
SYNC or ASYNC ?

Time to Fuse for Distributed

Graph-Parallel Computation

Chenning Xie+, Rong Chen+, Haibing Guan*,
Binyu Zang+ and Haibo Chen+

Institute of Parallel and Distributed Systems +

Department of Computer Science *

Shanghai Jiao Tong University

100 Hrs of Video

every minute
1.11 Billion Users

6 Billion Photos
400 Million

Tweets/day

NLP

Big Data Graph Computation

Graph-structured computation

has adopted in a wide range of areas

Graph-parallel Computation

“Think as Vertex”, e.g. PageRank :

4 5

1 2 3

Characteristics

□ Linked set data dependence

□ Rank of who links it predictable accesses

□ Convergence iterative computation

Ri = Wi,j Rj

∑

Distributed Graph Computation

 Larger Graph

 Complicated Computation

 Storage support

Distributed Graph Computation

Framework:

 Load & partition over cluster

 Schedule compute() Repeatedly

until get convergence

User define the logic (e.g. Pagerank) :

 Input: Rj (Data of neighbor j)

 Compute():

4 5

3 1 2

Machine A Machine B

4

1 3

5

Vertex_Data = WjRj ∑

Iteration

Machine A

Active
Vertices 1 3 4

1 3 4

1 3 4

Global Barrier

Existing Scheduling Modes - Synchronous

Internal state (e.g. Machine A):

3 4 1

5 2

Scheduling:

3 4 1

5 2

Memory

Previous
State

2 5

Flip

1 3 4 2 5

while (iteration ≤ max) do

 if Va== ∅ then break

 V’a← ∅

 foreach v ∈ Vado

 A ← compute(v)

 V’a ← V’a∪ A

 barrier to update

 Va← V’a

 iteration ++

Pseudocode

(Sync Mode)

5

Machine B

Scheduling:

Existing Scheduling Modes - Asynchronous

while (Va != ∅) do

 v = dequeue(Va)

 A ← compute(v)

 V’a ← V’a∪ A

 signal across machines

Pseudocode

Internal State (e.g. Machine A):

Active
Queue 3

Piped Proceeding
Queue

4

3 1 2

Machine A

(Async Mode)

4

1

4

3 2 1

Machine B

Propagate ASAP,

to converge faster

5

Machine B

4

3 1 2

Machine A

4

3 2 1

Iteration

Machine A

3 4 1

5 2

3 4 1

5 2

Asynchronous

Existing Scheduling Modes

Which could get a better performance?

Synchronous

Algorithms: Sync vs. Async

0

0.5

1

1.5

2

2.5

3

3.5

PageRank SSSP LBP

Sp
ee

d
u

p

Sync

Async

 Same Configuration + Different Algorithms ?

Different algorithms prefer different modes

Large active vertex set with

collecting all data from neighbors

Require fast broadcast of shortest path value

Belief Propagation Algorithm

Configuration: Sync vs. Async

0

0.4

0.8

1.2

1.6

Random Grid Oblivious

Sp
ee

d
u

p

Sync

Async

Different. Partitions

0

50

100

150

200

250

8 16 24 36 48

Ex
ec

u
ti

o
n

 T
im

e
 (

s)
 Sync

Async

Scale on #Machines

 Same Configuration + Different Algorithms: Uncertain

 Different Configuration + Same Algorithms (LBP) ?

Partition methods affect

load balance & communication

Sync mode batches heavy load ,

Async mode scales better.

Better choice changes with configuration

 Same Configuration + Different Algorithms: Uncertain

 Different Configuration + Same Algorithms: Uncertain

 Same Configuration + Same Algorithm ?

0

0.2

0.4

0.6

0.8

1

0 100 200 300

C
o

n
ve

rg
en

ce

Sync

Async

Graph Coloring

Execution Time (s)

Stages: Sync vs. Async

0

20

40

60

80

0 50 100 150 200

Th
ro

u
gh

p
u

t
 (

/s
) Sync

Async

x10^3

Execution Time (s)

SSSP

Async mode starts faster,

Sync mode grows with a peak.

Sync faster but not converge,

Async slower but converged.

No one stays ahead for all the execution

Properties

→ Communication

→ Convergence

SYNC

Regular

Slow

ASYNC

Irregular

Fast

vs.

Favorites

→ Algorithm

→ Workload

→ Scalability

SYNC

I/O Bound

Heavyweight

 | Graph |

ASYNC

CPU bound

Lightweight

| Machines |

vs.

Summery: Sync vs. Async

Better choice is Unintuitive

Single mode alone may be still Suboptimal

Contributions

First comprehensive study on Sync & Async modes

PowerSwitch – adaptive, fast & seamless switches

 Hybrid Execution Mode (Hsync Mode):

 Dynamically and transparently support the correct

mode switches

 Switch Timing Model:

 Determine the more efficient mode combined with

online sampling, offline profiling and heuristics

Agenda

How to Switch - the Hsync mode

 Internal state conversion

 Consistency & correctness

When to Switch – the timing model

 Performance Metrics

 Current mode prediction

 The other mode estimation

Implementation

Evaluation

Challenges of switches

> Convert state at Consistent switch points

Sync mode

□ Vertex update: unordered

□ Flip in global barrier

Async mode

□ Priority/FIFO queue

□ Dequeue and enqueue

Active
Vertices

1 3 4

Global Barrier

Memory

Previous
State

Flip

Active Queue

3

Piped Proceeding
Queue

4

1

Machine B

Internal state of one machine

Active
Vertices

1 3 4

Global Barrier

Memory

Previous
State

Flip

Active Queue

3

Piped Proceeding
Queue

4

Machine B

Challenges of switches Hsync mode

Internal state of one machine

Consistent switch points :

□ Sync -> Async: global barrier

□ Async -> Sync: suspend & wait

State transfer: active vertex set

Switch point Switch point

1

Agenda

How to Switch - the Hsync mode

 Internal state conversion

 Consistency & correctness

When to Switch – the timing model

 Performance Metrics

 Current mode prediction

 The other mode estimation

Implementation

Evaluation

Switch timing - affected by lots of factors

Challenges:

 How to quantify the real-time performance?

