
Parallelizing Live Migration of Virtual Machines

Xiang Song † ‡ Jicheng Shi† ‡ Ran Liu † ‡ Yang Jian† ‡ Haibo Chen†

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University ‡Software School, Fudan University

classicxsong@gmail.com rogershijicheng@gmail.com naruilone@gmail.com sheepx86@gmail.com
haibochen@sjtu.edu.cn

Abstract

Live VM migration is one of the major primitive operations to man-
age virtualized cloud platforms. Such operation is usually mission-
critical and disruptive to the running services, and thus should
be completed as fast as possible. Unfortunately, with the increas-
ing amount of resources configured to a VM, such operations are
becoming increasingly time-consuming. In this paper, we make
a comprehensive analysis on the parallelization opportunities of
live VM migration on two popular open-source VMMs (i.e., Xen
and KVM). By leveraging abundant resources like CPU cores and
NICs in contemporary server platforms, we design and imple-
ment a system called PMigrate that leverages data parallelism and
pipeline parallelism to parallelize the operation. As the paralleliza-
tion framework requires intensive mmap/munmap operations that
tax the address space management system in an operating system,
we further propose an abstraction called range lock, which im-
proves scalability of concurrent mutation to the address space of
an operating system (i.e., Linux) by selectively replacing the per-
process address space lock inside kernel with dynamic and fine-
grained range locks that exclude costly operations on the requesting
address range from using the per-process lock. Evaluation with our
working prototype on Xen and KVM shows that PMigrate acceler-
ates the live VM migration ranging from 2.49X to 9.88X, and de-
creases the downtime ranging from 1.9X to 279.89X. Performance
analysis shows that our integration of range lock to Linux signif-
icantly improves parallelism in mutating the address space in VM
migration and thus boosts the performance ranging from 2.06X to
3.05X. We also show that PMigrate makes only small disruption to
other co-hosted production VMs.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design; D.4.8 [Operating Systems]: Perfor-
mance

General Terms Design, Performance

Keywords Parallelized VM Migration, Range Lock

1. Introduction

Live VM migraion [13, 22] has been key enabling techniques
in maintaining virtualized data-centers, including load balancing,
fault tolerance [20], and power management [21]. In many cases,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’13 March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $15.00

such operation should be completed in a timely manner to avoid
disruption and performance degradation of running services.

Usually, if the total downtime of live VM migration exceeds
a certain number (usually several minutes in Giga-Ethernet), the
clients will notice the unavailability of the service and the run-
ning service may be disrupted. Worse even, if a scheduled VM
migration cannot be completed in time when proactively tolerat-
ing hardware/software faults, a possible server outage in the source
machine might crash the VM and even a distributed service in a
virtual cluster as a whole. Further, during live VM migration, the
running service usually experiences a notably lower performance
due to the overhead of tracking and processing the resources of the
target VM.

On the other hand, the amount of resources allocated to a VM
has been steadily increasing along with Moore’s law. For example,
the large and high-memory quadruple Extra Large VM instances in
Amazon EC2 [4] are configured with 7.5 GByte and 68.4 GByte
memory accordingly. It is also no surprise to see virtual machines
with multiple dozens of Giga-bytes memory in some resource-
intensive applications such as virtualized database servers (e.g.,
Oracle and Microsoft SQL Server). However, due to the necessity
of touching a huge amount of resources, the execution time of live
VM migration usually increases along with the amount of resources
in a VM. For example, the total migration time and downtime
for a modest-size Xen VM [9] with 16 GByte memory running a
memcached server have increased to 1,586s and 251s accordingly
(section 6). Such long migration time and downtime are apparently
not satisfiable as the running service will be severely disrupted.
Meanwhile, during the process of migration, the total throughput
of the VM is only 74.5% of normal execution in our evaluation.
Worse even, the migration may also degrade the performance of
other co-located VMs.

In this paper, we conduct a comprehensive study on the par-
allelization opportunities of the live VM migration. Our analysis
uncovers both data and pipeline parallelism underlying basic prim-
itives of it, which motivates the design and implementation of PMi-
grate a system that aims at parallelizing live VM migation. PMi-
grate is inspired by that fact that the increasing amount of resources
configured to a machine also opens opportunities to leverage such
resources for parallelization. Actually, it is currently no surprise a
server machine with several dozens of CPU cores, several hundreds
of Giga-bytes memory and a dozen of NIC ports, which are not al-
ways being fully utilized.

