
Dynamic Software Updating
Using a Relaxed Consistency Model
Haibo Chen, Member, IEEE, Jie Yu, Student Member, IEEE, Chengqun Hang,

Binyu Zang, and Pen-Chung Yew, Fellow, IEEE

Abstract—Software is inevitably subject to changes. There are patches and upgrades that close vulnerabilities, fix bugs, and evolve

software with new features. Unfortunately, most traditional dynamic software updating approaches suffer some level of limitations; few

of them can update multithreaded applications when involving data structure changes, while some of them lose binary compatibility or

incur nonnegligible performance overhead. This paper presents POLUS, a software maintenance tool capable of iteratively evolving

running unmodified multithreaded software into newer versions, yet with very low performance overhead. The main idea in POLUS is a

relaxed consistency model that permits the concurrent activity of the old and new code. POLUS borrows the idea of cache-coherence

protocol in computer architecture and uses a “bidirectional write-through” synchronization protocol to ensure system consistency. To

demonstrate the applicability of POLUS, we report our experience in using POLUS to dynamically update three prevalent server

applications: vsftpd, sshd, and Apache HTTP server. Performance measurements show that POLUS incurs negligible runtime

overhead on the three applications—a less than 1 percent performance degradation (but 5 percent for one case). The time to apply an

update is also minimal.

Index Terms—Maintainability, reliability, runtime environments.

Ç

1 INTRODUCTION

1.1 Motivation

THE scale of software has increased dramatically in the
past two decades, as have the bugs and security

vulnerabilities. Despite progress made in software engi-
neering with better programming models, improved devel-
oping methods, and more effective testing tools, it is
undeniable that software is still far from perfect, and this
trend is likely to continue. More importantly, software
is often required to adopt changes that add new function-
alities to support business needs. A previous empirical
study [1] on software evolution shows that the number of
functions in OpenSSH has increased more than three times
within five years. Consequently, there has been an increas-
ing number of software updates to fix bugs, close
vulnerabilities, and evolve new features.

Static updating is the traditional approach to evolve
software into newer versions; it involves stopping the
running software, applying the updates, and restarting
the software again. For example, the Windows Update

system [2] upgrades current software by downloading the
newer versions of packages (e.g., DLLs) and then reboots
the software or even the operating system to apply the
updates. Such a stop-and-restart approach inevitably dis-
rupts the execution of running services, thus decreasing the
availability of software. One previous study [3] indicated
that 75 percent of about 6,000 outages in highly available
applications were caused by hardware and software
maintenance. Since such service disruptions are ill afford-
able for many mission-critical systems, such as air control
systems, credit card authorization, and brokerage opera-
tions [4], these systems demand highly dependable services
and require services to be available 24X7.

Dynamic updating [5], [6], or live updating, is a promising
software maintenance technique aiming to increase software
dependability. It is much cheaper and less complex
compared to hardware-based approaches such as hot/cold
standby [7], [8]. It also avoids service disruption by allowing
the code and data of the running systems to be directly
updated on the fly. It thus allows dynamically fixing bugs,
closing security vulnerabilities, and upgrading software
with new features without requiring service downtime.
Besides, it could also enable online program profiling and
analysis, as well as software testing and debugging. Hence,
such a technique has gained considerable interest and
popularity with both researchers and practitioners.

1.2 Limitations of Existing Systems

So far a number of systems have been designed to support
dynamically updating of software systems. Examples
include Podus [5], OPUS [9], Ginseng [10], and many
others. Generally, existing systems can be categorized into
two types: 1) restrictive ones that only support limited types
of updates that do not modify global state [9], [11], and
2) permissive ones that support flexible changes. Patches in
the former ones can usually be applied at various execution

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011 679

. H. Chen and B. Zang are with the Parallel Processing Institute, Fudan
University, Room 301, Software Building, 825 Zhangheng Road,
Shanghai, P.R. China 201203. E-mail: {hbchen, byzang}@fudan.edu.cn.

. J. Yu is with the ACAL Lab, CSE Department, University of Michigan,
2260 Hayward Street, Ann Arbor, MI 48109-2121.
E-mail: jieyu@umich.edu.

. C. Hang is with the Microsoft (China) Ltd., 8th Floor, Grand Gateway II,
3# HongQiao Road, Xu Hui District, Shanghai, P.R. China 200030.
E-mail: chhang@microsoft.com.

. P.-C. Yew is with the Department of Computer Science and Engineering,
University of Minnesota at Twin Cities, 4-192 EE/CS Building, 200 Union
Street, SE, Minneapolis, MN 55455. E-mail: yew@cs.umn.edu.

Manuscript received 5 Aug. 2008; revised 8 Feb. 2009; accepted 30 Nov. 2009;
published online 6 Aug. 2010.
Recommended for acceptance by E. Di Nitto.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-08-0242.
Digital Object Identifier no. 10.1109/TSE.2010.79.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

points. In contrast, patches in the latter ones should usually
be applied at specific points, which are generally referred to
as update-points, in which the code and data to be updated
are not being executed or referenced.

While previous systems can support flexible changes to
running software, there are limitations that restrict their wide
adoption in some scenarios. First, though multicore hardware
has been commercially available for years, there are currently
few dynamic updating systems that can support updates to
broadly use multithreaded application software when
changes involve data, due to the ubiquitous yet complicated
interactions among threads. Second, as the points where an
update can be safely applied is usually hard to find under
their (usually strict) restrictions, previous systems may suffer
from the constraint of update timing, which would delay
some critical updates (e.g., security patches). Third, many of
them require extensive changes (e.g., compiler transforma-
tion) to the code structures and data layouts of existing
software [10] to provide such software with the dynamic
updating capability, thus losing the backward binary
compatibility and incurring a certain level of performance
overhead. Fourth, most existing dynamic updating systems
inadvertently assume the integrity of the targeted software,
without any precaution that the targeted software might have
already entered a tainted state, such as a deadlock. Finally,
some of them incur nontrivial performance overhead to
normal software execution, preventing their adoption in
performance-sensitive environments.

1.3 Our Contributions

This paper presents POLUS, a POwerful Live Updating
System for existing software. POLUS introduces a relaxed
consistency model to support permissive changes involving
both code and data to multithreaded application software
without the update timing constraint in previous systems, yet
retains backward binary compatibility and incurs very low
performance overhead. Further, POLUS is also built with
effective mechanisms to roll back already committed updates
and to fix already tainted states for running software.

To demonstrate the applicability of POLUS, we have
implemented a prototype system and evaluated POLUS
using three prevalent sever applications that demand non-
stop features: vsftpd (a commonly used FTP daemon), sshd
(secure shell daemon) in OpenSSH suite, and Apache HTTP
server (httpd). vsftpd and sshd are single-threaded and httpd is
with multithreading enabled. All updates to these applica-
tions are generated from realistic software releases over a
relatively long period—from version 2.0.0 through 2.0.4 for
vsftpd, 3.2.3p1 to 3.6p1 for sshd, and 2.1.7 to 2.2.0 for httpd.
Although a complete automation of patch code generation is
impossible, we have developed a source-to-source compiler
to automatically generate most parts of the patch code for
dynamic update. Performance measurements show that
POLUS only incurs a less than 1 percent performance
degradation (but 5 percent in one case) for the connection
time and transfer rate of the three systems. Also, the time to
completely evolve an application into a newer version is
minimal (less than 70 ms for all tested cases).

In short, the contributions of this paper are as follows:

1. A relaxed consistency model for dynamic software
updating and a “bidirectional write-through” syn-
chronization protocol to maintain system consistency.

2. The design and implementation of a powerful
dynamic software updating system that supports
dynamic updates to multithreaded applications, yet
with backward compatibility and very low perfor-
mance overhead.

3. The demonstration that POLUS can deliver realistic
updates to real, large, and complex server software
without disrupting its service. Our experience shows
that dynamic software updating is a promising
approach to evolve contemporary complex software.

The next section provides a brief overview of the system
architecture and the approach taken by POLUS. Then, we
introduce POLUS patches and the process of patch
generation in Section 3. Next, we show how to apply
POLUS patches in Section 4. In addition, we provide several
case studies in using POLUS to update real-life server
applications in Section 5, and provide our performance
results in Section 6. Section 7 presents a discussion on
related work. We close this paper with a discussion on
further work and a conclusion.

