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Abstract
Secure hardware enclaves have been widely used for pro-

tecting security-critical applications in the cloud. However,
existing enclave designs fail to meet the requirements of
scalability demanded by new scenarios like serverless com-
puting, mainly due to the limitations in their secure mem-
ory protection mechanisms, including static allocation, re-
stricted capacity and high-cost initialization. In this paper,
we propose a software-hardware co-design to support dy-
namic, fine-grained, large-scale secure memory as well as
fast-initialization. We first introduce two new hardware prim-
itives: 1) Guarded Page Table (GPT), which protects page
table pages to support page-level secure memory isolation;
2) Mountable Merkle Tree (MMT), which supports scalable
integrity protection for secure memory. Upon these two primi-
tives, our system can scale to thousands of concurrent enclaves
with high resource utilization and eliminate the high-cost ini-
tialization of secure memory using fork-style enclave creation
without weakening the security guarantees.

We have implemented a prototype of our design based on
PENGLAI [24], an open-sourced enclave system for RISC-
V. The experimental results show that PENGLAI can sup-
port 1,000s enclave instances running concurrently and scale
up to 512GB secure memory with both encryption and in-
tegrity protection. The overhead of GPT is 5% for memory-
intensive workloads (e.g., Redis) and negligible for CPU-
intensive workloads (e.g., RV8 and Coremarks). PENGLAI
also reduces the latency of secure memory initialization by
three orders of magnitude and gains 3.6x speedup for real-
world applications (e.g., MapReduce).

1 Introduction
There has been a surge of interest in using enclaves like Intel
SGX [77], AMD SEV [12] and ARM TrustZone [58] to host
security-critical applications in cloud with minimal reliance
on the trust of cloud providers [28,29,37,40,46,59,84,87,96].
Meanwhile, microservice [80] and serverless computing [1,
3–5] have become emerging paradigms of cloud, which use
single-purpose service or function as a basic computation
unit and achieve high scalability. Since the frameworks of

1The two authors contributed equally to this work and should be consid-
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both are also managed by the cloud providers, it is natural to
use enclaves to protect serverless-like and microservice-like
applications in the cloud [36, 93].

However, existing enclave systems cannot well fit some
inherent characteristics of these cloud applications, including
resilient memory allocation [86], high resource utilization [43,
76], auto-scaling [43] and ephemeral execution time [34, 56,
64], mainly due to three scalability limitations of their secure
memory protection mechanisms:

Limitation-1. Non-scalable memory partition/isolation:
Most existing enclave systems use static or almost-static parti-
tion for region-based memory isolation, like fixed-sized PRM
(Processor Reserved Memory) in SGX [15], limited secure
world memory regions in ARM TrustZone [2]2, 16 protected
memory regions in Keystone [13, 68], etc. It is hard to dy-
namically adjust the boundaries of partitions and scale to a
large amount of secure memory. Region-based isolation also
violates the scalability requirement of fined-grained memory
management in the cloud.

Limitation-2. Non-scalable memory integrity protection:
Using a traditional Merkle hash tree (or its variants) to protect
memory integrity is hard to scale. For example, Intel SGX
only supports 128/256MB EPC (Enclave Page Cache)3. Al-
though SGX has no restriction on the number of enclaves,
running thousands of enclaves may either cause little available
EPC for each instance or frequent EPC swapping, which fails
to meet the scalability requirement of serverless computing.

Limitation-3. Non-scalable secure memory initialization:
High-cost secure memory initialization causes long startup
latency for enclaves, which significantly affects the perfor-
mance of auto-scaling. For example, SGX needs seconds to
create an enclave [40,69] by adding memory to EPC and mea-
suring the contents (by EADD and EEXTEND instructions)
for every page. On the contrary, serverless functions usually
have a very short life cycle (<1s) [50, 88].

In this paper, we propose scalable secure memory protec-
tion mechanisms for enclaves with three metrics: (1) size and
granularity of secure memory, (2) number of enclaves, (3)

2The number depends on specific implementations, and is typically 8.
3The latest SGX platforms (Ice Lake Server) support larger EPC sizes

(e.g., 1TB) [22], but they do so by giving up on integrity protection.



startup latency of enclaves. We first introduce two new archi-
tectural primitives, Guarded Page Table (GPT) and Mount-
able Merkle Tree (MMT): GPT protects page table pages and
enables memory isolation with page-level granularity, and
MMT is a new abstraction to achieve on-demand and scalable
memory encryption and integrity protection. Leveraging these
two primitives, a lightweight secure monitor running in the
most privileged mode is in charge of enclave management
and maintaining security guarantees. To mitigate the high
overhead of enclave creation due to costly secure memory ini-
tialization, we propose a new type of enclave, called shadow
enclave, to support fork-style fast enclave creation.

We have implemented a prototype of our design based on
PENGLAI [24], an open-source RISC-V enclave system using
a secure monitor to manage all the enclaves. We extend the
secure monitor to support scalable secure memory protection
with two hardware primitives, as well as fast enclave creation.
The evaluation results show that PENGLAI can host 1,000s
of concurrent enclave instances and support secure memory
up to 512GB. PENGLAI incurs negligible overhead for CPU-
intensive benchmarks (e.g., RV8 and Coremarks), and incurs
5% overhead for memory-intensive benchmarks (e.g., Redis).
For startup latency, PENGLAI leverages the shadow enclave
to boost enclave creation by three orders of magnitude (with
16MB enclave memory). We also evaluate PENGLAI with real-
world scalable applications. The results show that PENGLAI
can significantly reduce the execution time of MapReduce
(3.6x speedup with shadow fork) and achieve near-native
performance for a serverless application. We have imple-
mented all the architectural features of PENGLAI on RISC-V
platform, including an FPGA board, QEMU and the Gem5
simulator, and implemented the software monitor with 6,399
LoCs, including enclave/hardware management and encryp-
tion libraries. The hardware costs are also minor, i.e., 0.81%
(without MMT or memory encryption) in LUT and 0.73% in
FF on a Xilinx VC707 FPGA board.

PENGLAI is open-sourced at https://github.com/
Penglai-Enclave.

2 Motivation
This section analyzes the scalability and security of prior
enclave systems through several metrics, as shown in Table 1.

2.1 State-of-the-art Enclaves
Intel SGX [57, 77] can protect both confidentiality and in-
tegrity of enclave memory, but it has a restriction on secure
memory size, i.e., 128/256MB. Also, the secure memory
must reside in a contiguous region (PRM) reserved by the
CPU in advance. Recently, Intel has released a scalable ver-
sion of SGX [22], which extends the secure memory size to
TB level but weakens the memory integrity protection, and
still requires a static reserved secure memory region. AMD
SEV [12, 27, 61] protects virtual machines (VMs) without
memory size restriction. However, the number of secure VMs

is restricted to 16 (509 in EPYC Generation 2 [14]). Intel
TDX [16] is also designed to isolate secure VMs from other
software, including the hypervisor. However, TDX only pro-
vides basic integrity protection and cannot defend against
hardware-based memory replay attacks. The number of secure
VMs is limited by hardware to 64 private keys in MKTME
(Multi-Key Total Memory Encryption). ARM TrustZone-
based enclaves, e.g., Komodo [52] and Sanctuary [35], have
no restriction on enclave number or memory size. However,
the secure memory can only reside in a few fixed memory
regions and has no encryption or integrity guarantees.