 How to obtain the metrics？

Performance Metrics

 Throughput = --------------------

* µ

Convergence ratio µ =

by sampling specific input pattern,

e.g. power-law, large diameter, high density…

|Vcompute|

Tinterval

|NumTaskasync|

|NumTasksync|

Predict Throughput for Current mode

Sync

 Iteration as interval

Async

 Constant interval

 Throughput

 Throughput

Calculate the next interval based on:

 Current + History accumulation

Predict for Other offline mode

Predict Async when in sync mode:

No more execution information

0

5

10

15

20

25

2 4 6 8 10 12
Th

ro
u

gh
p

u
t

 (
/s

)

Number of Vertex (M)

2.1 2.3

2.4 2.5

x10^3

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Th
ro

u
gh

p
u

t
 (

/s
)

Execution Progress

PageRank

SSSP

LBP

x10^3

Solution

Online sampling : on subset of input in Async before start

Offline profiling : build Neural Network model, refer to paper

Predict for Other offline mode

Predict Sync when in async mode:

 Hard to predict exactly

 Heuristic: Sync makes high utilization of resource.

 ThroSync > ThroAsync , if workload is enough

 Condition:

1. Number of active vertices increases

2. Workload : --------------- > ThroAsync
|Vnew|

T

Async -> Sync

Prediction Accuracy

PageRank: Predicted throughput vs. Real sampled

0

5

10

15

20

0 10 20 30

Th
ro

u
gh

p
u

t
 (

/s
)

Execution Time (s)

Real

Predicted

*10^3

0

10

20

30

40

0 10 20 30

Th
ro

u
gh

p
u

t
 (

/s
)

Execution Time (s)

Real

Predicted

*10^3

Sync mode Async mode

Prediction Accuracy

Pagerank:

0

10

20

30

40

0 5 10 15 20 25

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Switch Timing (Time Point)

Manual switch

Predicted switch

Predict 15.2s

Optimal 14.5s

PageRank: Predicted switch timing vs. Optimal

Implementation

PowerSwitch:

 Based on latest GraphLab (PowerGraph) v2.2

with both Sync & Async modes.

 Provide the same graph abstraction

transparent & compatible to all apps of

GraphLab

 Open Source

http://ipads.se.sjtu.edu.cn/projects/powerswitch.html

http://ipads.se.sjtu.edu.cn/projects/powerswitch.html
http://ipads.se.sjtu.edu.cn/projects/powerswitch.html

Implementation - Architecture

Sampler Predictor

New

 Mode switcher

 Sampler

 Predictor

Extension

 Fault tolerance

Evaluation

Baseline: original SYNC & ASYNC mode

Configuration

 48-node EC2-like cluster (VM based).

 Each node has 4 AMD Opteron cores, 12GB of RAM,

connected with 1 GigE network.

Algorithms and Data Set

 Algorithm Graph |V| |E|

PageRank

LJournal 5.4M 79M

Wiki 5.7M 130M

Twitter 42M 1.47B

LBP SYN-ImageData 1-12M 2-24M

SSSP RoadCA 1.9M 5.5M

Coloring Twitter 42M 1.47B

Performance Overview

PageRank SSSP LBP Coloring

Outperform the baseline with best mode

from 9% to 73% for all algorithms and dataset

0

0.5

1

1.5

2

2.5

Ljournal Wiki Twitter RoadCA 3M 6M 9M Twitter

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Sync

Async

Hsync

Switch Overhead

Sync->Async : 0.1s

Async->Sync : 0.6s

Overhead grows slightly

with active vertex number increasing.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Sw
it

ch
 o

ve
rh

ea
d

 (
s)

Number of Active Vertex (Millions)

Sync -> Async

Async -> Sync

Case: Single Source Shortest Path (SSSP)

0

20

40

60

80

0 50 100 150 200

Th
ro

u
gh

p
u

t
 (

/s
) Sync

Async

Hsync

x10^3

Execution Time (s)

Execution Mode: Async -> Sync-> Async

Switch Point:
Async to Sync

Switch Point:
Sync to Async

Speedup

Conclusion

PowerSwitch

□ A comprehensive analysis to the performance of

Sync and Async modes for different algorithms,

configuration and stages

□ A Hsync mode that dynamically switch modes

between Sync & Async to pursue optimal performance

□ An effective switch timing model to predict suitable

mode with sampling & profiling

□ Outperforms GraphLab with best mode from 9% to

73% for various algorithms and dataset

http://ipads.se.sjtu.edu.cn/

projects/powerswitch.html

Institute of Parallel and

Distributed Systems

Thanks

Questions

http://ipads.se.sjtu.edu.cn/projects/powerswitch.html
http://ipads.se.sjtu.edu.cn/projects/powerswitch.html
http://ipads.se.sjtu.edu.cn/projects/powerswitch.html