This paper is an expansion of an earlier version published
in the Proceedings of the 2007 International Conference on
Software Engineering [12]. Compared to the conference
version, this paper models the proposed approach as a
relaxed consistency model in dynamic updating, which is
supported by a bidirectional synchronization protocol. It also
adds a running example through the paper to illustrate the
system and an approach to give a more clear presentation.
Besides, this paper argues on the safety issues based on the
proposed relaxed consistency model. Finally, this paper
expands the description of the design, implementation,
evaluation, and work related to our system.

2 POLUS: APPROACH AND OVERVIEW

In this section, we present an overview of the system
architecture, describe the relaxed consistency model, and
use a running example to illustrate the working flow of
POLUS.

2.1 An Overview of POLUS

POLUS supports flexible software updates that add or
change1 types, global variables, and functions. As the
deletion of them does not require special handling, POLUS
simply keeps them in memory for possible future rollbacks
of patches. POLUS applies updates at the function level by
treating each function as a black box, thus does not handle
updates to local variables. To retain backward compat-
ibility, POLUS uses binary rewriting to replace the prologue
of a function with a jump instruction to redirect a function
invocation from its old version to a newer version.

To improve the interoperability and support recovery of
already tainted state, POLUS provides several callbacks in
dynamic patches so that software vendors can easily provide
their analysis and recovery code in the patch to avoid such
situations. There are also some tools in the literature that are
able to analyze the state of running software and repair it if
corrupted [13]. Such tools can also be integrated into POLUS.

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

1. A type, variable or function is considered as added if it is newly
introduced (e.g., with new names or signatures) in a new version, as
changed if the old version contains it but the representation is changed in
the new version, as deleted if the new version never uses it again.

Fig. 1 gives an overview of POLUS, which is composed
of three components: a patch constructor, in the form of a
source to source compiler which detects the functionality
differences between two successive software versions and
generates the POLUS patch files, a patch injector, which is a
running process that applies the updates, and a runtime
library which provides some utility functions to manage
POLUS patches for the patch injector.

Fig. 1 also shows the life cycle of software and general
working flow of dynamic updating using POLUS. Traditional
ways of software evolution involve stopping the running
software, applying the updates, and restarting the software
again, while dynamic updating supports changes to code and
data on the fly. To retain binary compatibility, a dynamic
update to the software can be started in any running version.
A POLUS patch is obtained by analyzing the differences of
two successive software versions. To facilitate iterative
updates, a version file is used to control the renaming of
functions and data in the patches. The patch is then compiled
using regular compilers to generate a dynamic patch as a
shared library. The POLUS runtime library will be injected
into the running software before the first update. The patch
injector will inject the dynamic patch to the running program,
facilitated by the POLUS runtime library.

2.2 Relaxed Consistency Model in POLUS

The core in the relaxed consistency model is to allow the
concurrent activity of both the old and new code and the co-
existence of both the old and new representation of a data
structure. However, the old (new) code is only allowed to
operate on the old (new) data, respectively.

To ensure system consistency, POLUS borrows the idea
of cache coherence protocol in computer architecture and
supports an update-based coherence protocol; update to
either version of data will be transactionally propagated to
the other version of data using the provided state
synchronization function [14]. We call this protocol the
“bidirectional write-through” synchronization protocol, as a

contrast to the one way and one time state synchronization
protocol in traditional update-point-based systems [6], [10].
Accordingly, POLUS requires the states be bidirectional
convertible between the old and the new processes/threads,
instead of only one way (i.e., from old to new) in previous
systems. Under such a situation, rolling back a committed
patch is similar to applying a patch, simply by treating the
old version of code/data as the new ones.

Relaxing the consistency requirement of dynamic updat-
ing system can naturally overcome the update timing issues
with previous systems. The coexistence of both the old and
new code and data allows an update to be applied even if the
code and data are currently in use. Hence, POLUS naturally
suits the prevalent multithreading programming model in
which the code and data to be updated are usually referenced
by multiple threads and can hardly be quiescent.

To keep track of changes to data, POLUS write-protects
either version of the data during the updating process using
the debugging APIs provided by operating systems (e.g.,
ptrace in Unix-like operating system and DebugActiveProcess
in Windows). Such APIs allow a process to gain control
over another process, and track a write access to the
protected data using the signal mechanism (catching and
checking the SIGSEGV signal). When there is no function
manipulating the old version of data, the update process
can be safely terminated.

2.2.1 Ensuring System Consistency

POLUS shares a similar assumption with previous ap-
proaches; new processes/threads running new code can be
executed upon the states changed by the old processes/
threads running old code and the state is convertible from
the old to the new version of software. The difference is that
POLUS requires the state conversion to be bidirectional
instead of one way. Thus, POLUS additionally requires
programmers to provide a state synchronization function
that converts the state from the new version back to the old
version. For some rare cases that the old and new version of

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 681

Fig. 1. An overview of POLUS and its working flow.

code that has different programmer-designated rules on
some data structures, writing such synchronization func-
tions would require a deep understanding of the rules.
Fortunately, in most cases (such as the tests we have
conducted), the state synchronization functions for both
directions are similar.

POLUS needs to ensure that at no time will a thread (i.e.,
code) execute upon a state with a different version from that
of the thread (i.e., code). This property ensures that, given
the premise that the states are bidirectional convertible,
running new threads while the old threads are still active
will not cause state inconsistency if the old or new threads
are executed with proper version of states. The state
synchronization protocol, which acts like a state proxy in
POLUS, creates the illusion that an old (new) thread only
interacts with other old (new) threads, respectively. Thus,
both the old and new threads can see a consistent system
state (though different versions). When an old thread has
switched to execute the new version of code, the thread will
transparently become a new thread as it now executes upon
the state of a new version. Hence, when all old threads
become new threads, the system state will evolve into the
newer version, without loss of system state.

2.3 An Example Software Update

Fig. 2 shows an example software evolution that changes
the type representation by adding an additional member
(i.e., j) to structure A, and how POLUS handles the update.
It is possible that there are still threads (e.g., thread-0)
executing in foo but have not increased a->i yet. If a trivial
update scheme simply applies update at this point, the
increment to ab.a.i by thread-0 might be lost, which breaks
the system integrity. POLUS handles this by write-protect-
ing both versions of data (i.e., ab and ab_v1). During
initializing the patch, the POLUS runtime will first initialize
the value of ab_v1 from the current state by invoking
t0_new_sync. When thread-0 tries to modify ab (step 1), a

signal will be raised to the POLUS runtime, which will
invoke the state synchronization function (e.g., t0_new_sync)
to propagate the change to ab_v1 (step 2). Similar
procedures will take place when thread-1 tries to modify
ab_v1 (steps 3 and 4).

3 POLUS PATCHES

Unlike static patches that only reflect literal changes,
POLUS patches describe the functional changes between
two versions of a program. This section describes the
essential elements, correctness issues, and automatic gen-
eration of POLUS patches.

3.1 Essential Elements in a Patch

A patch in POLUS is usually in the form of a full-program
patch, which describes the flexible changes between two
versions of a program. According to Neamtiu et al. [1] and
Stoyel et al. [15], most software updates are composed of
updates to type definitions, functions, and global variables.
Therefore, a POLUS patch, at a minimum, should be able to
express such changes. Moreover, POLUS patches need to
describe ways to maintain state consistency during an
update. Finally, to provide interoperability to programmers,
POLUS patches also include a set of optional callbacks to
execute programmers’ own code during the process of
dynamic update.

Fig. 3 shows a simplified version of the POLUS patch
corresponding to the example in Fig. 2. In the followings,
we use it as an example to illustrate the essential
components that form a valid POLUS patch, as well as
the way to generate them.

3.1.1 Type Changes

Types are not concrete objects in a program, but only
provide information for compilers. Therefore, for added
types, the type definitions are included to the patch to make

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 2. An example software evolution (left) and how POLUS handles it (right).

the compiler be aware of the new types. For changed types,
since the old and new types share the same name in the
program, the new type definition should be renamed (by
appending a version number). Further, types are considered
as changed in a recursive manner; if the types of any
members in a type are changed, this type is also considered
as changed. In the above example, as A is changed and AB
contains A, thus both A and AB are considered as changed,
and thus renamed with a corresponding version number
(e.g., A_v1 and AB_v1).

