
Formal Verification of Pilot

To avoid confusion, we rename the local variables in Pilot. Assuming that there are a
sender and a receiver running concurrently and at the beginning, data = oldData s ∧ data =
oldData r ∧ flag = oldF lag r ∧ cnt s = cnt r. Local variable newData s is an argument. We
will prove that the return value of the receiver equals the initial value of newData s.

Algorithm 1: Pilot Sender Side Implementation

Data: Shared: flag = 0, data = 0;
Local : newData s, oldData s = 0, cnt s = 0;
Const : hashPool;

1 newData s ← newData s ˆ hashPool[cnt s ++ % SIZE];
2 if newData s = oldData s then
3 flag ← flag ˆ 1;
4 else
5 data ← newData s;
6 oldData s ← newData s;

Algorithm 2: Pilot Receiver Side Implementation

Data: Shared: flag = 0, data = 0;
Local : oldF lag r = 0, oldData r = 0, cnt r = 0;
Const : hashPool;

1 while data = oldData r do
2 if flag 6= oldF lag r then
3 oldF lag r ← flag;
4 break;

5 oldData r ← data;
6 return oldData r ˆ hashPool[cnt r ++ % SIZE]

Some techniques in formal verification from previous works [1–3] are used to prove the cor-
rectness of Pilot. Concurrency can be modeled as the interleavings of atomic operations, which
generate a trace [2]. The intuitive way to prove correctness is to consider all possible execution
results of interleavings. To reduce the number of interleavings that we must consider, we adopt
mover types to prove certain operations are left- or right-commutative with respect to concurrent
operations by other threads [1] [3].

Definition 1. An operation opA is a right-mover iff

1



∀opB state0 state1 state2 tidA tidB.

tidA 6= tidB →
exec opA tidA state0 state1→
exec opB tidB state1 state2→
∃ state′.

exec opB tidB state0 state′∧
exec opA tidA state′ state2

Here, exec, opA, tidA, state0, and state1 denotes executing opA of thread tidA changes the
program state from state0 to state1.

The definition means opA is a right-mover iff executing opA firstly and opB secondly trans-
forms the program state from state0 to state2 and executing opB firstly and opA secondly also
transforms the program state from state0 to state2. So given an execution trace, moving opA
to the right of other thread’s operations gives the same execution result as that of the origi-
nal trace. For example, since newData s ← newData s ˆ hashPool[cnt s ++ %SIZE] in the
sender operates on constant and local variables, we can treat it to be atomic, which makes it a
right-mover.

Theorem 1. newData s ← newData s ˆ hashPool[cnt s ++ % SIZE] in the sender is a
right-mover.

Proof. According to the definition of right-mover, we must prove this operation of the sender
is right-commutative with respect to all possible concurrent operations by the receiver thread.
We use ops to denote newData s ← newData s ˆ hashPool[cnt s ++ %SIZE] and use opr to
denote concurrent operation of the receiver. We use the form of {P}trace{Q} to denote that the
execution trace transforms the program state from P to Q.

1. Opr≡ if data=oldData r.

{
newData s = v1 ∧ cnt s = v2 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s

}
newData s← newData sˆhashPool[cnt s + +%SIZE]

if data = oldData r

{
newData s = v1ˆv3 ∧ cnt s = v2 + 1 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s

}

2



Then if we reorder ops to the right of opr:

{
newData s = v1 ∧ cnt s = v2 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s

}
if data = oldData r;

newData s← newData sˆhashPool[cnt s + +%SIZE]

{
newData s = v1ˆv3 ∧ cnt s = v2 + 1 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s

}

Reordering doesn’t change the execution result. So ops is right-commutative with respect
to opr.

2. Opr≡ if flag 6= oldflag r.

{
newData s = v1 ∧ cnt s = v2 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s∧
flag = oldF lag r

}
newData s← newData sˆhashPool[cnt s + +%SIZE]

if flag 6= oldflag r

{
newData s = v1ˆv3 ∧ cnt s = v2 + 1 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s∧
flag = oldF lag r

}

Then if we reorder ops to the right of opr:

{
newData s = v1 ∧ cnt s = v2 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s∧
flag = oldF lag r

}
if flag 6= oldflag r;

newData s← newData sˆhashPool[cnt s + +%SIZE]

{
newData s = v1ˆv3 ∧ cnt s = v2 + 1 ∧ hashPool[v2%SIZE] = v3∧
data = v4 ∧ oldData r = v5 ∧ data = oldData r ∧ data = oldData s∧
flag = oldF lag r

}

3



3. Opr≡ oldF lag r ← flag. The proof is similar to the above.

4. Opr≡ oldData r ← data. The proof is similar to the above.

5. Opr≡ return oldData rˆhashPool[cnt r + +%SIZE]. The proof is similar to the above.

In conclusion, newData s ← newData s ˆ hashPool[cnt s ++ % SIZE] is right-commutative
with respect to all concurrent operations by the receiver. So it’s a right-mover.

