parent-child order in unlink/rmdir, we first
propose hierarchical layers, which assign an inode’s layer by
computing the length of path from root. Further we extend the
hierarchical layers with the notion of temporary dependency
represented as ghost state to model the non-deterministic
nested blocking order in rename. Intuitively, temporary de-
pendency adds a temporary, logical edge to the file system tree
and on this extended tree, an inode’s layer is now computed
according to the longest path from the root. This layering strat-
egy introduces the needed dependency while obeying existing
dependencies to avoid unsound circular dependencies.

To demonstrate the generality of DLDR, we extend it to
account for directory locking in Linux VFS, which has more
nested blocking scenarios. Specifically, we make the ex-
tension following the Linux directory locking documenta-
tion [25] (assuming it faithfully reflects the implementation).
With the formal specification, we give an intuitive and formal
deadlock-freedom proof of the locking scheme. We found
that a recent patch [51] merged in the mainstream introduced

a serious flaw in the scheme, which could lead to deadlocks
in running code and got confirmed by the Linux maintainers
including Linus Torvalds.

Next, we present the MVT framework, whose program
logic is based on the methodologies of DLDR and proved
sound. MVT is built on existing efforts [64, 104] for verify-
ing termination and functional correctness of concurrent file
systems but makes the following new contributions. MVT
supports specifying (1) definite releases with dynamic layers
to achieve modular termination reasoning and (2) non-atomic
abstract operations to model non-atomic implementations.
The framework is mechanized in Coq to ensure the reliability
of the verification.

After that, we successfully apply DLDR to verify RefFS
in MVT. Compared to existing verified concurrent file sys-
tem, RefFS for the first time supports highly concurrent path
traversal using reference counting (refcount) [26]. This allows
operations to bypass each other, thus achieves better perfor-
mance. Users are not bothered with the more fine-grained
behaviors because the refined abstraction of RefFS hides re-
fcounts, locks and internal data structures to offer atomic
directory lookups. The abstraction preserves the termination
behaviors of RefFS as well, thus layering a solid foundation
to reason about applications on top of RefFS [14].

In summary, this paper makes the following contributions:

• A study of termination bugs that motivates this work (§2).

• Dynamically layered definite releases specification for
the progress of RefFS and an extension of it for directory
locking in Linux (§3).

• The MVT framework, which allows a programmer to
specify and verify both termination and functional cor-
rectness of concurrent file systems (§4).

• RefFS, the first modularly verified concurrent file system
with termination guarantees (§5).

• An evaluation reporting the performance of RefFS and
our verification experience (§6).

Our prototypes of MVT and RefFS still have some limita-
tions. Currently, RefFS is an in-memory file system and does
not consider crashes. In general, the reasoning for termination
is orthogonal to crashes because recovery procedure will re-
store the state to re-execute the code. But recovery procedure
needs to be reasoned on the crashed state. To support crash
safety, one may follow the techniques in DaisyNFS [15–17].
MVT does not consider termination problems due to inter-
rupts/exceptions. Supporting them requires considering inter-
mediate states in programs , which we leave as future work.
RefFS has simplified read access to use exclusive locks. Nev-
ertheless, we can use read-write locks in RefFS and reason
with their implementations in MVT.

2

2 Motivation

2.1 Studies of Termination Bugs

A prior study [68] on file system patches reveals that up to
40% of concurrency bugs are due to deadlocks. A recent sur-
vey [12] on security vulnerabilities of file systems shows that
about 7% of CVEs are related to non-termination. Meanwhile,
the deadlock-related semantic bugs are hard to diagnose [70],
hurting the system for years without being fixed.

Although these efforts have shed light on the significance
of avoiding termination bugs, they have not thoroughly exam-
ined these bugs from a verification perspective. This raises
several important questions: (1) How can we classify these
bugs based on the challenges they pose for verification? (2)
What are the primary classes of termination bugs? (3) What
makes these bugs dominant and challenging to avoid? An-
swering these questions can focus our verification efforts in
fruitful directions. Therefore, we perform a comprehensive
study of termination bugs in Linux file systems (from 2020 to
June 2023). We collect 205 bugs in total (by reading commit
messages of patches [52]) and make the following observa-
tions.

Bug classification. The termination bugs are first classified
based on whether they are concurrency bugs. Within the cat-
egory of non-concurrent bugs (18%), the non-termination,
shown as infinite loops, is mainly due to logic mistakes (e.g.,
missing checks [85]) and generic errors (e.g., inappropriate
truncation [40] and overflow [95]). In the concurrent category
of termination bugs, the majority of them are attributed to
deadlocks (78% of total). Deadlocks occur when a thread
becomes blocked, waiting for a specific action that never hap-
pens, leading to a situation where none of the involved threads
can make progress. A smaller subset of these bugs are caused
by livelocks (3% of total). In cases of livelock, a thread is con-
stantly delayed or postponed, resulting in an inability to make
progress and ultimately leading to a lack of overall system
advancement.

Next, we look into the most dominant class of bugs, i.e.,
deadlocks, to understand the underlying factors contributing
to their prevalence.

Ad-hoc synchronization. A significant portion (40%) of dead-
locks involve ad-hoc synchronizations where threads are wait-
ing for specific events such as transaction completion [7],
flushing of dirty inodes [6], or other custom synchroniza-
tion points [78, 90]. These ad-hoc synchronizations can be
challenging to detect and analyze, as they often lack specific
patterns. Deadlock analysis tools and techniques commonly
focus on well-known and structured synchronization patterns,
such as lock acquisitions and releases, which may cause them
to miss these ad-hoc synchronization-related deadlocks.

Nested blocking. A majority (83%) of deadlocks, exclud-

ing AA deadlocks4, involve nested blocking. Many of those
bugs [98, 99] even arise from combinations of diverse
nested blocking scenarios (including ad-hoc synchroniza-
tions), which can make them even more challenging to iden-
tify and resolve. To prevent such bugs, it is necessary to exam-
ine not only the local blocking order but also the absence of
cyclic dependencies globally within the system. This calls for
a comprehensive analysis of the entire codebase, considering
the interactions and potential dependencies among multiple
threads and resources. However, existing code comments or
documentation often fail to present a clear and detailed global
order of dependencies, hampering the ability to detect and
prevent such deadlocks effectively.

Dynamic order. Dynamic locking order is not uncommon
in file systems, particularly in interfaces like object re-
moval, rename, and link creation. For instance, object removal
(unlink/rmdir) acquires inode locks in a parent-child order,
with the definition of “parent” and “child” based on the cur-
rent state of the file tree. As the file tree evolves, the set of
inode pairs that satisfy this parent-child relationship dynami-
cally changes. Similarly, many other data structures within file
systems, such as the forest structure in BTRFS or various list
implementations, also exhibit dynamic locking orders. These
scenarios further contribute to the complexity of the code.
Reasoning about diverse and dynamic nested blocking scenar-
ios in file systems can be extremely intricate. Even for experts
in the domain, mistakes can still occur [51], highlighting the
difficulty of effectively managing these complexities.

To summarize, the combination of ad-hoc synchronization,
nested blocking, and dynamic order in concurrent file systems
has contributed to deadlocks becoming the dominant class of
termination bugs. These factors, individually and collectively,
present significant challenges for verification

2.2 Limitation of Existing Efforts

There are a number of program-analysis based techniques that
aim for deadlock [49,92], livelock [9] and infinite loop [11,13]
respectively. Although effective in practice, their common
problem is false positives. Programmers still have to manually
confirm or reproduce the bug. Various fuzzing-based testing
tools [34,48] can also reveal termination bugs. However, they,
as well as dynamic analysis tools cannot avoid false negatives.

For instance, Linux kernel has a runtime validator to en-
sure the locking correctness [27]. Users needs to inform the
validator of the hierarchy (a fixed order) between lock objects.
It has the following drawbacks. First, it does not recognize
ad-hoc synchronizations. Second, it does not provide a gen-
eral principle on how to handle dynamic locking order, whose
hierarchy cannot be predetermined. Third, the annotations
provided by developers may be wrong or insufficient, which
give rise to false positives [96].

4A thread deadlocks when request the lock owned by itself

3

Some efforts support deadlock-freedom verification [61,
94]. They track dependencies between blocking primitives
to prevent circular blocking. Some [10, 60] also have lim-
ited support for dynamically-changeable lock orders. They
only consider situations where lock order changes have local
effects. For instance, a tree mutation with all related nodes
protected by locks is not visible to concurrent threads. Thus,
it is easier to locally check the absence of circular lock de-
pendencies before and after the lock order change. However,
in file systems, lock order changes may result from concur-
rent threads, which requires nontrivial concurrency reasoning
(see §3.3 for details). In addition, these efforts still cannot be
applied for ad-hoc synchronizations.