3.1.2 Global Variable Changes

A global variable is considered as changed if its type (thus
the actual storage class and size) is changed. For changed
variables, the POLUS patch should include code that
registers both the old and the new global variables and
their mappings. Such code will be invoked by the POLUS
runtime when an update is initiated. The registration
information will later be used by the patch injector to do
data protection and data synchronization. In the above
example, as the type AB is changed, the variable ab is thus
changed and renamed with the version number. Calls to the
library function polus_data, which registers the address, size,
and associated state synchronization function, are added in
register_patch to register both ab and ab_v1. The call to
polus_data_mapping is also added to register the mapping
between the two versions of data.

For changes to complex global variables, such as arrays
and pointers, POLUS first identifies an array or a pointer by
parsing the type of a specific variable. Then POLUS uses a
recursive tracing process to register them. For pointers, the
pointers themselves (both the old and new) and the data
they point to should be registered, and be protected later by
POLUS runtime for synchronization. For a linked list, each
node in the list is supposed to be registered and protected
so that the consistency of the update can be assured.
Therefore, a recursive search should be performed from the
head node to find all nodes that should be protected.

Note that for flexible languages such as C, compilers
usually have difficulties in pointer analysis. Hence, POLUS
uses a conservative way and raises warnings for pointers
with more than one aliased instance. In the absence of
aliases, POLUS can automatically generate the tracing code.

3.1.3 Function Changes

Other than literal changes, a function should also be
considered as changed if it uses a variable whose type has
been changed. In the above example, bar is changed since it
refers to the global variable ab. If the types or global
variables used by the function are changed, they should be
renamed in the new function accordingly. Besides literally
new functions, a function is also considered as added if its
signature (e.g., argument list or return type) is changed [6],
to prevent possible type errors after update.

In the above example, the argument type of foo in the
new version is changed to take a pointer to struct A_v1 and
bar is also changed accordingly to call bar with the address
of ab_v1.a. If we simply treat bar as a changed function and
the update occurs just before old bar calls the old foo, new
foo will expect a pointer to struct A_v1 but the old bar has
only provided a pointer to struct A. Thus, a type error
occurs. Hence, POLUS treats the new version of foo as an
added function. In this way, old bar will continue to call old
foo after the update, and new foo will be called by new bar
only when bar is invoked after its own update.

Similarly to global variables, the old and new functions
should also be registered using the POLUS library function
(e.g., polus_function). In the above example, function bar is
changed and foo_v1 is an added function.

3.1.4 Function and Data Mappings

To assist POLUS runtime to perform a consistent update, a
POLUS patch needs the mapping information between the
old and the new functions, between the old and the new data,
and between functions and data. Hence, a set of API is
provided in POLUS library to assist the registration of the
mapping information. For instance, if a function is changed,
the mapping between the old and the new functions should
be registered with both identifiers of the old and the new
functions. POLUS runtime will use the mapping information
to insert an indirection in the old function. Further, to
determine whether an update is completed, the patch injector
needs to know what data a function uses and what functions
use a specific variable. Hence, POLUS patches should contain
code describing the mapping information using the API in
POLUS library. Fortunately, most of the mapping informa-
tion can be inferred automatically by POLUS patch generator,
which will be illustrated later. In the above example, the
automatically generated calls to polus_f2d_mapping and
polus_d2f_mapping register such information.

3.1.5 State Synchronization Functions

There are two synchronization functions for each pair of data
to be updated, namely, old_sync and new_sync, which are
called after modifying the old and new data accordingly.
Besides, POLUS allows the synchronization functions to be
called before and after the associated data is modified (i.e.,
pre_sync_cbfn and post_sync_cbfn). Normally, POLUS uses
the post_sync_cbfn. But for some complex data structures,

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 683

Fig. 3. A simplified POLUS patch corresponding to the example
evolution shown in Fig. 2.

POLUS uses the pre_sync_cbfn to record the old value before
modifying the data. For example, we might need to record
what the node in a linked list previously points to in order to
synchronize the old and new linked lists.

3.1.6 Update Callbacks

To provide interoperability and flexibility, POLUS allows
users to execute their own code during the update process
in the form of callback functions. For example, these
callback functions can be used to recover from an already
tainted state in an application. Users can define several
callbacks in a patch, according to the time at which they are
invoked. More details about update callbacks will be
described in Section 4.1.4.

3.2 Ensuring Patch Correctness

The consistency of a system state during an update depends
on the correctness of the state synchronization functions
and the version consistency of function calls. For most
simple cases, such as the example shown above, an
analyzing compiler can automatically generate the correct
synchronization functions and ensure version consistency.
However, for complex changes that reflect programmer-
designated rules (e.g., a should always be equal to b),
POLUS might need programmers’ involvement to ensure
patch correctness. In addition, special treatments are
required to handle nonexit functions.

3.2.1 Dynamically Allocated Data

If the old data of a patch are statically allocated, then the new
data should also be allocated at compile time accordingly.
Otherwise, the new data should be dynamically allocated.
For example, if the type of the node in a linked list is changed,
POLUS should allocate a new list and keep the old and the
new in sync. Since POLUS cannot statically obtain the length
of the list, it is impossible to allocate the new list at compile
time. Our solution is to allocate it at runtime via update
callbacks. In addition, according to our experience, for
dynamically allocated data, POLUS must check its existence
prior to the update to decide whether to allocate a new data or
not. For example, if a global pointer P of type A is defined
with an initial value NULL, and the old data with type A is
allocated at runtime. In this case, POLUS must check whether
P is NULL or not before update to decide whether to allocate
new data or not during update.

3.2.2 Version Consistency

Updates in POLUS are at the granularity of function calls.
As a result, old functions might interact with new functions

and cause inconsistency. For the example in Fig. 4, function
foo is defined to call bar and baz in turn. Then, a change
moves the function call to baz from foo to bar. Suppose the
update occurs prior to the original pair of calls. Both calls to
bar and to baz will be redirected to the new versions of them.
As a result, baz will be called twice, potentially leading to an
error. Therefore, for this case, POLUS should treat the new
version of bar and baz as added functions. More precisely,
old foo will continue to call old bar and old baz after the
update. We call such a problem the version consistency
problem, as there are functions that should be updated
together (e.g., bar and baz). This problem is usually
addressed by specific handling. In recent literature, auto-
matic method has been developed [16]. We believe their
method is useful and can be integrated with our system.

3.2.3 Main Function and Infinite Loop

In POLUS, active code will proceed with the old version after
the update, and the new code takes effect in the subsequent
calls. However, there are some functions that never exit.
Thus, their new versions will never take effect. Main function
is a typical example. In many event-driven servers, infinite
loop is another example. There are no general solutions to
this problem. However, for some special cases, we can solve
it by some tricks. One possible solution is using stub
functions [6]. Updating the main function of sshd shown in
Section 5.1.1 is such an example. For infinite loops, we have
implemented loop extraction [10], which extracts the body of a
loop as a separate function to be updated, as an optional
solution at the cost of some binary compatibility. Fortu-
nately, in our current evaluation on software evolution, we
did not encounter the infinite loop problem.

3.3 Patch Generation

To relieve programmers of the tedious work in writing
patches, we have implemented a patch constructor, which is
a source-to-source compiler based on CIL-1.3.6 [17] and
Ginseng-1.2.1 [10] using OCaml. Fig. 5 shows the process of
patch generation in POLUS.

The first step of the patch generation is the merge
process. Modern software is usually composed of multiple
files. We must ensure that if one function or type is
changed, all affected code and data must be updated
accordingly. For simplicity, POLUS merges all related files
into a single file using the merge feature in CIL [17]. In the
merge process, POLUS carefully handles the naming
conflict by associating clashed names with their filename.

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 4. An example of a possible version inconsistency problem of
dynamic updating.

Fig. 5. The process of generating a POLUS patch.

Then, the patch generator generates code to notify the patch
injector to resolve such name conflicts by scanning the
original binary file.

Next, the patch generator finds changed types, global
variables, and modified functions by comparing the syntax
tree of both the old and the new versions of files. For each
changed type, the patch generator finds all global variables
that derive from the type and adds them to the changed
variables list. Then, for each changed variable, a state
synchronization function is generated to maintain the
coherence between the old and the new variables. Also,
the patch generator gathers all functions that use each
changed variable and registers the mapping relationship
between them. For each modified function, the patch
generator detects all changed global variables it uses and
registers their relationship.

To support iterative patching, the patch generator uses
version files [10] to record the patch history of functions,
types, and variables to avoid naming conflicts. The patch
generator renames each function, type, and variable in the
patch file according to its patch history. For example, if
function foo has been updated three times, then the version
number for foo in versionnonexist nature data file is 3 and
its name in the new patch file is foo_v4. Patch generator
maintains a global version to record the total update times.
The version for each element in the version file may not be
the same if the history of individual updates differs.

