
1

PowerLyra: Differentiated Graph Computation and
Partitioning on Skewed Graphs

RONG CHEN, JIAXIN SHI, YANZHE CHEN, BINYU ZANG, HAIBING GUAN, and HAIBO
CHEN, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China

Natural graphs with skewed distributions raise unique challenges to distributed graph computation and parti-
tioning. Existing graph-parallel systems usually use a “one size fits all” design that uniformly processes all
vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g.,
Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree ver-
tices (e.g., PowerGraph and GraphX).

In this paper, we argue that skewed distributions in natural graphs also necessitate differentiated processing
on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing sys-
tem that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses cen-
tralized computation for low-degree vertices to avoid frequent communications and distributes the computation
for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partition-
ing algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree
vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides
a locality-conscious data layout optimization. PowerLyra is implemented based on the latest GraphLab and
can seamlessly support various graph algorithms running in both synchronous and asynchronous execution
modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning
and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X)
and 3.26X (from 1.49X) for real-world and synthetic graphs accordingly, and is much faster than other systems
like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further
confirms the efficiency and generality of PowerLyra.

CCS Concepts: • Information systems → Computing platforms; • Computing methodologies → Dis-

tributed computing methodologies; Distributed programming languages.

Additional Key Words and Phrases: graph computation, graph partitioning, power-law degree distribution,

skewed graph, locality-conscious data layout

ACM Reference Format:

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen. 2018. PowerLyra: Differ-
entiated Graph Computation and Partitioning on Skewed Graphs. ACM Trans. Parallel Comput. 1, 1, Article 1
(November 2018), 40 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Graph-structured computation has become increasingly popular, which is evidenced by its adoption
in a wide range of areas including social computation, web search, natural language processing, and

This article extends a prior conference version that received the “Best Paper Award” of the Tenth ACM SIGOPS European
Conference on Computer Systems (EuroSys 2015) [12]. Authors’ addresses: R. Chen, J. Shi, Y. Chen, and H. Chen, Insti-
tute of Parallel and Distributed Systems, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China;
Corresponding author: Haibo Chen (haibochen@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1539-9087/2018/11-ART1 $15.00
https://doi.org/0000001.0000001

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 R. Chen et al.

recommendation systems [5, 25, 54, 67, 88, 98]. The intense desire for efficient and expressive pro-
gramming models for graph-structured computation has recently driven the development of numer-
ous distributed graph-parallel systems such as Pregel [47], GraphLab [43], and PowerGraph [24].
They usually follow the “think like a vertex” philosophy [47] by coding graph computation as
vertex-centric programs to process vertices in parallel and communicate across edges.

On the other hand, the distribution of real-world graphs tends to be diverse and constantly evolv-
ing [41]. For example, some real-world datasets exhibit a skewed power-law distribution [21, 52]
where a small number of vertices have a significant number of neighboring vertices, while some
other existing datasets (e.g., road networks) exhibit a more balanced distribution. The diverse prop-
erties inside and among graph datasets raise new challenges to efficiently partition and process such
graphs [1, 24, 42].

Unfortunately, existing graph-parallel systems usually adopt a “one size fits all” design where
different vertices are equally processed, leading to suboptimal performance and scalability. For
example, Pregel [47] and GraphLab [43] centralize their designs in making resources locally ac-
cessible to hide latency. This is done by evenly distributing vertices to machines, which may result
in imbalanced computation and communication for vertices with high degrees (i.e., the number of
neighboring vertices). In contrast, PowerGraph [24] and GraphX [26] focus on evenly paralleliz-
ing the computation by partitioning edges among machines, which incurs high communication cost
among partitioned vertices even with low degrees.

Further, prior graph partitioning algorithms may result in suboptimal performance for both
skewed and non-skewed (i.e., regular) graphs. For example, edge-cut [36, 61, 68, 72], which divides
a graph by cutting cross-partition edges among sub-graphs with the goal of evenly distributing ver-
tices, usually results in excessive replication of edges as well as imbalanced messages with high
contention. In contrast, vertex-cut [8, 24, 31], which partitions vertices among sub-graphs with the
goal of evenly distributing edges, incurs high communication overhead among partitioned vertices
and excessive memory consumption.

In this paper, we make a comprehensive analysis of existing graph-parallel systems over skewed
graphs and argue that the diverse properties of different graphs and the skewed vertex distributions
demand differentiated computation and partitioning on low-degree and high-degree vertices. Based
on our analysis, we introduce PowerLyra, a new distributed graph processing system that embraces
the best of both worlds of existing systems. The key idea of PowerLyra is to process different
vertices adaptively according to their degrees.

PowerLyra follows the GAS (i.e., Gather, Apply and Scatter) programming interface of Power-
Graph [24] and can seamlessly support existing graph algorithms running in either synchronous and
asynchronous execution mode. Internally, PowerLyra distinguishes the processing of low-degree
and high-degree vertices: it uses centralized computation for low-degree vertices to avoid frequent
communications and only distributes the computation for high-degree vertices to balance workloads.

To efficiently partition a skewed graph, PowerLyra is built with a balanced p-way hybrid-cut
algorithm to partition different types of vertices for a skewed graph. The random (i.e., hash-based)
hybrid-cut evenly distributes low-degree vertices along with their edges among machines (like edge-
cut) and evenly distributes edges of high-degree vertices among machines (like vertex-cut). We
further provide a greedy heuristic to improve partitioning of low-degree vertices in a skewed graph.

Finally, PowerLyra mitigates the poor locality and high interference among threads during the
communication phase by a locality-conscious data layout optimization built atop hybrid-cut. It
trades a small increase of pre-processing time for a notable speedup during graph computation.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:3

We have implemented PowerLyra1 based on GraphLab PowerGraph v2.22 (released in February
2015), which comprises about 3000 lines of C++ code. Since the first release of PowerLyra in 2015,
there have been a number of graph-structured systems inspired by our hybrid approach [10, 56,
64, 73, 91, 95], employing hybrid partitioning algorithms [32, 84, 93, 94], or directly implemented
based on PowerLyra [33, 40, 75, 77]. The hybrid-cut algorithm has also been used by WeChat, one
of the world’s largest social platforms with over 1 billion active users, for anomaly detection in its
social platform [70].

Our evaluation on three different clusters using various graph-analytics and MLDM applications
shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from
1.49X) for real-world and synthetic graphs accordingly, and consumes much less memory, due to
significantly reduced replication factor, less communication cost, and better locality in computation
and communication. A porting of the hybrid-cut to GraphX further confirms the efficiency and
generality of PowerLyra.

This paper makes the following contributions:

• A comprehensive analysis that uncovers some performance issues of existing graph-parallel
systems (§2).

• The PowerLyra model that supports differentiated computation on low-degree and high-
degree vertices, as well as adaptive communication with minimal messages while not sac-
rificing generality (§3).

• A hybrid-cut algorithm with heuristics that provides more efficient partitioning and computa-
tion (§4), as well as a locality-conscious data layout optimization (§5).

• A comprehensive evaluation that demonstrates the performance benefits of PowerLyra (§6).

2 BACKGROUND AND MOTIVATION

Many graph-parallel systems, including PowerLyra, abstract computation as a vertex-centric pro-
gram P, which is executed in parallel on each vertex v ∈V in a sparse graph G = {V,E}. The scope
of computation and communication in each P(v) is restricted to the neighboring vertices n through
edges where (v,n) ∈ E.

This section briefly introduces skewed graphs and illustrates why prior graph-parallel systems fall
short using Pregel, GraphLab, PowerGraph, and GraphX as examples, as they are representatives of
existing systems.

2.1 Skewed Graphs

Natural graphs, such as social networks (e.g., follower, citation, and co-authorship), email and in-
stant messaging graphs, or web graphs (hubs and authorities), usually exhibit a skewed distribution,
such as the power-law degree distribution [21]. This implies that a large fraction of vertices have
relatively few neighbors (i.e., low-degree vertex), while a small fraction of vertices has a signif-
icant number of neighbors (i.e., high-degree vertex). Given a positive power-law constant α , the
probability that the vertex has the degree d under the power-law distribution is

P(d) ∝ d−α

The lower exponent α implies that a graph has higher density and more high-degree vertices. For
example, the in and out degree distribution of the Twitter follower graph is close to 1.7 and 2.0
accordingly [24]. Though there are also other models [41, 58, 59, 82] for skewed graphs, we restrict
the discussion to the power-law distribution due to space constraints. However, PowerLyra is not

1The source code and a brief instruction of PowerLyra are available at http://ipads.se.sjtu.edu.cn/projects/powerlyra.html
2GraphLab prior to 2.1 runs the distributed GraphLab engine (i.e., GraphLab [43]).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

http://ipads.se.sjtu.edu.cn/projects/powerlyra.html

1:4 R. Chen et al.

Table 1. A summary of typical distributed graph-parallel systems. ‘L’ and ‘H’ represent low-degree

and high-degree vertex respectively.

Pregel-like GraphLab PowerGraph GraphX PowerLyra

Graph

Placement
edge-cuts edge-cuts vertex-cuts vertex-cuts hybrid-cuts

Comp.
local local distributed distributed

L: local
Pattern H: distributed
Comm. ≤ #edge-cuts ≤ 2×#mirrors ≤ 5×#mirrors ≤ 4×#mirrors

L: ≤ #mirrors

Cost H: ≤ 4×#mirrors

Dynamic

Comp.
no yes yes yes yes

Workload

Balance
no no yes yes yes

bound to such a distribution and should benefit other models (e.g., bipartite graph [13, 14]) with
skewed distributions as well (having high-degree and low-degree vertices).

Compute (v, M)

foreach (m in M)

sum += m

v.rank = 0.15 + 0.85 * sum

if (!converged(v))

foreach (n in outNbrs(v))

m = v.rank / #outNbrs(v)

send (n, m)

else done()

(a) Pregel/GraphLab (b) PowrGraph/PowerLyra

Gather (v, n):

return n.rank / #outNbrs(v)

Acc (a, b): return a + b

Apply (v, sum)

v.rank = 0.15 + 0.85 * sum

Scatter (v, n):

if (!converged(v))

activate(n)

Fig. 1. The sample code of PageRank on various systems.

2.2 Existing Graph-parallel Systems

Though a skewed graph has different types of vertices, existing graph systems usually use a “one size
fits all” design and compute equally on all vertices, which may result in suboptimal performance. Ta-
ble 1 provides a comparative study of typical distributed graph-parallel systems. Additional related
work can be found in §7.

Pregel and its open-source relatives (e.g., Giraph3, Hama4, and GPS [60]) use the BSP (Bulk

Synchronous Parallel) model [74] with explicit messages to fetch all resources for the vertex compu-
tation. Figure 1(a) illustrates an example implementation of PageRank [5] in Pregel. The Compute
function sums up the ranks of neighboring vertices through the received messages M and sets it as
the new rank of the current vertex. The new rank will also be sent to its neighboring vertices by
messages until reaching a global convergence estimated by a distributed aggregator. As shown in
Figure 2, Pregel adopts traditional edge-cut [61, 68, 72] to evenly assign vertices among machines

3Apache Giraph: http://giraph.apache.org/
4Apache Hama: http://hama.apache.org/

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

http://giraph.apache.org/
http://hama.apache.org/

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:5

B

PowerGraphGraphLabPregel

sample
graph

Fig. 2. A comparison of distributed graph-parallel models.

and provides interaction between vertices by message passing along edges. Since the communica-
tion is restricted to push-mode algorithms (e.g., vertex A cannot actively pull data from vertex B),
Pregel does not support dynamic computation5 [34, 43].

GraphLab replicates vertices for all edges spanning machines and leverages an additional vertex
activation message to support dynamic computation [43]. In Figure 2, GraphLab also uses edge-cut
as Pregel, but creates replicas (i.e., mirrors) and duplicates edges in both machines (e.g., for the
edge from vertex A to B, there are one edge and one replica in both machines). The communication
between replicas of a vertex is bidirectional, i.e., sending updates from a master to its mirrors and
activation messages from mirrors to the master. PageRank implemented in GraphLab is similar to
that of Pregel, except that it uses replicas to exchange messages from neighboring vertices.

PowerGraph abstracts computation into the GAS (Gather, Apply and Scatter) model and uses
vertex-cut [24, 31] to assign edges evenly among machines with replicated vertices. A single vertex
can be split into multiple replicas in different machines to parallelize the computation on it. Fig-
ure 1(b) uses the Gather and the Acc functions to accumulate the rank of neighboring vertices
along in-edges, the Apply function to calculate and update a new rank to vertex, and the Scatter
function to send messages and activate neighboring vertices along out-edges. Five messages for
each replica are used to parallelize vertex computation to multiple machines in each iteration (i.e.,
2 for Gather, 1 for Apply and 2 for Scatter), three of them are used to support dynamic computation.
As shown in Figure 2, the edges of a single vertex are assigned to multiple machines to distribute
workloads evenly, and the replicas of the vertex are placed in machines with its edges.

GraphX [26] builds on top of Apache Spark [90], a general dataflow framework by recast-
ing graph-specific operations into analytics pipelines formed by basic dataflow operators such as
Join, Map, and Group-by. GraphX also adopts vertex replication, incremental view maintenance,
and vertex-cut partitioning to support dynamic computation and balance the workloads for skewed
graphs.

There also have many single-machine graph-parallel systems [39, 46, 53, 57, 65, 66, 92, 101]
designed for the case where a graph can fit within a single machine. This largely mitigates the
cost of distributed graph computation and partitioning. However, they are unlikely to completely
displace distributed graph-parallel systems. For example, industrial-scale graphs like those from
Google [47] and Facebook [6] are unlikely to be fit within a single machine, making distributed
graph computation indispensable to process them in a timely manner. It can be evidenced by the
fact that many well-known companies like Google [47], Facebook [19], and Alibaba [30] deployed
distributed graph-parallel systems in their production systems. Hence, in this paper, we mainly focus
on distributed graph-parallel systems.

5Dynamic computation allows only some of the vertices to be active in each iteration.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:6 R. Chen et al.

4
6

3

2

5
1

machine1

Random

Heuristic

machine2 machine3

1

3

4

5

6

2

flying
master

mirror master

Fig. 3. A comparison of graph partitioning algorithms. The unshaded and shaded circles represent

the masters and mirrors respectively.

2.3 Issues with Graph Computation

To exploit locality during computation, both Pregel and GraphLab use edge-cut to accumulate all
resources (i.e., messages or replicas) of a vertex in a single machine. However, a skewed distribution
of degrees among vertices implies skewed workload, which leads to substantial imbalance when
being accumulated on a single machine. Even if the number of high-degree vertices is much more
than the number of machines to balance workload [29], it still incurs heavy network traffic among
machines to accumulate all resources for high-degree vertices. Further, high-degree vertices would
be the center of contention when performing scatter operations on all edges in a single machine. As
shown in Figure 3, there is significant load imbalance for edge-cut in Pregel and GraphLab, as well
as high contention on vertex 1 (high-degree) when its neighboring vertices activate it in parallel.
This situation will be even worse with the increase of machines and degrees of vertices.