There are also some theoretical work [28, 64] that can help
reason about general blocking scenarios. LiLi [64] proposes
a program logic to support the verification of starvation free-
dom and deadlock freedom. But LiLi does not support layered
reasoning (see §3.2), thus cannot modularly verify file sys-
tems. TaDA Live [28] introduces layers to capture lock orders.
But it only supports layers defined on current state, which are
insufficient to capture the dynamic layers in file systems. Also,
TaDA Live and LiLi have neither a mechanical framework
nor an executable implementation.

3 Proving the Termination of RefFS

In Linux filesystems, directory locking refers to the locking
scheme used for directory operations. It is important because
only after VFS has performed directory locking can kernel file
systems take over. Hence, any bugs within can endanger the
whole OS. However, ensuring its correctness is challenging
because it is a major source of diverse and dynamic nested
locking scenarios. In this section, we tackle the challenges
by first introducing the dynamically layered definite release
specification for proving the termination of RefFS. Note that
the directory locking behavior of RefFS is fine-grained and
similar to that of VFS. Then, we extend the specification to
validate the locking correctness of VFS.

3.1 Definite Release
RefFS uses fine-grained locks (i.e., per-inode locks) for syn-
chronization. A thread t acquiring the lock may be blocked by
another thread holding the lock. To prove t’s termination, we
need to show that t will no longer be blocked. Consider the
code snippet in Fig. 1a. This simplified version is incorrect
because it omits reference counting; we restore it in §5. The
code traverses from the cur directory and looks up the name
path[i] to find the next inode. The lookup is protected by
holding the lock on cur, and the lock is released afterward.
Assume all threads only execute this piece of code, and a
fair lock, such as a ticket lock, is used to ensure termination.
For a ticket lock (Fig. 1b), every thread lines up for the lock
by getting a ticket. A thread acquires the lock if its ticket

// Pre: no lock owned
while(path[i]!=NULL)
lock(cur);
next=lookup(cur,path[i]);
if (next==NULL) {
unlock(cur); return;}

unlock(cur);
cur=next; i++;

}
(a) traversal loop.

lock(cur):
int i;
i=getAndInc(cur.next);
while(i!=cur.owner){}

unlock(cur):
cur.owner=cur.owner+1;

(b) ticket lock.

Figure 1: Single locking in path traversal.

equals owner and releases the lock by increasing the owner.
Then the question is why the lock(cur) statement would
terminate.

Blocking is caused by the absence of environmental be-
havior, e.g., not releasing the lock. To prove termination, the
specification should describe the certainty of some state transi-
tion. For lock-based blocking in RefFS, we propose a domain-
specific specification called definite release.
Definition 1 (Definite Release)

Definite release says, for any thread t and lock, if t owns
the lock, t will eventually release the lock.

Definite release is inspired from the definite action notion
proposed by LiLi [64], which can characterize an action that
will definitely happen. However, one key difference is that
definite action in LiLi cannot support layered reasoning, thus
cannot modularly handle nested locking (§3.2).

More formally, definite release (D) is in the form of a state
transition: “t owns the lock” ; “t releases the lock”. Here,
the two state assertions can specify concrete lock state (not
just abstract state of lock primitives). For instance, the definite
release of ticket locks can be formalized as (owner= t.i);
(owner = t.i+ 1), where t.i means the local variable i of
thread t. For other ad-hoc synchronizations, e.g., waiting for
count to be zero, we can specify the waited action using the
state of count similarly. Intuitively, the notation ; captures
that the state transition eventually happens, whose formal
details we present in §4.

Rely-guarantee style reasoning. Definite release establishes
a protocol that helps reason about the termination of locks in
two aspects. First, the release of a lock after acquired should
be guaranteed by all threads. For now, we require that the
definite release is fulfilled without relying on other threads
so that the definite release guarantee is like an “axiom” that
everyone can trustfully rely on. For example, in Fig. 1, once a
thread t acquires the lock of cur, given that the lookup will
not be blocked and can terminate, t will indeed release the
lock on its own.

Second, one can rely on other threads releasing the lock
to prove the termination of lock statement. Still in Fig. 1,
a blocked thread t that spins inside the while loop of lock
knows that the lock holder will release the lock by increasing
owner, and t only needs to wait for a finite number of threads

4

1 // Pre: no lock owned
2 lock(parent);
3 child=lookup(parent,name);
4 lock(child);

5 // Perform checks and
6 // do unlink/rmdir
7 ...
8 unlock(parent);

Figure 2: Code snippet for nested locking in
unlink/rmdir. Code for error handling omitted.

releasing the lock. So t can eventually acquire the lock.
Note that circular reasoning is usually unsound in proving

termination. For instance, in a deadlock example, one may
guarantee to always release the lock under the assumption
that others release their locks. But our reasoning is not circu-
lar because the guarantee of definite release does not make
assumptions on other threads.

3.2 Hierarchical Layers

File systems also require nested locking to accomplish an
operation. Consider the code for removing an inode (i.e.,
unlink and rmdir) in Fig. 2. The code acquires the lock of
the parent inode to look up for the child, and then acquires
the lock of the child to check whether the operation can be
performed. The lock of parent is released after the operation.
Can we use definite releases to reason about this example?

Unfortunately, in nested locking, the release of the first lock
may be blocked by the acquisition of the second lock, which
violates the rule that definite release should be fulfilled on
its own. Hence, we fail to apply the same reasoning. We first
define lock dependency to simplify the illustration.
Definition 2 (Lock Dependency)

For nested locking lock(A);lock(B), the definite re-
lease of lock A depends on the definite release of lock B,
which we call a lock dependency from A to B.

Intuition on termination. Fig. 3a shows the possible lock
dependencies in file systems, which constitute a dependency
graph. Let us only consider the parent-child nested locking.
There is a lock dependency from each parent to its children,
as shown by the arrows. The dependencies may further ex-
tend to the parent’s descendants. For example, root has lock
dependency on B, which has lock dependency on C. If the
dependency chain ever contains a cycle, the code is at risk
of deadlocks. The good news is that the dependency graph is
in the form of the file system tree, so the dependency chain
ends up on a leaf inode. The definite release of leaf inode
will not be blocked and can be fulfilled on its own. Thus, the
definite releases of other inodes in the chain are guaranteed
one by one in the leaf-to-root direction. Consequently, the
definite release of all inodes can be guaranteed, with which
the parent-child nested locking can terminate.

Discussion. If we stick to the approach in §3.1 (LiLi’s ap-
proach), we cannot use definite releases but have to specify
actions that can definitely happen on their own. For instance,
to resolve the blocking on root, we may have to follow the

dependency chain (e.g., root → B → C in Fig. 3a) to find
the thread that will not be blocked and rely on its lock re-
lease (e.g., C) to create progress. The reasoning using this
fine-grained action intertwines the internal waiting queue of
not only root but also other locks (e.g., B and C) as well as the
dependencies between locks, which is unnecessarily complex.
The evaluation in the second paragraph of §6.2 shows that
LiLi’s approach may cost 7 times the proof effort (measured
in Coq lines) than our modular approach presented below.

Hierarchical layers for definite releases. It is not harmful for
definite releases to have dependencies as long as there are no
circular dependencies. To formalize this intuition, we need a
specification representing the dependencies between definite
releases. We choose to associate a layer with each definite
release and only allow a definite release to depend on those
with higher layers. For file systems, we propose hierarchical
layers. The layer of an inode’s definite release (an inode’s
layer in short) is computed by the length of the path from
root. E.g., in Fig. 3a, root is assigned layer-0, and after each
path, the layer is increased by one.

More formally, hierarchical layers can be represented as
below. Definite release D takes the inode number as an argu-
ment and specifies that for any thread, if the inode is locked by
t, the inode will eventually be unlocked. The locked(inum, t)
and unlocked(inum) predicates hide internal lock implemen-
tations. We define a layer function L (implemented by HL),
which takes a definite release and a state FS to return a layer
if defined. The assertion reachFromRoot asserts that the inum
is reachable from root by following the path in current state
FS. Then the layer is the length of the path (with type Nat) or
undefined otherwise. For now, we assume state FS does not
change. Because state FS represents the file tree (enforced
by invariants), the hierarchical layers ensure that there are no
circular dependencies for any state FS.

D(inum)
def
= ∀t, locked(inum, t); unlocked(inum)

L(D inum,FS) def
= HL(inum,FS)

HL(inum,FS) def
=

length(path) if ∃path,

reachFromRoot inum path FS
undefined otherwise

Reasoning with hierarchical layers. The part that lock state-
ments can rely on definite releases to terminate does not
change. We can prove the termination of each lock indepen-
dently by considering the lock’s internal waiting queue.