After the analysis process, the patch generator generates
a single file that contains all changed type definitions, all
changed global variables, all modified functions, and some
support code to register the relationship between variables
and functions.

Finally, this patch file is compiled using regular
compilers (such as GCC) to generate a dynamic patch file
in the form of a shared library.

It is possible that the patch generator may fail to obtain
all changed information in the presence of pointer aliases
and void pointer casting. To solve this problem, the patch
generator will generate warnings that ask operators to
adjust the source code or add needed source annotations to
make sure that the patches generated are correct.

4 APPLYING POLUS PATCHES

This section describes the runtime support in POLUS to
apply dynamic patches on the fly. We will first describe the
necessary support for dynamic updates, followed by an
overview of the process to apply a POLUS patch.

4.1 Support for Dynamic Updating

POLUS provides a runtime library consisting of a number of
utility functions to maintain the update information of each
software update, as well as a patch injector which applies a
patch. In the following, we will describe the basic mechan-
isms to support the dynamic updating of POLUS patches.

4.1.1 Function Indirection

POLUS uses binary rewriting to implement the update to
functions. To implement function indirection, POLUS
inserts an indirect jump instruction in the prologue of the
original function to force all function calls from the old

function to the new function. Before doing this, POLUS first
saves the original code, and then checks the program counter
to ensure that the program is not executing the code to be
replaced. If the check fails, POLUS aborts the current
update process and performs a retry. However, this rarely
happens in practice.

As POLUS supports iterative updates to a single
function, it is carefully designed to avoid multiple indirec-
tions, which can degrade performance. New functions are
permitted to directly call other new functions without
indirection. POLUS keeps all the versions of functions in
memory for future rollbacks, which incurs some memory
overhead. However, as one of our goals is to support
rollbacks of committed patches, keeping them in memory
will make rolling back and updating forward easier.

4.1.2 State Management

In POLUS, both the old and the new instances of data are
allowed to coexist simultaneously. As old functions
manipulating the old instances may still be active, there
might be concurrent accesses to the old or the new
instances. To avoid inconsistency, POLUS needs to track
the accesses to either version of data and uses state
synchronization functions to maintain system consistency.

When a dynamic update is being applied, the patch
injector write-protects (e.g., mprotect in Linux) both the old
and the new versions of an instance and associates a signal
handler (e.g., SIGSEGV handler in Linux) to catch each
write attempt to either version of the instance. The signal
handler will invoke the corresponding state synchroniza-
tion function to transfer the modified state from one version
to the other. To be more flexible, POLUS allows state
synchronization functions to be called either before or after
(or both) the commitment of a write access. This page level
protection might cause false sharing, that is, some writable
data that are not involved in the update will also be write-
protected. On receiving the signal, POLUS first retrieves the
fault address, and judges whether this fault occurs due to
the false sharing through the read-write bits recorded and
the fault address retrieved. The only difference for a false
sharing is that POLUS need not invoke the state synchro-
nization function to transfer the state from/to the new/old
versions of data.

In our experience, some of the changed global variables
may be read-only throughout their whole life cycle. For such
changes, there is no need to write-protect any instance of data
and maintain their consistency. As the patch constructor
ensures the old (new) instances will only be used by the old
(new) functions, the old instances will not be used when all
old functions accessing them have completed.

4.1.3 Stack Inspection

POLUS needs to track the in-flight call stack of each thread
to determine if a function is still active. To obtain the
runtime call stack, POLUS inspects the call stack of each
thread. In Linux on x86, it is achieved by iteratively
scanning the frame pointer (percent ebp) and return address
(above the frame pointer) in the call stack of each thread.
Usually, this method is viable. However, some leaf
functions do not have stack frames in practice (e.g., select
in libc), which makes it difficult to obtain the return

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 685

addresses for these functions, leading to an incorrect result
[18]. There are two possible solutions. The first is to analyze
the prologue of the current function and obtain the return
address through the analysis result rather than the frame
pointer, which is used by gdb. The other one is to scan the
call stack word by word between the addresses pointed to
by the current stack pointer and the current frame pointer
for the return address, which is similar to Linux kernel
dump. The first one is more powerful and robust, but it is
quite complicated to implement. The second one might
be incorrect under some circumstances, since the content of
the stack could mislead the scanning process. In POLUS,
since it is only required to check those functions to be
updated, the possibility of an incorrect scanning is very low.
In practice, we choose the second solution for simplicity,
and it works well for all the applications we evaluate.

After the runtime call stack is obtained, POLUS will track
it dynamically. POLUS replaces the return address of each
old function to a supplied stub function. The stub function
will remove the calling thread from its active thread list, and
return to the correct function address. Therefore, POLUS is
able to find out whether a function is in the current stack of all
threads at anytime during the update process.

4.1.4 Update Callbacks

POLUS provides several opportunities during an update for
programmers to insert their own code. The code will be
used to allocate new data, to analyze the current state of a
running program, or to recover from an already tainted
state at runtime. We refer to the code as update callbacks.
Currently, there are five kinds of update callbacks in
POLUS according to the time; they are called:

1. preupdate callbacks, that are called before an update
process is started.

2. thread callbacks, that are invoked each time a thread
leaves a function being updated.

3. function callbacks, that are called when all threads
have left a function being updated.

4. data callbacks, that are invoked when all threads
using a data structure have returned from the
functions that manipulate the instance of the data
structure.

5. postupdate callbacks, that are called when an
update process is to be terminated.

The following situations can benefit from these callbacks:
Dynamic new data allocation. As previously mentioned,

for the old data that are dynamically allocated, it is impossible
to allocate the space for the corresponding new data at
compile time. A preupdate callback is an ideal mechanism to
execute the allocation code. Updating a dynamically allo-
cated linked list is a typical example. The new list can be
allocated in the preupdate callback function, which will
traverse the old list and allocate the new nodes accordingly.

Recovery from tainted states. Existing approaches
assume the state for of the running software being correct
when an update is being applied. However, it is likely that
the running software is buggy and may have entered a
tainted state (such as a deadlock situation). For example, a
known vulnerability on SSL connection in Apache 2.0 will
cause a child process to enter an infinite loop, risking denial

of service.2 As a considerable number of software updates
are to fix existing bugs, we feel it is necessary to consider
the detecting and fixing of buggy situations during update.

To support recovery from a tainted state, patch vendors
can selectively provide their checking code in update
callbacks to detect possible buggy situation and fix them
if needed. There are many algorithms to perform such
analysis and recovery [13]. The POLUS framework just
provides mechanisms for these algorithms to be invoked
when needed. To handle the case in Apache 2.0, one can
provide code in the preupdate callbacks to check for the
infinite loop and break it if necessary. However, not all
buggy situations can be easily resolved. For example, in
some memory-leaking programs, it will be hard to reclaim
all leaked memory if it cannot trace all of them.

4.1.5 Hijacking Running Processes

One key issue during our update process is to hijack the
running process to be patched (RPP). To apply an update,
we need to load the POLUS runtime library and POLUS
patches to RPP’s address space first. However, no process is
able to load these two items to RPP’s address space at
runtime but RPP itself. Therefore, we use some tricks to do
this task.

We first create a code playground [9] in RPP. More
precisely, POLUS maps a range of addresses using mmap in
RPP, injects code containing dlopen, and uses ptrace to force
RPP to execute the injected code. To regain control after the
execution leaves the playground, POLUS appends an “int3”
to every code in the code playground and hijacks the
SIGTRAP signal.

4.2 Applying a Patch

There are three phases in applying a new patch, as shown in
Fig. 6:

. Patch Initialization: The patch injector first does some
initialization work, such as loading the patch into
memory, resolving symbols, and registering the
patch information (step 1). Then, it invokes the
preupdate callbacks in the patch (step 2) and uses
stack inspection [9] to get the in-flight call stack of
each thread (step 3). For a changed variable, if no
thread is executing in any function that references
that variable, then updates to these functions could
be simply done by function indirection (step 4) and
no tracing work is required. Next, the patch injector
writes protect all changed global variables currently
in use (step 5). Note that the patch initialization
work is done when the process to be patched is
suspended and all operations are done in atomic.

. State Synchronization: The patch injector resumes the
execution of the running software. There may be old
functions that are still active. They may need to read
and write old global variables. To ensure correct
execution, the patch injector tracks any write access
by intercepting the SIGSEGV signal (step 1). It then
synchronizes the states by transforming the state
from one to the other (step 2).