PowerGraph and GraphX address the load imbalance issue using vertex-cut and decomposition
under the GAS model, which split a vertex into multiple replicas across machines. However, this
splitting also comes at a cost, including more computation, communication, and synchronization
required to gather values and scatter the new value from/to its replicas (see Figure 2). However, as
a large fraction of vertices only has a small degree in a skewed graph, splitting such vertices is not
worthwhile. Further, while the GAS model provides a general abstraction, many algorithms only
gather or scatter in one direction (e.g., PageRank). Unfortunately, both PowerGraph and GraphX
still require redundant communications and data movements. The workload is always distributed to
all replicas even without such edges. Under the Random vertex-cut in Figure 3, the computation on
vertex 4 still needs to follow the GAS model, even though all in-edges are located together with the
master of vertex 4.

2.4 Issues with Graph Partitioning

Graph partitioning plays a vital role in reducing communication and ensuring load balance. Tra-
ditional balanced p-way edge-cut [61, 68, 72] evenly assigns vertices of a graph to p machines
to minimize the number of edges spanning machines. Under edge-cut in Figure 3, six vertices are

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:7

Table 2. A comparison of various vertex-cuts for 48 partitions using PageRank (10 iterations) on

the Twitter follower graph and ALS (d=20, the magnitude of latent dimension.) on the Netflix movie

recommendation graph. λ presents replication factor. Pre-processing times include loading graph

into memory and building local graph structures.

Algorithm

& Graph
Vertex-cut λ

Time (Sec)

Pre-processing Execution

PageRank
&

Twitter
follower

Random 16.0 263 823
Coordinated 5.5 391 298

Oblivious 12.8 289 660
Grid 8.3 123 373

Hybrid 5.6 138 155

ALS (d=20)
&

Netflix movie
recommendation

Random 36.9 21 547
Coordinated 5.3 31 105

Oblivious 31.5 25 476
Grid 12.3 12 174

Hybrid 2.6 14 67

randomly (i.e., hash modulo #machine) assigned to three machines. Edge-cut creates replicated
vertices (e.g., mirrors) and edges to form a locally consistent graph state in each machine. However,
natural graphs with skewed distributions are difficult to partition using edge-cut [1], since skewed
vertices will cause a burst of communication cost and work imbalance. Vertex 1 in Figure 3 con-
tributes about half of the replicas of vertices and edges, and incurs load imbalance on machine 1,
which has close to half of edges.

The balanced p-way vertex-cut [24] evenly assigns edges to p machines to minimize the number
of vertices spanning machines. Compared to edge-cut, vertex-cut avoids replication of edges and
achieves load balance by allowing edges of a single vertex to be split over multiple machines. How-
ever, randomly constructed vertex-cut leads to much higher replication factor (λ) (i.e., the average
number of replicas for a vertex), since it incurs poor placement of low-degree vertices. In Figure 3,
Random vertex-cut creates a mirror for vertex 3 even if it has only two edges6.

To reduce replication factor, PowerGraph uses a greedy heuristic [24] to accumulate adjacent
edges on the same machine. In practice, applying the greedy heuristic to all edges (i.e., Coordi-
nated [24]) incurs a significant penalty during graph partitioning [29], mainly caused by exchanging
vertex information among machines. Yet, using greedy heuristics independently on each machine
(i.e., Oblivious [24]) will notably increase the replication factor.

The constrained vertex-cut [31] (e.g., Grid) is proposed to strike a balance between pre-
processing and execution time. It follows the classic 2D partitioning [9, 89] to restrict the locations
of edges within a small subset of machines to approximate an optimal partitioning. Since the set of
machines for each edge can be calculated on each machine independently by hashing, constrained
vertex-cut can significantly reduce the pre-processing time7. However, the ideal upper bound of
replication factor is still too large for a good placement of low-degree vertices (e.g., 2

√
N − 1 for

Grid [31]). Further, constrained vertex-cut necessitates the number of partitions (N) close to being
a square number for a reasonably balanced graph partitioning.

6PowerGraph mandates the creation of a flying master of vertex (e.g., vertex 5 and 6) in its hash-based location to support
simple external querying for some algorithms even without edges. PowerLyra also follows this rule.
7Coordinated greedy vertex-cut has been deprecated due to its excessive pre-processing time and buggy, meanwhile both
PowerGraph and GraphX have adopted Grid-like vertex-cut as the preferential partitioning algorithm.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:8 R. Chen et al.

Some prior work (e.g., [29]) argues that intelligent graph placement schemes may dominate and
hurt the total execution time. However, such an argument just partially8 holds for greedy heuristic

partitioning and simple graph algorithms. First, a naive random partitioning scheme does not nec-
essarily imply high efficiency in pre-processing time due to a lengthy time to create an excessive
number of mirrors. Second, with the increasing sophistication of graph algorithms (e.g., MLDM),
the pre-processing time will become relatively small to the overall computation time. In addition,
unlike graph computation, graph partitioning only needs to be performed once for each graph, and
the resulting partitions can be reused later to amortize the pre-processing time across multiple runs.

Table 2 illustrates a comparison of various state-of-the-art vertex-cuts of PowerGraph for 48
partitions. Random vertex-cut performs worst in both pre-processing and computation time due to
the highest replication factor. Coordinated vertex-cut achieves both small replication factor and
execution time but at the cost of excessive pre-processing time. Oblivious vertex-cut reduces pre-
processing time (but still slower than Random) while doubling replication factor and overall execu-
tion time. Grid vertex-cut outperforms coordinated vertex-cuts in pre-processing time by 2.8X but
decreases graph computation performance. Besides, the percent of pre-processing time for PageR-
ank on the Twitter follower graph with 10 iterations9 of graph computation ranges from 24.2% to
56.8%, while for ALS on Netflix movie recommendation graph it only ranges from 3.6% to 22.8%.
The random Hybrid-cut of PowerLyra (§4) provides optimal performance by significantly decreas-
ing execution time while only slightly increasing pre-processing time (even compared to Grid).

master

High-degree Vertex Low-degree Vertex

mirror

all of in-edges

Fig. 4. The computation model on high-degree and low-degree vertex for algorithms gathering along

in-edges and scattering along out-edges.

3 GRAPH COMPUTATION IN POWERLYRA

This section describes the graph computation model in PowerLyra, which combines the best from
prior systems by differentiating the processing on high-degree and low-degree vertices. Moreover,
PowerLyra supports both the highly parallel synchronous execution mode as well as the compu-
tationally efficient asynchronous execution mode. Finally, to preserve generalization, PowerLyra
proposes an adaptive way to downgrade the computation model for low-degree vertices. Without
loss of generality, the rest of this paper will use in-degree of the vertex to introduce the design of
PowerLyra’s hybrid computation model.

3.1 Graph-parallel Abstraction

Like others, a vertex-program P in PowerLyra runs on a directed graph G = {V,E} and computes in
parallel on each vertex v ∈ V . Users can associate arbitrary vertex data Dv where v ∈ V , and edge
data Ds,t where (s, t) ∈ E. Computation on vertex v can gather and scatter data from/to neighboring
vertex n where (v,n) ∈ E. During graph partitioning (§4), PowerLyra replicates vertices to construct

8GraphLab has been highly optimized in the v2.2 release, especially for pre-processing time with parallel loading.
9Increasing iterations, like [29, 47], will further reduce the proportion.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:9

while iter < max_iter do

if Va == then break

foreach v in Va do exec_gather(v)

foreach v in Va do exec_apply(v)

foreach v in Va do exec_scatter(v)

iter += 1

foreach e in edges(v) do

vacc acc(vacc, gather(e))

send(vacc)

vacc acc(vacc, recv())

send(true)

vactive recv()

foreach e in edges(v) do

vacc acc(vacc, gather(e))

vdata apply(vdata, vacc)

send(vdata, true)

(vdata, vactive) recv()

vdata apply(vdata, vacc)

send(vdata, true)

(vdata, vactive) recv()

foreach e in edges(v) do

scatter(e)

foreach e in edges(v) do

scatter(e)

send(true)

vactive recv()

while Va != do

v = remove_next(Va)

exec_gather(v)

exec_apply(v)

exec_scatter(v)

Algorithm 1: Synchronous Mode

Algorithm 2: Asynchronous Mode

High-degree Vertex Low-degree Vertex

1

2

3

4

1

master
mirror

context switch
(Async)

global
barrier

(a) Execution Mode (b) Vertex Computation Semantics

Fig. 5. The algorithms of execution engine in synchronous and asynchronous mode, and the vertex

execution semantics of high-degree and low-degree vertex. The solid and hollow stars indicate the

master and mirror of vertex respectively, and the numbered circles indicate the message passing.

a local graph on each machine, all of which are called replicas. Like PowerGraph, PowerLyra also
elects a replica randomly (using vertex’s hash) as master and other replicas as mirrors. PowerLyra
still strictly conforms to the GAS model, and hence can seamlessly run all existing applications in
PowerGraph.

3.2 Differentiated Vertex Computation

PowerLyra employs a simple loop to express iterative computation of graph algorithms and pro-
cesses vertices differently according to the vertex degrees. Figure 5(b) illustrates the detailed vertex
computation semantics of high-degree and low-degree vertex.

Processing high-degree vertex: To exploit the parallelism of vertex computation, PowerLyra
follows the GAS model in PowerGraph to process high-degree vertices. In the Gather phase, two
messages are sent by the master vertex (hereinafter master for short) to activate all mirrors to run the
gather function locally and accumulate results back to the master. In the Apply phase, the master
runs the apply function and then sends the updated vertex data to all its mirrors. Finally, all mirrors
execute the scatter function to activate their neighbors, and the master will similarly receive
notification from activated mirrors. Unlike PowerGraph, PowerLyra groups the two messages from
master to mirrors in the Apply and Scatter phases (see the left part of Figure 4), to reduce message
exchanges.

Processing low-degree vertex: To preserve access locality of vertex computation, PowerLyra
introduces a new GraphLab-like computation model to process low-degree vertices. However, Pow-
erLyra does not provide bidirectional (i.e., both in and out) access locality like GraphLab, which ne-
cessitates edge replicas and doubles messages. We observe that most graph algorithms only gather

or scatter data in only one direction. For example, PageRank only gathers data along in-edges and
scatters data along out-edges. PowerLyra leverages this observation to provide unidirectional access
locality by placing vertices along with edges in only one direction (which has already been indicated
by application code). As the update message from master to mirrors is inevitable after computation
(in the Apply phase), PowerLyra adopts local gathering and distributed scattering to minimize the
communication overhead.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:10 R. Chen et al.

As shown in the right part of Figure 4, since all edges required by gathering has been placed
locally, both the Gather and Apply phases can be done locally by the master without the help of
its mirrors. The message to activate mirrors (that further scatter their neighbors along out-edges) is
combined with the message for updating vertex data (sent from master to mirrors) in Apply phase.

Finally, the notifications from mirrors to master in the Scatter phase are not necessary anymore,
since only the master will be activated along in-edges by its neighbors. Compared to GraphLab,
PowerLyra requires no replication of edges and only incurs up to one (update) message per mirror
in each iteration for low-degree vertices. In addition, the unidirectional message from master to
mirrors avoids potential contention on the receiving end of communication [11], since each mirror
will receive at most one message (from its master) in each iteration.

3.3 Execution Mode

PowerLyra separates the computation mode of each vertex from the execution mode of the program.
The PowerLyra engine maintains a set of active vertices Va regardless of high-degree or low-degree
vertex and executes the vertex-program P on each of them until none remains active. A vertex v

will be added to the set Va when activated by neighboring vertices or itself and removed from the
set Va when its computation finished. The PowerLyra engine can execute the active vertices in both
synchronous (Sync) and asynchronous (Async) modes. The main difference between two modes
is the scheduling order of vertex computation, which provides difference tradeoffs in convergence
rate, runtime overhead, and execution determinism [85].

Synchronous Execution: In synchronous mode, PowerLyra abstracts graph processing as a se-
quence of iterations (i.e., super-step) [47], in which all active vertices execute the vertex program
in parallel using the values of neighboring vertices updated in the prior iteration. Inspired by Pow-
erGraph [24], PowerLyra divides a super-step into several mini-steps, each of which synchronously
completes the same phase of all active vertices with a global barrier at the end (see Algorithm 1
in Figure 5). Unlike PowerGraph, the low-degree vertices in PowerLyra can skip some operations
(messages) in mini-steps, e.g., accumulation and networking in the Gather phase for all mirrors.

Asynchronous Execution: In asynchronous mode, PowerLyra abstracts graph processing as an
iterative computation on the set of active vertices (see Algorithm 2 in Figure 5). Compared to the
synchronous execution, the computation on an active vertex will directly use the latest value of its
neighboring vertices. Since the execution on a vertex may be blocked for communication with its
mirrors, a large number of user-mode worker threads are spawned to hide the effects of network
latency. When the current worker thread is blocked, the underlying system thread will switch to an-
other user-mode worker thread. The blocked thread will be re-scheduled after receiving the required
number of results from mirrors. Unlike PowerGraph, the worker thread on low-degree vertices does
not need to send messages in the Gather phase and to wait for messages from the mirrors in the Scat-
ter phase. Therefore, in asynchronous mode, the hybrid approach can simplify the task scheduling
and further reduce the cost from context switches for the low-degree vertices.

Table 3. A classification of various graph algorithms.

Type gather_edges scatter_edges Example Algorithms

Natural
in_edges or none out_edges or none PR, SSSP
out_edges or none in_edges or none DIA [35]

Other any any CC, ALS [99]

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:11

master mirror

master mirrormaster mirror

master mirror4

3

3

3

2

2

1

1

2

1

2

1

2

1

1

1

#msgs

Gather

Scatter

Fig. 6. The matrix of communication cost and sample computation models on low-degree vertex for

various algorithms.

3.4 Generalization

PowerLyra applies a simplified model for low-degree vertices to minimize communication overhead.
However, this may limit its expressiveness to some graph algorithms that may require gathering or
scattering data in both in and out directions. PowerLyra introduces an adaptive approach to handling
different graph algorithms. Note that PowerLyra only needs to use such an approach for low-degree
vertices, since communication on high-degree vertices is already bidirectional.

PowerLyra classifies algorithms according to the directions of edges accessed in gathering and
scattering, which are returned from the gather_edges and scatter_edges interfaces10 of
PowerGraph accordingly. Hence, it can be checked at runtime without any changes to applications.
Table 3 summarizes the classification of graph algorithms. PowerLyra seamlessly supports the Natu-

ral algorithms that gather data along one direction (e.g., in/out_edges) or none and scatter data
along another direction (e.g., out/in_edges) or none, such as PageRank (PR), Single-Source

Shortest Paths (SSSP) and Approximate Diameter (DIA) [35]11. For such algorithms, PowerLyra
needs up to one message per mirror for a low-degree vertex in each iteration.

For Other algorithms that gather or scatter data via any edges, PowerLyra requires mirrors to
do gathering or scattering operations like those of high-degree vertices, but only on demand. For
example, the Connected Components (CC) application gathers data via none edges and scatters
data via all_edges, so that PowerLyra only requires one additional message in the Scatter phase
to notify the master by the activated mirrors, and thus still avoids unnecessary communication in
the Gather phase.

Figure 6 lists the detailed communication cost for all combinations of the access models in Gather
and Scatter phases, and illustrates four corresponding computation models with the unidirectional
access locality along in-edges. PowerLyra only requires at most two messages in a large sweet spot

(see the left of Figure 6) as long as the algorithm does not gather data in both directions (i.e., in and
out). The two messages in Gather phase can be avoided, relying on unidirectional access locality
provided by PowerLyra.