Keystone [68] implements enclave memory isolation by
leveraging the PMP (Physical Memory Protection) mecha-
nism of RISC-V [100], which includes a set of paired registers
to indicate physical memory regions as well as their access
permissions. Thus, the number of memory regions in Key-
stone is restricted by the number of PMP registers (up to 16).
In order to defend against physical attacks, Keystone lever-
ages on-chip computing, which is costly due to the restricted
on-chip RAM [68]. CURE [21] adopts enclave ID-based ac-
cess control for customizable enclaves. It utilizes a hardware
arbiter to record contiguous physical memory regions of en-
claves, which can only support 13 enclaves. Similarly, the
enclave number of Sanctum [45] is also restricted by the num-
ber of isolated DRAM regions. TIMBER-V [102] extends
the RISC-V ISA to run unlimited number of enclaves, but it
incurs non-trivial overhead (25.2% on average) and does not
consider memory integrity protection.

2.2 State-of-the-art Fall Short

Fine-grained memory isolation. Prior art [27,91,92] achieves
fine-grained and flexible memory isolation by introducing ad-
ditional metadata like bitmap [27,92] or tags [102] to identify
whether a page belongs to an enclave and check each memory
access. However, due to the capacity restriction of in-SoC
RAM, most of the metadata has to be stored in the main
memory, which requires an extra memory load when meta-
data is out of SoC and incurs a high performance penalty in
TIMBER-V [102].

Large-scale memory integrity protection. Several
schemes [38, 39, 85, 91, 92] have been proposed to
provide integrity protection for more memory. For example,
VAULT [92] extends SGX and optimizes the integrity tree
node structure to increase the node’s fan-out, which can
protect larger memory region given the same tree depth.
However, these schemes need to take up extra memory
space even when no enclaves are running (e.g., 14.1% in
VAULT without MAC optimization), and the size of protected
memory (e.g., 64GB in VAULT) is still insufficient for cloud
applications.

Boosting startup latency. Some researchers add a new soft-
ware layer to manage enclaves, like the secure OS in ARM
TrustZone [26] and the libOS in Occlum [89], which can

https://github.com/Penglai-Enclave
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Systems Scalability Metrics Security Metrics

Name Arch Enclave
number

Mem
size

Fast
startup

Mem
granu.

No PT
channel

No Cache
channel

Mem
enc.

Mem
inte.

SGX [57, 77] Intel Unrestricted 128/256MB 7 Region 7 7 3 3
Scalable SGX [22] Intel Unrestricted All 7 Region 7 7 3 7
TDX [16] Intel 64 All 7 Page 3 7 3 Partial
SEV [12, 61] AMD 16/509 All 7 Page 7 7 3 7
SEV-ES [61] AMD 16/509 All 7 Page 7 7 3 7
SEV-SNP [27] AMD 16/509 All 7 Page 7 7 3 7
Trustzone [26] ARM Unrestricted All 3 Region 3 7 7 7
Komodo [52] ARM Unrestricted All 3 Region 3 7 7 7
Sanctuary [35] ARM Unrestricted All 7 Region 3 3 7 7
Sanctum [45] RISC-V DRAM regions All 7 Region 3 3 7 7
TIMBER-V [102] RISC-V Unrestricted All 7 Page 3 7 7 7
Keystone [13, 68] RISC-V PMPs All 7 Region 3 3 On-chip On-chip
CURE [21] RISC-V 13 All 7 Region 3 3 7 7
PENGLAI RISC-V Unrestricted All 3 Page 3 3 3 3

Table 1: A comparison on enclave systems. Mem granu. means the granularity of secure and non-secure memory. Region means secure
memory can only reside in a few contiguous memory regions. Mem enc. means memory encryption. Mem inte. means memory integrity
protection. Unrestricted means the number of enclaves is unrestricted, but when secure memory is exhausted, the performance will decline.
Partial means the physical memory replay attack is out of scope. 16/509 means EPYC Generation 2 (Rome) processors [14] can support 509
keys for SEV VM. PENGLAI is the only system that can achieve both high-security and scalability.

create a new enclave with less overhead. However, these sys-
tems do not consider the process of attestation during enclave
creation. Clemmys [93] leverages the dynamic memory man-
agement of SGX2 as well as batching for EPC augmentation
to improve the startup latency of enclaves. However, creating
an enclave still takes hundreds of milliseconds, and it needs
to add redundant pages into EPC when creating the same
enclave multiple times.

3 System Overview
We first present our design goals of memory protection.
• G1: Scalability. The design shall not have restrictions on

(1) the number of concurrent enclave instances, and (2) the
size of secure memory of enclaves. It shall also consider the
characteristics of scalable applications, e.g., fine-grained
memory management and auto-scaling.

• G2: Performance. The design shall not incur high perfor-
mance overhead.

• G3: Security. The design shall achieve the previous two
goals with security guarantees. It should consider privileged
software attacks, off-chip hardware attacks (e.g., hardware-
based memory replay attacks), cache-based side-channel
attacks, etc.

3.1 Architecture
As shown in Figure 1, PENGLAI is a software-hardware co-
design enclave system. We introduce a small software compo-
nent called secure monitor, which runs in the most privileged
mode (e.g., machine mode in RISC-V) and several new hard-
ware extensions to provide the enclave abstractions. Each
enclave runs in the user space and is isolated from an un-
trusted host and other enclaves.

Secure monitor. The secure monitor runs in the most privi-
leged level and separates OS and userspace software into two
worlds: one for the OS and normal applications, the other
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Figure 1: Overview of PENGLAI architecture. PENGLAI is com-
posed of the software monitor, driver, SDK and hardware extensions.
The red components are additional to realize the scalable memory
protection.

for enclaves. The secure monitor manages all enclaves and
provides APIs for users to deploy enclaves. To achieve scala-
bilility, we add two components in the secure monitor: one for
fine-grained and large-scale secure memory management, and
the other for enclave fast startup. Furthermore, to minimize
the size of the secure monitor, we separate resource protection
from management [51]: the secure monitor only configures
privileged hardware resources (e.g., GPT and MMT configu-
rations), and the managements of other hardware are done by
the untrusted host OS.

During system boot, the secure monitor is loaded and veri-
fied by the boot ROM (aka. secure boot). It then takes control
of the system and protects itself with hardware-supported
memory isolation (e.g., RISC-V PMP). It also leverages en-
cryption and Mountable Merkle Tree to protect itself from
physical memory attacks (details in 4.2).

Hardware primitives. We propose new hardware primitives
to assist the secure monitor and achieve scalable memory



protection. We briefly introduce their purposes here. Guarded
Page Table (GPT) is the basis of fine-grained memory isola-
tion (§4.1). Mountable Merkle Tree (MMT) is a new physical
memory protection abstraction to achieve scalable memory
integrity and encryption protection (§4.2). Cache line locking
is a cache partition extension to defend against cache-based
side-channel attacks (§4.4).

3.2 Threat Model
The TCB of our system only contains the CPU and the secure
monitor. Other hardware (e.g., off-chip DRAM and peripher-
als) and software (e.g., the host OS) are untrusted and could
be compromised by an attacker.

We consider three classes of attacks in our threat model:

• Privileged software attacks: An attacker may have full
control of the untrusted OS and applications and launch
adversarial enclaves.

• Physical attacks: An attacker may intercept and tamper
with any messages between CPU and other hardware (e.g.,
DRAM), and issue attacks from any off-chip hardware.

• Side-channel attacks: An attacker may learn information
by observing access patterns during enclaves’ execution.
Our system aims to solve the controlled channel attacks [81]
and cache-based side-channel attacks [74,82,107,109,110].
Other side-channel attacks, like the ones based on TLB or
speculative execution, are out of the scope. The potential
defense mechanisms of these attacks are orthogonal to our
design.

Our system does not consider DoS attacks performed by
untrusted software or hardware.

4 Design
This section focuses on how the secure monitor and the hard-
ware extensions achieve the design goals. We discuss other
security issues in §7.