How the definite releases should be guaranteed alters: the
fulfillment of definite releases can be blocked and depend on
the fulfillment of higher-layer definite releases to remove the
blockage, i.e., a parent can depend on its children. For Fig. 2,
when the release of parent is blocked at lock(child), we
need to show that the layer of parent is lower than child,
which is true from hierarchical layers. After the termination of
lock(child) proved with the definite release of child, the
definite release of parent is ensured. Although definite re-

5

(a) hierarchical layers

/

BA

lock(rename_mutex);

lock(d1); // to lock(d2)

(b) dynamic layers

C

d2

/

d1

Lock dependency Dynamic lock dependency

Layer-0

Layer-1

Layer-2

Layer-1

Layer-0

Layer-1 Layer-2

Figure 3: Lock dependency graphs and layers.
lock_rename(d1,d2):

1 if(d1==d2){
2 lock(d1);return;}
3 lock(rename_mutex);
4 if(ancestor(d1,d2)){
5 lock(d1);
6 lock(d2);
7 return;
8 }

9 if(ancestor(d2,d1)){
10 lock(d2);
11 lock(d1);
12 return;
13 }
14 lock(d1);
15 lock(d2);
16 return;

Figure 4: Nested locking in lock_rename.

lease is no longer a fact on its own, it can be soundly deduced
because hierarchical layers ensure no circular dependencies.

3.3 Dynamic Layers
Hierarchical layers capture the parent-child lock dependencies
and explain the termination of parent-child nested locking. In
file systems, the rename operation also exhibits nested lock-
ing. The rename needs to acquire the locks of two directories
to ensure atomicity of critical section. Fig. 4 resembles the
implementation of Linux VFS. If two directories are equal,
we only need to acquire one lock. To simplify the corner
cases from concurrent cross-directory renames, VFS requires
cross-directory renames to first acquire a per-filesystem lock
(i.e., rename_mutex in the code). Nevertheless, to not conflict
with the parent-child order, if one directory (e.g., d1) is the
ancestor to another (e.g., d2), we should first acquire the an-
cestor (e.g., d1). Otherwise, the locking order does not matter,
so the code chooses a default order (d1 before d2).

In contrast to the parent-child lock dependency, which can
be inferred for any given file tree, the lock dependency in
lock_rename is not known beforehand. It exists temporarily
during execution and then becomes unknown again. Specifi-
cally, prior to acquiring rename_mutex, the lock dependency
between d1 and d2 is not stable since other threads can dynam-
ically alter it. Once rename_mutex is acquired, the precise
lock dependency becomes known. In Fig. 3b, we represent
this temporarily introduced lock dependency with a dashed ar-
row. Furthermore, after the code acquires the respective locks
for d1 and d2, the lock dependency between them can be
observed to disappear. This is because their definite releases
will no longer depend on each other.

Intuition on termination. During lock_rename, the tree-
shaped dependency graph is initially expanded by adding

a dashed arrow that does not conflict with the existing parent-
child dependencies. As the execution progresses, this intro-
duced dependency eventually disappears. It is important to
note that the existing lock dependencies remain unaffected,
and all definite releases are appropriately ordered, without any
circular dependencies. This property guarantees that a definite
release can be fulfilled once the preceding definite releases in
the dependency chain have been fulfilled. Hence, despite the
dynamically changing lock dependency in lock_rename, the
code terminates, given all definite releases are fulfilled.

Dynamic layers. We propose the dynamic layers to capture
the lock dependency in lock_rename. The layer for each
inode is calculated by the length of the longest path from
the root in the dependency graph. E.g., in Fig. 3b, starting
from the initial hierarchical layers, after the introduced lock
dependency, the longest path from root to d2 is root-d1-d2,
so the layer for d2 is updated to layer-2.

To encode dynamic layers, we introduce temporary de-
pendency, a ghost state which tracks the lock dependency
introduced by lock_rename, and extend the file system state
FS to a full state S. Specifically, temporary dependency
(T Dep) is an option type of a pair of inums, i.e., either None
or (inum1,inum2) saying there is a lock dependency from
inum1 to inum2. There is only ever one T Dep value in the en-
tire system, with T Dep set to None when the rename_mutex
is not held and T Dep set to a value determined by the thread
that holds rename_mutex. The layer function L is now imple-
mented by DL. If inum does exist in the file tree, evidenced by
the existence of its parent, (par = parent(inum,FS)) and hap-
pens to be the second item in T Dep (written T Dep.inum2 for
simplicity), its layer is one plus the larger layer between the
hierarchical layer (reuse the definition in §3.2) of its parent
and T Dep.inum1. In other cases, the layer is computed from
its parent (root inode has layer zero) or undefined otherwise.

L(D inum,S) def
= DL(inum,S)

DL(inum,S) def
= (assume S = (FS,T Dep))

max{HL(T Dep.inum1,FS),
HL(par,FS)}+1

if ∃par, par = parent(inum,FS)
∧inum = T Dep.inum2

DL(par,S)+1 if ∃par, par = parent(inum,FS)
∧inum 6= T Dep.inum2

0 if inum = root(FS)
undefined otherwise

Note that this definition has focused on inode locks. For the
per-filesystem lock rename_mutex, we also specify a definite
release (D f s), whose layer (L(D f s,S)) is a default minimum
value (min) so it can depend on all other definite releases.

Reasoning with dynamic layers. The temporarily introduced
lock dependency is sound because it does not conflict with the
existing lock dependencies. Consequently, when considering
the state changes and resulting layer changes, it is important
to ensure that all modified layers adhere to the existing lock
dependencies. This aspect affects our reasoning as follows:

6

We should keep in mind that the fulfillment of definite
releases D1 can rely on the fulfillment of higher-layer definite
releases D2. Therefore, in addition to proving that the definite
releases are fulfilled in the correct order, it becomes necessary
to further demonstrate that during the dependency from D1 to
D2, this dependency relation (i.e., the relative layer relation
between D1 and D2) remains unchanged, regardless of any
state changes and layer changes of D1 and D2.

Let’s review the reasoning of Fig. 2. The layers of parent
and child may change due to state changes. But we know the
layer of parent is stably lower than child, so the code can
rely on the definite release of child to prove the termination
of lock(child).

For Fig. 4, the reasoning process should take into account
the update of temporary dependency. The temporary depen-
dency can be modified at the discretion of the proof author.
However, it is crucial that the proof author does not abuse
this freedom, as doing so would lead to a failed proof. Before
line 15, we set temporary dependency to (d1,d2) in order to
establish a lock dependency from d1 to d2. We set it to None
after line 15. It is worth noting that the full code of rename
may acquire additional locks after lock_rename, potentially
requiring further updates to the temporary dependency. The
details are deferred to §5 for further explanation.

Other layer changes. Apart from the dynamic layer change
in lock_rename, inode deletion or insertion can also impact
the dependency graph by breaking or adding an edge. We can
interpret a rename operation as atomically breaking an edge
and then adding an edge. It is important to note that these
changes in the dependency graph require holding the related
locks and cannot arbitrarily occur. By carefully analyzing
these cases, we observe that the layer changes align with
the existing lock dependencies. Consequently, they do not
introduce circular dependencies. Therefore, we can conclude
that all definite releases are guaranteed to be fulfilled.

3.4 Directory Locking in Linux VFS

To understand whether dynamic layers scale to more directory
locking orders in VFS, we extend dynamic layers to cover all
nested locking scenarios as mentioned in the Linux documen-
tation [25]. The extra lock dependencies in VFS that have not
been discussed yet are the following: (1) the dir-to-non-dir
dependency is from any directory to any non-directory, e.g.,
exposed in link creation, and (2) the inode-pointer depen-
dency is from a non-directory to a non-directory with larger
address, e.g., shown in a rename when source and target are
non-directories.

To capture these dependencies, the layers are defined dif-
ferently for directories and non-directories. A layer could
either be (Dir, nat) for a directory with its dynamic layer,
or (NonDir, addr) for a non-directory with its address. Com-
parison rules are: (1) (Dir, nat) < (NonDir, addr) for the
dir-to-non-dir dependency; (2) (NonDir, addr1) < (NonDir,

/

A B

C

t1:rename(/A, /B) t2: rmdir(B,C)

t3: rename(/A/x, /B/C/y)

Figure 5: A deadlock bug in Linux VFS.

addr2) iff addr1 < addr2 for the inode-pointer dependency
and (3) (Dir, n1) < (Dir, n2) iff n1 < n2. These rules give a
total order of layers because directories are always acquired
before non-directories and the two groups are ordered by
dynamic layers and inode pointers, respectively.

A total order means for a given state, if the code do acquire
locks in this order, deadlocks will not happen. But because
layers are state-dependent, we still need to analyze whether
state updates will bring circular dependencies. We have shown
the reasoning for rename in §3.3, the most challenging case
in file systems. Proof of other cases is provided in Appendix.

Doing the proofs formally uncovered a flaw in current ver-
sion of the locking scheme. The relevant part is the locking
rules for rename. For a rename, the code used to (1) lock the
source when it is a non-directory, (2) lock the target if it exists
and (3) (if we need to lock both) lock them following the
order as mentioned above, i.e., directory before non-directory
or non-directories in inode pointer order. However, a recent
patch [51] decides to also lock source when it is a direc-
tory (for the purpose of updating its pointer to the parent).
For a non-cross-directory rename, this introduces a new and
dynamic order between directories (i.e., source and target)
that is not protected by rename_mutex. The patch takes it
for granted that locking source and target (and also source
directory and target directory) in inode pointer order would be
enough to establish a linear order between directories. How-
ever, the problem is that inode pointer order is not transitive
with parent-child order as shown in Fig. 5.