4 DISTRIBUTED GRAPH PARTITIONING

For distributed graph processing systems, graph partitioning plays a vital role in reducing commu-
nication and ensuring workload balance. Existing edge-cut and vertex-cut commonly use a “one

10The gather/scatter_edges interface returns the set of edges on which to run the gather/scatter function. The default
edge direction is in/out edges.
11The detailed description of algorithms can be found in §6.1.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:12 R. Chen et al.

4 6
3

1

1 2

5

1

machine 0 machine 1 machine 2

1

3

4

5

6

2 4 6
3

2

5

1
1 1

1

1

2 Low-master

Low-mirror

High-master

High-mirror

θ=3

Fig. 7. The hybrid-cut on sample graph. The “Low” and “High” in each row represent the partitioning

on low-degree and high-degree vertices respectively, and the combination of “Low” and “High” in

each column (i.e., machine) means “Hybrid”.

size fits all” design that uniformly places all vertices and edges. However, the skewed power-law
degree distribution in natural graphs calls for differentiated mechanisms to process high-degree and
low-degree vertices along with edges. In addition, the PowerLyra’s abstraction relies on graph parti-
tioning to provide unidirectional access locality for low-degree vertices.

This section describes a new hybrid-cut algorithm that uses differentiated partitioning strategies
for low-degree and high-degree vertices, which embraces the locality of edge-cut and the parallelism
of vertex-cut. Based this, a new heuristic, called Ginger, is provided to optimize partitioning for
PowerLyra further. Finally, theoretical analysis, as well as empirical validation, are provided to
compare new hybrid approaches with prior vertex-cut algorithms.

4.1 Balanced p-way Hybrid-Cut

Since vertex-cut evenly assigns edges to machines and only replicates vertices to construct a local
graph within each machine, the memory and communication overhead highly depend on the repli-
cation factor (λ). Hence, existing vertex-cut algorithms mostly aim at reducing the overall λ of all
vertices. However, we observe that the key is to reduce λ of low-degree vertices, since high-degree
vertices inevitably need to be replicated on most of the machines. Distributing massive edges of
high-degree vertex may incur a bursting increase of replicas for low-degree vertices. Nevertheless,
many current heuristics for vertex-cuts have a bias towards high-degree vertices, while paying little
attention to low-degree vertices.

We propose a balanced p-way hybrid-cut that focuses on reducing λ of low-degree vertices.
It uses differentiated partitioning to low-degree and high-degree vertices. To minimize replication
of edges, each edge exclusively belongs to its target vertex (the destination of the edge)12. For low-
degree vertices, hybrid-cut adopts low-cut to evenly assign vertices along with in-edges to machines
by hashing their target vertices. For high-degree vertices, hybrid-cut adopts high-cut to distribute all

12The edge could also exclusively belong to its source vertex, which depends on the direction of locality preferred by the
graph algorithm. Without loss the generality, we assume the unidirectional access locality along in-edges in the rest of this
paper.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:13

1

3

4

5

6

2

632
5

4 1

Distributed FS (e.g., HDFS)

File File File

4 6
3

1 2

5

1 4
1 6
2 1

2 5
2 6
3 1

3 4
4 1
5 1

File1 File2 File3

1

machine 0 machine 1 machine 2

4
5
2

3

1

1

2 Low-master

Low-mirror

High-master

High-mirror

θ=3

hash(X)=(X-1)%3

Fig. 8. The execution flow of hybrid-cut.

in-edges of vertices to machines by hashing their source vertices. After that, hybrid-cut creates repli-
cas and constructs local graphs, as done in typical vertex-cut. One of the replicas is also randomly
nominated as the master (by hashing), and the rest are mirrors.

As shown in Figure 7, assume that the user-defined threshold (θ) is 3 and the hash function is
hash(X) = (X − 1)%3. All vertices along with their in-edges are assigned as low-degree vertices
except vertex 1, whose in-edges are assigned as a high-degree vertex. For example, the edge (1,4)
and (3,4) are placed in machine 0 with the master of low-degree vertex 4, while the edge (2,1) and
(5,1) are placed in machine 1 with the mirror of high-degree vertex 1. The partition constructed by
the hybrid-cut only yields four mirrors and achieves good load balance.

The hybrid-cut addresses the major issues in edge-cut and vertex-cut on skewed graphs. First, the
hybrid-cut can provide a much lower replication factor. For low-degree vertices, all in-edges are
grouped with their target vertices, and there is no need to create mirrors for them. For high-degree
vertices, the upper bound of increased mirrors due to assigning a new high-degree vertex along
with all its in-edges is equal to the number of partitions (i.e., machines) rather than the degree of
vertex; this completely avoids new mirrors of low-degree vertices and restricts the bursting increase
of replication factor. Second, the hybrid-cut provides unidirectional access locality for low-degree
vertices, which can be used by hybrid computation model (§3) to reduce communication cost at
runtime. Third, hybrid-cut is very efficient in distributed pre-processing, since it is a wholly hash-
based partitioning scheme for both low-degree and high-degree vertices. All vertices and edges can
be independently assigned to the designated machines without coordination. Finally, the partitions
constructed by the hash-based (random) hybrid-cut are naturally balanced on both vertices and
edges. The randomized placement of low-degree vertices leads to the balance of vertices, which
is almost equivalent to the balance of edges for low-edge vertices. For high-degree vertices, all
in-edges are assigned to the owner machine of source vertices, which are also assigned to random
machines by hashing.

Constructing hybrid-cut: A natural approach to constructing a hybrid-cut is adding an extra
reassignment phase for high-degree vertices to the original streaming graph partitioning. The left
part of Figure 8 illustrates the execution flow of pre-processing using hybrid-cut, and the right part

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:14 R. Chen et al.

HYBRID_INGRESS()
. . .

1 //Load & Dispatch

2 while e = get_edge() do

3 p = HASH(e.target)

4 SEND(p, e)

5 while e = RECV() do

6 vset[e.target].add(e)

7 foreach v in vset

8 degree = v.size

9 if (degree <= threshold)

10 foreach e in v.list

11 elist.add(e)

12 //Reassign (high-degree)

13 foreach v in vset

14 degree = v.size

15 if (degree > threshold)

16 foreach e in v.list

17 p = HASH(e.source)

18 SEND(p, e)

19 while e = RECV() do

20 elist.add(e)

21 //Construct

. . .

Fig. 9. The pseudo-code of random hybrid-cut.

shows the results of sample graph in each stage. Figure 9 further shows the pseudo-code of the hash-
based (random) hybrid-cut. First, the worker thread on each machine loads a piece of raw graph data
(e.g., edge list) from the underlying distributed file system (e.g., HDFS) in parallel, and dispatches

edges to machines by hashing their target vertices (Line 2-4). Each worker counts the in-degree
of vertices (Line 5-6) and compares it with a user-defined threshold (θ)13 to identify high-degree
vertices (Line 13-15). After that, in-edges of high-degree vertices are reassigned by hashing their
source vertices (Line 16-18). Finally, each worker thread creates replicas to construct a local graph
as normal vertex-cut.

This approach is compatible with existing formats of raw graph data, but incurs some network
transmission cost due to reassigning in-edges of high-degree vertices. For some graph file format
(e.g., adjacent list), the worker can directly identify high-degree vertices and distribute edges in the
loading stage to avoid extra reassignment, since the in-degree and a list of all source vertices are
grouped in one line.

4.2 Heuristic Hybrid-Cut

To further reduce the replication factor of low-degree vertices, we propose a new greedy heuristic
algorithm, namely Ginger, inspired by Fennel [72], which is a greedy streaming edge-cut frame-
work. Ginger places the next low-degree vertex along with in-edges on the machine that minimizes
the expected replication factor.

Formally, given that the set of partitions for assigned low-degree vertices are P= (S1,S2, . . . ,Sp), a
low-degree vertex v is assigned to partition Si such that δg(v,Si)≥ δg(v,S j), f or all j ∈ {1,2, . . . , p}.
We define the score formula δg(v,Si) = |N (v)∩Si|−δc(|Si|V), where N (v) denotes the set of neigh-
bors along in-edges of vertex v, and |SV

i | denotes the number of vertices in Si. The former component
|N (v) ∩ Si| corresponds to the degree of vertex v in the subgraph induced by Si. The balance for-

mula δc(x) can be interpreted as the marginal cost of adding vertex v to partition Si, which is used
to balance the size of partitions.

Considering the special requirements of hybrid-cut, Ginger differs from Fennel in several aspects
to improve the performance and balance, as shown in Table 4. First, Fennel is inefficient to parti-
tion skewed graphs due to high-degree vertices. Hence, Ginger just uses this heuristic to improve
the placement of low-degree vertices. Second, as Fennel is designed to minimize the fraction of
edges being cut, it estimates all adjacent edges in both directions to determine the host machine. By
contrast, Ginger only estimates edges in one direction to decrease the pre-processing time. Finally,

13A detailed discussion about the optimal threshold can be found in §6.6.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:15

Fennel focuses only on the balance of vertices, by using the number of vertices |SV
i | as the only

parameter of the balance formula (δc(x)). Consequently, it usually causes a significant imbalance
of edges even for regular graphs due to the de-randomized placement of low-degree vertices. To
improve the balance of edges, we add the normalized number of edges µ |SE

i | into the parameter of
the balance formula, where µ is the ratio of vertices to edges, and |SE

i | is the number of edges in Si.
The composite balance parameter becomes (|SV

i |+µ |SE
i |)/2.

Table 4. A comparison of the

heuristic in Fennel and Ginger.

Fennel Ginger

What to
partition?

Low &
High

Low

How to
partition?

In-edge &
Out-edge

In-edge

How to
balance?

Vertex
& Edge

Vertex

12 //Reassign (high-degree)

. . .

16 foreach e in v.list

17 p = PTV[e.source]

18 SEND(p, e)

. . .

H1 //Heuristic (low-degree)

H2 foreach v in vset

H3 degree = v.size

H4 if (degree <= threshold)

H5 p = GINGER(v, &BTS)

H6 SEND(p, v)

H7 PTV[v] = p

H8 if (++inc%IN)

H9 SYNC(PTV, BTS)

H10 SYNC(PTV, BTS)

H11 while e = RECV() do

H12 elist.add(e)

GINGER_INGRESS()
. . .

6 vset[e.target].add(e)

7 foreach v in vset

8 degree = v.size

9 if (degree <= threshold)

10 foreach e in v.list

11 elist.add(e)

Fig. 10. The pseudo-code of heuristic hybrid-cut.

Constructing heuristic hybrid-cut: Based on the randomized hybrid-cut (Figure 9), a natural
approach to constructing a greedy hybrid-cut is adding an extra heuristic phase between the dispatch

and reassign phase, which runs Ginger heuristic on all low-degree vertices (Line H1-H7). Similar
to Coordinated vertex-cut [24], Ginger also requires coordination among machines (Line H8-H10).
The distributed tables PTV and BTS are used to store the current vertex partitions P = (S1,S2, . . . ,Sp)

and the balance of p partitions respectively, and will be periodically updated by all machines. Each
machine also maintains a local cache to reduce communication at the expense of freshness of P.
In the subsequent reassigning phase, instead of hashing, the table PTV is used to locate the target
machine for in-edges of high-degree vertices (Line 17).

4.3 Theoretical Comparison

We perform a theoretical analysis to compare hybrid-cut with prior vertex-cut14, which partially fol-
lows that of [24]. We suppose that vertex v spans a set of machines A(v), where A(v) ⊆ {1,2, . . . , p}
containing its adjacent edges. |A(v)| is used to denote the expected number of replicas of vertex
v. Therefore, by linearity of the expected replication factor for a graph partition, it is equal to the
average of expected replication factor of all vertices (Equation 1).

E

[

1

|V | ∑
v∈V

|A(v)|
]

=

1

|V | ∑
v∈V

E [|A(v)|] (1)

The expected replication factor E[|A(v)|] can be computed by considering the process of randomly
assigning a set of adjacent edges S(v), which may incur replicas. Let the indicator Pi denotes the
event that vertex v has at least one of S(v) on machine i. The expectation E[Pi] is then:

E[Pi] = 1−
(

1− 1

p

)Ds[v]

14Since the results of greedy heuristics highly depend on the sequence of edges in raw graph data and their coordinated
strategies among machines, we only consider random (hash-based) graph partitioning algorithms, which are the current
preferential partitioning algorithm of most distributed graph-parallel systems, such as Giraph, PowerGraph and GraphX.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:16 R. Chen et al.

where Ds[v] denotes the number of edges in S(v). For various vertex-cut algorithms, S(v) denotes

various candidate sets. In the following equations, we relate the expected normalized replication
factor of various vertex-cut algorithms to the number of machines p and the power-law constant α .

Random vertex-cut. All edges of vertex v are randomly assigned to p machines, so the expected
replication factor of Random vertex-cut [24] is:

E

[

|A(v)|
]

=

p

∑
i=1

E[Pi] = p

(

1−
(

1− 1

p

)D[v]
)

(2)

where D[v] denotes the degree of vertex v, which is treated as a Zipf random variable:

E

[

D[v]
]

=

h|V | (α −1)

h|V | (α)

where h|V | (α) = ∑
|V |−1
d=1 d−α is the normalizing constant of the power-law Zipf distribution [24].

Grid vertex-cut. All edges of vertex v are randomly assigned to a grid-based constrained set on
p machines then the expected replication factor of Grid vertex-cut [31] is:

E

[

|A(v)|
]

= f(p)

(

1−
(

1− 1

f(p)

)D[v]
)

(3)

where f(p) denotes the size of constrained set on p machines to host edges of vertex v, and equals

2
√

p−1 in Grid vertex-cut. In addition, the reduction of upper bound from p to 2
√

p−1 may incur

load imbalance of both vertices and edges.

Random hybrid-cut. For low-degree vertex v, all of in-edges and the out-edges linked with high-
degree vertices (i.e., high-degree edges) are assigned to the master of vertex v. Consequently, only
the out-edges linked with low-degree vertices (i.e., low-degree edges) may incur replicas, then the
expected replication factor on p machines is:

E

[

|A(v)|
]

= p

(

1−
(

1− 1

p

)Dout [v](1−PEH
)
)

(4)

where Dout [v] denotes the degree of out-edges of vertex v and PEH
denotes the percentage of high-

degree edges where the target vertex has high-degree.

For high-degree vertex v, all of in-edges and the out-edges linked with low-degree vertices may
incur replicas. Therefore, the expected replication factor on p machines is:

E

[

|A(v)|
]

= p

(

1−
(

1− 1

p

)Din[v]+Dout [v](1−PEH
)
)

(5)

where Din[v] denotes the degree of in-edges of vertex v.

Finally, the expected replication factor of Random hybrid-cut is:

E

[

1

|V | ∑
v∈V

|A(v)|
]

= (1−PVH
)

1

|VL| ∑
v∈VL

E[|A(v)|] + PVH

1

|VH | ∑
v∈VH

E[|A(v)|] (6)

where VL and VH denotes the set of low-degree and high-degree vertices respectively, and PVH
de-

notes the percentage of high-degree vertices. For a power-law graph with constant α and threshold

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:17

0

20

40

60

80

100

0 20 40 60 80 100

H
ig

h
-d

e
g
re

e
 E

d
g
e
s
 (

%
)

High-degree Vertices (%)

α = 2.2
α = 2.1
α = 2.0
α = 1.9
α = 1.8

(a) PEH
vs. PVH

 1

 2

 3

 4

1 50 100 150 200 250R
a
ti
o
 o

f
R

e
p
lic

a
ti
o
n
 F

a
c
to

r

Number of Machines

1.8

1.9

2.0

2.1
2.2

(b) Grid vs. Hybrid

Fig. 11. (a) The relation between the percentage of high-degree vertices and edges for power-law

graphs with different constants (α). (b) The ratio of the expected replication factor of Grid vertex-cut

to Random hybrid-cut with increasing machines.