4.1 Fine-grained Flexible Memory Isolation
For fine-grained and flexible memory isolation, the secure
monitor maintains an ownership bitmap to record the status
of each physical page: secure for monitor and enclaves, non-
secure for untrusted OS and applications, and TreeNode for
SubTrees (details in §4.2). It achieves 4KB page granularity to
isolate memory between enclaves and host. To allocate secure
pages, the secure monitor needs to update the ownership of
them in the bitmap. The ownership bitmap is protected by
hardware (e.g., RISC-V PMP). Any memory access to the
ownership bitmap issued by OS or user-level programs will
trap into the monitor for a security check.

Several similar approaches [27, 91, 92, 102] also use the
ownership bitmap to achieve fine-grained memory isolation.
However, these approaches check the page ownership during
the memory access, which needs double memory access for
a single address. Prior work demonstrates that the double
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Figure 2: The design of Guarded Page Table with Host Page
Table Area (HPT Area). PENGLAI maintains two kinds of page
tables: the host page table is used by untrusted software, and the
enclave page table is used by enclave.
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Figure 3: The MMU extension of Guarded Page Table. Exten-
sions are marked as red. MMU will check the location of each page
table. VPN means virtual page number.

memory access may introduce the 25.2% average runtime
overhead [102].

We propose a new hardware primitive, Guarded Page Ta-
ble, to shift the ownership checking overhead to the mapping
phase, which is based on an observation that mapping opera-
tions are far less frequent than memory accesses.

Guarded Page Table. Guarded Page Table implements and
optimizes ownership checking with bitmap. The design is
based on our insight that if there is no page table of untrusted
software containing any mapping to secure pages, then the
checking during memory access can be avoided. To this end,
we put all host page tables (Figure 2) in a protected memory
region: Host Page Table Area (HPT Area), and trap any mod-
ification in HPT Area to ensure that no secure page will be
mapped by any page tables of untrusted software.

HPT Area is indicated by two new registers, reg_hptarea_-
start (start physical address of HPT Area) and reg_hptarea_-
size (size of HPT Area), as shown in Figure 3. To guarantee all
the host page tables are located in HPT Area, we extend page
table walker (PTW). When a TLB miss occurs, the PTW will
walk into each level of page table page (PT page) according
to the virtual address to get a corresponding physical address.
Our extension to PTW will check whether each PT page is



located in HPT Area, as shown in Figure 3. If the address of
any PT page is out of HPT Area and the software currently
running is not an enclave, the CPU will raise an exception
to the monitor for further check. Furthermore, a CPU mode
status register, reg_ms, is introduced to indicate whether the
current CPU is running an enclave. Therefore, we can enforce
the untrusted OS to only use pages in HPT Area as Guarded
Page Table.

Protecting Host Page Table Area (HPT Area). Similar to the
ownership bitmap, HPT Area is also protected by the secure
monitor with hardware support. When the OS updates address
mappings, the request will be redirected to the secure monitor,
which ensures the new page table entry does not point to a
secure page. Also, we need to prevent the OS from bypassing
such checking via stale TLB entries or disabling page table.
Firstly, the secure monitor will flush the corresponding TLB
entries during enclave switching and page ownership chang-
ing. Directly writing TLB entries is out of scope as there is
no such instruction in the prevailing ISA (e.g., X86, RISC-
V). Secondly, the hardware will raise an exception if address
translation is disabled while the reg_hptarea_start and reg_-
hptarea_size registers are non-zero (these two registers can
only be modified by monitor). HPT Area is also protected
from hardware attacks such as the PThammer attack [113]
via hardware integrity protection (details in §4.2).

Memory isolation among enclaves. As all enclaves are run-
ning in user mode, PENGLAI utilizes an enclave page table for
memory isolation among enclaves. Enclave page tables are
marked as secure memory and separated from HPT Area. The
secure monitor maintains all the enclave page tables, and each
enclave can map its own secure memory as well as non-secure
memory shared with the OS.

Huge page support. To support huge pages, we further parti-
tion the HPT Area into several sub-areas and assign different
levels of page table entries to the corresponding sub-area,
including one sub-area for PMDs (huge page entry) and one
for PTEs. The extended PTW will check whether each level
of page table entry lies in the corresponding sub-area during
page table walk. In this way, the secure monitor can distin-
guish a huge page table entry via its address and perform
different security checks.

Summary. We summarize the benefits of the ownership-based
design with Guarded Page Table. First, the hardware modi-
fication is minor, and the hardware maintains no in-memory
metadata like SGX EPCM. Second, it achieves fine granular-
ity since any physical memory page can be used as secure or
non-secure. The only contiguous range, Host Page Table Area
region, has little impact on scalability as the page table pages
are much less than data pages. Last, the design introduces no
overhead of checking during memory access. The only costs
come from the page table mapping operations. Compared
with other page table-based isolation, e.g., shadow PT [94],
the mapping overhead is minor.
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4.2 Scalable Memory Integrity Protection
We propose a new physical memory protection abstraction:
Mountable Merkle Tree (MMT). MMT promises a stable tree
depth that will not increase along with total memory size and
minimizes the memory space overheads by storing integrity
metadata (tree nodes) on demand. Furthermore, the secure
monitor can manage MMT to achieve large-scale, fine-grained
memory integrity protection. In our prototype, MMT can
support up to 512GB of secure memory.

Challenge. It is very challenging to achieve scalable integrity
protection, as shown in Figure 5 (a). First, protecting integrity
for large-scale secure memory turns to a deep integrity tree,
which requires additional bandwidth to load tree nodes. Sec-
ond, to boost memory integrity checking, a wise memory
integrity engine may cache topmost tree nodes in the CPU
cache. However, it only increases the amount of secure mem-
ory linearly. Third, the integrity engine needs to pre-allocate
extra memory to store all the tree nodes, even if there is no se-
cure memory being used. Lastly, the state-of-the-art memory
protection schemes can only protect a fixed range of memory,
and software cannot manage secure memory at all. These
coarse-grained and fixed memory protection schemes have
scalability issues which cannot be solved by just adding hard-
ware resources (e.g., enlarging SoC storage).

MMT introduces a mountable SubTree structure for in-
tegrity tree scheme and can reduce both on-die and in-memory
storage overhead. Also, MMT allows the software to take part
in memory protection management and allocate secure mem-
ory with integrity protection on demand.

MMT forest organization. MMT introduces a new concept,
hash forest, which is composed of a set of SubTrees, as shown
in Figure 4 (a). The SubTree is the mountable and manageable
unit in hash forest and can protect a physical memory region
(4MB/3-level in PENGLAI) alone. To save on-die space, MMT
stores all SubTrees in a specific memory region, MMT meta-
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zone. MMT utilizes RootTree to protect the integrity of all
SubTree roots. The ancestor of RootTree (Root-root in the
figure) is fixed in SoC to prevent attacks. The Root-root,
RootTree, and SubTrees, together form hash forest.

SubTree Allocation. Besides normal memory allocation, the
software (secure monitor) can also allocate SubTree and se-
cure memory with two new interfaces: ALLOC_SECURE_-
MEM, REVOKE_SECURE_MEM. Each SubTree protects a
range of secure memory. Unlike traditional memory protec-
tion schemes, the CPU can only protect a fixed range of physi-
cal memory, and the whole checking procedure is transparent
for software. MMT allows the privileged software (e.g., the
secure monitor) to allocate secure memory at runtime, and
both secure memory and SubTree can reside in anywhere of
physical memory, not a fixed range.

Mounting. Like TLB accelerating virtual address translation,
MMT accelerates integrity checking by mounting SubTrees
into SoC, which avoids the memory access to retrieve SubTree
root. MMT extends the memory controller to support mount-
ing operations. As shown in Figure 6, the mounted SubTree
root is stored in the Mount table, which records counter and
address. However, the storage space for Mount table in SoC
is restricted, e.g., 32 subtrees simultaneously. When space is
exhausted, MMT unmounts an inactive SubTree root out of
SoC and stores it in the MMT meta-zone, which is isolated
with host memory (e.g., PMP-protected). Meanwhile, MMT
needs to update the value of Root-root if MMT meta-zone is
changed, which ensures the integrity of all inactive SubTree
roots.