The result of parallelization further uncovers a significant per-
formance bottleneck to the parallelized live VM migration: concur-
rent mutation to an address space. This is because the migration
operation requires frequent mapping/unmapping of memory pages
owned by a guest VM to the address space of the management tool.
However, our survey indicates that most commodity operating sys-
tems (e.g., Linux, Solaris and BSD) usually use a per-process lock
to serialize mutation to an address space. To allow concurrent mu-

tation to an address space, we further propose an abstraction called
range lock, a dynamic fine-grained lock abstraction that allows fine-
grained protection of some costly operations, instead of a complete
serialization of mutation to the address space. By integrating range
lock with existing address space management code in Linux, the
parallelism with concurrent address space mutation for PMigrate is
significantly increased.

We have extended Xen 4.1.2 to support the parallelization of
live VM migration, which add 1,860 lines of code to Xen tools and
domain01 kernel. We also integrate the support of range lock to
Linux to improve the scalability of concurrent mutation to address
spaces. To further demonstrate the applicability of parallelizing
VM management operations, we implement live VM migration
based on kvm-qemu 0.14.0, with the support of migrating both
memory and disk data. The implementation adds 2,270 lines of
code to the kvm-qemu tools.

To measure the effectiveness of the parallelized live VM mi-
gration operation and the performance benefits of devoting more
resources, we have conducted several evaluations using several
widely-used applications. Performance results show that paral-
lelized migration operation significantly outperforms the vanilla
one. It accelerates live VM migration ranging from 2.49X up
to 9.88X, with the downtime decreased ranging from 1.9X to
279.89X. We further show that the performance impact of par-
allelized live VM migration on the target VM is also very small
compared to the vanilla live migration: the average throughput is
reduced by 12.5% (with the maximum be 16%). We also show
that our integration of range lock to Linux significantly improves
parallelism in mutating the address space in virtual memory man-
agement operations, which boosts the performance ranging from
2.06X to 3.05X. The performance impact on the co-located VMs
is also quite small with the control of resources dedicated to VM
operations. We further show that PMigrate can be integrated with
other optimization by evaluating it with live VM migration using
compression. Our evaluation results show that PMigrate improves
the performance by 3.98X compared to the vallina one with com-
pression.

In summary, the contributions of this paper are:

• A case for parallelizing live VM migration.

• The range lock abstraction and its integration in Linux that
increases the parallelism of concurrent mutation to an address
space.

• The design, implementation and evaluation of PMigrate on Xen
and KVM that confirm the effectiveness of parallelization and
range lock.

The rest of the paper is organized as follows. The next section
provides an overview of live VM migration and the underlying par-
allelism, which motivates our design on parallelizing them in sec-
tion 3. Section 4 illustrates the concurrent address space mutation
problem and describes the range lock abstraction as well as how it
is integrated to Linux. Section 5 describes our implementation on
Xen and KVM. The experimental results are shown in Section 6.
We relate our work with previous work in Section 7 and conclude
our work in Section 8.

2. An Overview of VM Migration

In this section, we briefly illustrate live VM migration based on
Xen [9, 13] and KVM [16], and present a quantitative analysis on
the primitive operations and the source of parallelism accordingly.
Though there are several variants in live VM migration, we mainly
describe the Pre-copy approach [24], which is the default strategy

1 Domain0 is the management VM in Xen.

for most hypervisors such as Xen, KVM and VMWare. Paralleliz-
ing other migration strategies like Post-copy (which is rarely used
due to its unreliability) is quite similar, which we omit here for
brevity.

2.1 Basic Steps in Live VM Migration

For live VM migration, CPU states, memory, persistent storage and
other device states are required to be migrated to the destination
node on the fly. The migrate send function in Figure 1 shows the
send-side algorithm of the pre-copy live migration: the source node
iteratively transfers the memory and disk data to the destination
node while keeping the source VM alive through multiple itera-
tions, which is called the pre-copy step. At the very beginning, the
initial memory and disk data are considered to be dirty and will be
transferred as a whole. In the following iterations, the hypervisor
will track the newly dirtied data generated by VM execution and
add the dirtied pages to a page pool, which will be sent out in the
following iteration. The iteration stops only when 1) the dirty data
left is small enough or 2) its size cannot be further reduced by intro-
ducing more iterations or 3) too many resources are wasted on the
pre-copy iterations (e.g., the total memory sent exceeds a thresh-
old). After that, the migration enters into a stop-and-copy phase
that transfers the remaining memory and disk data as well as CPU
and device states.