Specifically, assume the inode pointer order is C < A < B
and three operations all have finished pathname lookups. t3
owns rename_mutex and C and requests for A. t1 owns root
and A and requests for B. t1 owns B and requests for C. Now,
we have a deadlock. The maintainers confirmed it and issued
a series of patches to fix it [89].

We found this flaw when we failed to define the dynamic
layer specification for the scheme. Indeed, having a formal
specification that effectively captures lock dependencies is
crucial. Such a specification not only aids in conducting for-
mal proofs but also enhances our fundamental understanding
of the system. Interestingly, even without engaging in code
proofs, the specification itself can help uncover practical bugs
and vulnerabilities.

7

3.5 Discussion about Support for Delay

In addition to blocking, delay is another factor that can impact
system progress. Infinite delays can result in livelocks [54].
However, it is important to note that not all delays are detri-
mental. For instance, although the acquisition of unfair locks,
e.g., test-and-set locks, may be delayed, they can ensure a
whole-system progress, i.e., there exists some thread that can
make progress. To address this issue, a previous effort [64]
proposed the concept of token transfer. This idea allows for
beneficial delays while preventing infinite delays without
whole-system progress. The basic premise is that each thread
is assigned a finite number of tokens. When a thread causes
delays for other threads, it should either show progress itself
or consume its tokens. This mechanism can be compatible
with our approaches and integrated accordingly. However,
for the sake of simplicity in presentation, we will omit these
specific details related to supporting delay.

4 The MVT Framework

4.1 Overview

MVT allows for verifying the functional correctness and ter-
mination of file systems and borrows following ideas: First,
MVT expresses correctness with termination-preserving re-
finement [66], which says observable events (e.g., output and
termination events) from the implementation can also be pro-
duced from the abstraction. Hence, functional correctness
and termination of implementation is ensured given the ab-
straction is correct in these aspects. Second, MVT supports
compositional concurrency reasoning with rely and guarantee
conditions [30, 47]. Rely conditions specify the interference
of environmental threads. Each thread should make transi-
tions that satisfy the guarantee conditions. By ensuring that
the rely conditions of each thread are implied by the guarantee
conditions of its environmental threads, we can verify each
thread locally and compose their proofs soundly. Third, MVT
specifies definite actions [64] to provide general logic rules
for blocking in while loops, e.g., ad-hoc synchronizations like
while(y!=1){}‖y=1.

However, definite actions are not modular as discussed in
§3. MVT extends definite actions to support layered reasoning.
The reasoning principles for layered definite releases directly
apply to layered definite actions. Fig. 6 shows the workflow of
MVT. Users should specify the specification (§4.2) for the im-
plementation and then follow the inference rules to perform
the Hoare-style verification (§4.3). The framework sound-
ness ensures the proof implies the termination-preserving
refinement. In addition, MVT supports the verification of C
language following an existing framework [104], and code
proofs are mechanized in Coq to ensure reliability.

Termination-preserving

refinement

Coq model of C

Spec Proof in MVT

Coq exeC impl

Figure 6: The workflow of applying MVT.

4.2 Specification in MVT

The specifications include the abstraction, rely-guarantee con-
ditions, invariants, definite actions and the layer function.

State. We give the state model of MVT. State includes not only
the low-level concrete state modified by the implementation
but also several auxiliary parts. Because MVT establishes the
refinement between the implementation and abstraction, the
state contains each thread’s abstract operation remained to be
refined as well as the high-level abstract state and an abstract
stack, which are modified by the abstract operation. MVT
uses tokens as a local state to ensure termination (see §4.3).
Users could also introduce some ghost state, which exists in
the abstract model, to assist verification.

Abstraction. The abstraction includes the abstract represen-
tation of the concrete state and abstract operations on it. An
abstraction can hide implementation details, which is easier to
check and less error-prone. Highly concurrent traversals that
allow thread bypassing are not linearizable (atomic) [104].
MVT provides a specification language which allows to write
non-atomic abstract operations. The language has standard
commands such as while and if, but is more suitable for ex-
pressing abstract operations: (1) the language’s state includes
the abstract state and an abstract stack, which maps variables
to abstract values, e.g., lists; the language supports (2) user-
supplied primitives that model atomic transitions of abstract
state and (3) atomic block 〈C〉 where C executes atomically
(see §5.1 for an example).

Rely/guarantee conditions (R/G) and invariants (I). R and G
define the allowed state transitions and are checked in each
step: we check that (1) the current thread’s state transitions
satisfy G, and (2) each state assertion should stay true even
when environmental threads’ transitions R change the state. I
define the boundaries of R/G and should stay true under all
transitions. R/G and I define the concurrency protocol (more
details in [30, 104]).

Definite action and layer function. A definite action describes
a state transition, written P ; Q, which means once assertion
P is true, (1) Q should eventually be established, and (2) P
should be preserved by both environment and current thread
until Q holds. The second condition ensures that the only
way to make P false is to fulfill the definite action. A definite
action is called enabled if P holds. A layer function L takes a
definite action and a state S to return a layer if defined.

8

t blocked

Termination of
while

Not blocked

Enter while loop

D’ enabled on
other threads

M
etric

m
inim

um

!"

#" $"Consume
tokens

D’ fulfilled

%"

If D enabled on t,
L(D,S) < L(D’,S)

Still
blocked

Imply StepState

Figure 7: Logic for termination of while loops.

4.3 Verification in MVT

The specifications defined by users are decorated into
the Hoare triples as the judgement L,D,R,G, I ` {P ∧
Aop}C{Q∧AopEnd}. The judgement means, for a method C,
starting from the precondition P with abstract operation Aop
unexecuted, C must terminate to reach the postcondition Q
with Aop executed, represented by AopEnd. MVT provides
a top-level rule, called OBJECT rule, which checks the well-
formedness of specifications and asks to prove the judgement
for each method of the object. Proving the OBJECT rule gives
the termination of the implementation and abstraction, and a
termination-preserving refinement between them. To verify
each method, users follow inference rules of C statements to
step through the program C.

Termination of while loops. Most rules for C statements are
standard and similar to previous efforts [30, 104]. Here we
mainly introduce the WHILE rule. The termination reasoning
of WHILE rule is twofold (see Fig. 7 and the rule below). If the
while loop is not blocked, we follow previous efforts [44, 64]
to require each round of the loop to consume resources called
tokens. The number of tokens should be specified before each
while loop, which strictly decreases, so the loop must termi-
nate after exhausting all tokens. E.g., we can use the length
of path to specify the number N of tokens for the while loop
in Fig. 1a. This while loop is not blocked because, after N
rounds, the loop must terminate. The WHILE rule requires
establishing the termination of the loop body, which may face
blocking and is proved inside with separate rules.

If a thread t is blocked, we prove the following. 1© Blocked
condition: t must be waiting for definite actions D ′ to happen,
which are enabled on other threads. 2© Dependency condi-
tion: if t has enabled definite actions D, layers of D must
be stably lower than D ′ until the waited definite action is
fulfilled. 3©Metric decrease: whenever an definite action in
D ′ is fulfilled, a well-founded metric (i.e., the metric cannot
infinitely decrease) will decrease. 4©Metric non-increase:
the metric never increases.

Suppose enabled definite actions are eventually fulfilled
(explained later how this assumption is discharged), condi-
tions 1©, 3© and 4© ensure that progress will be created so that
the metric will eventually decrease to its minimum, which
implies that t is no longer blocked. Then we can use tokens to
ensure the termination of the loop.

For instance, when a thread is blocked in the while loop

of lock(cur) in Fig. 1b, it waits for the definite release of
cur. The metric can be specified as (t.i-owner), which
decreases whenever an environment thread increase owner.
When the metric decreases to zero, the loop terminates.

2© is crucial to avoid circular dependencies. It says, no mat-
ter how state S is changed by other threads which introduce
dynamic layer changes, the lock dependencies from D to D ′
remains stable, enforced by layer relation L(D,S)< L(D ′,S).
Lock abstraction. We can prove the termination of lock im-
plementations with the WHILE rule. But MVT provides an
abstraction for locks to ease the burden. A lock L is abstracted
as an integer. But the abstract operation of acquiring the lock
is not total but partial in the sense it should be blocked when
the lock is unavailable. So we may not use L=t as the abstract
operation for acquiring locks. We follow a recent effort [65]
to use await(L==0){L=t} as the abstract operation 5, where
L=t executes atomically when L==0 holds.

The lock abstraction may also face blocking, and the rule
for locks is similar to the WHILE rule with only the metric non-
increase condition different. It is now metric non-increase
for the lock, which says the metric never increases under
transitions where the thread keeps being blocked (i.e., the
lock owned by others). This reflects the guarantees of fair
locks. When L==0 holds multiple times, the current thread
will eventually become the first to the lock. So the condition
only covers the cases when L is not 0 or t (current thread).