Bootstrap. Figure 6 demonstrates the hardware extension
and memory layout of MMT. Besides the non-secure mem-
ory, there are three protected regions, secure memory (en-
claves and monitors), SubTree nodes and MMT meta-zone.
The MMT meta-zone is the only fixed region configured
by bootrom and protected by hardware (e.g., RISC-V PMP).
MMT meta-zone contains the SubTree root entries (address
and counter) and RootTree nodes (Root-root is reserved in
SoC). It incurs minor memory costs — about 2MB, which
can support up to 512GB of integrity-protected memory. The
integrity protection relation of these three regions is shown in
the figure.
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Figure 6: Hardware extension for MMT. The flow shows the
integrity protection relation: secure memory is protected by SubTree
nodes, while SubTree nodes are protected by MMT meta-zone.

During system boot, the CPU bootrom will configure the
MMT meta-zone range in physical memory, initialize all Sub-
Tree root entries, construct RootTree nodes and allocate the
first subtree to protect the memory of the secure monitor. After
this, the secure monitor takes control of subsequent booting
stages.

Software management. The secure monitor is the only priv-
ileged software that can manage secure memory and record
memory status (secure, normal and SubTree node) in the
bitmap. As the secure monitor cannot directly allocate mem-
ory, the host kernel will allocate free memory (used as secure
memory and SubTree node later) and transfer it to the se-
cure monitor. The secure monitor configures secure memory
and its corresponding SubTree in this memory. After allo-
cation, the corresponding SubTree root is filled in the MMT
meta-zone (i.e., ALLOC_SECURE_MEM). The monitor also
ensures that secure memory is zero-filled and SubTree nodes
are in the initialized state. So the integrity check will not
fail at the first access. If the monitor needs to reclaim secure
memory, it can change the memory status, clear the SubTree
root in the MMT meta-zone (i.e., REVOKE_SECURE_MEM),
and return memory back to the host kernel.

MMT tree structure. MMT extends the counter-based
integrity tree node [55, 85, 92] to hybrid-counter. As
shown in Figure 4 (b), each tree node is composed of
global_counter(64b), extra_idx(5b), extra_counter(27b),
local_counter(32×11b) and hash(64b) (however, leaf node
only contains global, local counters and hash). The hash in the
tree node is calculated with all other metadata (448b) in the
same node and hybrid-counter in its parent node. The extra
counter in a hybrid-counter remains zero unless extra_idx
refers to itself. This design is based on an observation that
there is almost one active counter in a single tree node. In our
implementation, both SubTree and RootTree are 3-level, and
each RootTree leaf node can contain 4 SubTree roots.

Integrity checking. For each secure memory access, MMT
will first check whether the corresponding SubTree root is in
SoC. If it is, MMT checks the integrity with the SubTree. Oth-
erwise, MMT uses mounting mechanism to mount the target
SubTree into SoC. As for the integrity checking procedure,
the MMT engine will compare the hash stored in the tree



node with the hash it computes level by level, until the hash is
stored in SoC. A write request will increase hybrid-counter in
the tree node, while a read request will not. If a local counter
is exhausted or extra_idx is changed, MMT will re-hash the
relevant tree nodes.

Integrity enabling. PENGLAI will always enable integrity
protection when executing in the monitor. Nevertheless, as an
enclave can access both secure and non-secure memory, we
cannot just impose integrity protection on all its pages.

PENGLAI introduces a pair of hole registers (reg_-
hole_va_start and reg_hole_va_size) to configure the
integrity checking. The effects are shown on the right.
Hardware shall perform integrity checking when reg_-
ms is ENCL_MODE and disable it when reg_ms is
NON_ENCL_MODE. Hole registers indicate a dedicated
memory region (hole region) in the virtual address that
handles exceptional cases in the memory protection strategy,
e.g., integrity checking is enabled for the memory located in
the hole region when reg_ms is NON_ENCL_MODE,
and disable when reg_ms is ENCL_MODE.

MS=ENCL MS=NON_ENCL

Hole mem.

Non-Hole 
mem.

Enable

Enable

Disable

Disable

The hole region can
be used for sharing un-
trusted memory between
enclaves and OS. Be-
sides, it cannot be used by host and enclave for other purposes.
To avoid disabling the integrity protection by the malicious
kernel, PENGLAI only permits the secure monitor to configure
the hole registers when switching between enclave and host.

Secure memory granularity. As integrity enabling is con-
trolled by the combination of CPU mode (reg_ms) and virtual
memory address (hole register), the SubTree is not the granu-
larity of secure memory. A SubTree can contain both secure
memory and non-secure memory, and only secure memory
needs integrity and encryption protection. When consider-
ing Guarded Page Table for memory isolation, the combined
granularity of secure memory is still 4KB size.

Security analysis. As shown in Figure 6, the integrity of se-
cure memory is guaranteed by SubTree root. Each SubTree
root has a backup in the MMT meta-zone, which is protected
by Root-root. As Root-root resides in SoC, physical attack-
ers cannot compromise the integrity check. As for software
attackers, only the secure monitor can configure secure mem-
ory, and any other privileged software cannot tamper memory
status and disable integrity protection.

Summary. We summarize the benefits of MMT against prior
art, as shown in Figure 5. (1) Save both on-die and in-memory
storage. Prior art reserves intermediate tree nodes for all se-
cure memory, and the topmost level tree nodes may be stored
in SoC to boost the integrity check [15]. It can only protect
a small region of contiguous memory due to the high stor-
age overhead in memory and SoC. However, MMT merely
reserves the hot set of SubTree roots and Root-root in the
SoC. What’s more, SubTree nodes can be lazily allocated

with corresponding secure memory (zero memory overhead if
there is no secure memory). (2) Improve flexibility in secure
memory management. With the help of allocating and mount-
ing operations for SubTrees, MMT can support fine-grained
secure memory. The software can manage secure memory, dy-
namically change memory status, and allocate secure memory
on-demand. (3) Boost the integrity check. MMT can provide
a fast path (a mounted SubTree) to boost the integrity check
with fixed tree depth and save memory bandwidth.

4.3 Secure Memory initialization with
Shadow Fork

Auto-scaling and fast startup are key features for cloud com-
puting but still missing in the enclave due to high-cost enclave
memory initialization. Prior systems need to create a new en-
clave instance from scratch even with the same codebase,
which consumes more memory with redundant content and
incurs high startup latency. PENGLAI follows the idea of re-
cently proposed init-less startup [50] that leverages fork to
skip the initialization costs, but faces two challenges: 1) mem-
ory sharing is not secure in enclave systems, and 2) attestation
costs still remain even with fork. PENGLAI proposes Shadow
Fork as well as Shadow Enclave to overcome them both.
Fork with the shadow enclave. Shadow Fork is based on
a special kind of enclave (not runnable), shadow enclave,
which is a clean template used to boost startup by forking a
new instance. Shadow enclave is the only entity that can be
forked and only contains code and data segments. During fork,
PENGLAI monitor will share the read-execute code and read-
only segments, copy other writable parts, initialize the stack
of a new instance based on Shadow Enclave. As the major
costs of startup come from enclave memory initialization
(hash measurement), memory copying on writable data is
acceptable. After fork, the created enclave can dynamically
allocate memory from untrusted OS as heap or mmap region.
Lightweight attestation. Mitigating the costs of attestation
during startup is based on an observation: calculating the
measurement of memory takes up the majority of time in at-
testation (e.g., >90%), as shown in Figure 11 (b). To mitigate
this overhead, the monitor will calculate the measurement
for a shadow enclave in advance (creation phase). A user
can leverage enclave_fork with a manifest containing the
sealed enclave measurement and the user’s public key (simi-
lar to SGX [23]). Later, the monitor will unseal the enclave
measurement (using the user’s public key) and check it with
the shadow enclave’s measurement. If the measurement is
matched, the monitor will fork a new instance based on the
shadow enclave. Otherwise, the monitor will deny the request.
Therefore, we can mitigate the attestation costs during the
boot critical path.