θ , PVH
and PEH

are:

PVH
= 1−

h|θ | (α)

h|V | (α)
, and PEH

= 1−
h|θ | (α −1)

h|V | (α −1)

For a skewed power-law graph, a small percentage of high-degree vertices (PVH
) corresponds to

a large percentage of high-degree edges (PEH
). Figure 11(a) illustrates the relation between them

for various power-law constants, where 1% vertices adjacent to more than 45% and 84% edges for
α=2.2 and 1.8 respectively. With the increase of PVH

, the expected replication factor of both low-
degree and high-degree vertex will rapidly decrease, while the percentage of high-degree vertices
will also slowly increase. Hence, the expected replication factor of Random hybrid-cut for power-
law graphs will first rapidly decrease dominated by low-degree vertices (Equation 4) and then slowly
increase dominated by high-degree vertices (Equation 5).

Compared to Random vertex-cut (Equation 2), the expected replication factor of Random hybrid-
cut (Equation 6) is always better, since the set of adjacent edges S(v) of Random hybrid-cut that
may incur replicas is merely a subset of that of Random vertex-cut. Compared to Grid vertex-cut,
since the strategies adopted by Grid vertex-cut (Equation 3) and Random hybrid-cut are much dif-
ferent, it is rather difficult to directly compare the equation of expected replication factor. Therefore,
we simulate the ratio of the expected replication factor of Grid vertex-cut to Random hybrid-cut
using 10-million vertex power-law graphs with different constants. Random hybrid-cut uses a fixed
threshold (θ=100). As shown in Figure 11(b), Random hybrid-cut can outperform Grid vertex-cut
in all cases, and the effective gains increase with lower power-law constant (α). For example, the
replication factor on 100 machines decreases from 5.76 to 3.55 and from 18.54 to 6.59 for α=2.2
and 1.8 respectively.

4.4 Empirical Comparison

We use a collection of real-world and synthetic power-law graphs to compare various graph parti-
tioning algorithms, as shown in Table 5. Most real-world graphs were from the Laboratory for Web
Algorithmics15 and Stanford Large Network Dataset Collection16. Each synthetic graph has 10 mil-
lion vertices and a power-law constant (α) ranging from 1.8 to 2.2. Smaller α produces denser

15LAW: http://law.di.unimi.it/datasets.php
16SNAP: http://snap.stanford.edu/data/

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

http://law.di.unimi.it/datasets.php
http://snap.stanford.edu/data/

1:18 R. Chen et al.

Table 5. A collection of real-world graphs and randomly constructed power-law graphs with varying

α and fixed 10-million vertices. Smaller α produces denser graphs.

Real-world graphs |V | |E| α |V | |E|
Twitter (TW) [38] 42M 1.47B 1.8 10M 673M
UK-2005 (UK) [4] 40M 936M 1.9 10M 249M
Wiki (WK) [28] 5.7M 130M 2.0 10M 105M
LJournal (LJ) [18] 5.4M 79M 2.1 10M 53.8M
GWeb (GW) [42] 0.9M 5.1M 2.2 10M 39.0M

 0

 5

 10

 15

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

α

1.8 1.9 2.0 2.1 2.2

2
8

.4

1
8

.0

Grid
Oblivious

Coordinated
Hybrid
Ginger

(a) Replication Factor

 0

 25

 50

 75

 100

 125

 150

 175

1.8 1.9 2.0 2.1 2.2P
re

-p
ro

c
e
s
s
in

g
 T

im
e
 (

S
e
c
)

α

Grid
Oblivious

Coordinated
Hybrid
Ginger

(b) Pre-processing Time

Fig. 12. The replication factor and pre-processing time of the power-law graphs with different con-

stants (α) on the 48-node 1GbE cluster.

graphs. They were generated by tools in PowerGraph, which randomly sample the in-degree of
each vertex from a Zipf distribution [2] and then add in-edges such that the out-degrees of each ver-
tex are nearly identical. Detailed testbed configurations can be found in (§6). Note that hybrid-cuts
use a fixed threshold (θ=100) and retain balanced load (ρ≤1.01)17 for both edges and vertices in
all cases.

In Figure 12, we compare the replication factor and pre-processing time of hybrid-cut against
various vertex-cuts for the power-law graphs with different constants (α) on our 48-node cluster.
Random hybrid-cut notably outperforms Grid vertex-cut with slightly less pre-processing time, and
the gap increases with the growing of skewness of the graph, reaching up to 2.4X (α=1.8). Oblivi-
ous vertex-cut has larger replication factor and more pre-processing time for the power-law graphs.
Though Coordinated vertex-cut provides comparable replication factor with Random hybrid-cut
(10% higher), it triples the pre-processing time. Ginger can further reduce the replication factor by
more than 20% (see Figure 12(a)), but also increases pre-processing time like Coordinated vertex-
cut. The overhead of Ginger is mainly from the exchange of mapping tables for low-degree vertices,
which can be amortized with more edges in denser graphs (e.g., α=1.8).

For real-world graphs (see Figure 13(a)), the improvement of Random hybrid-cut against Grid
is smaller and sometimes slightly negative since the skewness of some graphs is moderate and
randomized placement is not suitable for highly adjacent low-degree vertices (e.g., UK and GWeb).
However, Ginger still performs much better in such cases, up to 3.11X improvement over Grid on

17Normalized maximum load ρ =
maximum load

average load
. Grid vertex-cut reaches up to 1.50 on 48 machines.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:19

 0

 5

 10

 15

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

Dataset
Twitter UK Wiki LJ GWeb

Grid
Oblivious

Coordinated
Hybrid
Ginger

(a) Real-world Graphs

1

5

10

15

1 8 16 24 48
R

e
p
lic

a
ti
o
n
 F

a
c
to

r

Number of Machines

Grid
Oblivious
Coordinated

Hybrid
Ginger

(b) Twitter Follower Graph

Fig. 13. The replication factor of the real-world graphs on the 48-node 1GbE cluster and the replica-

tion factor of the Twitter follower graph with increasing machines.

 0

 1

 2

 3

 4

 5

 6

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

α

1.8 1.9 2.0 2.1 2.2

Grid
Oblivious

Coordinated
Hybrid
Ginger

(a) Replication Factor

 0

 50

 100

 150

 200

 1.8 1.9 2 2.1 2.2P
re

-p
ro

c
e
s
s
in

g
 T

im
e
 (

S
e
c
)

α

Grid
Oblivious

Coordinated
Hybrid
Ginger

(b) Pre-processing Time

Fig. 14. The replication factor and pre-processing time of the power-law graphs with different con-

stants (α) on the 6-node 10GbE cluster.

UK. Figure 13(b) compares the replication factor with an increasing number of machines on the
Twitter follower graph. Random hybrid-cut provides comparable results to Coordinated vertex-cut
with just 35% pre-processing time, and outperforms Grid and Oblivious vertex-cut by 1.74X and
2.67X respectively.

To understand the influence of fewer machines and high-performance networking for the repli-
cation factor and pre-processing time on skewed graphs, we evaluate various graph partitioning
algorithms for the power-law graphs with different constants (α) on our 6-node cluster connected
via 10Gb Ethernet. As shown in Figure 14(a), hybrid-cuts still outperform prior vertex-cuts even on
fewer machines. For example, Random hybrid-cut and Ginger can reduce up to 32.2% (from 27.1%)
and 24.2% (from 21.9%) replicas compared to Grid and Coordinated vertex-cut respectively. Fig-
ure 14(b) shows a similar trend of pre-processing time (see Figure 12(b)). Further, fewer machines
will increase the time for graph loading due to less parallelism, while high-performance networking
will decrease the time for dispatching edges. Since the main cost of greedy algorithms is from the
heuristic edge-placement during graph loading, the pre-processing phase of them is relatively more
efficient on large-scale clusters, especially for denser graphs (e.g., α=1.8). Note that the parallel
loading is disabled for Coordinated vertex-cut due to unknown bugs for 6 machines.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:20 R. Chen et al.

 0

 4

 8

 12

 16

1 5 10 15 20 25 30 35 40 45

R
e

p
lic

a
ti
o

n
 F

a
c
to

r

Number of Vertices (Millions)

95.3%

15.95

8.34

5.59

60.0%

Random
Grid
Hybrid

Fig. 15. The replication factor of the Twitter follower graph on 48 machines with the increase of

vertices.

We further evaluate the effectiveness of various partitioning algorithms on low-degree and high-
degree vertices. Figure 15 illustrates the growth of replication factor (λ) on 48 machines with the
increase of vertices from the Twitter follower graph according to the order of their in-degrees. We set
100 as the threshold of Random hybrid-cut (θ=100), and then the percentage of low-degree vertices
is about 95.3% in the Twitter follower graph. For low-degree vertices, the replication factor of
Random hybrid-cut is only 3.50, much lower than that of Random (7.46) and Grid (5.27) vertex-cut.
The main reason is that there are few adjacencies among low-degree vertices in natural graphs, and
assigning one vertex with in-edges to a single machine (i.e., hybrid-cut) introduces fewer replicas
compared to assigning edges of one vertex to different machines (i.e., vertex-cut). For the first
60% vertices with the lowest degree, the difference of replication factor between Grid and Random
vertex-cut is only less than 5% (1.85 vs. 1.93), because the upper bound of Grid (i.e., 2

√
N − 1) is

still too large for most low-degree vertices. In contrast, the replication factor of Random hybrid-cut
is 1.49 for these vertices.

For the 5% of vertices with the highest degree, the replication factor for Random vertex-cut
increases dramatically from 7.46 to 15.96, since the edges are randomly assigned to machines, re-
sulting in a large number of new replicas of its neighboring vertices (major low-degree vertices).
Using Grid heuristics could relatively mitigate the increase of replication factor (from 5.27 to 8.34)
through constraining the target machines. However, it still cannot avoid introducing new replicas of
low-degree vertices. The replication factor of Random hybrid-cut is confined to 5.59 (from 3.50),
thanks to assigning all edges of high-degree vertices to the master of their neighboring vertices.

worker thread
worker threadvertex

comm.

RPC threads RPC threads

M0 M1
order

interferencepoor locality

vertex_data_array

vertex_msg_array

Fig. 16. An example of execution along with communication

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:21

5 LOCALITY-CONSCIOUS GRAPH LAYOUT

Graph computation usually exhibits poor data access locality [44, 50], due to irregular traversal
of neighboring vertices along edges as well as frequent message exchanges between master and
mirror vertices. The internal data structure of PowerLyra is organized to improve data access lo-
cality. Specifically, PowerLyra splits different (meta)data for both masters and mirrors to separated
arrays and assigns unique local IDs sequentially in each machine to the local vertices for indexing,
which are mapped to global vertex IDs. As shown in Figure 16, in each phase, the worker thread
sequentially traverses vertices and executes user-defined functions. The messages across machines
are batched and sent periodically.

After the synchronization in each phase, all messages received from different machines will be
updated to vertices in parallel by multiple RPC threads, and the order of accessing vertices is only
determined by order of the senders. However, since the order of messages is predefined by the
traversal order, the accesses to vertices have poor locality due to a mismatch of orders between
senders and receivers. Even worse, messages from multiple machines are processed in parallel and
heavily interfere with each other (shown in the upper part of Figure 16). Though it appears that both
problems could be addressed partially at runtime by sorting or dispatching messages on the fly [11],
our experience shows that this will cause notable overhead instead of performance boost, due to
non-trivial additional CPU cycles.

PowerLyra mitigates the above problems by extending hybrid-cut in four steps, as shown in Fig-
ure 17. The left part shows the arrangement of masters and mirrors in each machine after each step,
and the right part provides a thumbnail with some hints about the ordering. Before the relocation,
since the input graph files will be sequentially processed without additional sorting, all masters and
mirrors of high-degree and low-degree vertices are mixed and stored in random orders. For example,
the order of update messages from masters (i.e., 7, 1 and 4) in machine 0 (M0) mismatches the order
of their mirrors stored in machine 1 (M1) (see Figure 17).

First, hybrid-cut divides the vertex space into 4 zones to store high-degree masters (Z0), low-
degree masters (Z1), high-degree mirrors (Z2) and low-degree mirrors (Z3) respectively. This is
friendly to the message batching since the processing on vertices in the same zone is similar. Further,
it also improves the locality of worker threads by skipping the unnecessary vertex traversal and
avoids interference between worker and RPC threads. For example, in the Apply phase, only masters
(Z0 and Z1) participate in the computation and only mirrors (Z2 and Z3) receive messages.

Second, the mirrors in Z2 and Z3 are further grouped according to the location of their masters,
which could further reduce the working set and the interference when multiple RPC threads update
mirrors in parallel. For example, in M1, mirror 4 and 7 are grouped in l0 while mirror 9 and 3 are
grouped in l2. The processing of messages from the master of low-degree vertices in M0 (L0) and
M2 (L2) is restricted to different groups (l0 and l2) on M1.

Third, hybrid-cuts sort the masters and mirrors within a group according to the global vertex IDs
and sequentially assign their local IDs. Because the order of messages follows the order of local
IDs, sorting ensures that both masters and mirrors have the consistent relative order of local IDs to
exploit spatial locality. For example, the low-degree master in M0 (L0) and their mirrors in M1 (l0)
are sorted in the same order (i.e., 4 followed by 7). The message from L0 in M0 and L2 in M2 would
be sequentially applied to mirrors (l0 and l2) in M1 in parallel.

Finally, since messages from different machines are processed simultaneously after synchroniza-
tion, if the mirror groups in each machine have a similar order, it would lead to contention and
interference on the master zones (Z0 and Z1). For example, messages from mirrors in M1 and M2
(h0 and l0) will be updated simultaneously to the master in M0 (H0 and L0). Therefore, hybrid-cuts
place mirror groups in a rolling order: the mirror groups in machine n for p partitions start from

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:22 R. Chen et al.

1.Zoning

2.Grouping

3.Sorting

4.Rolling

H0 L0 h1 h2 l1 l2

H1 L1 h0 h2 l0 l2

H2 L2 h0 h1 l0 l1

H0 L0 h-mrr l-mrr

H1 L1 h-mrr l-mrr

H2 L2 h-mrr l-mrr

H0 L0 h1 h2 l1 l2

H1 L1 h2 h0 l2 l0

H2 L2 h0 h1 l0 l1

H0 L0 h1 h2 l1 l2

H1 L1 h0 h2 l0 l2

H2 L2 h0 h1 l0 l1

Z0 Z1 Z2 Z3

(l)ow-mirror1

(H)igh-master2

(h)igh-mirror

4 (L)ow-master

7

4172 5 863

82 51 936 7

36 14 8 2 59

4

M0

M1

M2

:

:

:

41 7 2 836 5

82 5 6 931 4

36 1 482 59

7

M0

M1

M2

:

:

:

41 7 2 356 8

82 5 1 976 4

36 1 582 49

3

M0

M1

M2

:

:

:

71 4 2 386 5

82 5 1 376 4

96 1 852 43

9

M0

M1

M2

:

:

:

71 4 2 386 5

82 5 6 491 3

96 1 852 43

7

M0

M1

M2

:

:

:

No interference btw.