686 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

2. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0748.

. Patch Termination: The criteria to safely terminate an
in-flight update are all threads executing in func-
tions that manipulate changed global variables have
become inactive. To determine whether an old
function is still active or not, the patch injector
maintains a list of active threads for each old
function. At the patch initialization stage, the list is
initialized according to the in-flight call stacks. The
patch injector tracks the thread execution by repla-
cing the return address of the original function with
the address of a stub function.

When an old function returns (step 1), the stub
function will remove the executing thread from the
thread list, invoke the thread callback (step 2), and
return to the caller of the original function. On
removing a thread from the thread list, the patch
injector checks whether the thread list has become
empty or not. If it is empty, the original function is no
longer active and the function callback will be
invoked (step 3). When all functions manipulating a
data structure become inactive, the data callback will
be invoked (step 4) and the global variable will be
unprotected and marked as unused (step 5). When all
changed global variables become inactive, the live
update process can be safely terminated and the patch
injector will invoke the postupdate callbacks (step 6).
The patch injector then performs some cleanup work
such as restoring the write-protected memory.

4.2.1 Rolling Back Committed Updates

The process of rolling back a committed patch is similar to
that of applying a patch: POLUS treats rollbacks as a special
type of updates using existing version of code and data to
update the committed one. To roll back a system to a
previous version, the state synchronization functions are
reused in the rollback process. POLUS uses a flag to
indicate whether an update is a rollback or a normal
update. To support fast rollbacks, POLUS keeps all old
versions of code and data in memory. Although it does
incur some resource overhead, doing so allows the running
software to freely switch among selected versions. Note that
it is possible that the new version contains bugs and the
bugs have been triggered. To ensure safety in such a case,
one needs to provide their own checking and recovering
code in the callback functions to detect and recover the
tainted state during a rollback.

5 CASE STUDIES

To demonstrate the applicability of POLUS, we have used
POLUS to dynamically evolve three realistic long-running
server applications into newer versions, over a period of
releases:

1. The Very Secure FTP daemon (vsftpd), which is the de
facto FTP server in UNIX environments. We con-
sidered the online evolution from 2.0.0 through 2.0.4.

2. The ssh daemon (sshd) from the OpenSSH suite,
which is a widely used secure shell daemon. We
followed the evolutions from version 3.2.3p1 to 3.6p1.

3. The Apache HTTP server (httpd), which is a most
prevalent HTTP server used nowadays. We tested
the upgrades from version 2.1.7 to 2.2.0.

The vsftpd and sshd are single-threaded software, while
httpd is usually configured as multithreaded software.

In the following, we first show some real examples and
experiences in updating these programs, and then provide
the statistical data in updating these three server applications.

5.1 Experience in Updating Three Servers

5.1.1 Handling Main Function

As illustrated previously, updates to main functions are
difficult to apply because of their nonexit nature. One major
change in main functions is change to initialization code,
which will not be executed after the program is already
running. Although it appears that updating to such code is
useless, it cannot be simply ignored because different
initialization code might produce different program states.
Therefore, a POLUS patch should provide a proper
preupdate callback to transfer the old state to the correspond-
ing new one.

Another change is update to the functions directly called
by a main function. Fig. 7 shows a code segment in main
function of sshd with version 3.5p1. The next version of sshd
(version 3.6p1) modified the data structure of struct monitor.
As a result, the type of the corresponding function
mm_send_keystate was also changed. As POLUS treats
prototype-changed functions as added functions, the newer
version of the function can only take effect when its caller is
also in a newer version. However, since main function will
never exit, the updates to those functions will never take
effect. In this example, the newer version of mm_send_keystate
will never be invoked.

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 687

Fig. 6. The working flow of applying a patch.

One possible solution is using stub functions, which
invoke the new functions but share the same prototype to
the old functions. Thus, the updates can be treated as
updates from the old functions to the stub functions. In the
above example, POLUS defines a stub function called
mm_send_keystate_stub, which shares the same prototype
with the old version of mm_send_keystate. In the body of
mm_send_keystate_stub, POLUS does corresponding data
transformation from the old version to the new version,
and then calls the newer version of mm_send_keystate.

Using stub functions, POLUS can also handle data
updates on the main stack between two versions. A
concrete example exists in vsftpd (from version 2.0.4 to
version 2.0.5), where the type of the data the_session on the
main stack is changed.

5.1.2 Handling Uninitialized Data

For a change to a global pointer, not only the pointer itself,
but also the data it points to should be write protected.
However, during updating the three server applications, we
found that sometimes the data a pointer points to are
uninitialized, which prohibits the protection to the data. For
example, when updating sshd from version 3.3p1 to version
3.4p1, we find that the global pointer channels sometimes
have a NULL value. The problem is that the patch generator
does not know the runtime information about the value of
the pointer. One possible solution is to check the existence
of every pointer in the patch, but this will make a POLUS
patch very large and confusing. Another option is to add
checking code manually or by program analysis. For
simplicity and clarity, we choose the latter one.

5.1.3 Recovery of Tainted State

POLUS is designed to support recovery from a tainted state.
In upgrading sshd, we found all versions prior to 3.7.1 contain
possible buffer management errors.3 To detect and resolve
such a situation, we added checking and recovering code in
preupdate callbacks in the dynamic patch to check whether the
buffer size is valid for each global variable derived from

Buffer type. Also, we added such code in the function callback
for each function manipulating such global variables. If the
size of a buffer exceeds the defined threshold, the buffer will
be truncated in case of a heap overflow.

Although it is sometimes difficult to fix a tainted state
and resolving it requires a vulnerability-specific knowledge,
we believe our work has raised an important issue to
researchers and practitioners about the detection and
recovery of tainted states during dynamic updating of
running software. Further, as we mentioned previously, our
work can be easily integrated with some existing tools (like
[13]) to fix a corrupted state.

5.1.4 Update Statistics

Table 1 shows the evolution history of the three applica-
tions. We report the total number of changes to functions,
types, and global variables from the starting version to the
last updated version. Note that POLUS does not really do
special handling to the deletion of types, variable, and
functions, but simply keeps them untouched for further
possible rollback. The number of changes is somewhat
larger than other approaches due to the fact that POLUS
uses function-level updating. For example, if a type is
changed, then all affected functions and variables are
affected. Nevertheless, we believe it is justifiable as POLUS
retains binary compatibility compared to the compiler-
transformation approach [10].

6 PERFORMANCE RESULTS

A practical dynamic updating system should only cause
acceptable performance loss and service disruption. In this
section, we report on a set of quantitative performance
evaluation aiming to answer the following questions:

. What is the performance overhead incurred by
POLUS dynamic updating system in the normal
runs of applications?

. How long does it take to evolve a running software
application into a newer version and to roll the
software back?

. Does POLUS cause significant disruption to the
running services when applying an update?

. What is the incurred memory overhead for an
update?

The experiments were conducted on a dual Xeon 2.4 GHZ
server with 2 GB RAM, a 1 GB Realtek 8169 NIC in 100 M
LAN, and a single 73 GB 10k RPM SCSI disk. The systems
were configured with a Linux Enterprise edition 4, with
kernel version 2.6.9-5.ELsmp. The compiler used is gcc-3.4.3
at optimization level -O2. The reported result is a median of
10 runs.

6.1 Relative Performance

For the three applications, we measured their performance
using two metrics—connection time and transfer rate. The
test methodologies are borrowed from the Ginseng update
system [10], as shown in Table 2. To measure the perfor-
mance of Apache httpd, we used ab (apache benchmark) to
issue 50,000 requests for a single 2.4 KB file, with
500 simultaneous threads.

688 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 7. A Code segment in main function of sshd (version 3.5p1).

3. http://www.cert.org/advisories/CA-2003-24.html.

As shown in Table 3, POLUS incurs undetectable
performance overhead, which is much less than the
Ginseng [10] system, which uses compiler transformation.
For example, according to the performance data, Ginseng
incurs 25 percent and 32 percent performance overhead for
systems being updated multiple times to the connection
time of vsftpd and sshd, accordingly, compared to nearly
undetectable overhead in POLUS. This reflects the fact that
the only runtime overhead in POLUS is caused by indirect
accesses of updated functions. Although the connection
time for vsftpd increases about 5 percent, we believe such a
0.4 ms difference is, in practice, negligible.