4.4 On-demand Cache Line Locking
PENGLAI proposes an on-demand cache line locking mecha-
nism to defend against cache-based side-channel attacks by
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Figure 7: The hardware modification and physical memory lay-
out of PENGLAI.

cache partition. Although cache partition designs are well
explored [9, 73, 99, 112], they usually incur non-trivial perfor-
mance costs [66, 83, 106], and cache partitions also restrict
the number of the enclave [45]. PENGLAI optimizes the per-
formance with a new abstraction, section-based protection,
that can enable on-demand side-channel protection when an
enclave enters a security-sensitive section (e.g., encryption)
and disable the protection when it leaves. As the sections are
short in a program [105, 108], an enclave can run with the
best performance (no cache locking) most time.

Security-sensitive sections are decided by enclaves. When
an enclave needs cache isolation protection, it issues requests
to monitor. Two privileged instructions: CACHE_LINE_-
LOCK and CACHE_LINE_UNLOCK, assist monitor in man-
aging cache line locking status. Specifically, the cache line
locking mechanism specifies the cache lines to each CPU core.
The CPU core can only evict its cache lines during cache miss,
and other cores cannot evict these cache lines anymore.

Scalability discussion. Compared with the Intel’s CAT [9,
73], PLCache [99] or cache coloring [112], on-demand cache
line locking is more scalable. The cache partitions limit the
number of protected enclaves in the prior art. However, as for
on-demand cache line locking, the cache line is not assigned
to an enclave, but a CPU core. In other words, if there are
more cache ways than CPU cores, the cache line locking
mechanism can support unlimited enclaves. Monitor holds the
cache locking status in each enclave’s context. If an enclave is
scheduled out, the monitor will release the cache lines locked
by the current core.

5 Implementation
Figure 7 shows the overall architecture of the PENGLAI. As
for hardware extensions, we modify both in-core (Rocket
Core) and off-core (Memory Controller) hardware resources
to support Guarded Page Table and Mountable Merkle Tree.
As for software extensions, we implement a tiny and secure
monitor, an extended Linux kernel supporting the HPT Area
allocator, an enclave driver and some requisite libraries for
running enclaves.

5.1 Hardware Implementation

In-core extensions. We implement the Guarded Page Table
extension in FPGA, based on the open-sourced RocketChip
RISC-V core [10]. Overall, we add several new registers (e.g.,
reg_ms, reg_hptarea_start[0..3], reg_hptarea_size, reg_hole_-
va_start and reg_hole_va_size, etc.), which are implemented
as CSRs (Control and Status Registers) and can only be ac-
cessed by monitor via csrr (CSR read) and csrw (CSR write)
instructions. Reg_hptarea_start[0...3] and reg_hptarea_size
registers partition the physical memory range of HPT Area
into several sub-areas, and guarantee that any write access
cannot directly modify the content in this area, unless issued
by M mode routines. Reg_ms, reg_hole_va_start and reg_-
hole_va_size registers act as the control switch for memory
integrity and encryption checks. Besides these new CSRs,
we also extend the MMU module to check the validity of
memory access during page table walking. A modified page
table walker can guarantee that any PTE entry must be located
in the HPT Area (precisely, corresponding sub-area), but the
target physical address will not reside in the HPT Area.

We only simulate the cache line locking mechanism on the
L1 cache, as there is no LLC in our FPGA board.

Off-core extension. We extend the memory controller (MC)
to integrate the MMT engine. MMT engine supports three
new commands: ALLOC_SECURE_MEM, REVOKE_SE-
CURE_MEM and INIT_MMT_METAZONE; two extended
components: Mount Table, Root-root, and the logic of mem-
ory encryption and integrity checks. We also extend memory
access with the secure/non-secure flag. If it is the secure
memory access, the MMT engine will perform integrity and
encryption checks. Otherwise, it accesses physical memory
and reads/writes the data directly.

The secure monitor allocates/reclaims secure or SubTree
node memory with new commands. When the MMT engine
receives an ALLOC_SECURE_MEM command, it will parse
the secure memory address and initialize the SubTree root in
the MMT meta-zone. The software must ensure that the mem-
ory must be zero-filled before it changes into the secure or
SubTree node memory. The INIT_MMT_METAZONE com-
mand initializes the MMT meta-zone in the booting phase.

Mount Table and Root-root reside in SoC. The fabric of
Mount Table is similar to cache — several sets with n-way
Mount Table entries. Each Mount Table entry consists of a



tag, index, SubTree root and LRU bit. Mount Table also uses
the LRU strategy (clock-like algorithm) to mount/unmount
the subtree roots. If SubTree root does not exist in the Mount
Table, the MMT engine will choose an inactive SubTree and
unmount it into the MMT meta-zone. Before mounting the
requested SubTree, the MMT engine will first check the in-
tegrity of the SubTree root in the MMT meta-zone, and update
the Root-root if necessary. Root-root cannot be evicted out of
SoC, as it is the root trust for integrity protection.

5.2 Software Implementation
Monitor. We implement the secure monitor on both
OpenSBI [18] and Berkeley Boot Loader (BBL) [17] in the
machine mode in RISC-V. The secure monitor includes en-
clave management, hardware extensions management, mem-
ory checking as well as encryption library, which adds 6,399
LoC. We follow Sanctum [45] to implement the secure boot
using the tamper-proof software approach (bootloader as the
root of trust). As Figure 7 shows, just after the machine is
turning on, the bootloader will first derive the attestation key
and initialize the MMT engine. The MMT meta-zone will
also be initialized in this phase. After all these early configura-
tions, the bootloader will load and calculate the measurement
of the secure monitor. The MMT engine performs integrity
and encryption protection for monitor’s memory as well. Af-
ter this, the secure monitor takes control and loads the Linux
kernel as its payload.

The monitor provides both host-side and enclave-side in-
terfaces for enclave management and runtime supporting. As
for the host-side interfaces, they consist of create_enclave,
run_enclave, attest_enclave, etc. As for enclave-side in-
terfaces, they are mainly used as ocall functions (e.g.,
enclave_mmap, enclave_sys_write) and inter-enclave calls
(e.g., enclave_call, asyn_enclave_call). Besides the enclave
management, the monitor also takes control of configuring
Guarded Page Table and Mountable Merkle Tree (e.g., reg_-
hptarea_start, reg_hptarea_size), setting page status bitmap
and allocating secure memory. Monitor guarantees that all
these secure-sensitive configurations are correct and will not
be compromised by an attacker.
Linux kernel. We extend the Linux kernel (version:
4.4.0/5.10.2) to support PENGLAI. There are two major mod-
ifications: (1) HPT Area allocator, (2) hijacking each PTE
settings. Firstly, after memory management is initialized, the
kernel will allocate a contiguous physical memory as HPT
Area and copy init_pt into it. A dedicated allocator will man-
age all pages in the HPT Area, and is responsible for each
page table allocation. To distinguish huge page entries and
4KB page entries, the HPT Area is divided into three sub-
areas: PGD, PMD and PTE sub-areas (MMU checks each
page table entry’s location according to these sub-areas). HPT
Area allocator must assign the entries of page tables in the
corresponding sub-areas as well. Currently, we have reserved
enough memory as HPT Area, which can map all pages at
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Figure 8: Ownership transfer-based communication. Figure (a)
and (b) show the message passing in PENGLAI for both host-enclave
communication and enclave-enclave communication. Figure (c)
presents the communication link established in PENGLAI. The num-
ber represents the order of the links.

once. Normally, the reserved memory for HPT Area will not
affect memory utilization, as page table pages are increased
along with used pages. Dynamically adjusting the size of the
HPT Area is in our future work.