Definiteness of definite actions. The WHILE rule assumes
that a definite action will be fulfilled once enabled. To meet
this assumption, the OBJECT rule checks two things. Well-
formedness: all steps should preserve an enabled definite
action of some thread except the thread itself could fulfill the
definite action. Postcondition restriction: the postcondition
implies that there are no enabled definite actions.

An enabled definite action is forced to be fulfilled due to
the following reasons. (1) When the program terminates, it
must be fulfilled according to postcondition restriction. (2)
Whenever the thread is blocked in a while loop, the proof of
while loop ensures the termination by only relying on higher-
layer definite actions according to dependency condition.
Intuitively, this will not introduce unsound circular depen-
dencies, so those higher-layer definite actions can indeed be
fulfilled (3) The thread is proved to terminate, thus fulfills the
definite action itself due to well-formedness.

Update of auxiliary state. MVT provides rules for users to
update auxiliary states. Abstract state and abstract stack are
updated by the abstract operation, which should simulate the
concrete operation. Tokens cannot be increased, and the user-
specified ghost state can be updated according to the user’s
will.

Soundness. We have proved soundness of the program logic

5We may need wrappers around the await statement depending on differ-
ent locks and different scheduling fairness, which may make it non-atomic.
The details have been presented in previous work [65] and are omitted here.

9

// Omit error handling
// Omit definition of Inode
struct inodelock{
Inode *inode;
int refcount;
lock lk;

}

getilock(ilock):
〈ilock->refcount++〉

putilock(ilock):
〈ilock->refcount--;
if(ilock->refcount==0){
free(ilock);

}〉

traversal(cur,path):
local i=0, ret;
getilock(cur);
while(path[i]){
ret=lookup(cur,path[i]);
cur=ret;i++;}

return cur;

lookup(par,name):
local child;
lock(par);
child=find(par,name);
getilock(child);
unlock(par);
putilock(par);
return child;

Figure 8: Reference counting and traversal in RefFS. Error
handling omitted.
(theorem 1) on paper. We show the logic rules establish
termination-preserving simulations [66] between the imple-
mentation and the abstraction, which ensures the refinement.
The full formal soundness proof on paper will be reported
separately and its Coq proof is left as future work.
Theorem 1 (Termination Preserving Refinement)

Given the implementation and abstraction, if there ex-
ist rely/guarantee conditions, an invariant, definite actions
and a layer function, such that for each operation of the
implementation and corresponding abstract operation, the
judgment holds w.r.t. the pre-/post-conditions by apply-
ing inference rules, then the abstraction is a termination-
preserving refinement of the implementation.

5 Design and Verification of RefFS

RefFS is a concurrent in-memory file system running on
FUSE. The high-level FUSE API provides the path arguments
for all interfaces so that RefFS can implement and verify
the path traversal. The verified interfaces include the ones
that manipulate the file system structure, e.g., mkdir/mknod,
rmdir/unlink and rename, and those that perform input and
output to files, e.g., open, read, write and release, which
cover commonly used operations.

5.1 Implementation and Abstraction
RefFS reuses most code of a previously verified concurrent
file system, AtomFS [104], e.g., the internal functions that op-
erate on directories and files. But RefFS uses reference count-
ing (refcounting) for traversal, which is more fine-grained and
provides better performance than lock coupling in AtomFS.
Also, the rename implementation and FD-based interfaces of
RefFS are different from AtomFS and explained below.

Refcounting. In Fig. 8, the struct inodelock has a refcount
field that counts the references and protects the struct from

being freed when refcount>0. An inode’s refcount is ini-
tialized to 1, marking that there is one reference in its parent’s
directory entry. A thread hoping to access the inode can first
invoke getilock to increase refcount by one. To drop the
reference, it calls putilock, which will free the struct when
refcount becomes zero. For simplicity, we use the atomic
block 〈C〉 to represent that the code is executed atomically,
which is achieved with locks.

The right side of Fig. 8 shows the simplified traversal
function. It first increases the refcount of cur and invokes
lookup for each name of the path. lookup could directly
request for par’s lock because it holds its reference. After
it has found the child in par, it increases the refcount
of child for later access and releases the par’s lock and
reference. This allows concurrent threads to bypass each other
during path traversal.

The correctness of reference counting lies in: (1) refer-
ence increase: a thread can increase the references of an
inode if it already has a reference in hand (except root), e.g.,
getilock(child) of lookup in Fig. 8 is due to owning the
directory entry of child in par; (2) reference decrease: a
thread can decrease a reference only if it owns it; and (3) ref-
erence counting: the value of refcount equals all references
combined. (1) and (2) are enforced through rely/guarantee
conditions. (3) is formalized as an invariant.

Rename implementation. In Fig. 9, RefFS’s rename first
traverses down the common path of src and dst (see the
traversal in Fig. 8). After getting the references of the last
common ancestor, we decide whether this is a cross-directory
rename by comparing the src and dst. If they are not equal,
the code will acquire rename_mutex. The code then traverses
the remaining path to get the references of source and target
directories. Holding the rename_mutex ensures the relative
position between the two directories is not changed by other
renames, so we can use the path arguments to know whether
they are ancestors to each other, e.g., src being a proper
prefix of dst means sdir is an ancestor to ddir. We will first
acquire the lock of the ancestor. Otherwise, we will acquire
them in default order. The following operation may need to
acquire the lock of the inode with name dn in ddir.

FD-based interfaces. A file descriptor (FD) allows an opera-
tion to access an inode directly. RefFS uses the inode number
(inum) as the FD. RefFS’s open follows the path to locate the
target inode. It will increase the reference of the inode and
return the inum as FD so that read and write operations can
directly access the inode. release will drop the reference.

Non-atomic abstraction. The abstract file system, written as
AFS, is a mapping of inode number (inum) to an abstract
inode. An abstract inode is either a list of bytes for files or a
mapping of name to inum for directories. Refcounting allows
the operations to bypass each other, which will lead to non-
linearizable behavior [104]. Therefore, the abstract operation
consists of a series of atomic directory lookups and an atomic

10

rename(src,sn,dst,dn):
1 ... /*Traverse common
2 path of src and dst*/
3 rel=pathrel(src,dst);
4 if(rel!=0){
5 lock(rename_mutex);}
6 ... /*Traverse to get src
7 and dst directories*/
8 if (rel==0){
9 lock(sdir);

10 } else if(rel==1){
11 lock(sdir);
12 lock(ddir);
13 } else {
14 lock(ddir);
15 lock(sdir); }
16 ...
17 //If dn exists in ddir
18 lock(dchild);
19 ...

Figure 9: Highlighting lock acquisitions of RefFS’s
rename. pathrel(src,dst) return 0 if src equals dst,
return 1 if src is a proper prefix of dst, otherwise return -1.

1 MKDIR(path,n):
2 local cur=root,tmp,i=0;
3 while(path[i]){
4 〈tmp=lookup(cur,path[i]);

5 if(tmp==NULL){
6 return -1;}
7 cur=tmp;i++〉}
8 ret do_mkdir(cur,n);

Figure 10: Abstract operation MKDIR of RefFS.

critical section [76, 79]. Fig. 10 shows the abstract operation
MKDIR for RefFS. In this code, lookup and do_mkdir are
primitives that atomically transfer AFS to AFS’ and return. In
addition, we can group statements operating on local variables,
e.g., the loop body is grouped into an atomic block.

5.2 Verification of RefFS

During the proofs, we should be careful with the update of
ghost state. The most important ghost state is temporal depen-
dency (T Dep, introduced in §3.3). For Fig. 9, TDep is set to
(sdir, ddir) before line 12 or (ddir, sdir) before line
15 to allow the lock dependency between them. Then TDep
is updated to (sdir,dchild) before line 18 to establish the
lock dependency from source directory to target and reset to
None after line 18.

The termination proofs include the checks in OBJECT rule
and the termination proof of locks and while loops. Since
while loops are not blocked in RefFS, their proofs are trivial.

Definiteness check. The well-formedness of definite releases
holds because once a thread holds a lock, all steps preserve the
fact until the thread releases the lock itself. The postcondition
would specify the thread does not own any lock, so definite
releases must be fulfilled before the thread reaches the end.

Proof for locks. When thread t is blocked in lock(L), t waits
for the definite release of L (written D ′). And the metric
is defined as 0 when L is available and 1 otherwise. The
following holds. (1) Blocked condition: some thread t’ must
hold L, so D ′ is enabled on t’. (2) Dependency condition: the
dynamic layers ensure that for any lock that t owns, its layer
must be stably lower than L. (3) Metric decrease: when L is
released, the metric decreases. (4) Metric non-increase for the
lock: when L is owned by others, the metric stays 1 and never
increases.

 0

 2

 4

 6

 8

git-clone make-xv6 cp-qemu largefile smallfile

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s)

RefFS
AtomFS

DaisyNFS
Ext4

TmpFS

Figure 11: Applications. Largefile operates on a big file with
10MB. Smallfile operates on 10K files with 1KB size.