6.2 Update Time

Generally, the update time of an application is decided by
the amount of changed types, variables, and affected
functions. We measured the update time for applying and
rolling back an update. We first updated an application
from its first version to its last version and then rolled back
to the first version. Fig. 8 shows the update time of our
measured three applications and the associated patch size
in lines of noncomment code. The update time includes the

whole process to apply a patch. It includes loading the

patch into memory, doing necessary preparation work and

applying the patch, during which there may be some

performance degradations to the running systems.
As shown in Fig. 8, the time to apply/roll back an update

is modest. All updates are finished within less than 70 ms.

Though not exactly, the update time is also related to the

patch size, which roughly reflects the number of changes to

types, variables, and functions.

6.3 Service Disruptions

To measure the impact of dynamic updates on running

services, we used ab to issue 15,000 requests for a single 2.4 KB

file and collected the throughput of Apache httpd server

when an update from version 2.1.7 to 2.1.8 is in progress. Fig. 9

depicts the curve of throughput during the process of

updating. There is only a modest amount degradation (about

30 percent) during the update. Further, the time to evolve

Apache httpd is still very short, even under a heavy load.

Besides, even under a heavy system load, the increase in

update time is still modest (from 16.1 ms in Fig. 8 to 22 ms in

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 689

TABLE 2
Test Methodologies for the Three Applications

TABLE 3
Performance Data and Standard Deviation (in Parentheses)

for the Original (orig.), Updated Once (upd.once), and Updated Multiple Times (upd.mult) Applications

Fig. 8. Update time for the three applications (in milliseconds) and the associated patch size in lines of noncommented code. The applications are
under an idle state while being updated.

TABLE 1
Update Information for Three Applications over Time

Fig. 9). Therefore, we can conclude that POLUS has very little
disruption on the running Apache httpd.

6.4 Memory Overhead

To evaluate the memory overhead incurred by POLUS, we
report the memory footprint (both virtual and physical) of
the three server applications. For each application, we
initialize the POLUS library, insert and apply all of the
patches, and roll each application back to its first version.
After each operation, we report the memory (both virtual
and physical) used by the target application.

As shown in Fig. 10, we find that, for each application, the
memory usage (both virtual and physical) increases with the
evolution of the target application. The increased memory is
composed of two parts—the memory to store functions and
data in the patch, and the dynamically allocated memory for
heap related data. When there is few dynamically allocated
memory (such as vsftpd and sshd), the increase in memory is
roughly proportional to the size of the patch. However, for
httpd, which requires dynamically allocating data for
updated data, the increase in memory is more related to

the amount of dynamic memory allocation. We also find that
the memory usage does not decrease when rolling back. This
is because we do not reclaim the memory used by new
functions and data when rolling back.

7 RELATED WORK

A considerable number of systems have been proposed in
the literature of dynamic software updating. In this section,
we compare our approach with some of those systems.

7.1 Permissive Updating Systems

To support flexible changes in realistic software evolution,
dynamic updating systems should be permissive enough to
support changes to types, functions (including prototypes)
and global variables. Hicks et al. [6] propose a flexible
updating system for a type-safe C-like language named
Popcorn. Ginseng [10], [19] is a recent system that makes
substantial improvement over Hicks et al. [6] to support
realistic software updates. Ginseng uses compiler transfor-
mation that adds type wrappers and function indirections to
make software dynamically updatable. The recent version of
Ginseng [19] uses induced update points, which requires
programmers to specify some safe points and then the
compiler analysis will extend the specified safe points to
more update points, to support multithreaded applications.
In contrast to POLUS, using compiler transformation fails to
meet our first criterion of binary compatibility, limiting its
application to already running software. Further, the
compiler transformation will also add performance overhead
due to the per-access indirection to typed variables and
functions. However, the associated compiler analysis and
transformation make the safety of updates easier to ensure
and reason about.

690 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 9. Impact of live update on httpd under a heavy load.

Fig. 10. Memory footprint of measured server applications. Each dot is the memory footprint before applying or rolling back an update. The number
above the dot is the corresponding size of the patch in Kbytes (KB).

7.2 Restrictive Updating Systems

Some existing updating systems only support restrictive
online updates, which support only code changes [9], [20],
cannot support changes to type definitions [5], [21], [22], or
is very restrictive in update criteria [23]. For example, OPUS
[9] only supports updates not involving global state, while
Dyninst [20] only supports runtime code patching, without
involving data. Thus, their functionalities are restricted
compared to POLUS and are usually used for some stateless
security patches and program analysis.

PODUS [5], [21], [22] is an updating system for
procedure-based languages (e.g., C and Pascal). In PODUS,
updates can only be applied when the procedures to be
updated are both syntactically and semantically inactive.
Otherwise, the system will retry until the criteria are met.
PODUS addresses type-changed functions using interproce-
dures, which is similar to stub functions in [6]. In contrast to
POLUS, PODUS does not support changes to type defini-
tions and updates to multithreaded applications. Besides,
the use of segmented virtual memory for coexisting multi-
ple versions of code also requires special operating systems
support and brings potential performance overhead.

DYMOS [23] supports updating programs written in
StarMod [24]. In contrast to POLUS, DYMOS requires
programmers to manually specify the timing constraints on
whether it is safe to issue an update. For example, “update P,
Q, R when P idle” is a command issued by users in DYMOS
requiring that the update of procedure P, Q, and R can only
be carried out when procedure P is not on the stack.
However, it is not necessary for our system because POLUS
is able to issue an update even if P is still active.

7.3 Functional and Object-Oriented Languages

There are also dynamic updating support for systems
implemented using functional and object-oriented lan-
guages [20], [25], [26], [27], [28], such as standard ML
language [25], C++ [26], [29], and Java [27], [30]. The
dynamic ML proposed by Gilmore et al. [25] supports
replacement of modules at runtime. Dynamic C++ classes
[26] use proxy classes to allow the update of code in a
running system, and Stanek et al. [29] extends the
updatability of C++ classes by supporting fission and
fusion of classes and using state transformation to transfer
states. Dynamic updating mechanism called dynamic Java
classes is also implemented in Java [27] to provide a JVM
with updating ability. Besides, Orso et al. [28] used byte-
code transformation to make Java programs updatable
without the need of a customized JVM in [27].

However, the above systems still lack a certain level of
flexibilities. For example, Dynamic ML only permits
signature extensions; in other words, updated modules
cannot change or remove the elements in their signatures
(signatures in ML are similar to type definitions in
imperative languages). Furthermore, Dynamic ML per-
forms its code replacement during garbage collection,
which means that all the functions to be updated cannot
be on the call stack (inactive) when updating. For Dynamic
C++ classes [26] and Dynamic Java classes [27], interface
changes are disallowed in their system and programmers
are supposed to have dynamic updating in mind while they
are programming, which breaks the criterion of binary

compatibility. Jvolve [30] is a recent system that uses the
update-point approach to support flexible updates in Java
software evolution, including adding and changing classes.
To perform an update, it forces all threads to reach a safe
point where no changed methods are being used.

Nevertheless, it is easier to do dynamic update for object-
oriented languages than for procedure languages, such as
C. For example, some object-oriented languages (e.g., Java
and C++) have a function indirection table inherently,
which makes them more convenient to update a function.
We believe the approach taken by POLUS can be similarly
implemented in such high-level languages, resulting in
better clarity and less implementation efforts.

7.4 Component-Based Updating Systems

Component-based dynamic software updating has gained
research interests because each module is naturally an
update unit. Fabry [31] developed a technical framework
for dynamic updating in a system made up of modules. He
introduces version number to each instance of the data
structure and uses a locking mechanism to ensure that the
code always executes the correct version of the data. One
problem of his framework is that instances cannot be
updated until all of the execution of old versions of modules
have completed, while, in POLUS, it is not necessary
because our synchronization mechanism ensures the con-
sistency when the old and the new versions coexist.
Additionally, his framework only supports changes to
abstract data types.

Boyapati et al. [32] described a system that supports lazy
updating for persistent objects. They introduce upgrade
modularity conditions forcing an update ordering so that
type safety can be preserved during and after an update
(e.g., new objects are not likely to be accessed by old code).
They rely on object encapsulation to meet the conditions
they present, ensuring a well timing upgrade. They also use
transactions to ensure a proper timing for an upgrade. The
drawback of their system is that it requires programmers to
write highly encapsulated programs so that upgrades can
be applied effectively and efficiently. Further, the programs
to be updated are supposed to have a database-style
transaction feature, which limits its generality.