Secondly, the kernel will redirect the setting operations of
each page table entry to the secure monitor. Secure monitor
can distinguish 2MB/4KB page entries (according to the sub-
areas) and perform the security check of the target address
(host cannot map any secure memory).

Server enclave. Despite the enclave and shadow enclave,
PENGLAI also implements another type of enclave called
server enclave to achieve enclave chain, which is common in
serverless scenarios. A server enclave does not have running
context (e.g., time slice, ocall handler) but inherits it from
other enclaves. Hence, the server enclave cannot run alone.
When creating a server enclave, it needs to be assigned a
unique name as its identification. Other enclaves can acquire
the handle of this server enclave with its unique server name.
Besides, the server enclave can also perform partial function-
alities of OS. For example, we can run a file system server in
a server enclave to handle all FS-related requests. Separating
the OS functionalities from the untrusted OS to the trusted
enclave server can mitigate the risk of Iago attack [41] issued
by untrusted privilege.

IPC. PENGLAI supports IPC between the enclave and server
enclave (E-E), host and enclave (H-E), which is based on
two mechanisms: shared memory and relay page [49]. Shared
memory is the basic communication method. The secure mon-
itor can map shared memory to both host and enclave, or
enclave and server enclave. Relay page is a novel communica-
tion mechanism, as shown in Figure 8, and the secure monitor
ensures that a page can be mapped for only one owner si-
multaneously. This mechanism can reduce security issues
like TOCTTOU (Time-of-check-to-time-of-use) between E-E
and H-E, and achieve zero-copy communication. PENGLAI
can also support both synchronous and asynchronous IPC
between enclaves. As for synchronous IPC, the caller enclave
will wait for the callee enclave to return. As for asynchronous
IPC, the caller enclave will return immediately, and arguments
will be passed to the callee enclave when it starts to run.

SDK. PENGLAI provides an SDK (i.e., kernel driver, host-
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Figure 9: GPT performance on mmap. Test the latency and band-
width of mmap operations, Host-Native represents the native linux
kernel without GPT extension, Host-with-GPT represents the modi-
fied linux kernel with GPT extension.

side library and enclave-side library) to help users manage and
develop enclave applications. The driver enables the untrusted
host kernel (Linux) to interact with the secure monitor, and
manage enclaves via interfaces provided by the monitor. The
host side library abstracts ioctl interfaces from the driver and
provides APIs to manage the enclave (e.g., create, run and
attest enclave). The enclave side library is combined with
modified Musl LibC (turns system calls to ocall or redirects
to server enclaves) and Eapp library (e.g., IPC interfaces).
Hence, PENGLAI can support unmodified POSIX applications.
Besides, PENGLAI also integrates some useful libraries into
enclave SDK, such as wolfssl [20] and PSA storage API,
which are frequently used.

Formal verification. Currently, we are working on formal
verification of PENGLAI. The approach is based on symbolic
execution and bounded model checking via the state-of-the-
art framework, Serval [79]. We have verified the code of the
communication module. Verification on others is in progress.

6 Evaluation
6.1 Methodology
We implement PENGLAI based on the open-sourced RISC-
V [100] implementation: SiFive Freedom U500 [10] on the
Xilinx VC707 FPGA board. We present several microbench-
marks that evaluate the scalability metrics (i.e., startup latency,
GPT overhead and the number of concurrent enclaves). We
select four benchmarks, SPECCPU, Redis, RV8 and Core-
mark, to evaluate the overall performance of PENGLAI. We
also compare PENGLAI with Keystone (as state of the art)
and Linux (as the ideal performance). To evaluate the perfor-
mance of MMT, we implement the MMT on the GEM5 [32]
(RISC-V), and port the state-of-the-art integrity protection
schemes: SGX integrity approach (SIT) and VAULT [92] on
the GEM5. With the same emulation environment, we can
make a fair comparison of these different approaches.

6.2 Microbenchmarks
Guarded Page Table performance. We first evaluate
Guarded Page Table on LMbench [7] to gain the overhead
for memory-related operations. LMbench can calculate the la-
tency and bandwidth of memory mapping and memory access
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Figure (b) compares the startup latency with different enclave file
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in the UNIX system. As shown in Figure 9 and Figure 10,
Guarded Page Table will introduce 26%∼46% overhead for
mapping latency, as each page mapping operation needs to be
checked by the secure monitor. However, Guarded Page Table
will not sacrifice the bandwidth of the mapping operations.
As for memory access, Guarded Page Table will not affect
memory access performance (both latency and throughput).
The experimental results demonstrate that Guarded Page Ta-
ble only incurs extra overhead in page mapping (e.g., mmap,
munmap, mprotect), and will not impact the performance of
memory access. As page mapping operations are infrequent,
Guarded Page Table only introduces minor overhead for the
whole system in most cases. Indeed, the monitor only inspects
the page status with its bitmap during page mapping, so the
extra overhead is minor compared with other page table-based
isolation techniques [48, 54] (see §6.3).

Scalability of secure memory. To evaluate the scalability and
flexibility of the PENGLAI enclave, we construct a test case
to randomly create and run enclaves on the FPGA board, and
calculate the total secure memory size in the monitor. As
shown in Figure 11 (a), secure memory size could be very
small when the system does not run any enclaves (2MB and
less) and can scale to 600MB (1GB total memory in FPGA)
when there are lots of concurrently running enclaves. This is
a significant breakthrough over traditional fixed partitioned
secure memory design, which usually needs to make a trade-
off between host memory size and enclave memory size.

Furthermore, with the same configuration, PENGLAI can
achieve up to 1,000 concurrently running enclaves on the



FPGA board (1GB memory). It is possible to boot more en-
clave instances when the device has more resources. Hence,
Guarded Page Table-based secure memory management can
achieve scalability and flexibility.

Startup latency. We evaluate the startup latency of enclaves in
PENGLAI and Keystone using the different sizes of enclaves.
We compare two approaches of PENGLAI: normal startup
(enclave create) and fast startup (shadow fork). The baseline
is a traditional booting solution that loads an eapp file into the
memory, prepares the resources, and verifies the measurement.
PENGLAI shadow fork leverages shadow enclave to spawn
a new instance, which can boost the procedure. To further
compare with Keystone, we configure Keystone to use the
minimum size of their eyrie runtime. We run both systems on
Qemu and use the number of executed instructions (icount
enabled) to represent the performance. The result is shown
in Figure 11 (b). Compared with the baseline, shadow fork
can achieve 4x–989x speedup (from 16KB to 32MB size).
Keystone is orders of magnitude slower than PENGLAI with
shadow fork, as it needs to calculate enclave measurement
and prepare a new PMP region as well as load runtime in the
supervisor mode.
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Memory integrity and encryption. We evaluate the perfor-
mance of memory integrity and encryption using SPECCPU
benchmark and compare PENGLAI with VAULT and SGX.
We retain the same SoC resource for all implementations (SoC
storage in each integrity scheme can only protect 128MB
memory). We want to demonstrate that with the same hard-
ware resource, MMT can achieve the best performance as well
as minimum memory overhead. The major reason to choose
SPECCPU benchmark is that most of the related work like
BMT [85], SIT [55] and VAULT [92] also use this benchmark
to measure runtime overhead.