In each iteration, the memory and disk data are processed on
the source node and the destination node. For memory data, a
dirty bitmap is usually maintained to keep track of dirty pages.
The dirty memory pages are divided into multiple batches and are
processed in turn. When processing each batch of memory pages,
the migration tool first maps the guest VM memory pages into
its own address space, and then handles specifically on unused
pages and page table pages. Finally, these memory pages will be
grouped together and sent to the destination. In the destination node
(the migrate receive function in Figure 1), the memory pages are
first received and copied to the address space mapped from the
target VM. The disk data is handled similarly and a dirty bitmap
is maintained to keep track of dirty data.

Typically, the downtime of migration is directly affected by the
rate of sending VM’s data and the dirty rate of memory and disk
data. If the migration rate is close or even less than the page dirty
rate, the migration will be either very hard to converge (indicating a
long migration time) or result in a huge amount of data to be trans-
ferred in the stop-and-copy phase (indicating a lengthy downtime).

2.2 An Analysis of Parallelism

Table 1 provides an overview of the associated parallelism, the
estimated cost for the most important basic operations in a live
VM migration operation and where they locate in Figure 1. There
are mainly two types of parallelism: data parallelism and pipeline
parallelism.

Data Parallelism: During migration, as there is no dependency
among different portions of memory and disk data in the same iter-
ation, several steps in migration have very good data parallelism,
including resetting disk data into readonly, mapping guest VM
memory pages into the address space of the management tool, pro-
cessing unused pages and page table pages, transferring memory
and disk data and restoring memory data. There are several cases
where data parallelism is not appropriate. For example, getting the
dirty bitmap and resetting memory into readonly are mainly done
through invoking hypercalls 2. As the time spent on these opera-
tions is not significant, it is not worthwhile parallelizing them.

Pipeline Parallelism: For some steps, if data parallelism is
not appropriate, we can also leverage pipeline parallelism. For

2 Hypercalls are calls from a guest VM to the hypervisor.

Primitives
Parallelism

Send Receive Cost
Data Pipeline

Get memory dirty bitmap no no line 6 N/A small
Reset memory readonly no no line 7 N/A small
Get disk dirty bitmap no no line 6 N/A small
Reset disk readonly yes yes line 15 N/A small
Check dirty bitmap no yes line 8 N/A small
Map guest VM memory yes yes line 11 line 4 heavy
Handle Unused/PT Page yes yes line 12 line 5 modest
Transfer memory data yes yes line 16 line 2 heavy
Restore memory data yes yes N/A line 6 modest
Load/Save disk data no yes line 14 line 8 heavy
Transfer disk data yes yes line 16 line 2 heavy
Migrate CPU/Device States no no line 17 line 10 small

Table 1. A summary of parallelism in different steps of live VM migration.

Figure 1. An overview of basic steps in live VM migration.

example, though it is not easy to apply data-parallelism to check
dirty bitmap, we can partition it into a number of stages and feed
the intermediate results to the next stage. Similarly, loading disk
data can hardly be parallelized using data parallelism as the read
from disk is constrained by the I/O system call. However, we can
parallelize it with disk data transfer in a pipeline manner.

To give a sense on how to partition each operation into different
threads and stages, we have conducted a quantitative evaluation to
measure the cost in major primitive operations. The evaluation is
done by migrating a modest-sized VM with 16 GByte memory,
4 virtual CPUs and 16 GByte disk. During migration, we run a
memcached server on the guest VM with modest workload. Table 2
shows the primitive metrics of live VM migration. The migration
takes about 1592s with a downtime of 257s. It takes about 10
iterations and then it is forced to be migrated. 58.8 GByte memory
data was sent in total. In the example, about 29.9% of total time is
spent on mapping memory of the guest VM, while the rest of time
are spent mainly on data transferring through an SSH connection.
The single thread migration process can only reach a network
throughput of 37.7 MByte/s with an average CPU utilization of
more than 95%. The high CPU utilization is due to the high cost

Send Receive

Total migration time 1592.0s
Downtime 257.0s
Get/Reset memory dirty bitmap 0.59s N/A
Map guest VM memory 381.0s 571.1s
Handle Unused/PT Page (send) 44.8s N/A
Transfer memory data 1,200.5s 979.1s
Handle/restore memory data (receive) N/A 31.7s
Migrate CPU/Dev States 8.84ms
of iterations 10
total memory sent 58.6 GByte
Last iter memory size 9.3 GByte
Avg. Network Cost 37.7 MByte/s
Avg. CPU usage 95.4%