RPC & worker threads

No interference btw.

RPC threads

Improved locality of

worker threads

No congestion and

interference on

high-master zone

Improved locality of

RPC threads

send msgs

worker thread

RPC thread

Fig. 17. An example of the locality-conscious data layout optimization.

(n+1) mod p. For example, the mirror groups of high-degree vertices in M1 start from h2 then h0,
where n = 2 and p = 3.

Though we separately describe above four steps, they are actually implemented as one step of
hybrid-cuts after reassignment of high-degree vertices. All operations are executed independently on
each machine, and there is no additional communication and synchronization. Hence, the increase of
pre-processing time due to the above optimization is modest (less than 5% for the power-law graphs
and around 10% for real-world graphs), resulting in usually more than 10% speedup (21% for the
Twitter follower graph), as shown in Figure 18. The speedup for Google Web graph is negligible,
as the number of vertices is very small. Since locality-conscious layout essentially trades off the
pre-processing time for faster graph computation, it should be worthwhile for graph computation
that processes a graph with multiple iterations and even multiple times in memory.

6 EVALUATION

We have implemented PowerLyra based on the latest GraphLab PowerGraph v2.2 (released in Feb-
ruary 2015), and can seamlessly run all existing graph algorithms in GraphLab and respect the
fault tolerance model. PowerLyra currently supports both synchronous and asynchronous execu-
tion modes. To illustrate the efficiency and generality of PowerLyra, we further port the Random
hybrid-cut to GraphX.

We evaluate PowerLyra with hybrid-cut (Random and Ginger) against PowerGraph with vertex-
cut (Grid, Oblivious and Coordinated), and report the average results of five runs for each experi-
ment. Most experiments are performed on a dedicated, VM-based 48-node EC2-like cluster. Each

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:23

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Dataset

-10%

0%

10%

20%

Twitter UK Wiki LJ GWeb

Execution Time
Pre-processing Time

(a) Real-world Graphs

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

-10%

0%

10%

20%

1.8 1.9 2.0 2.1 2.2

Execution Time
Pre-processing Time

(b) Power-law Graphs

Fig. 18. The effect of locality-conscious optimization on the real-world and power-law graphs for

PageRank using 48 machines.

machine has 4 AMD Opteron cores and 12GB DRAM. All machines are connected via 1Gb Ether-
net. To avoid exhausting memory and slow convergence, a 6-node in-house physical 1GbE cluster
with a total of 144 AMD Opteron cores and 384GB DRAM is used to evaluate the scalability in
terms of data size (§6.3), the performance of the asynchronous engine (§6.9) and the comparison
with other systems (§6.11). We further use a new cluster of 6 machines connected by 10Gb Ethernet
to understand the influence of high-performance networking for distributed graph-parallel systems.
Each machine has two 10-core Intel Xeon E5-2650 v3 processors and 64GB of DRAM. We use
the graphs listed in Table 5 and set 100 and 20 as the default threshold of hybrid-cut during our
evaluation for the 48-node and 6-node clusters respectively.

6.1 Graph Algorithms

We choose three different typical graph-analytics algorithms representing three types of algorithms
regarding the set of edges in the Gather and Scatter phases:

PageRank (PR) computes the rank of each vertex based on the ranks of its neighbors [5], which
belongs to Natural algorithms that gather data along in-edges and scatter data along out-edges.
PowerLyra should have significant speedup for both synchronous and asynchronous engines. Unless
specified, the execution time of PageRank is the average of 10 iterations of synchronous execution.

Approximate Diameter (DIA) estimates an approximation of diameter for a graph by probabilistic
counting, which is the maximum length of shortest paths between each pair of vertices [35]. DIA
belongs to the inverse Natural type of algorithms that gather data along out-edges and scatter none,
which prefers the unidirectional access along out-edges. In such a case, PowerLyra is still expected
to show notable improvements.

Connected Components (CC) calculates a maximal set of vertices that are reachable from each
other by iterative label propagation. CC belongs to Other algorithms that gather none and scatter
data via all edges. It benefits less from PowerLyra’s computation model since the execution on
PowerLyra is similar to that on PowerGraph. Fortunately, PowerLyra still outperforms PowerGraph
due to hybrid-cut and locality-conscious data layout optimizations.

Graph Coloring (GC) assigns a color to each vertex and ensures that no adjacent vertices share
the same color. The greedy implementation [23] simultaneously picks minimum colors not used
by any of their neighbors for all vertices, which cannot converge in synchronous execution due to
using the stale colors of neighbors. GC belongs to Other algorithms that gather and scatter data via

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:24 R. Chen et al.

 0

 1

 2

 3

 4

 5

 6

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Dataset
Twitter UK Wiki LJ GWeb

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(a) Real-world Graphs

 0

 1

 2

 3

 4

 5

 6

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

1.8 1.9 2.0 2.1 2.2

PG+Grid
PG+Oblivious
PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Power-law Graphs

Fig. 19. Overall performance comparison between PowerLyra and PowerGraph on the real-world

and power-law graphs for PageRank using 48 machines.

all edges. PowerLyra still outperforms PowerGraph due to hybrid-cut and lower scheduling cost of
the asynchronous engine.

6.2 Performance

We compare the execution time of different systems and partitioning algorithms as in the Power-
Graph paper [24]. Figure 19(a) shows the speedup of PowerLyra over PowerGraph on real-world
graphs. The largest speedup comes from UK graph for the Ginger hybrid-cut due to a relatively
high reduction of replication factor (from 8.62 to 2.77, Figure 13). In this case, PowerLyra using
Ginger outperforms PowerGraph with Grid, Oblivious and Coordinated vertex-cut by 5.53X, 2.54X
and 2.72X accordingly. For Twitter, PowerLyra also outperforms PowerGraph by 2.60X, 4.49X
and 2.01X for Grid, Oblivious and Coordinated vertex-cut accordingly. Even though the replication
factor of Wiki and LJournal using Random hybrid-cut is slightly higher than that of Grid and Co-
ordinated, PowerLyra still outperforms PowerGraph using Grid by 1.40X and 1.73X for Wiki and
1.55X and 1.81X for LJournal accordingly, due to the better computing efficiency of low-degree
vertices.

As shown in Figure 19(b), PowerLyra performs better for the power-law graphs using hybrid-
cut, especially for high power-law constants (i.e., α) due to the higher percentage of low-degree
vertices. In all cases, PowerLyra outperforms PowerGraph with Grid vertex-cut by more than 2X,
from 2.02X to 3.26X. Even compared with PowerGraph with Coordinated vertex-cut, PowerLyra
still provides a speedup ranging from 1.42X to 2.63X. Though not clearly shown in Figure 19(b),
PowerLyra with Ginger outperforms Random hybrid-cut from 7% to 17%. Such a relatively smaller
speedup for the power-law graphs is because Random hybrid-cut already has a balanced partition
with a small replication factor (see Figure 12).

6.3 Scalability

We study the scalability of PowerLyra in two aspects. First, we evaluate the performance for a given
graph (Twitter follower graph) with the increase of resources. Second, we fix the resources using
the 6-node cluster while increasing the size of the graph.

Figure 20 shows that PowerLyra has similar scalability with PowerGraph, and keeps the improve-
ment with increasing machines and data size. With the increase of machines from 8 to 48, the
speedup of PowerLyra using Random hybrid-cut over PowerGraph with Grid, Oblivious and Co-
ordinated vertex-cut ranges from 2.41X to 2.76X, 2.14X to 3.78X and 1.86X to 2.09X. For the

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:25

 0

 40

 80

 120

 160

8 16 24 48

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Number of Machines

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(a) #Machines

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Number of Vertices (Millions)

PG+Grid
PG+Oblivious
PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Graph Size

Fig. 20. A comparison between PowerLyra and PowerGraph for the Twitter follower graph with in-

creasing machines and for the power-law graph (α=2.2) on the 6-node cluster with increasing data

size.

 0

 2

 4

 6

 8

 10

 1.8 1.9 2 2.1 2.2

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

α

PG+Hybrid
PG+Ginger
PL+Hybrid
PL+Ginger

(a) Execution Time

 0

 20

 40

 60

 80

 100

 1.8 1.9 2 2.1 2.2

O
n
e
 I
te

r
C

o
m

m
s
 (

M
B

)

α

PG+Hybrid
PG+Ginger
PL+Hybrid
PL+Ginger

(b) Communication Data Size

Fig. 21. A comparison between PowerLyra and PowerGraph for PageRank using the power-law

graphs with different constants (α) on 48 machines. Both PowerLyra and PowerGraph use Hybrid

and Ginger hybrid-cut.

increase of graph from 10 to 400 million vertices with fixed power-law constant 2.2, PowerLyra
with Random hybrid-cut stably outperforms PowerGraph with Grid, Oblivious and Coordinated
vertex-cut by up to 2.89X, 2.83X and 1.94X respectively. Note that only PowerLyra with Random
hybrid-cut can handle the graph with 400 million vertices due to the reduction of memory in graph
computation and partitioning.

6.4 Effectiveness of Graph Engine

Hybrid-cut can also be applied to the original PowerGraph engine, which we use to quantify the per-
formance benefit from the hybrid computation model, we run both PowerGraph and PowerLyra en-
gine using the same hybrid-cut on 48 machines for the power-law graphs. As shown in Figure 21(a),
PowerLyra outperforms PowerGraph by up to 1.40X and 1.41X using Random and Ginger hybrid-
cut respectively, due to the elimination of more than 30% communication cost (see Figure 21(b)).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:26 R. Chen et al.

 0

 100

 200

 300

 1.8 1.9 2 2.1 2.2

O
n
e
 I
te

r
C

o
m

m
s
 (

M
B

)

α

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(a) Power-law Graphs

 0

 0.5

 1

 1.5

8 16 24 48
O

n
e
 I
te

r
C

o
m

m
s
 (

G
B

)

Number of Machines

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Twitter Follower Graph

Fig. 22. One iteration communication data size for the power-law graphs with different constants (α)

on 48 machines and for the Twitter follower graph with increasing machines.

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

Threshold

Replication Factor
Execution Time

2
10

2
12

2
14

 0

 10

 20

 30

 40

 50

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

+ ∞

Fig. 23. The impact of threshold in PowerLyra on replication factor and execution time for the Twitter

follower graph using PageRank.

6.5 Communication Cost

The improvement of PowerLyra is mainly from reducing communication cost. In PowerLyra, only
high-degree vertices (a small fraction) require significant communication cost, while low-degree ver-
tices (a large fraction) only require one message exchange in each iteration. As shown in Figure 22,
PowerLyra has much less communication cost compared to PowerGraph. For the power-law graphs,
PowerLyra can reduce data transmitted by up to 75% and 50% using Random hybrid-cut, and up
to 79% and 60% using Ginger, compared to PowerGraph with Grid and Coordinated vertex-cut
respectively. PowerLyra also significantly reduces the communication cost for the Twitter follower
graph up to 69% and 52% using Random hybrid-cut, and up to 74% 59% using Ginger, compared
to PowerGraph with Grid and Coordinated vertex-cut respectively.

6.6 Threshold

To study the impact of different thresholds, we run PageRank on the Twitter follower graph with
different thresholds. As shown in Figure 23, using high-cut (θ=0) or low-cut (θ=+∞) for all vertices
results in poor replication factor due to the negative impact from skewed vertices in terms of out-
edge or in-edge. With an increasing threshold, the replication factor (λ) rapidly decreases and then

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:27

 2

 4

 8

 16

 32

2
1

2
2

2
4

2
6

2
8

2
10

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

Threshold

out-1.8

out-1.9

out-2.1

out-2.2

in-1.8
in-1.9

in-2.0

in-2.1in-2.2

out-2.0

(a) 48 partitions

 2

 3

 4

 5

 6

2
1

2
2

2
4

2
6

2
8

2
10

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

Threshold

out-1.8
in-1.8

in-1.9
in-2.0

in-2.1in-2.2

out-1.9

out-2.0

out-2.1

out-2.2

(b) 6 partitions

Fig. 24. The replication factor of random hybrid-cut with the increase of thresholds for 48 and 6 par-

titions using various power-law graphs. Each graph is combined by two synthetic power-law graphs

with skewed in and out degree distributions (α=1.8-2.2) separately. The yellow box marks the range

of thresholds for acceptable replication factor (less than 10% overhead).

slowly increases. The best runtime performance usually occurs a little bit after the lowest replication
factor, since the increase of threshold also reduces the number of high-degree vertices, which is
beneficial to the overall performance. Consequently, the execution time is relatively stable for a
large range of thresholds. In Figure 23, the difference of execution time under threshold from 100
to 500 is lower than 1 second.

Therefore, an intuitive way to find the threshold (θ) of optimal performance is approximately
equal to find the threshold of the lowest replication factor. However, the replication factor is still
determined by multiple factors other than the threshold, including the number of machines (p) and
the skewness of input graphs (α). Fortunately, we observe that given the number of machines, there
exists a range of thresholds can provide acceptable results (less than 10% overhead) for various
power-law graphs. In Figure 24, we measure the replication factor of random hybrid-cut to partition
a large number of typical power-law graphs into 48 and 6 partitions. Since the power-law graphs
generated by tools in PowerGraph have only one direction skewed degree distribution, we combine
two synthetic graphs skewed in different directions to represent real-world graphs. For example,
the power-law constant (α) of in and out degree distributions for the Twitter follower graph is
approximate 1.7 and 2.0 respectively [24]. As shown in Figure 24, the range of thresholds to provide
less than 10% overhead of replication factor for all graphs is from 70 to 140 and from 20 to 50 for
48 and 6 partitions separately. Therefore, users can determine a reasonable threshold for a given
cluster by offline sampling several typical synthetic graphs.

6.7 Other Algorithms and Graphs

To study the performance of PowerLyra on different algorithms, we evaluate DIA and CC on the
power-law graphs. As shown in Figure 25(a), PowerLyra outperforms PowerGraph with Grid vertex-
cut by up to 2.48X and 3.15X using Random and Ginger hybrid-cut respectively for DIA. Even
compared with PowerGraph with Coordinated vertex-cut, the speedup still reaches 1.33X and 1.74X
for Random and Ginger hybrid-cut. Note that the missing data for PowerGraph with Oblivious is
because of exhausted memory.

Since PowerLyra treats execution in the Scatter phase of low-degree vertices the same as high-
degree vertices, the improvement on CC is mainly from hybrid-cut, which reduces the communica-
tion cost by decreasing replication factor. For the power-law graphs, PowerLyra can still outperform

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:28 R. Chen et al.

 0

 1

 2

 3

 4

 5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

1.8 1.9 2.0 2.1 2.2

PG+Grid
PG+Oblivious
PG+Coordinated
PL+Hybrid
PL+Ginger

(a) Approximate Diameter

 0

 1

 2

 3

 4

 5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

1.8 1.9 2.0 2.1 2.2

PG+Grid
PG+Oblivious
PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Connected Components

Fig. 25. A comparison between PowerLyra and PowerGraph on the power-law graphs for Approxi-

mate Diameter (DIA) and Connected Components (CC) on 48 machines.

Table 6. A comparison of various graph partitioning algorithms on 48 machines using PageRank (10

iterations) for the RoadUS graph.