6 Evaluation

This section empirically answers several questions:

• Can RefFS provide good performance for real-world
applications?

• Does reference-counting perform better compared with
lock-coupling?

• What is the development effort and how modular is
MVT’s proof?

• Can MVT help eliminate bugs in practice?

6.1 Performance Evaluation

Experimental setup. We run all of the experiments on a
server machine (AWS EC2 i3.metal instance) with 72 cores
(2.3GHz), 512GB DRAM, and a local 15,200GB SSD (8
disks) running Linux 5.15.8. We limit our experiments to
one 36-core socket to avoid variability. We compare the
performance of RefFS with a widely-used disk file system
(ext4 [87]), a verified concurrent file system (AtomFS [104]),
a verified concurrent NFS server (DaisyNFS [17]), and an
in-memory file system (tmpfs). All the evaluated file systems
use in-memory storage, e.g., emulated persistent memory (i.e.,
/dev/pmem0 in Linux) or in-memory disk in DaisyNFS.

Application performance. RefFS is complete enough to run
many kinds of realistic software, including Vim [88] and
GCC [33]. To evaluate the application performance, we select
two microbenchmarks and three application workloads: LFS
microbenchmark [71, 80], cloning the git repository of xv6-
public, compiling the sources of the xv6 file system with a
makefile and copying source code of qemu. These workloads
are also used by prior verified file systems [19, 104]. The
application workloads only use a single core.

In Fig. 11, RefFS achieves similar results as AtomFS,
and better performance than DaisyNFS in most cases due to
DaisyNFS’s network I/O overhead. The worse performance
of RefFS compared with tmpfs and ext4 is mainly due to
the lack of fine-grained optimizations, e.g., highly optimized
path traversals and optimized structures for data and metadata.

11

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Thread number

RefFS
AtomFS

Ext4
TmpFS

(a) Scalability on Fileserver.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Thread number

RefFS
AtomFS

Ext4
TmpFS

(b) Scalability on Webproxy.

Figure 12: Scalability of RefFS.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
sp

ee
d

u
p

Directory depth

seq-write
seq-read

Figure 13: Speedup of RefFS over AtomFS.

Running RefFS with FUSE also introduces overhead. These
issues can be overcome in future work.

File system scalability. We adopt two commonly used work-
loads in Filebench [32], Fileserver and Webproxy, to measure
the scalability of RefFS. We evaluate with 16 cores and in-
crease the thread number used in the workloads. We do not
evaluate DaisyNFS here because its in-memory disk can only
support about 400MB of space, while the scalability tests
consume more than 3GB in many cases.

The speedup results are in Fig. 12. RefFS can scale up
to 9 cores. AtomFS shows a similar scalability. But the ac-
tual throughput (not shown in figure) of RefFS is better than
AtomFS for each thread number (e.g., 1.08–1.43x higher in
Fileserver). RefFS’s performance is worse than ext4 and
tmpfs, as expected.

Other benefits of reference counting. Besides more paral-
lelism in traversals, reference counting allows read and write
to directly access the inode because open has increased the
inode’s reference. To show the benefit of this, we evaluate
RefFS and AtomFS using LargeFile benchmarks under differ-
ent depths of directories. In Fig. 13, with the depth increase,
the speedup of RefFS over AtomFS becomes higher in both
seq-write and seq-read tests in LargeFile.

Table 1: Lines of Coq code for verifying RefFS.
Component LOC Component LOC
Abstraction and aops .1K Invariant .7K
Rely/guarantee .4K Code .4K
Layered definite releases .1K Proof 32K
Total 33.7K

6.2 Verification Evaluation

Verification effort. MVT reuses the code from CRL-H [104]
framework, including the support for C language and con-
currency reasoning. The extension is about 3K LOC, mainly
devoted to the logic for termination and the model of non-
atomic abstract operations. Table 1 shows the lines of code
for verifying RefFS. RefFS also reuses AtomFS’s internal
functions inside the critical section and their proofs, except
now we also verify their termination.

Modularity of termination proofs. Definite release with dy-
namic layers allows to verify each lock separately and reuse
the termination proofs for all lock statements. As evidence for
modularity, we also use the non-layered definite actions to ver-
ify the termination of a lock statement in RefFS as discussed
in §3.2, which needs 3K LOC. By contrast, the termination
proof for a lock statement with our layered approach (see
§5.2) is less than 0.4K LOC.

Trusted computing base and tests. Our work has some trusted
parts. The abstraction of RefFS is trusted. VFS, FUSE, C
compiler, C implementation of a lock and memory allocator of
glibc are trusted. The termination assumes a fair scheduler and
a sequentially consistent hardware model. Despite that, we
test RefFS with xfstests, a comprehensive file system testing
suite, which reports no bugs.

6.3 Bug Discussion

We discuss whether the verification can find bugs in §2. Non-
concurrent termination bugs such as logic and low level pro-
gramming errors [58,86] will fail the proof because we cannot
define a well-founded metric that decreases for each round of
the loop. In AA-deadlocks [22, 57, 72], when thread requests
for A again, the layer of waited action (definite release of A by
other threads) is not higher than that of enabled action (defi-
nite release of A by current thread), which will trigger a layer
violation. In ABBA-deadlocks [4, 20, 35, 102], proof authors
either fail to define the layers, which cannot account for the
dependencies of AB and BA at the same time, or define the
wrong layer specification and later find the layer cannot meet
the required dependencies in code.

For deadlocks that involve dynamic orders [2, 5, 53, 97],
MVT allows defining state-dependent dynamic layers to pre-
cisely represent such orders. Therefore, such bugs can be
discovered during proofs. For deadlocks that involve ad-hoc
synchronizations [21, 50, 69], MVT’s general notion of defi-
nite actions can specify them and their reasoning is similar to
the bug types above.

The above categories include 90% of bugs surveyed in
§2, which MVT can eliminate. A small number of livelock
bugs show a pattern where the thread is constantly delayed
in infinite loops. This pattern does not appear in RefFS, thus
is not primarily considered. But the mechanism for verifying
them is briefly discussed in §3.5. Unsupported bugs mainly

12

involve interrupts/exceptions [36, 37] and crashes [23].

7 Related Work

Starting from the seminal work of seL4 [56], these years
have witnessed tremendous progress on the verification of
systems, including operating systems [38, 74, 83], distributed
systems [42, 81, 93], file systems [18, 19, 45, 82] and many
others [24,31,41,62,63,73,75,84,91,100,101,103]. Yet, few
of them provide guarantees of systems’ liveness. VSync [77]
proposes await model checking to automatically verify the
termination of lock primitives. CCAL [39] has been used to
verify the termination of an MCS lock [55] by organizing
the implementation into layers. Ironfleet [42] verifies liveness
of distributed systems with a blend of TLA and Hoare style
automated verification. However, these efforts do not propose
a specification that could be used for the diverse and dynamic
nested blocking in file systems.

Reference counting, a widely used technique in Linux, has
also caused many severe bugs [43]. Various methods (e.g.,
invariant-based [29,67] and anti-pattern based [43]) have been
proposed to detect these bugs. Although effective in practice,
they still suffer from false positives and false negatives. Our
work for the first time verifies the correctness of refcount-
ing by showing the implementation using it can refine an
abstraction where its details are hidden.

8 Conclusion

This paper has presented MVT for verifying concurrent file
systems. It supports the dynamically layered definite releases
specification, with which we verify RefFS, the first modularly
verified concurrent file system with termination guarantee.

References

[1] Bowen Alpern and Fred B. Schneider. Recognizing
safety and liveness. Distributed Computing, 2:117–126,
2005.

[2] Josef Bacik. btrfs: drop path before
adding new uuid tree entry. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
9771a5cf937129307d9f58922d60484d58ababe7,
2020.

[3] Josef Bacik. btrfs: fix potential deadlock in the search
ioctl. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
a48b73eca4ceb9b8a4b97f290a065335dbcd8a04,
2020.

[4] Josef Bacik. btrfs: move the chunk_mutex
in btrfs_read_chunk_tree. https://git.

kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
01d01caf19ff7c537527d352d169c4368375c0a1,
2020.

[5] Josef Bacik. btrfs: unlock to current
level in btrfs_next_old_leaf. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
0e46318df8a120ba5f1e15210c32cfab33b09f40,
2020.

[6] Josef Bacik. btrfs: exclude mmaps while doing remap.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5,
2021.

[7] Josef Bacik. btrfs: unlock locked ex-
tent area if we have contention. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1,
2022.

[8] Stephanie Balzer, Bernardo Toninho, and Frank Pfen-
ning. Manifest deadlock-freedom for shared session
types. In ESOP, pages 611–639, 2019.

[9] Johann Blieberger, Bernd Burgstaller, and Robert Mit-
termayr. Static detection of livelocks in ada multi-
tasking programs. In Proceedings of the 12th Interna-
tional Conference on Reliable Software Technologies,
Ada-Europe’07, page 69–83, Berlin, Heidelberg, 2007.
Springer-Verlag.