We implement all of the four systems on GEM5. As shown
in Figure 12, the performance of PENGLAI is much better
than the two baselines. Take milc as an example. The runtime
overhead reduces from 2.05x (in SGX) and 1.60x (in VAULT)
to 0.40x (PENGLAI’s MMT). This is because 128MB memory
is insufficient in this case. Thus, both SGX and VAULT need
to swap and encrypt pages from secure memory to non-secure
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memory, which can bring 10x overhead in some memory-
intensive cases [92]. Instead, MMT can mount corresponding
SubTrees to protect more than 128MB secure memory with
less than 1% extra overhead (mounting only costs about 300
cycles). We also test the performance of MMT when the mem-
ory used is less than 128MB (gobmk, milc). The result shows
that MMT will not bring extra overhead when all SubTrees
can be mounted in SoC.

To further evaluate the worst-case performance of the
MMT, we test the MMT and other memory protection
schemes on a random memory access benchmark, as shown
in Figure 13(a). We choose two different memory access
ranges: 64MB and 512MB. The first one is smaller than the
capacity of SoC-protected memory (128MB), while the sec-
ond is larger. As for 64MB memory size, MMT incurs 67%
overhead and SIT incurs 118% overhead. The performance
improvement mainly comes from the optimized tree structure
compared with MMT and SIT. As for 512MB memory size,
MMT incurs 0.97x overhead and SIT incurs 98x overhead.
Copying and encrypting the pages inside SoC-protected mem-
ory into the normal memory causes an enormous overhead
in SIT (takes up 97% of total runtime cycles). This result is
also validated by SCONE [28] — “random memory access
beyond available EPC may cause an overhead of three orders
of magnitude” and the real SGX-enable machine (Intel Core
i7-7567U @ 3.5GHz, 300x overhead for random access of
512MB memory). MMT significantly reduces the overhead of
page copying and encryption by the SubTree mounting mech-
anism. To further calculate the overhead of mount/unmount
operations, we inventory the performance breakdown of the
MMT. For random memory access, mount/unmount opera-
tions only take up ten percent of the total execution time and
twenty percent of the integrity protection cost. Meanwhile,
each mounting operation costs about 300 cycles on average.
Hence, the mount/unmount overhead is much less than the
prior art, even in the worst-case situation.

Costs of cache line locking. We perform a microbenchmark
to evaluate the performance costs of cache line locking. The
cache configuration of our FPGA implementation is 64 cache



Table 2: Costs of cache line locking. PENGLAI runs on FPGA.

Latency (Kcycles)

Cache line locking 66.976
Normal 56.888

sets, 4 ways and 64-Byte cache line. The test case will sequen-
tially read and write 16KB contiguous memory. We compare
the end-to-end latency of two systems, PENGLAI enabling
locking (using a single way) and PENGLAI disabling locking.
As shown in Table 2, the locking can cause 17.73% over-
head in the case. Although the costs are non-trivial, PENGLAI
will only enable the locking for a critical section, which can
significantly mitigate the overheads.
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Figure 14: Redis benchmark suite. Evaluate the performance of
GPT on the Redis benchmark. Host-Native means the native linux
kernel. Host-with-GPT means the modified linux kernel with GPT
extension.

6.3 Benchmark Suites

Redis benchmark suite. We use Redis benchmark suite to
evaluate the worst-case performance of Guarded Page Table.
As Redis performs as an in-memory database, it needs to call
map/unmap operations frequently. Prior art also uses Redis
to evaluate the performance degradation due to the mapping
overhead (Shadow Page Table may incur 80% overhead on
Redis [48]). As shown in Figure 14, Guarded Page Table
only introduces 5% overhead in SET requests and 6% over-
head in GET requests, which significantly mitigates overhead
compared with Shadow Page Table. The main optimization
comes from the fact that the monitor only checks page sta-
tus in its bitmap. On the contrary, Shadow Page Table needs
to re-construct the combined page table (traverses the host
page table and extended page table), which is much more
complicated and time-consuming.

RV8 benchmark suite. We use RV8 benchmark suite to an-
swer two questions: 1) whether the isolation will incur per-
formance overheads to enclaves, and 2) whether the Guarded
Page Table hardware extensions will cause performance
degradation on CPU-intensive applications. We port the
benchmarks to PENGLAI, with 85LoC modifications to use
PENGLAI API. In addition, we run the benchmark suite in the
host kernel with two settings. One is that the host OS running
in unmodified hardware without HPT Area extension, and
the other is that the OS running in PENGLAI hardware with
Guarded Page Table extension.
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Figure 15: RV8 benchmark suite. PENGLAI can achieve almost
the same performance as native Linux. Guarded Page Table only
incurs minor overhead for host applications.
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Figure 16: Evaluation of case studies. Figure (a) evaluates image
processing on PENGLAI and linux. Figure (b) evaluates MapReduce
performance with multiple workers.

As shown in Figure 15, the performance overheads in
PENGLAI are <4.3% in all the cases and 1.7% on average,
and Guarded Page Table will not affect the performance of
CPU-intensive applications (the overhead is negligible com-
pared with the GPT and Native). The overhead in PENGLAI
is mainly caused by memory allocation in enclaves, which is
slower than the host, as the monitor will dynamically allocate
secure memory and perform the security check.

Coremark. We port Coremark with 43LoC modifications to
meet PENGLAI API, and take the native Linux as our baseline
and run Coremark in two systems on our FPGA board. The
result shows that the score for native Linux is 2,018 and the
score for PENGLAI is 2,049, which proves the strong isolation
provided by PENGLAI will not hurt the performance of CPU-
intensive applications.

6.4 Case Study: Serverless Computing
Existing serverless platforms [1, 3–5] use processes, contain-
ers, or VMs to isolate each function. In the case study, we try
to illustrate the possibility of isolating serverless functions us-
ing enclaves (with higher security assurance) and analyze the
performance impacts. We choose a representative serverless
application, image processing [6, 25].
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Figure 17: Case studies using PENGLAI.



As shown in Figure 17 (a), the image processing application
is composed of four functions, and each function is running
inside a different enclave. The application is triggered when
an untrusted user issues a request (with an image file). The
function “Entry” is fired to get the command and fetch the
host’s image file through untrusted shared memory. Then,
the image file will be passed into the subsequent handling
functions, i.e., “Resize”, “Rotate” and “Erode”. Finally, the
resulting image is returned to the untrusted host. Since the
images may contain sensitive information, it is necessary to
protect them in enclaves. The workload is ported from AWS-
examples repository [6] to a C version using Sod library [19].

We evaluate the performance of image processing in
PENGLAI with two settings, “1enclave” (four functions in
one enclave) and the default “4enclave” (four enclaves). We
implement a baseline in native Linux, using four functions
running in four processes. We carefully tune the Linux perfor-
mance to be state-of-the-art, i.e., using a mixed approach of
the socket (for timely notification) and shared memory (for
zero-copy data transfer). The input image size for the eval-
uation is from 32x32 to 2048x2048. The result is shown in
Figure 16 (a). Compared with Linux, PENGLAI can achieve
even better performance (7%–9% improvement when image
size is larger than 128x128), as PENGLAI’s communication
does not include kernel scheduling costs. Moreover, bene-
fiting from efficient communication, using four functions in
PENGLAI incurs minor costs. This can motivate more modular
applications to be deployed in enclaves.

6.5 Case Study: Secure MapReduce
MapReduce [47] is a popular programming model in the
cloud for data processing, and the recent study [67] shows that
even a single machine can be competent with large-scale data
processing. Since the processed data may contain sensitive
information, VC3 [87] and Civet [96] are proposed to enhance
the security with SGX enclaves. However, using SGX to run
MapReduce workloads has some limitations: first, it needs a
long latency to boot a worker enclave (i.e., mapper or reducer);
second, it needs to load redundant enclave code into secure
memory.