Algorithm

& Graph
Vertex-cut λ

Time (Sec)

Pre-processing Execution

PageRank &
RoadUS [20]
|V |=23.9M
|E|=58.3M

Coordinated 2.28 26.9 50.4
Oblivious 2.29 13.8 51.8

Grid 3.16 15.5 57.3
Hybrid 3.31 14.0 32.2

Ginger 2.77 28.8 31.3

PowerGraph with Grid vertex-cut by up to 1.88X and 2.07X using Random and Ginger hybrid-cut
respectively (see Figure 25(b)).

We also investigate the performance of PowerLyra for non-skewed graphs like road networks.
Table 6 illustrates a performance comparison between PowerLyra and PowerGraph for PageRank
with 10 iterations on RoadUS [20], the road network of the United States. The average degree of
RoadUS is less than 2.5 (there are no high-degree vertices). Even though Oblivious and Coordinated
vertex-cut have lower replication factor due to the greedy heuristic, PowerLyra with hybrid-cut still
notably outperforms PowerGraph with vertex-cut by up to 1.78X, thanks to improved computation
locality of low-degree vertices.

6.8 MLDM Applications

We further evaluate PowerGraph and PowerLyra on machine learning and data mining applications.
Two different collaborative filtering algorithms, Alternating Least Squares (ALS) [99] and Stochas-
tic Gradient Descent (SGD) [69], are used to predict the movie ratings for each user on Netflix
movie recommendation dataset [99], in which the users and movies are presented as vertices, and
the ratings are presented as edges. Both the memory consumption and computational cost depend
on the magnitude of latent dimension (d), which also impacts the quality of approximation. The
higher d produces the higher accuracy of prediction while increasing both memory consumption
and computational cost. As shown in Table 7, with the increase of latent dimension (d), the speedup
of PowerLyra using Random hybrid-cut over PowerGraph with Grid vertex-cut ranges from 1.45X

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:29

Table 7. Performance (pre-processing / execution time in seconds) comparison between PowerLyra

and PowerGraph on Netflix movie recommendation dataset using collaborative filtering algorithms.

The vertex and edge data are measured in bytes and the d is the size of the latent dimension.

Netflix Movie Recommendation [99] Replication Factor
|V | |E| Vertex Data Edge Data Grid Hybrid

0.5M 99M 8d + 13 16 12.3 2.6

ALS [99] d=5 d=20 d=50 d=100
PowerGraph w/ Grid 10 / 33 11 / 144 16 / 732 Failed
PowerLyra w/ Hybrid 13 / 23 13 / 51 14 / 177 15 / 614

SGD [69] d=5 d=20 d=50 d=100
PowerGraph w/ Grid 15 / 35 17 / 48 21 / 73 28 / 115
PowerLyra w/ Hybrid 16 / 26 19 / 33 19 / 43 20 / 59

 0

 1

 2

 3

 4

 5

 6

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

1.8 1.9 2.0 2.1 2.2

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(a) Graph Coloring

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Number of Machines

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Power-law Graph (α=2.0)

Fig. 26. A performance and scalability comparison between PowerLyra and PowerGraph using asyn-

chronous engine for Graph Coloring (GC) on the power-law graphs with different constants (α) and

increasing machines.

to 4.13X and 1.33X to 1.96X for ALS and SGD accordingly. Note that PowerGraph fails for ALS
using d=100 due to exhausted memory as well.

6.9 Asynchronous Engine (Async)

To study the performance improvement of PowerLyra compared to PowerGraph with the asynchro-
nous engine, we run Graph Coloring on our 6-node cluster until convergence, which is hard or
impossible in synchronous execution.

Figure 26(a) shows the speedup of PowerLyra over PowerGraph on power-law graphs. In all
cases, PowerLyra outperforms PowerGraph with Grid vertex-cut by more than 2X (from 2.01X to
3.34X) due to lower replication factor. Even compared with PowerGraph with Coordinated vertex-
cut, PowerLyra can still provide a speedup ranging from 1.22X to 2.18X due to good locality. In
addition, PowerLyra with Ginger outperforms Random hybrid-cut from 17% to 55% due to a rel-
atively significant improvement of the replication factor on a smaller cluster (6 nodes), reducing
more than 16% replicas.

We also evaluate the performance for a given power-law graph (α=2.0) with increasing machines.
As shown in Figure 26(b), PowerLyra with hybrid-cuts has a better performance trend compared

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:30 R. Chen et al.

 0

 1

 2

 3

 4

 5

 6

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

α

1.8 1.9 2.0 2.1 2.2

PG+Grid
PG+Oblivious
PG+Coordinated
PL+Hybrid
PL+Ginger

(a) PageRank (Sync)

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Number of Machines

PG+Grid
PG+Oblivious

PG+Coordinated
PL+Hybrid
PL+Ginger

(b) Graph Coloring (Async)

Fig. 27. A performance and scalability comparison between PowerLyra and PowerGraph for PageR-

ank on the power-law graphs with different constants (α) using synchronous engine and Graph Col-

oring on the power-law graph (α=2.0) with increasing machines using asynchronous engine.

to PowerGraph with vertex-cuts. Note that Grid vertex-cut performs relatively poor for a smaller
cluster due to the upper bound of replication factor is too large (e.g., 3 for 3 machines)18.

6.10 High-performance Networking

To understand the influence of high-performance networking for distributed graph-parallel systems,
we evaluate PowerGraph and PowerLyra on a 6-node cluster with a total of 120 cores and 384GB
DRAM and connected with 10GbE Infiniband NICs.

Figure 27(a) shows the speedup of PowerLyra over PowerGraph with the synchronous engine on
power-law graphs for PageRank. Though the high-bandwidth networking mitigates the communi-
cation overhead, PowerLyra still can benefit from less computation cost due to lower replication
factor and good locality in both computation and communication. PowerLyra with Random hybrid-
cut can outperform PowerGraph with Grid and Coordinated vertex-cut up to 2.58X (from 1.84X)
and 2.26X (from 1.37X) respectively. The performance difference between Random and Ginger
hybrid-cut merely ranges from 3% to 6%, since the improvement on the replication factor by the
greedy heuristic is quite limited on 6 machines. We believe with a larger scale cluster, PowerLyra
would have a much larger performance speedup.

We also evaluate the performance of asynchronous engine for Graph Coloring with increasing
machines using a power-law graph (α=2.0). As shown in Figure 27(b), the overall performance of
PowerLyra and PowerGraph are improved due to efficient CPU and networking (see Figure 26(b)).
For example, the execution time of Grid vertex-cut on 6 machines decreases from 34.7s to 13.3s.
Though the profit from high-performance networking for PowerLyra is relatively smaller than that
for PowerGraph because of fewer communication cost (§6.5), PowerLyra with hybrid-cuts can still
reserve better performance and scalability.

6.11 Comparison with Other Systems

Readers might be interested in how the performance of PowerLyra compares to other graph pro-
cessing systems, even if they adopt different designs such as graph-parallel abstraction [24, 29, 37,
47, 60], dataflow operators [26], sparse matrix operations [7] or declarative programming [62]. We

18The missing data of Grid vertex-cut on 5 machines is because of the prerequisite in PowerGraph, that Grid vertex-cut
can only be used to the number of partitions closed to a perfect square number. Further, using Coordinated vertex-cut on 5
machines is also failed due to unknown bugs when pre-processing.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:31

 0

 200

 400

 600

 800

 1000

 1200

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Twitter Follower Graph

528

367

1975 219
233

Giraph

GPS

CombBLAS

GraphX

GraphX/H

PowerGraph

PowerLyra

 0

 25

 50

 75

 100

 125

 150

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Power-law Graph

56

36

172

62

69

23

24

Pre-processing

Fig. 28. Performance comparison for various systems on the Twitter follower and power-law (α=2.0)

graphs using PageRank. GraphX/H indicates GraphX with random hybrid-cut. The labels upon his-

togram are pre-processing time.

Table 8. Performance (in seconds) comparison with Polymer (PO), Galois (GA), X-Stream (XS) and

GraphChi (GC) on PageRank (10 iterations) for both in-memory and out-of-core graphs using one

machine of our 6-node cluster. PL/N indicates PowerLyra running on N machines.

Graph PL/6 PL/1 PO GA XS GC

α=2.0 |V |=10M 14 45 6.3 9.8 9.0 115
α=2.2 |V |=400M 186 – – – 710 1666

evaluate PageRank on such systems to provide an end-to-end performance comparison, as the im-
plementation of PageRank is almost identical and well-studied on different systems. We deployed
the latest Giraph 1.1, GPS, CombBLAS 1.4 and GraphX 1.119 on our 6-node cluster20.

Figure 28 shows the execution time of PageRank with 10 iterations on each system for the Twitter
follower graph and the power-law graph with 10 million vertices. The pre-processing time is also
labeled upon histogram separately. PowerLyra outperforms other systems by up to 9.01X (from
1.73X), due to less communication cost and improved locality from differentiated computation and
partitioning. Though CombBLAS has closest runtime performance (around 50% slower), its pre-
processing stage takes a very long time (1,975 and 172 seconds) for data transformation due to
the limitation of the programming paradigm (sparse matrix), reaching 1,975 and 172 seconds for
Twitter and power-law graph respectively. We further port the Random hybrid-cut to GraphX (i.e.,
GraphX/H), leading to a 1.33X speedup even without heuristics21 and differentiated computation
engines. Compared to default 2D partitioning in GraphX, random hybrid-cut can reduce vertex
replication by 35.3% and data transmitted by 25.7% for the power-law graph.

We further change the comparison targets to systems on single-machine platform. First, we com-
pare the performance using a simple graph-analytics application (PageRank). One machine of our
6-node cluster (24 cores and 64GB DRAM) is used to run in-memory (Polymer [92] and Galois [53])
and out-of-core (X-Stream22 [57] and GraphChi [39]) systems for both in-memory and out-of-core

19The source code of LFGraph [29] is not available, and Naiad [51] only provides a C# version. SociaLite [62] and Mizan [37]
have some bugs to run on our clusters, which cannot be fixed in time by their authors.
20Both Giraph and GraphX ran out of memory on our 48-node cluster for the Twitter follower graph. Missed data for GraphX
and GraphX/H on the Twitter follower graph is because of exhausted memory.
21We only implement Random hybrid-cut on GraphX for preserving its graph partitioning interface.
22X-Stream provides both in-memory and out-of-core engines. We use the latest release from authors, which can disable
direct I/O and sufficiently leverage page cache.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:32 R. Chen et al.

Table 9. Performance (in seconds) comparison between PowerLyra (PL) and X-Stream (XS) using Al-

ternating Least Squares (ALS) on Netflix movie recommendation dataset. X-Stream runs on an AWS

EC2 r3.8xlarge instance (32 vCPUs and 244GB DRAM). PowerLyra runs on two 6-node in-house

clusters with 1GbE and 10GbE networking respectively. The d is the size of the latent dimension.

ALS [99] d=5 d=20 d=50 d=100
X-Stream (in-memory/244GB) 10.3 30.8 130 318
PowerLyra w/ Hybrid + 1GbE 17.5 31.6 93 291
PowerLyra w/ Hybrid + 10GbE 9.2 15.8 46 145

 0

 50

 100

 150

 200

 250

 0 200 400 600 800

M
e
m

o
ry

 U
s
a
g
e
 (

G
B

)

Execution Time (Sec)

PowerGraph
PowrLyra

GraphX GraphX/H

Memory Usage (GB)
RDD 30.7 25.4

Garbage Collection
Number 33 18

Time (Sec) 17.6 10.0

Fig. 29. (a) Comparison of memory footprint between PowerLyra and PowerGraph for Netflix movie

recommendation graph using ALS (d=50) on the 48-node cluster. (b) The memory and GC behavior

of GraphX w/ and w/o hybrid-cut on the power-law graph (α=2.0) for PageRank using the 6-node

cluster

graphs using PageRank with 10 iterations. As shown in Table 8, PowerLyra performs comparably
to Polymer and Galois for the 10-million vertex graph, while significantly outperforming X-Stream
and GraphChi for the 400-million vertex graph. Considering six times resources used by Power-
Lyra, single-machine systems would be more economical for graphs that can fit within the memory
of a single machine, while distributed ones are more efficient for larger graphs that cannot fit in the
memory of a single machine. The current PowerLyra focuses on the distributed platform, resulting
in a relatively poor performance on a single machine (45s of PL/1). We believe that PowerLyra
can further improve the performance for both in-memory and out-of-core graphs by adopting the
novel techniques of single-machine systems, such as NUMA-aware accesses strategy [92, 100].
In addition, a recent system, namely Musketeer [22]23, can automatically choose a right execu-
tion engine depending on the properties of input data, such as the size of the graph. Finally, the
prevalent of cloud computing drives an easy, cost efficient way to launching distributed systems
(e.g., PowerLyra) over flexible and elastic computing resources, even crossing multiple clouds (e.g.,
JointCloud [76]).

Second, we compare the performance using a popular MLDM application (ALS). A high-
performance instance of AWS EC2 (r3.8xlarge) with 244GB DRAM is used to conduct the in-
memory execution of X-Stream. As shown in Table 9, compared to X-Stream, PowerLyra can pro-
vide a comparable performance on the 6-node cluster with 1GbE and up to 2.83X speedup (from
1.11X) with high-performance networking.

23Musketeer has announced to support PowerLyra.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:33

6.12 Memory Consumption

Besides performance improvement, PowerLyra can also mitigate the memory pressure due to sig-
nificantly fewer vertex replicas and messages. The overall effectiveness depends on the ratio of
vertices to edges and the size of vertex data. As shown in the left part of Figure 29, both the size and
the duration of memory consumption on PowerLyra is notably fewer than that on PowerGraph for
ALS (d=50) with Netflix movie recommendation graph, reducing near 85% peak memory consump-
tion (30GB vs. 189GB) and 75% elapsed time (194s vs. 749s). We also use jstat, a memory tool
in JDK, to monitor the GC behavior of GraphX and GraphX/H. Integrating hybrid-cut to GraphX
also reduces about 17% memory usage for RDD and causes fewer GC operations even on only 6
machines for PageRank with a power-law graph (α=2.0). We believe the measured reduction of
memory would be significantly larger if GraphX executes on a larger cluster or memory-intensive
algorithms.

7 OTHER RELATED WORK

PowerLyra is inspired by and departs from prior graph-parallel systems [24, 26, 43, 47], but differs
from them in adopting a novel differentiated graph computation and partitioning scheme for vertices
with different degrees.

Distributed graph processing systems: LFGraph [29] proposes a publish-subscribe mechanism
to reduce communication cost but restricts graph algorithms just to the one-way access. Mizan [37]
leverages vertex migration for dynamic load balancing. Imitator [16, 79] reuses computational repli-
cation for fault tolerance in large-scale graph processing to provide low-overhead normal execution
and fast crash recovery. Giraph++ [71] and Blogel [87] provide several algorithm-specific optimiza-
tions for graph traversal and aggregation applications relying on the graph-centric and block-centric
models with partitioning information. PowerSwitch [85] embraces the best of both synchronous and
asynchronous execution modes by adaptively switching graph computation between them. GPS [60]
also features an optimization on skewed graphs by partitioning the adjacency lists of high-degree
vertices across multiple machines, while it overlooks the locality of low-degree vertices and still
uniformly processes all vertices. Besta and Hoefler [3] propose Atomic Active Messages that lever-
ages hardware transactional memory (HTM) to accelerate irregular graph computation. Chaos [56]
enables graph processing built on the aggregate secondary storage of a cluster, which is shown capa-
ble of processing trillion-edge graphs. There are also a few systems considering GPU [45, 80, 81],
NUMA [100], RDMA [64, 83], stream processing [17, 55, 96], and temporal graphs [27].