[10] Chandrasekhar Boyapati, Robert Lee, and Martin Ri-
nard. Ownership types for safe programming: Pre-
venting data races and deadlocks. SIGPLAN Not.,
37(11):211–230, nov 2002.

[11] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and
Koushik Sen. Looper: Lightweight detection of infinite
loops at runtime. In 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages
161–169. IEEE, 2009.

[12] Miao Cai, Hao Huang, and Jian Huang. Understanding
security vulnerabilities in file systems. In Proceedings
of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 8–15, 2019.

[13] Michael Carbin, Sasa Misailovic, Michael Kling, and
Martin C Rinard. Detecting and escaping infinite loops
with jolt. In European Conference on Object-Oriented
Programming, pages 609–633. Springer, 2011.

13

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1

[14] Tej Chajed, Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software
using movers in cspec. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 306–322, 2018.

[15] Tej Chajed, Joseph Tassarotti, M Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,
pages 243–258, 2019.

[16] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. Gojour-
nal: a verified, concurrent, crash-safe journaling sys-
tem. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages
423–439. USENIX Association, July 2021.

[17] Tej Chajed, Joseph Tassarotti, Mark Theng, M Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
daisynfs concurrent and crash-safe file system with
sequential reasoning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 447–463, 2022.

[18] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 270–286. ACM, 2017.

[19] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M Frans Kaashoek, and Nickolai Zeldovich. Us-
ing crash hoare logic for certifying the fscq file system.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 18–37. ACM, 2015.

[20] Zhihao Cheng. ubifs: Fix deadlock in con-
current bulk-read and writepage. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2,
2020.

[21] Zhihao Cheng. ubifs: Fix deadlock in con-
current rename whiteout and inode writeback.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
afd427048047e8efdedab30e8888044e2be5aa9c,
2021.

[22] Zhihao Cheng. ubifs: Fix aa dead-
lock when setting xattr for encrypted file.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=

a0c51565730729f0df2ee886e34b4da6d359a10b,
2022.

[23] Dave Chinner. xfs: log worker needs
to start before intent/unlink recovery.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
a9a4bc8c76d747aa40b30e2dfc176c781f353a08,
2022.

[24] Rafael Lourenco de Lima Chehab, Antonio Paolillo,
Diogo Behrens, Ming Fu, Hermann Härtig, and Haibo
Chen. Clof: A compositional lock framework for
multi-level numa systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, pages 851–865, 2021.

[25] Linux documentation. Kernel subsystem documen-
tation » filesystems in the linux kernel » directory
locking. https://www.kernel.org/doc/html/
latest/filesystems/directory-locking.html,
2023. Referenced December 2023.

[26] Linux documentation. Kernel subsystem documen-
tation » filesystems in the linux kernel » pathname
lookup. https://www.kernel.org/doc/html/
latest/filesystems/path-lookup.html, 2023.
Referenced December 2023.

[27] Linux documentation. Locking in the ker-
nel » runtime locking correctness validator.
https://www.kernel.org/doc/html/latest/
locking/lockdep-design.html, 2023. Referenced
April 2023.

[28] Emanuele D’Osualdo, Julian Sutherland, Azadeh
Farzan, and Philippa Gardner. Tada live: Composi-
tional reasoning for termination of fine-grained concur-
rent programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 43(4):1–134, 2021.

[29] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak
Majumdar. Verifying reference counting implemen-
tations. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems,
2009.

[30] Xinyu Feng. Local rely-guarantee reasoning. In ACM
SIGPLAN Notices, volume 44, pages 315–327. ACM,
2009.

[31] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 287–305. ACM, 2017.

[32] Filebench. Filebench, 2019.

14

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a9a4bc8c76d747aa40b30e2dfc176c781f353a08
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a9a4bc8c76d747aa40b30e2dfc176c781f353a08
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a9a4bc8c76d747aa40b30e2dfc176c781f353a08
https://www.kernel.org/doc/html/latest/filesystems/directory-locking.html
https://www.kernel.org/doc/html/latest/filesystems/directory-locking.html
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html

[33] GNU. Gcc, the gnu compiler collection. https://www.
gnu.org/software/gcc/, 2019. Referenced April
2019.

[34] Google. syzkaller - kernel fuzzer, 2023.

[35] Andreas Gruenbacher. gfs2: Fix deadlock
between gfs2_{create_inode,inode_lookup}
and delete_work_func. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
dd0ecf544125639e54056d851e4887dbb94b6d2f,
2020.

[36] Andreas Gruenbacher. gfs2: Fix mmap
+ page fault deadlocks for buffered i/o.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
00bfe02f479688a67a29019d1228f1470e26f014,
2021.

[37] Andreas Gruenbacher. gfs2: Disable
page faults during lockless buffered reads.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
52f3f033a5dbd023307520af1ff551cadfd7f037,
2022.

[38] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. Certikos: An extensible architecture for
building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 653–669, Savannah,
GA, 2016. USENIX Association.

[39] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan New-
man Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen,
David Costanzo, and Tahina Ramananandro. Certi-
fied concurrent abstraction layers. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 646–661.
ACM, 2018.

[40] Chunhai Guo. erofs: avoid infinite loop in
z_erofs_do_read_page() when reading beyond
eof. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
8191213a5835b0317c5e4d0d337ae1ae00c75253,
2023.

[41] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage sys-
tems are distributed systems (so verify them that way!).
In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 99–115,
2020.

[42] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R Lorch, Bryan Parno, Michael L Roberts, Srinath
Setty, and Brian Zill. Ironfleet: proving practical dis-
tributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages
1–17. ACM, 2015.

[43] Liang He, Purui Su, Chao Zhang, Y. Cai, and Jinxin
Ma. One simple api can cause hundreds of bugs an
analysis of refcounting bugs in all modern linux ker-
nels. Proceedings of the 29th Symposium on Operating
Systems Principles, 2023.

[44] Jan Hoffmann, Michael Marmar, and Zhong Shao.
Quantitative reasoning for proving lock-freedom. In
Proceedings of the 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2013), pages 124–
133, 2013.

[45] Atalay Ileri, Tej Chajed, Adam Chlipala, Frans
Kaashoek, and Nickolai Zeldovich. Proving confiden-
tiality in a file system using disksec. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 323–338, Carlsbad, CA,
2018. USENIX Association.

[46] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers.
Connectivity graphs: a method for proving deadlock
freedom based on separation logic. Proc. ACM Pro-
gram. Lang., 6(POPL):1–33, 2022.

[47] Cliff B. Jones. Tentative steps toward a development
method for interfering programs. ACM Transactions
on Programming Languages and Systems (TOPLAS),
5(4):596–619, 1983.

[48] D. Jones. Trinity: A linux system call fuzz tester, 2019.

[49] Horatiu Jula, Daniel M Tralamazza, Cristian Zamfir,
George Candea, et al. Deadlock immunity: Enabling
systems to defend against deadlocks. In OSDI, vol-
ume 8, pages 295–308, 2008.

[50] Jan Kara. ext4: fix deadlock with fs freezing and ea in-
odes. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
46e294efc355c48d1dd4d58501aa56dac461792a,
2020.

[51] Jan Kara. fs: Lock moved directories.
https://github.com/torvalds/linux/commit/
28eceeda130f5058074dd007d9c59d2e8bc5af2e,
2023.

[52] Linux kernel stable tree. https://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux.git/
log/, 2024.

15

https://www.gnu.org/software/gcc/
https://www.gnu.org/software/gcc/
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=00bfe02f479688a67a29019d1228f1470e26f014
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=00bfe02f479688a67a29019d1228f1470e26f014
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=00bfe02f479688a67a29019d1228f1470e26f014
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=52f3f033a5dbd023307520af1ff551cadfd7f037
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=52f3f033a5dbd023307520af1ff551cadfd7f037
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=52f3f033a5dbd023307520af1ff551cadfd7f037
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
https://github.com/torvalds/linux/commit/28eceeda130f5058074dd007d9c59d2e8bc5af2e
https://github.com/torvalds/linux/commit/28eceeda130f5058074dd007d9c59d2e8bc5af2e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/

[53] Hyeong-Jun Kim. f2fs: compress: fix po-
tential deadlock of compress file. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
7377e853967ba45bf409e3b5536624d2cbc99f21,
2021.

[54] Jaegeuk Kim. f2fs: should avoid inode
eviction in synchronous path. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
b0f3b87fb3abc42c81d76c6c5795f26dbdb2f04b,
2020.

[55] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong
Shao. Safety and liveness of mcs lock—layer by layer.
In Asian Symposium on Programming Languages and
Systems, pages 273–297. Springer, 2017.

[56] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. sel4: Formal verification of an os ker-
nel. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles, pages 207–220.
ACM, 2009.

[57] Konstantin Komarov. fs/ntfs3: Chang-
ing locking in ntfs_rename. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796,
2022.

[58] Greg Kurz. fuse: Fix infinite loop in sget_fc().
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
e4a9ccdd1c03b3dc58214874399d24331ea0a3ab,
2021.