Gregersen et al. [33] proposed using unanticipated
dynamic software updating to overcome the constraint of
the reload feature in the NetBeans platform and to support
state-reserved dynamic switches among multiple versions
of modules. The in-place proxification mechanism is similar
to the function indirection used in POLUS, which does not
require a wrapper. They also introduced a correspondence
handling technique that uses table mapping to cross the
version barrier, which is similar to our optimization for
multiple function indirection. However, they currently do
not support multithreading and updates to fields.

Kramer and Magee [34] introduced the notion of
quiescence to ensure system consistency in updating
distributed system. However, the quiescence requirement
is too strong and might bring nontrivial disruption to
systems to be updated. Hence, Vanderwoude and Ebraert
[35] proposed a weaker condition, named tranquility, which
only requires adjacent nodes with the node to be updated to
be in a passive mode, instead of all dependent nodes as that

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 691

in quiescence. Oreizy et al. [36] proposed ArchStudio, an
architecture-based approach that uses explicit structural
model to manage runtime changes. ArchStudio relies on
software connectors, which bind components together and
mediates intercomponent communications, to implement
on-the-fly rebinding of components.

7.5 Formal Methods and Update Safety

There are some theoretical efforts in literature trying to
formalize the software update [14], [37], [38] and analyze
the safety of updates [15], [16]. Some worked on the validity
of an update [37], [38] and others focused on the type safety
[14], [15]. However, to the best of our knowledge, most of
them are only applicable to single-threaded or update-
point-based systems.

Stoyle et al. described Proteus [15], a formal model for
dynamic updating C-like languages. It examines the safety
of dynamic updates and proposes the notion of representa-
tion consistency, which avoids runtime type errors. They
used this formal model to automatically infer safe update
points in the application and to improve their previous
work [6]. But their analysis is designed for single-threaded,
update-point-based systems. They are extending the stan-
dard effect systems with a concept called contextual effects,
and presenting a novel correctness property called transac-
tional version consistency (TVC) [16]. It addresses version
consistency problems in dynamic updating network servers
(e.g., vsftpd). However, their analysis is still for single-
threaded, update-point-based software.

Gupta et al. [37], [38] presented a formal framework to
model the online software changes for C-like languages.
The authors prove that determining the validity of an online
change is generally undecidable. They also developed
several conditions that are sufficient to achieve a valid
online change. A simple program model without proce-
dures is considered first. Later, the authors extended it to a
procedure-based program model. In their working proto-
type, dynamic updating is performed by putting the new
code in a new process and transferring states from the old
process to the new process. However, their system is unable
to update active code, and the framework is based on single
threaded programs.

Duggan [14] presented a type-based approach to hot
swapping running modules using formal methods. It
permits the representation of named types to be changed
on the fly by allowing multiple versions of types to coexist
in the system. He introduced box types which are branded
with runtime tags using fold operations and allow them to
be casted into different versions of types by using unfold
operations. If necessary, version adapters are used to perform
type coercion between different versions of types. This
approach ensures well-formed updates and is quite similar
to that in [15].

7.6 Updating Operating Systems

K42 is an object-oriented operating system built with
dynamic update supports [39], [40], [41]. Implementing
dynamic update in K42 is much easier as K42 is built with
many good features, such as building blocks, thread genera-
tion counts, and object translation tables, their system
supports interposition and hot-swapping components in

the operating system. In contrast to POLUS, K42 uses an
update-point-based approach, which requires a component
should be in quiescence before it can be hot swapped,
which is sometimes hard to achieve in a threaded
environment, especially in an operating system.

Ksplice [11] is a restrictive updating system similar to
OPUS [9], but targets the Linux kernel. Like OPUS, Ksplice
can also only support updates that do not involve changes
to global state, which restricts its flexibility but makes it
easier to ensure patch safety.

LUCOS [42] might be the most similar system to POLUS.
However, LUCOS supports on-the-fly updates to contem-
porary operating systems using system virtualization
techniques. In our current work, we apply similar concepts
to application software, yet without an additional virtuali-
zation layer as in LUCOS. Further, to reduce the tedious
work in patch construction, we provide compiler support to
automate most of the work.

8 CONCLUSION AND FUTURE WORK

Providing dynamic updating to application software is
hard, especially for realistic software updates that involve
flexible changes. This situation becomes even worse when
facing multithreaded software. This paper analyzed that the
major difficulty in dynamic updating such software is due
to the ubiquitous yet complicated thread interactions, which
makes it extremely difficult to find a quiescent state to
apply an update, and thus increases the possibility to
unduly delay a critical update.

In this paper, we have overcome the difficulty in
dynamic updating multithreaded software by using a
relaxed consistency model. It allowed online updates to
active code and data, and maintained the state consistency
using a “bidirectional write-through” state synchronization
protocol. We showed that relaxing the quiescence require-
ment in dynamic updating naturally suited the prevalent
multithreading programming model, in which the code and
data to be updated are usually be referenced by multiple
threads and can hardly be quiescent. To ensure system
consistency, our approach additionally required the states
to be bidirectional convertible between the old and new
version of code.

Besides the natural support for multithreaded software,
the advantages of dynamic updating using a relaxed
consistency model are mainly two-fold. First, there is no
timing issue such as that in previous approaches, as an
update can be applied even if the code and data to be
updated are active. Second, it does not require changing the
layout of code and data structures, thus retaining backward
compatibility.

We have shown that the relaxed consistency model can
be implemented for flexible languages, such as C, on top of
commodity hardware and software stack. Our prototype
system, POLUS, was designed to support flexible changes
in real-world updates—changes to types, global variables,
and functions. With POLUS, permissive updates to realistic
multithreaded software can be applied on the fly with very
little performance overhead, yet without the updating
timing restriction and retains the backward compatibility.
Our experiences in dynamic updating three prevalent

692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

software systems over a relative long period have con-

firmed that POLUS is effective and flexible enough in

applying dynamic software updates to real, large, and

complex software systems with minimal service disruption.
While we have shown our approach is practical for

C-like languages, in our future work we intend to apply

the update model and protocol to object-oriented systems

such as JVM, which are presumably much easier to

implement our approach due to the good modularity.

Moreover, current implementation of POLUS retains

binary compatibility that allows it to support legacy

systems or currently running software. Doing so compli-

cates the implementation of POLUS and makes it difficult

to handle some infinite loops during update (although

updates to the calling functions of such loops are rather

rare in practice). For newly developed software, we plan to

use compiler transformations (as in [10]) such as look

extraction and function call wrapping to make the

programs more friendly to POLUS, thus making the

implementation of POLUS simpler and reducing some

update-time overhead. Finally, we also plan to investigate

ways to provide a formal proof on the safety of the relaxed

consistency model and the “bidirectional write-through”

synchronization protocol in POLUS.

ACKNOWLEDGEMENTS

This work was funded in parts by China National 973 Plan

under grant numbered 2005CB321905, Shanghai Leading

Academic Discipline Project (Project Number: B114), and a

research grant from Intel numbered MOE-INTEL-09-04. The

source code of POLUS and evolutionary tests are available

with sourceforge (http:// sourceforge.net/projects/polus/).

The patch generator is distributed under the BSD License,

others are based on GNU General Public License. A

preliminary and abridged version of this paper was

presented at the 29th International Conference on Software

Engineering (ICSE ’07).

REFERENCES

[1] I. Neamtiu, J. Foster, and M. Hicks, “Understanding Source Code
Evolution Using Abstract Syntax Tree Matching,” ACM SIGSOFT
Software Eng. Notes, vol. 30, no. 4, pp. 1-5, 2005.

[2] Microsoft Corp. “Windows Update and Automatic Updates,”
http://windowsupdate.microsoft.com/, 2007.

[3] D.E. Lowell, Y. Saito, and E.J. Samberg, “Devirtualizable Virtual
Machines Enabling General, Single-Node, Online Maintenance,”
ACM SIGOPS Operating Systems Rev., vol. 38, no. 5, pp. 211-223,
2004.

[4] D.A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J.
Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D.
Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N.
Treuhaft, “Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies,” Technical Report
UCB//CSD-02-1175, Univ. of California, Mar. 2002.

[5] O. Frieder and M.E. Segal, “On Dynamically Updating a
Computer Program: From Concept to Prototype,” J. System
Software, vol. 14, no. 2, pp. 111-128, 1991.

[6] M. Hicks and S. Nettles, “Dynamic Software Updating,” ACM
Trans. Programming Languages and Systems, vol. 27, no. 6, pp. 1049-
1096, 2005.