Single-machine graph processing systems: There are also several efforts aiming at leveraging
multicore platforms for graph processing [39, 46, 53, 57, 65, 66, 92, 101], which focus on such
as improving out-of-core accesses [39], selecting appropriate execution modes [65], supporting so-
phisticated task scheduler [53], reducing random operations on edges [57], adopting NUMA-aware
data layout and access strategy [92], leveraging fine-grained partitioning [101], saving memory
consumption [66], and exploiting heterogeneous devices [46]. Malicevic et al.[48] provide an end-
to-end study on existing multicore graph processing systems, including various data structures, pre-
processing approaches, as well as optimizations to improve cache locality, synchronization, and
NUMA-awareness. Such techniques should be useful to enhance the performance of PowerLyra on
each machine in the cluster.

Graph replication and partitioning: Generally, prior graph partitioning approaches can be cate-
gorized into vertex-cut [24, 31] and edge-cut [49, 61, 68, 72] according to their partition mechanism.
Several greedy heuristics [24] and 2D mechanisms [9, 31, 89] are proposed to reduce communica-
tion cost and partitioning time on skewed graphs. Surfer [15] exploits the underlying heterogeneity
of a public cloud for graph partitioning to reduce communication cost. Cube [94] uses 3D graph

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:34 R. Chen et al.

partitioning by dividing and assigning vertex data to different machines for MLDM applications.
HotGraph [97] extracts a backbone structure from original graph to remove the cross-partition bottle-
neck for asynchronous graph processing. LazyGraph [78] proposes a lazy data coherency approach
to avoid frequent global synchronizations and communications among vertex replicas. However,
most of them are degree-oblivious but focus on using a general propose for all vertices or edges.
Degree-based hashing [86] also considers the vertex degree but still adopts a uniform partitioning
strategy. Based on the skewed degree distribution of vertices, PowerLyra is built with a hybrid graph
partitioning as well as a new heuristic that notably improves performance.

Other graph processing systems: Besides the vertex-centric model, various programming
paradigms are extended to handle graph processing. SociaLite [62] stores the graph data in tables
and abstracts graph algorithms as declarative rules on the tables by Datalog. CombBLAS [7] ex-
presses the graph computation as operations on sparse matrices and vectors, resulting in efficient
computation time but also lengthy pre-processing time for data transformation. It also uses 2D
partitioning to distribute the matrix for load balance. Trinity [63] uses a distributed in-memory key-
value table abstraction to support graph processing. Naiad [51] provides timely dataflow abstraction
to support low-latency streaming and cyclic computations, which allows the efficient implemen-
tation of iterative graph processing. None of existing graph processing systems use differentiated
computation and partitioning. Besides, PowerLyra is orthogonal to above techniques and can further
improve the performance of these systems on skewed graphs.

8 CONCLUSION

This paper argued that the “one size fits all” design in existing graph-parallel systems may result in
suboptimal performance and introduced PowerLyra, a new graph-parallel system. PowerLyra used
a hybrid and adaptive design that differentiated the computation and partitioning on high-degree
and low-degree vertices. Based on PowerLyra, we also design locality-conscious data layout opti-
mization to improve locality during communication. Experimental results showed that PowerLyra
improved over PowerGraph and other graph-parallel systems substantially, yet fully preserved the
compatibility with various graph algorithms.

ACKNOWLEDGMENTS

We thank Kaiyuan Zhang for evaluating graph-parallel systems on single machine platform and
Di Xiao for porting Random hybrid-cut to GraphX, as well as members of our research group for
their thoughts and comments on this work at various stages. This work was supported in part by the
National Key Research & Development Program of China (No. 2016YFB1000104) and the National
Natural Science Foundation of China (No. 61772335 and 61572314).

REFERENCES

[1] Amine Abou-Rjeili and George Karypis. 2006. Multilevel Algorithms for Partitioning Power-law Graphs. In Pro-

ceedings of the 20th International Conference on Parallel and Distributed Processing (IPDPS’06). IEEE Computer
Society, Washington, DC, USA, 124–124. http://dl.acm.org/citation.cfm?id=1898953.1899055

[2] Lada A Adamic and Bernardo A Huberman. 2002. ZipfâĂŹs law and the Internet. Glottometrics 3, 1 (2002), 143–
150.

[3] Maciej Besta and Torsten Hoefler. 2015. Accelerating Irregular Computations with Hardware Transactional Memory
and Active Messages. In Proceedings of the 24th International Symposium on High-Performance Parallel and Dis-

tributed Computing (HPDC’15). ACM, New York, NY, USA, 161–172. https://doi.org/10.1145/2749246.2749263
[4] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. UbiCrawler: A Scalable Fully Dis-

tributed Web Crawler. Softw. Pract. Exper. 34, 8 (July 2004), 711–726. https://doi.org/10.1002/spe.587
[5] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. In WWW.

107–117.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

http://dl.acm.org/citation.cfm?id=1898953.1899055
https://doi.org/10.1145/2749246.2749263
https://doi.org/10.1002/spe.587

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:35

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giar-
dullo, Sachin Kulkarni, Harry Li, et al. 2013. Tao: Facebook’s distributed data store for the social graph. In Proceed-

ings of the USENIX Annual Technical Conference (USENIX ATC’13). 49–60.
[7] Aydin Buluc and John R Gilbert. 2011. The Combinatorial BLAS: Design, Implementation, and Applications. Int. J.

High Perform. Comput. Appl. 25, 4 (Nov. 2011), 496–509. https://doi.org/10.1177/1094342011403516
[8] Umit Catalyurek and Cevdet Aykanat. 1996. Decomposing Irregularly Sparse Matrices for Paral-

lel Matrix-Vector Multiplication. In Proceedings of the 3rd International Workshop on Parallel Algo-

rithms for Irregularly Structured Problems (IRREGULAR’96). Springer-Verlag, London, UK, UK, 75–86.
http://dl.acm.org/citation.cfm?id=646010.676990

[9] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On Two-Dimensional Sparse Matrix Partitioning: Models,
Methods, and a Recipe. SIAM J. Sci. Comput. 32, 2 (Feb. 2010), 656–683. https://doi.org/10.1137/080737770

[10] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo Wang, Yubin Xia, Haibing Guan, and Binyu Zang. 2017. Efficient
and Available In-Memory KV-Store with Hybrid Erasure Coding and Replication. ACM Transactions on Storage 13,
3, Article 25 (Sept. 2017), 30 pages. https://doi.org/10.1145/3129900

[11] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and Haibing Guan. 2014. Computation and Com-
munication Efficient Graph Processing with Distributed Immutable View. In Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing (HPDC’14). ACM, New York, NY, USA, 215–
226. https://doi.org/10.1145/2600212.2600233

[12] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differentiated Graph Computation and
Partitioning on Skewed Graphs. In Proceedings of the 10th European Conference on Computer Systems (EuroSys’15).
ACM, New York, NY, USA, Article 1, 15 pages. https://doi.org/10.1145/2741948.2741970

[13] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan. 2014. Bipartite-oriented Distributed Graph Partitioning for
Big Learning. In Proceedings of 5th Asia-Pacific Workshop on Systems (APSys ’14). ACM, New York, NY, USA,
Article 14, 7 pages. https://doi.org/10.1145/2637166.2637236

[14] Rong Chen, Jia-Xin Shi, Hai-Bo Chen, and Bin-Yu Zang. 2015. Bipartite-oriented distributed graph partitioning for
big learning. Journal of Computer Science and Technology 30, 1 (2015), 20–29.

[15] Rishan Chen, Mao Yang, Xuetian Weng, Byron Choi, Bingsheng He, and Xiaoming Li. 2012. Improving Large Graph
Processing on Partitioned Graphs in the Cloud. In Proceedings of the Third ACM Symposium on Cloud Computing

(SoCC’12). ACM, New York, NY, USA, Article 3, 13 pages. https://doi.org/10.1145/2391229.2391232
[16] Rong Chen, Youyang Yao, Peng Wang, Kaiyuan Zhang, Zhaoguo Wang, Haibing Guan, Binyu Zang, and Haibo Chen.

2018. Replication-Based Fault-Tolerance for Large-Scale Graph Processing. IEEE Transactions on Parallel and

Distributed Systems 29, 7 (2018), 1621–1635.
[17] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng

Zhao, and Enhong Chen. 2012. Kineograph: Taking the Pulse of a Fast-changing and Connected World. In Proceed-

ings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM, New York, NY, USA, 85–98.
https://doi.org/10.1145/2168836.2168846

[18] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar
Raghavan. 2009. On Compressing Social Networks. In Proceedings of the 15th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, New York, NY, USA, 219–228.
https://doi.org/10.1145/1557019.1557049

[19] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. 2015. One
Trillion Edges: Graph Processing at Facebook-scale. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804–1815.
https://doi.org/10.14778/2824032.2824077

[20] DIMACS. 2006. The 9th DIMACS Implementation Challenge - Shortest Paths.
http://www.dis.uniroma1.it/challenge9/

[21] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On Power-law Relationships of the Internet
Topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM’99). ACM, New York, NY, USA, 251–262. https://doi.org/10.1145/316188.316229
[22] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen Clement, and Steven Hand.

2015. Musketeer: All for One, One for All in Data Processing Systems. In Proceedings of the Tenth Eu-

ropean Conference on Computer Systems (EuroSys’15). ACM, New York, NY, USA, Article 2, 16 pages.
https://doi.org/10.1145/2741948.2741968

[23] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. 2011. Parallel Gibbs Sampling: From Colored
Fields to Thin Junction Trees. In Proceedings of the 14th International Conference on Artificial Intelligence and

Statistics (AISTATS’11). 324–332.
[24] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Dis-

tributed Graph-parallel Computation on Natural Graphs. In Proceedings of the 10th USENIX Conference on

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1177/1094342011403516
http://dl.acm.org/citation.cfm?id=646010.676990
https://doi.org/10.1137/080737770
https://doi.org/10.1145/3129900
https://doi.org/10.1145/2600212.2600233
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2637166.2637236
https://doi.org/10.1145/2391229.2391232
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/1557019.1557049
https://doi.org/10.14778/2824032.2824077
http://www.dis.uniroma1.it/challenge9/
https://doi.org/10.1145/316188.316229
https://doi.org/10.1145/2741948.2741968

1:36 R. Chen et al.

Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 17–30.
http://dl.acm.org/citation.cfm?id=2387880.2387883

[25] Joseph E. Gonzalez, Yucheng Low, Carlos Guestrin, and David O’Hallaron. 2009. Distributed Parallel Inference on
Large Factor Graphs. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI’09). AUAI
Press, Arlington, Virginia, United States, 203–212. http://dl.acm.org/citation.cfm?id=1795114.1795139

[26] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014.
GraphX: Graph Processing in a Distributed Dataflow Framework. In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA, 599–613.
http://dl.acm.org/citation.cfm?id=2685048.2685096

[27] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang
Chen, and Enhong Chen. 2014. Chronos: A Graph Engine for Temporal Graph Analysis. In Proceedings of the

Ninth European Conference on Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article 1, 14 pages.
https://doi.org/10.1145/2592798.2592799

[28] Henry Haselgrove. 2010. Wikipedia page-to-page link database. http://haselgrove.id.au/wikipedia.htm
[29] Imranul Hoque and Indranil Gupta. 2013. LFGraph: Simple and Fast Distributed Graph Analytics. In Proceedings of

the First ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS’13). ACM, New York, NY, USA,
Article 9, 17 pages. https://doi.org/10.1145/2524211.2524218

[30] Andy Huang and Wei Wu. 2014. Mining Ecommerce Graph Data with Apache Spark at Alibaba Taobao. Retrieved
April 1, 2018 from https://databricks.com/blog/2014/08/14/mining-graph-data-with-spark-at-alibaba-taobao.html

[31] Nilesh Jain, Guangdeng Liao, and Theodore L. Willke. 2013. GraphBuilder: Scalable Graph ETL Framework. In
Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems (GRADES’13).
ACM, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.1145/2484425.2484429

[32] Saehan Jo, Jaemin Yoo, and U Kang. 2018. Fast and Scalable Distributed Loopy Belief Propagation on Real-World
Graphs. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18).
ACM, New York, NY, USA, 297–305. https://doi.org/10.1145/3159652.3159722

[33] Xiaoen Ju, Hani Jamjoom, and Kang G. Shin. 2017. Hieroglyph: Locally-Sufficient Graph Processing
via Compute-Sync-Merge. Proc. ACM Meas. Anal. Comput. Syst. 1, 1, Article 9 (June 2017), 25 pages.
https://doi.org/10.1145/3084446

[34] Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson. 2014. Executing Dynamic Data-
graph Computations Deterministically Using Chromatic Scheduling. In Proceedings of the 26th ACM Sym-

posium on Parallelism in Algorithms and Architectures (SPAA’14). ACM, New York, NY, USA, 154–165.
https://doi.org/10.1145/2612669.2612673

[35] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Faloutsos, and Jure Leskovec. 2011. HADI:
Mining Radii of Large Graphs. ACM Trans. Knowl. Discov. Data 5, 2, Article 8 (Feb. 2011), 24 pages.
https://doi.org/10.1145/1921632.1921634

[36] George Karypis and Vipin Kumar. 1999. Parallel multilevel series k-way partitioning scheme for irregular graphs.
Siam Review 41, 2 (1999), 278–300.

[37] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos Kalnis. 2013.
Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing. In Proceedings of the

8th ACM European Conference on Computer Systems (EuroSys’13). ACM, New York, NY, USA, 169–182.
https://doi.org/10.1145/2465351.2465369

[38] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a Social Network or a News
Media?. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM, New York, NY,
USA, 591–600. https://doi.org/10.1145/1772690.1772751

[39] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale Graph Computation on Just a PC. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, Berkeley, CA, USA, 31–46. http://dl.acm.org/citation.cfm?id=2387880.2387884

[40] Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K John. 2015. Data partitioning strategies
for graph workloads on heterogeneous clusters. In Proceedings of International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’15). IEEE, 1–12.
[41] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution: Densification and Shrinking Diameters.

ACM Trans. Knowl. Discov. Data 1, 1, Article 2 (March 2007). https://doi.org/10.1145/1217299.1217301
[42] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009. Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6, 1 (2009),
29–123.