[59] Leslie Lamport. Proving the correctness of multipro-
cess programs. IEEE Transactions on Software Engi-
neering, SE-3:125–143, 1977.

[60] K. Rustan M. Leino and Peter Müller. A basis for
verifying multi-threaded programs. In European Sym-
posium on Programming, 2009.

[61] K. Rustan M. Leino, Peter Müller, and Jan Smans.
Deadlock-free channels and locks. In ESOP, pages
407–426, 2010.

[62] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A secure and formally verified linux
kvm hypervisor. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1782–1799. IEEE, 2021.

[63] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and verification of the arm confidential compute archi-
tecture. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
465–484, 2022.

[64] Hongjin Liang and Xinyu Feng. A program logic
for concurrent objects under fair scheduling. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL 2016), pages 385–399, 2016.

[65] Hongjin Liang and Xinyu Feng. Progress of concurrent
objects with partial methods. Proc. ACM Program.
Lang., 2(POPL), dec 2018.

[66] Hongjin Liang, Xinyu Feng, and Zhong Shao. Com-
positional verification of termination-preserving re-
finement of concurrent programs. In Proceedings of
the Joint Meeting of the 23rd EACSL Annual Confer-
ence on Computer Science Logic and the 29th Annual
ACM/IEEE Symposium on Logic in Computer Science
(CSL-LICS 2014), pages 65:1–65:10, 2014.

[67] Jian Liu, Lin Yi, Weiteng Chen, Chenyu Song, Zhiyun
Qian, and Qiuping Yi. Linkrid: Vetting imbalance refer-
ence counting in linux kernel with symbolic execution.
In USENIX Security Symposium, 2022.

[68] Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, and Shan Lu. A study of linux file
system evolution. In Presented as part of the 11th
USENIX Conference on File and Storage Technologies
(FAST 13), pages 31–44, 2013.

[69] Filipe Manana. btrfs: fix deadlock when cloning
inline extent and low on free metadata space.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
3d45f221ce627d13e2e6ef3274f06750c84a6542,
2020.

[70] Changwoo Min, Sanidhya Kashyap, Byoungyoung
Lee, Chengyu Song, and Taesoo Kim. Cross-checking
semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles, pages 361–377. ACM, 2015.

[71] mit pdos. mit-pdos/fscq: Fscq is a certified file system
written and proven in coq. https://github.com/
mit-pdos/fscq, 2019. Referenced April 2019.

[72] Trond Myklebust. Nfs: Don’t deadlock
when cookie hashes collide. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=

16

 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b0f3b87fb3abc42c81d76c6c5795f26dbdb2f04b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b0f3b87fb3abc42c81d76c6c5795f26dbdb2f04b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b0f3b87fb3abc42c81d76c6c5795f26dbdb2f04b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b0f3b87fb3abc42c81d76c6c5795f26dbdb2f04b
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://github.com/mit-pdos/fscq
https://github.com/mit-pdos/fscq
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a

648a4548d622c4ae965058db1a6b5b95c062789a,
2022.

[73] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with serval. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
225–242, 2019.

[74] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-button verification of an
os kernel. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 252–269. ACM,
2017.

[75] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
Xi Wang. Specification and verification in the field:
Applying formal methods to bpf just-in-time compilers
in the linux kernel. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Imple-
mentation, pages 41–61, 2020.

[76] Gian Ntzik. Reasoning about POSIX file systems. PhD
thesis, Imperial College London, 2016.

[77] Jonas Oberhauser, Rafael Lourenco de Lima Chehab,
Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Ober-
hauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, et al. Vsync: push-button verification and
optimization for synchronization primitives on weak
memory models. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
530–545, 2021.

[78] Bob Peterson. gfs2: fix a deadlock on
withdraw-during-mount. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
865cc3e9cc0b1d4b81c10d53174bced76decf888,
2021.

[79] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. All file systems are not created equal:
On the complexity of crafting crash-consistent appli-
cations. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
433–448, 2014.

[80] Mendel Rosenblum and John K Ousterhout. The de-
sign and implementation of a log-structured file sys-
tem. In ACM SIGOPS Operating Systems Review,
volume 25, pages 1–15. ACM, 1991.

[81] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans
Kaashoek, and Nickolai Zeldovich. Grove: A
separation-logic library for verifying distributed sys-
tems. In Proceedings of the 29th Symposium on Op-
erating Systems Principles, SOSP ’23, page 113–129,
New York, NY, USA, 2023. Association for Computing
Machinery.

[82] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 1–16, Savannah, GA, 2016. USENIX Asso-
ciation.

[83] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of
information flow control systems. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 287–305, Carlsbad, CA,
2018. USENIX Association.

[84] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal verification of
a multiprocessor hypervisor on arm relaxed memory
hardware. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages
866–881, 2021.

[85] Theodore Ts’o. ext4: add error checking
to ext4_ext_replay_set_iblocks(). https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
1fd95c05d8f742abfe906620780aee4dbe1a2db0,
2021.

[86] Theodore Ts’o. ext4: add error checking
to ext4_ext_replay_set_iblocks(). https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
1fd95c05d8f742abfe906620780aee4dbe1a2db0,
2021.

[87] Theodore Ts’o and Stephen Tweedie. Future direc-
tions for the ext2/3 filesystem. In Proceedings of
the USENIX annual technical conference (FREENIX
track), 2002.

[88] vim. welcome home: vim online. https://www.vim.
org, 2019. Referenced April 2019.

[89] Al Viro. Patches: rename deadlock fixes. https:
//git.kernel.org/pub/scm/linux/kernel/git/
viro/vfs.git/commit/?h=work.rename, 2023.

17

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://www.vim.org
https://www.vim.org
https://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs.git/commit/?h=work.rename
https://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs.git/commit/?h=work.rename
https://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs.git/commit/?h=work.rename

[90] Wengang Wang. ocfs2: fix deadlock
between setattr and dio_end_io_write.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
90bd070aae6c4fb5d302f9c4b9c88be60c8197ec,
2021.

[91] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. Jitk: A trustworthy in-kernel
interpreter infrastructure. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 33–47, 2014.

[92] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane
Lafortune, and Scott A Mahlke. Gadara: Dynamic
deadlock avoidance for multithreaded programs. In
OSDI, volume 8, pages 281–294, 2008.

[93] James R Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D Ernst, and
Thomas Anderson. Verdi: a framework for implement-
ing and formally verifying distributed systems. In ACM
SIGPLAN Notices, volume 50, pages 357–368. ACM,
2015.

[94] Amy Williams, William Thies, and Michael D Ernst.
Static deadlock detection for java libraries. In Eu-
ropean conference on object-oriented programming,
pages 602–629. Springer, 2005.

[95] Darrick J. Wong. xfs: fix s_maxbytes
computation on 32-bit kernels. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
932befe39ddea29cf47f4f1dc080d3dba668f0ca,
2020.

[96] Darrick J. Wong. xfs: more lockdep
whackamole with kmem_alloc*. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
6dcde60efd946e38fac8d276a6ca47492103e856,
2020.

[97] Darrick J. Wong. xfs: fix an abba
deadlock in xfs_rename. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
6da1b4b1ab36d80a3994fd4811c8381de10af604,
2021.

[98] Chunguang Xu. ext4: fix a possible
abba deadlock due to busy pa. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
8c80fb312d7abf8bcd66cca1d843a80318a2c522,
2021.

[99] Sidong Yang. btrfs: qgroup: fix deadlock
between rescan worker and remove qgroup.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a,
2022.

[100] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason
Nieh. Duoai: Fast, automated inference of inductive
invariants for verifying distributed protocols. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 485–501, 2022.

[101] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. Distai: Data-driven
automated invariant learning for distributed protocols.
In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), pages 405–421,
2021.

[102] Chao Yu. f2fs: compress: fix potential deadlock.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
3afae09ffea5e08f523823be99a784675995d6bb,
2021.

[103] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer,
Matteo Rizzo, Luis Pedrosa, Katerina Argyraki, and
George Candea. Verifying software network functions
with no verification expertise. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, pages 275–290, 2019.

[104] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helpers for verifying the atomfs file system. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 259–274, 2019.

18

 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c80fb312d7abf8bcd66cca1d843a80318a2c522
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c80fb312d7abf8bcd66cca1d843a80318a2c522
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c80fb312d7abf8bcd66cca1d843a80318a2c522
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c80fb312d7abf8bcd66cca1d843a80318a2c522
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb

	Introduction
	Motivation
	Studies of Termination Bugs
	Limitation of Existing Efforts

	Proving the Termination of RefFS
	Definite Release
	Hierarchical Layers
	Dynamic Layers
	Directory Locking in Linux VFS
	Discussion about Support for Delay

	The MVT Framework
	Overview
	Specification in MVT
	Verification in MVT

	Design and Verification of RefFS
	Implementation and Abstraction
	Verification of RefFS

	Evaluation
	Performance Evaluation
	Verification Evaluation
	Bug Discussion

	Related Work
	Conclusion