Intuitively, newData s← newData s ˆ hashPool[cnt s ++ % SIZE] is a right-mover because
it only operate on local variables and constants. Similarly, we can define left-mover.

Definition 2. An operation opA is a left-mover iff

∀opB state0 state1 state2 tidA tidB.

tidA 6= tidB →
exec opB tidB state0 state1→
exec opA tidA state1 state2→
∃ state′.

exec opA tidA state0 state′∧
exec opB tidB state′ state2

The definition means opA is a left-mover iff executing opB firstly and opA secondly trans-
forms the program state from state0 to state2 and executing opA firstly and opB secondly also
transforms the program state from state0 to state2. So given an execution trace, moving opA
to the left of other thread’s operations gives the same execution result as that of the original
trace. For example, oldData s← newData s in the sender is a left-mover. The proof is similar
to that of theorem 1.

It is clear that operations on line 1 and line 2 of the sender are right-movers, and operations
on line 6 is a left-mover. Because they only operate on local variables and constants. Operations
on line 3 and line 5 cannot be moved, but only one of them can exist in a legal trace. So given
an execution trace, we can repeatedly move operations on line 1 and line 2 of the sender to the
right and move operations on line 6 of the sender to the left. Finally, the trace looks like that
the execution of the sender thread is sequential.

receiver sender

state0 state1

receiver receiversender sender

sender sender sender

right-mover

left-mover

receiver receiver sender sender receiver sender

receiver receiver receiver

4



Therefore, we can treat the sender program to be atomic, which reduces the number of
interleaving we must consider. With the help of mover, the problem is simplified into proving
the correctness of sequential execution trace.

Theorem 2. After running the sender and the receiver, the return value of the receiver equals
to the initial value of newData s in the sender.

Proof. The sender program can be treated to be atomic, we consider it to be a single opera-
tion and consider all possible interleaving. Because only one of flag ← flagˆ1 and data ←
newData s; oldData s ← newData s can exist in the execution trace, we use classification ac-
cording to it to prove. Before running the concurrent programs, newData s = v1, hashPool[cnt s+
+%SIZE] = v2, data = v3, oldData r = v3, oldData s = v3.

Firstly, we consider flag ← flagˆ1 exists in the trace. In this case, ”if” condition in the
sender is true and v1ˆv2 = v3.

1. Sender is executed before line 1 in the receiver. Then ”while” and ”if” condition in the
receiver are true. Thus, the return value of the receiver = v3ˆv2 = v1ˆv2ˆv2 = v1 = initial
value of newData s in the sender.

2. Sender is executed between line 1 and line 2 in the receiver. Then ”while” and ”if” condition
in the receiver are true. Thus, the return value of the receiver = v3ˆv2 = v1ˆv2ˆv2 = v1
= initial value of newData s in the sender.

3. Sender is executed between line 2 and line 3 in the receiver. It is impossible because ”if”
condition in the receiver is false.

4. Sender is executed between line 3 and line 4 in the receiver. It is impossible because ”if”
condition in the receiver is false.

5. Sender is executed exactly before line 5 in the receiver. It is impossible because ”if”
condition in the receiver is false and ”while” condition in the receiver is true.

Secondly, we consider data ← newData s; oldData s ← newData s exists in the trace. In
this case, ”if” condition in the sender is false. v1ˆv2 6= v3.

1. Sender is executed before line 1 in the receiver. Then ”while” in the receiver is false. The
return value of the receiver = v1 ˆv2 ˆv2 = v1 = initial value of newData s in the sender.

2. The sender is executed between line 1 and line 2 in the receiver. Then ”while” condition
in the receiver is true and ”if” condition in the receiver is false. So ”while” iterates again
and ”while” condition in the receiver becomes false. Thus, the return value of the receiver
= v1 ˆv2 ˆv2 = v1 = initial value of newData s in the sender.

3. Sender is executed between line 2 and line 3 in the receiver. It is impossible because ”if”
condition in the receiver is false.

4. Sender is executed between line 3 and line 4 in the receiver. It is impossible because ”if”
condition in the receiver is false.

5. Sender is executed exactly before line 5 in the receiver. It is impossible because ”if”
condition in the receiver is false and ”while” condition in the receiver is true.

In conclusion, after running the sender and the receiver, the return value of the receiver
equals to the initial value of newData s in the sender in both cases.

5



References

[1] Tej Chajed, Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich. Verifying concurrent
software using movers in cspec. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 306–322, 2018.

[2] Leslie Lamport. What good is temporal logic? In IFIP congress, volume 83, pages 657–668,
1983.

[3] Richard J Lipton. Reduction: A method of proving properties of parallel programs. Com-
munications of the ACM, 18(12):717–721, 1975.

6