[43] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012.
Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proc. VLDB Endow. 5, 8

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=1795114.1795139
http://dl.acm.org/citation.cfm?id=2685048.2685096
https://doi.org/10.1145/2592798.2592799
http://haselgrove.id.au/wikipedia.htm
https://doi.org/10.1145/2524211.2524218
https://databricks.com/blog/2014/08/14/mining-graph-data-with-spark-at-alibaba-taobao.html
https://doi.org/10.1145/2484425.2484429
https://doi.org/10.1145/3159652.3159722
https://doi.org/10.1145/3084446
https://doi.org/10.1145/2612669.2612673
https://doi.org/10.1145/1921632.1921634
https://doi.org/10.1145/2465351.2465369
https://doi.org/10.1145/1772690.1772751
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://doi.org/10.1145/1217299.1217301

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:37

(April 2012), 716–727. https://doi.org/10.14778/2212351.2212354
[44] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. 2007. Challenges in parallel graph

processing. Parallel Processing Letters 17, 01 (2007), 5–20.
[45] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph: efficient GPU-accelerated graph pro-

cessing on a single machine with balanced replication. In Proceedings of 2017 USENIX Annual Technical Conference

(USENIX ATC’17). USENIX Association, 195–207.
[46] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mo-

saic: Processing a Trillion-Edge Graph on a Single Machine. In Proceedings of the Twelfth European Conference on

Computer Systems (EuroSys’17). ACM, New York, NY, USA, 527–543. https://doi.org/10.1145/3064176.3064191
[47] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A System for Large-scale Graph Processing. In Proceedings of the 2010 ACM SIG-

MOD International Conference on Management of Data (SIGMOD’10). ACM, New York, NY, USA, 135–146.
https://doi.org/10.1145/1807167.1807184

[48] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything you always wanted to know about
multicore graph processing but were afraid to ask. In Proceedings of 2017 USENIX Annual Technical Conference

(USENIX ATC’17). USENIX Association, 631–643.
[49] Daniel Margo and Margo Seltzer. 2015. A Scalable Distributed Graph Partitioner. Proc. VLDB Endow. 8, 12 (Aug.

2015), 1478–1489. https://doi.org/10.14778/2824032.2824046
[50] Kameshwar Munagala and Abhiram Ranade. 1999. I/O-complexity of Graph Algorithms. In Proceedings of the Tenth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 687–694. http://dl.acm.org/citation.cfm?id=314500.314891

[51] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: A
Timely Dataflow System. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13).
ACM, New York, NY, USA, 439–455. https://doi.org/10.1145/2517349.2522738

[52] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary physics 46, 5 (2005),
323–351.

[53] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight Infrastructure for Graph Analytics. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, New York, NY, USA,
456–471. https://doi.org/10.1145/2517349.2522739

[54] Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. 2009. PLANET: Massively
Parallel Learning of Tree Ensembles with MapReduce. Proc. VLDB Endow. 2, 2 (Aug. 2009), 1426–1437.
https://doi.org/10.14778/1687553.1687569

[55] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu,
and Zheng Zhang. 2013. TimeStream: Reliable Stream Computation in the Cloud. In Proceedings of

the 8th ACM European Conference on Computer Systems (EuroSys’13). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/2465351.2465353

[56] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out Graph Pro-
cessing from Secondary Storage. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15).
ACM, New York, NY, USA, 410–424. https://doi.org/10.1145/2815400.2815408

[57] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-centric Graph Processing Using Stream-
ing Partitions. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, New
York, NY, USA, 472–488. https://doi.org/10.1145/2517349.2522740

[58] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and Ben Y. Zhao. 2010. Measurement-
calibrated Graph Models for Social Network Experiments. In Proceedings of the 19th International Conference on

World Wide Web (WWW’10). ACM, New York, NY, USA, 861–870. https://doi.org/10.1145/1772690.1772778
[59] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y. Zhao. 2011. Sharing Graphs Using Dif-

ferentially Private Graph Models. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement

Conference (IMC’11). ACM, New York, NY, USA, 81–98. https://doi.org/10.1145/2068816.2068825
[60] Semih Salihoglu and Jennifer Widom. 2013. GPS: A Graph Processing System. In Proceedings of the 25th Inter-

national Conference on Scientific and Statistical Database Management (SSDBM’13). ACM, New York, NY, USA,
Article 22, 12 pages. https://doi.org/10.1145/2484838.2484843

[61] Kirk Schloegel, George Karypis, and Vipin Kumar. 2000. Parallel Multilevel Algorithms for Multi-constraint Graph
Partitioning (Distinguished Paper). In Proceedings of the 6th International Euro-Par Conference on Parallel Process-

ing (Euro-Par’00). Springer-Verlag, London, UK, UK, 296–310. http://dl.acm.org/citation.cfm?id=646665.698944
[62] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Distributed Socialite: A Datalog-

based Language for Large-scale Graph Analysis. Proc. VLDB Endow. 6, 14 (Sept. 2013), 1906–1917.
https://doi.org/10.14778/2556549.2556572

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.14778/2824032.2824046
http://dl.acm.org/citation.cfm?id=314500.314891
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.14778/1687553.1687569
https://doi.org/10.1145/2465351.2465353
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/1772690.1772778
https://doi.org/10.1145/2068816.2068825
https://doi.org/10.1145/2484838.2484843
http://dl.acm.org/citation.cfm?id=646665.698944
https://doi.org/10.14778/2556549.2556572

1:38 R. Chen et al.

[63] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A Distributed Graph Engine on a Memory Cloud. In Proceedings

of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD’13). ACM, New York, NY,
USA, 505–516. https://doi.org/10.1145/2463676.2467799

[64] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and Concurrent RDF Queries
with RDMA-based Distributed Graph Exploration. In Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 317–332.
http://dl.acm.org/citation.cfm?id=3026877.3026902

[65] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP

’13). ACM, New York, NY, USA, 135–146. https://doi.org/10.1145/2442516.2442530
[66] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In 2015 Data Compression Conference. IEEE, 403–412.
[67] Alexander Smola and Shravan Narayanamurthy. 2010. An Architecture for Parallel Topic Models. Proc. VLDB Endow.

3, 1-2 (Sept. 2010), 703–710. https://doi.org/10.14778/1920841.1920931
[68] Isabelle Stanton and Gabriel Kliot. 2012. Streaming Graph Partitioning for Large Distributed Graphs. In Proceedings

of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). ACM,
New York, NY, USA, 1222–1230. https://doi.org/10.1145/2339530.2339722

[69] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2009. Scalable Collaborative Fil-
tering Approaches for Large Recommender Systems. J. Mach. Learn. Res. 10 (June 2009), 623–656.
http://dl.acm.org/citation.cfm?id=1577069.1577091

[70] Tencent. 2018. Design and Practice of the Anomaly Detection Framework for Billions of User in WeChat (in Chinese).
https://cloud.tencent.com/developer/article/1028442

[71] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and John McPherson. 2013.
From "Think Like a Vertex" to "Think Like a Graph". Proc. VLDB Endow. 7, 3 (Nov. 2013), 193–204.
http://dl.acm.org/citation.cfm?id=2732232.2732238

[72] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. 2014. FENNEL: Streaming
Graph Partitioning for Massive Scale Graphs. In Proceedings of the 7th ACM International Conference on Web Search

and Data Mining (WSDM’14). ACM, New York, NY, USA, 333–342. https://doi.org/10.1145/2556195.2556213
[73] Alexander Ulanov, Manish Marwah, Mijung Kim, Roshan Dathathri, Carlos Zubieta, and Jun Li. 2017. Sandpiper:

Scaling probabilistic inferencing to large scale graphical models. In Proceedings of 2017 IEEE International Confer-

ence on Big Data. IEEE, 383–388.
[74] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (Aug. 1990), 103–111.

https://doi.org/10.1145/79173.79181
[75] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. 2017. An Experimental Comparison of

Partitioning Strategies in Distributed Graph Processing. Proc. VLDB Endow. 10, 5 (Jan. 2017), 493–504.
https://doi.org/10.14778/3055540.3055543

[76] Huaimin Wang, Peichang Shi, and Yiming Zhang. 2017. Jointcloud: A cross-cloud cooperation architecture for inte-
grated internet service customization. In Proceedings of the 37th International Conference on Distributed Computing

Systems (ICDCS ’17). IEEE, 1846–1855.
[77] Hao Wang, Jing Zhang, Da Zhang, Sarunya Pumma, and Wu-chun Feng. 2017. PaPar: A Parallel Data Partitioning

Framework for Big Data Applications. In Proceedings of 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS’17). IEEE, 605–614.
[78] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying Liu, and Xiaobing Feng. 2018. Lazygraph:

Lazy Data Coherency for Replicas in Distributed Graph-parallel Computation. In Proceedings of the 23rd ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’18). ACM, New York, NY, USA,
276–289. https://doi.org/10.1145/3178487.3178508

[79] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan. 2014. Replication-Based Fault-Tolerance
for Large-Scale Graph Processing. In Proceedings of the 2014 44th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN’14). IEEE Computer Society, Washington, DC, USA, 562–573.
https://doi.org/10.1109/DSN.2014.58

[80] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen. 2018. Fast and Concurrent RDF Queries using RDMA-
assisted GPU Graph Exploration. In Proceedings of 2018 USENIX Annual Technical Conference (USENIX ATC’18).
651–664.

[81] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2016. Gunrock:
A High-performance Graph Processing Library on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’16). ACM, New York, NY, USA, Article 11, 12 pages.
https://doi.org/10.1145/2851141.2851145

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1145/2463676.2467799
http://dl.acm.org/citation.cfm?id=3026877.3026902
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/1920841.1920931
https://doi.org/10.1145/2339530.2339722
http://dl.acm.org/citation.cfm?id=1577069.1577091
https://cloud.tencent.com/developer/article/1028442
http://dl.acm.org/citation.cfm?id=2732232.2732238
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/79173.79181
https://doi.org/10.14778/3055540.3055543
https://doi.org/10.1145/3178487.3178508
https://doi.org/10.1109/DSN.2014.58
https://doi.org/10.1145/2851141.2851145

PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs 1:39

[82] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y. Zhao. 2009. User Interactions in
Social Networks and Their Implications. In Proceedings of the 4th ACM European Conference on Computer Systems

(EuroSys’09). ACM, New York, NY, USA, 205–218. https://doi.org/10.1145/1519065.1519089
[83] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and Lidong

Zhou. 2015. GraM: Scaling Graph Computation to the Trillions. In Proceedings of the Sixth ACM Symposium on

Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 408–421. https://doi.org/10.1145/2806777.2806849
[84] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu, Wei Li, and Lidong Zhou. 2017. Tux2:

Distributed Graph Computation for Machine Learning. In Proceedings of the 14th USENIX Conference on Networked

Systems Design and Implementation (NSDI’17). 669–682.
[85] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015. SYNC or ASYNC: Time

to Fuse for Distributed Graph-parallel Computation. In Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’15). ACM, New York, NY, USA, 194–204.
https://doi.org/10.1145/2688500.2688508

[86] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law Graph Computing: Theoretical
and Empirical Analysis. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems

(NIPS’14). 1673–1681.
[87] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric framework for distributed computation

on real-world graphs. Proceedings of the VLDB Endowment 7, 14 (2014), 1981–1992.
[88] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. 2009. Stochastic Gradient Boosted Distributed Decision

Trees. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM’09). ACM,
New York, NY, USA, 2061–2064. https://doi.org/10.1145/1645953.1646301

[89] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrickson, and Umit Catalyurek.
2005. A Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L. In Proceedings of the

2005 ACM/IEEE Conference on Supercomputing (SC’05). IEEE Computer Society, Washington, DC, USA, 25–.
https://doi.org/10.1109/SC.2005.4

[90] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation

(NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301
[91] Heng Zhang, Mingkai Dong, and Haibo Chen. 2016. Efficient and Available In-memory KV-

Store with Hybrid Erasure Coding and Replication. In Proceedings of 14th USENIX Conference

on File and Storage Technologies (FAST’16). USENIX Association, Santa Clara, CA, 167–180.
https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-heng

[92] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware Graph-structured Analytics. In Proceedings of

the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’15). ACM, New
York, NY, USA, 183–193. https://doi.org/10.1145/2688500.2688507

[93] Mingxing Zhang, Yongwei Wu, Kang Chen, Teng Ma, and Weimin Zheng. 2016. Measuring
and Optimizing Distributed Array Programs. Proc. VLDB Endow. 9, 12 (Aug. 2016), 912–923.
https://doi.org/10.14778/2994509.2994511

[94] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin Zheng. 2016. Exploring the Hidden
Dimension in Graph Processing. In Proceedings of the 12th USENIX conference on Operating Systems Design and

Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 285–300.
[95] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis, and Xuehai

Qian. 2018. GraphP: Reducing Communication for PIM-Based Graph Processing with Efficient Data Partition. In
Proceedings of 2018 IEEE International Symposium onHigh Performance Computer Architecture (HPCA’18). IEEE,
544–557.

[96] Yunhao Zhang, Rong Chen, and Haibo Chen. 2017. Sub-millisecond Stateful Stream Querying over Fast-evolving
Linked Data. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM, New York,
NY, USA, 614–630. https://doi.org/10.1145/3132747.3132777

[97] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and Bing Bing Zhou. 2017. HotGraph: Effi-
cient Asynchronous Processing for Real-World Graphs. IEEE Trans. Comput. 66, 5 (May 2017), 799–809.
https://doi.org/10.1109/TC.2016.2624289

[98] Xiaohan Zhao, Adelbert Chang, Atish Das Sarma, Haitao Zheng, and Ben Y. Zhao. 2013. On
the Embeddability of Random Walk Distances. Proc. VLDB Endow. 6, 14 (Sept. 2013), 1690–1701.
https://doi.org/10.14778/2556549.2556554

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1145/1519065.1519089
https://doi.org/10.1145/2806777.2806849
https://doi.org/10.1145/2688500.2688508
https://doi.org/10.1145/1645953.1646301
https://doi.org/10.1109/SC.2005.4
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-heng
https://doi.org/10.1145/2688500.2688507
https://doi.org/10.14778/2994509.2994511
https://doi.org/10.1145/3132747.3132777
https://doi.org/10.1109/TC.2016.2624289
https://doi.org/10.14778/2556549.2556554

1:40 R. Chen et al.

[99] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-Scale Parallel Col-
laborative Filtering for the Netflix Prize. In Proceedings of the 4th International Conference on Algo-

rithmic Aspects in Information and Management (AAIM’08). Springer-Verlag, Berlin, Heidelberg, 337–348.
https://doi.org/10.1007/978-3-540-68880-8_32

[100] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A Computation-Centric Distributed
Graph Processing System. In Proceedings of the 12th USENIX conference on Operating Systems Design and Imple-

mentation (OSDI’16). USENIX Association, Berkeley, CA, USA, 301–316.
[101] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large scale graph processing on a single ma-

chine using 2-level hierarchical partitioning. In Proceedings of the 2015 USENIX Conference on Annual Technical

Conference (USENIX ATC’15).

Received August 2015; revised October 2016; accepted April 2018

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1007/978-3-540-68880-8_32

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Skewed Graphs
	2.2 Existing Graph-parallel Systems
	2.3 Issues with Graph Computation
	2.4 Issues with Graph Partitioning

	3 Graph Computation in PowerLyra
	3.1 Graph-parallel Abstraction
	3.2 Differentiated Vertex Computation
	3.3 Execution Mode
	3.4 Generalization

	4 Distributed Graph Partitioning
	4.1 Balanced p-way Hybrid-Cut
	4.2 Heuristic Hybrid-Cut
	4.3 Theoretical Comparison
	4.4 Empirical Comparison

	5 Locality-conscious Graph Layout
	6 Evaluation
	6.1 Graph Algorithms
	6.2 Performance
	6.3 Scalability
	6.4 Effectiveness of Graph Engine
	6.5 Communication Cost
	6.6 Threshold
	6.7 Other Algorithms and Graphs
	6.8 MLDM Applications
	6.9 Asynchronous Engine (Async)
	6.10 High-performance Networking
	6.11 Comparison with Other Systems
	6.12 Memory Consumption

	7 Other Related Work
	8 Conclusion
	Acknowledgments
	References