[7] M. Barber, “Increased Server Availability and Flexibility through
Failover Capability,” Proc. 11th USENIX Conf. System Administra-
tion, pp. 89-98, 1997.

[8] D. Pescovitz, “Monsters in a Box,” Wired, vol. 8, no. 12, pp. 341-
347, 2000.

[9] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus: Online
Patches and Updates for Security,” Proc. USENIX Security,
pp. 287-302, 2005.

[10] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical Dynamic
Software Updating for C,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 72-83, June 2006.

[11] J. Arnold and F. Kaashoek, “Ksplice: Automatic Rebootless Kernel
Updates,” Proc. EuroSys, 2009.

[12] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A
Powerful Live Updating System,” Proc. Int’l Conf. Software Eng.,
pp. 271-281, 2007.

[13] B. Demsky and M. Rinard, “Goal-Directed Reasoning for
Specification-Based Data Structure Repair,” IEEE Trans. Software
Eng., vol. 32, no. 12, pp. 931-951, Dec. 2006.

[14] D. Duggan, “Type-Based Hot Swapping of Running Modules,”
Proc. Sixth ACM SIGPLAN Int’l Conf. Functional Programming,
pp. 62-73, 2001.

[15] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu,
“Mutatis Mutandis: Safe and Flexible Dynamic Software Updat-
ing,” ACM Trans. Programming Languages and Systems, vol. 29,
no. 4, 2007.

[16] I. Neamtiu, M. Hicks, J.S. Foster, and P. Pratikakis, “Contextual
Effects for Version-Consistent Dynamic Software Updating and
Safe Concurrent Programming,” Proc. ACM Conf. Principles of
Programming Languages, pp. 37-49, 2008.

[17] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “Cil:
Intermediate Language and Tools for Analysis and Transforma-
tion of C Programs,” Proc. Int’l Conf. Compiler Construction,
pp. 213-228, 2002.

[18] M.A. Linton, “The Evolution of Dbx,” Proc. Usenix Summer,
pp. 211-220, 1990.

[19] I. Neamtiu and M. Hicks, “Safe and Timely Dynamic Updates for
Multi-Threaded Programs,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, June 2009.

[20] B. Buck and J.K. Hollingsworth, “An API for Runtime Code
Patching,” J. High Performance Computing Application, vol. 14, no. 4,
pp. 317-329, 2000.

[21] M.E. Segal and O. Frieder, “Dynamic Program Updating: A
Software Maintenance Technique for Minimizing Software Down-
time,” J. Software Maintenance, vol. 1, no. 1, pp. 59-79, 1989.

[22] M. Segal and O. Frieder, “On-the-Fly Program Modification:
Systems for Dynamic Updating,” IEEE Software, vol. 10, no. 2,
pp. 53-65, Mar. 1993.

[23] I. Lee, “Dymos: A Dynamic Modification System,” PhD disserta-
tion, The Univ. of Wisconsin, 1983.

[24] R.P. Cook, “*MOD a Language for Distributed Programming,”
IEEE Trans. Software Eng., vol. 6, no. 6, pp. 563-571, Nov. 1980.

[25] S. Gilmore, D. Kirli, and C. Walton, “Dynamic ML without
Dynamic Types,” Technical Report ECS-LFCS-97-378, Laboratory
for the Foundations of Computer Science, The Univ. of Edinburgh,
Dec. 1997.

[26] G. Hjálmt�ysson and R. Gray, “Dynamic C++ Classes: A Light-
weight Mechanism to Update Code in a Running Program,” Proc.
USENIX Ann. Technical Conf., pp. 65-76, 1998.

[27] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J.F. Barnes,
“Runtime Support for Type-Safe Dynamic Java Classes,” Proc.
14th European Conf. Object-Oriented Programming, pp. 337-361,
2000.

[28] A. Orso, A. Rao, and M. Harrold, “A Technique for Dynamic
Updating of Java Software,” Proc. IEEE Int’l Conf. Software
Maintenance, 2002.

[29] J. Stanek, S. Kothari, T. Nguyen, and C. Cruz-Neira, “Online
Software Maintenance for Mission-Critical Systems,” Proc. 22nd
IEEE Int’l Conf. Software Maintenance, pp. 93-103, 2006.

[30] S. Subramanian, M. Hicks, and K.S. McKinley, “Dynamic Software
Updates: A VM-Centric Approach,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, 2009.

[31] R.S. Fabry, “How to Design a System in which Modules Can Be
Changed on the Fly,” Proc. Second Int’l Conf. Software Eng., pp. 470-
476, 1976.

[32] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman,
“Lazy Modular Upgrades in Persistent Object Stores,” Proc. Object-
Oriented Programming, Systems, Languages, and Applications,
pp. 403-417, Oct. 2003.

CHEN ET AL.: DYNAMIC SOFTWARE UPDATING USING A RELAXED CONSISTENCY MODEL 693

[33] A. Gregersen and B. Jorgensen, “Module Reload through Dynamic
Update: The Case of NetBeans,” Proc. 12th European Conf. Software
Maintenance and Reeng., pp. 23-32, 2008.

[34] J. Kramer and J. Magee, “The Evolving Philosophers Problem:
Dynamic Change Management,” IEEE Trans. Software Eng., vol. 16,
no. 11, pp. 1293-1306, Nov. 1990.

[35] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt,
“Tranquillity: A Low Disruptive Alternative to Quiescence for
Ensuring Safe Dynamic Updates,” IEEE Trans. Software Eng.,
vol. 33, no. 12, pp. 856-868, Dec. 2007.

[36] P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-Based
Runtime Software Evolution,” Proc. Int’l Conf. Software Eng.,
pp. 177-187, 1998.

[37] D. Gupta, P. Jalote, and G. Barua, “A Formal Framework for On-
Line Software Version Change,” IEEE Trans. Software Eng., vol. 22,
no. 2, pp. 120-131, Feb. 1996.

[38] D. Gupta, “On-Line Software Version Change,” PhD dissertation,
Indian Inst. of Technology Kanpur, Nov. 1994.

[39] C.A.N. Soules, J. Appavoo, K. Hui, R.W. Wisniewski, D.D. Silva,
G.R. Ganger, O. Krieger, M. Stumm, M.A. Auslander, M.
Ostrowski, B.S. Rosenburg, and J. Xenidis, “System Support for
Online Reconfiguration,” Proc. USENIX Ann. Technical Conf.,
pp. 141-154, 2003.

[40] A. Baumann, G. Heiser, J. Appavoo, D.D. Silva, O. Krieger, R.W.
Wisniewski, and J. Kerr, “Providing Dynamic Update in an
Operating System,” Proc. USENIX Ann. Technical Conf., pp. 279-
291, Apr. 2005.

[41] A. Baumann, J. Appavoo, R.W. Wisniewski, D. Da Silva, O.
Krieger, and G. Heiser, “Reboots are for Hardware: Challenges
and Solutions to Updating an Operating System on the Fly,” Proc.
USENIX Ann. Technical Conf., 2007.

[42] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live
Updating Operating Systems Using Virtualization,” Proc. Second
Int’l Conf. Virtual Execution Environments, pp. 35-44, 2006.

Haibo Chen received the BSc and PhD degrees
in computer science from Fudan University in
2004 and 2009, respectively. He is currently an
assistant professor in the Parallel Processing
Institute, Fudan University, where he coleads
the system software group. His research inter-
ests include software evolution, system soft-
ware, and computer architecture. He is a
member of the IEEE and the IEEE Computer
Society.

Jie Yu received the BSc degree in software
engineering from Fudan University in 2007. He
is currently a PhD student in the Computer
Science and Engineering Department at the
University of Michigan Ann Arbor. His research
interests include software evolution, program-
mability and reliability of parallel systems, and
concurrent software testing. He is a student
member of the IEEE.

Chengqun Hang received the BSc degree in
software engineering from Fudan University in
2009. He is now a software engineer with
Microsoft.

Binyu Zang received the PhD degree in com-
puter science from Fudan University in 1999. He
is currently a professor and the director of the
Parallel Processing Institute, Fudan University.
His research interests include compilers, com-
puter architecture, and systems software.

Pen-Chung Yew received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1981. He is currently a
professor in the Department of Computer
Science and Engineering, University of Minne-
sota. His major research interests include multi-
core architectures, compilation techniques, and
OS for multicore embedded systems. He is a
fellow of the IEEE and a member of the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011