PENGLAI overcomes the issues with shadow fork, as shown
in Figure 17 (b). Each mapper or reducer can instantiate it-
self from a pre-prepared shadow enclave, as they all have
the same processing logic. With shadow fork, a MapReduce
scheduler running in the host can instantiate multiple work-
ers into different enclave instances with low startup latency
and significantly save secure memory when running all work-
ers in enclaves. During the processing, the mapper nodes
invoke the map function on the input and produce interme-
diate key-value pairs. All the intermediate results are saved
in memory and distributed to reducer nodes. The reducer
nodes invoke the reduce function to produce the final result
and return it to the host. We have implemented a prototype
of MapReduce in PENGLAI with two settings: PENGLAI-

Create and PENGLAI-ShadowFork. PENGLAI-Create cre-
ates each worker enclave using normal enclave creation,
and PENGLAI-ShadowFork leverages the shadow enclave
to fork a new worker instance. As shown in Figure 16 (b),
PENGLAI-ShadowFork can achieve 2.0x lower latency over
PENGLAI-Create when both systems use one mapper and
one reducer. If we create more workers for the same job,
PENGLAI-ShadowFork can gain 3.6x speedup compared with
the PENGLAI-Create (4 mappers and 4 reduces, on a 4-core
machine). The speedup mainly comes from the fast startup
with shadow fork. As for normal startup, PENGLAI calculates
enclave measurement every time. The tremendous attestation
overhead will significantly affect the performance in the multi-
workers situation. However, as shadow fork can reduce the
overhead of secure memory initialization, enclave measure-
ment is not the bottleneck for the whole job. Hence, PENGLAI-
ShadowFork can gain better performance improvement with
more worker enclaves.

6.6 Hardware Costs
We use Vivado [11] tool to generate the hardware and get the
report of resource utilization in FPGA. The report shows that
the overall hardware costs are small (0.56%–0.81% in LUT
and 0.00% in RAM) over the original resources (the RISC-V
core). It means that the extensions incur small costs, which is
essential to add the extensions into real hardware.

7 Discussion
Architectures assumptions. Although the implementation of
our prototype is based on RISC-V, the design is independent
of specific architectures and can be adopted by other enclave
systems. We highlight two major assumptions. First, the ISA
should have a privileged level higher than the OS and hyper-
visor. This is a reasonable assumption for the prevailing ISA;
cases include RISC-V’s machine mode, ARM’s EL3 mode,
etc. Second, to support fine-grained memory management,
the CPU shall have an MMU module, which is common in
modern high-performance cores.
Security discussion. PENGLAI is designed to provide the
same (or stronger) security guarantees compared with prior
work. Besides the isolation and integrity protection mentioned
above, PENGLAI can also defend against following attacks.

• Controlled-channel attacks. PENGLAI allows enclaves
to validate the presence of some expected mappings, sim-
ilar to Autarky [81]. The monitor will verify all these
mappings when an enclave is invoked for the first time
and check the validity when the OS changes the map-
ping. As the OS cannot directly access the enclave page
tables, it cannot perform controlled-channel attacks by
monitoring the access/dirty bits in page tables.

• Cache-based side-channel attacks. Existing enclaves
still suffer from the cache-based side-channel attacks [74,
82, 107, 109, 110] or incur high overhead to solve it [45,



53, 75]. Our on-demand cache line locking mechanism
(§4.4) defends the attacks with minor costs. A recent
work, CURE [21], adopts a similar approach with on-
demand partition cache. CURE binds the cache ways
with certain enclave ID, while PENGLAI assigns cache
ways to each core with less hardware modification, and
is more suitable for scenarios like shared memory.

• Other attacks. There are some attacks caused by spe-
cific CPU bugs, including Foreshadow, Spectre [65],
Meltdown [72], etc. The defense mechanisms are or-
thogonal to our design. We also believe that PENGLAI’s
monitor-assisted enclave design is more suitable for han-
dling the emerging attacks than HW-based enclave sys-
tems, which are hard to update after release.

8 Related Work

Secure processor assisted enclave architecture. Some prior
work uses a secure processor to support the trusted execu-
tion environment [12, 33, 39, 42, 44, 53, 70, 71, 85, 90, 104].
The Security-enhanced processor integrated with encryption
and integrity engine can support compartments that are im-
mune to both modification and observation. XOM [70, 71],
SecureME [44] and SecureBlue++ [33] allow the trusted user
processes running on the untrusted OS, as OS cannot ob-
tain the plaintext content of the process. SEV and Hyper-
Coffer [104] allow VMs to run on an untrusted hypervisor.
However, such a method using encryption to isolate memory
space brings non-negligible overhead, and the key manage-
ment and traditional integrity scheme may restrict the enclave
size and number.

Memory integrity scheme. Several different schemes have
been proposed for memory integrity protection [38, 78, 85,
91, 92]. BMT [85] introduces the counter-based message au-
thentication algorithm into the integrity protection scheme
and reduces in-memory overhead. Bastion [91] unifies the in-
tegrity of in-memory pages and on-device pages. VAULT [92]
adopts the various arity for different levels of tree nodes. How-
ever, all these prior work do not solve the inherent overhead
in memory and SoC, and are not scalable at all. PENGLAI
proposes the MMT with a mounting mechanism, which can re-
duce both on-die and in-memory overhead to achieve scalable
memory integrity protection.

Virtualization-based isolation. Virtualization-based isola-
tion [42, 60, 62, 91, 104, 111] has been researched in past
decade. They rely on hypervisor to enhance the isolation
among VMs using techniques like shadow page table [94,98],
nested/extended page table [31, 97], or HLAT [8]. These tech-
niques have similarities to our Guarded Page Table—we both
rely on higher privileged software to validate memory map-
pings. However, nested virtualization usually introduces non-
trivial performance costs, e.g., tests show that the shadow
PT can incur 40% overhead in Memcached [54] and 80%

overhead in Redis [48], and Nested page table also causes
20% overhead in Memcached [54]. Shadow paging needs to
re-construct shadow page table costly, and nested/extended
page table incurs extra overhead due to 2-level page table
walker during the TLB miss. However, PENGLAI proposes the
Guarded Page Table and achieves page-grained isolation with-
out introducing high performance overhead (only 5% even
for memory-intensive benchmark: Redis). What’s worse, the
hypervisor and cloud service providers may not be trusted in
cloud scenarios. Recent works utilize TEE techniques to pro-
pose secure VM, e.g., AMD SEV [12,27,61], Intel TDX [16]
and vTZ [58], which can protect the VMs from the untrusted
hypervisor. Nevertheless, the protection has defects, e.g., both
SEV and TDX cannot defend against physical rollback attacks,
and vTZ does not consider physical memory attacks. Also,
the secure VM suffers the same performance degradation as
the traditional VM due to the memory virtualization over-
head. Compared with virtualization-based isolation methods,
PENGLAI achieves better security guarantees, higher perfor-
mance and scalability.

Cross-zone communication. Cross-zone communication or
IPC has been extensively researched for microkernel and
user-level processes [30, 49, 63, 95, 101]. SCONE [28] and
HotCalls [103] optimize the host-enclave communication in
SGX using asynchronous approaches, e.g., polling and shared
untrusted memory. However, they are not suitable for E-E
communication and tend to waste the CPU cycles. XPC [49]
has proposed the ownership transfer based communication
and reduced the remapping overhead. PENGLAI shares the
same idea of XPC, but overcoming new challenges to transfer
pages crossing the boundary between the secure and non-
secure world. It outperforms existing enclave systems with
the zero-copy and secure data transfer mechanism for both
E-E and E-H communication.

9 Conclusion
This paper has presented a hardware-software co-design of
scalable memory protection based on the PENGLAI enclave
system. Our evaluation shows that PENGLAI can significantly
optimize enclave number, secure memory capacity with in-
tegrity protection, enclave startup latency, as well as resource
flexibility for both microbenchmarks and real-world applica-
tions.
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