Table 2. Costs of primitives in live migrating a modest-sized VM.

in mapping the guest VM memory, which includes acquiring a
virtual address area for holding the guest memory, getting grants
of accessing the guest pages and building up the page table through
hypercalls as well as cleaning up the page table after processing
the memory. It also includes high CPU consumption in encrypting
and checksumming the data before transferring it. Thus, the key
to parallelize live VM migration is to spawn multiple threads to
leverage multiple cores to handle such tasks.

3. Parallelizing Live VM Migration

Based on our study on the sources of parallelism inside the live VM
migration operation, this section describes how PMigrate leverages
multiple cores and NICs to parallelize it.

3.1 Parallelizing Live VM Migration

Parallelizing live VM migration includes applying data parallelism
and pipeline parallelism to most primitive operations shown in
table 1. Figure 2 shows an overview of how live VM migration
is parallelized. In the figure, the blue boxes mean the memory
tasks, the pink boxes mean the disk tasks and the squiggly lines
shows how data is moved. The stages inside the square are data
parallelized and the connecting square are pipeline parallized with
each other. The migration data is divided and assigned to a number
of tasks and the tasks are processed in parallel.

Source Node: The migration process spawns a memory task
producer to process memory data, as well as a disk task producer to
process disk data. Depending on the amount of available CPU cores
and NICs, several consumer threads are spawned to handle the

Guest VM Memory

Task Pool

...

memory_data_producer(...)

get_dirty_bitmap();

reset_memory_readonly();

produce_memory_tasks();

disk_data_producer(...)

get_dirty_bitmap();

load_disk_data();

reset_disk_block_readonly();

produce_disk_tasks();

send_consumer(...)

consume_tasks();

if (memory_data)

map_guest_vm_memory();

handle_zeroPage_ptpage();

transfer_data();

if (disk_data)

transfer_data();

recv_consumer(...)

if (disk_data)

receive_data();

produce_disk_write_tasks();

if (memory_data)

receive_data();

map_guest_VM_memory();

handle_zeropage_ptpage();

restore_memory_data();

disk_writer(...)

get_disk_task();

restore_disk_data();

Source Node

Destination Node

...

Task Pool

...
Disk

Guest VM Memory

...

Disk

...

Figure 2. An overview of Parallel VM Migration.

tasks using data parallelism for the most time-consuming primitive
operations. Handling a memory task includes mapping guest VM
memory into the address space of the migration tool, handling
unused pages and page table pages and sending out memory data.
By contrast, handling a disk task just needs to simply send out the
disk data.

We currently do not parallelize the disk producer thread as the
parallelization may not gain enough benefit unless there are multi-
ple virtual disks, as the disk I/O itself is serialized. Fortunately, we
still can pipeline it with disk data sending.

Further, checking the dirty bitmap is done by the producers due
to performance concerns. Other than the first iteration, memory and
disk data to be sent in each iteration may not be contiguous, as a lot
of pages and blocks may not be dirtied during the previous iteration.
If the producers do not check the dirty bitmap before creating tasks,
a lot of tasks will be created unnecessarily, resulting in sending
a large amount of redundant data. As the cost of checking dirty
bitmap is quite small, we place it in the producer threads and
pipeline it with the consumer threads that send the memory and
disk data.

There are also several primitive operations that are not appro-
priate for data or pipeline parallelism:

• Get Dirty Bitmap: Generating a separate dirty bitmap for each
task is rather time consuming, as a task producer will usually
generate thousands of tasks in live VM migration. It is more
appropriate to do this at the beginning of each iteration.

• Reset Memory to Readonly: Resetting the access right of dirty
pages into readonly for each memory batch will cause not
only performance problem but also correctness problem. This
is because repeatedly invoking the corresponding hypercall for
each memory batch is not only very time consuming, but also
may disturb the statistics in the dirty bitmap. This is because

the access right for a memory page might have been changed
before resetting its access right.

• Handle CPU/Device States: Loading and sending CPU and
device states are done by a single thread as the basic cost is
negligible. Parallelizing it may introduce cost instead of benefit.

Destination Node: The migration process spawns several con-
sumer threads, each of which is responsible to handle the data
batches sent from a corresponding consumer thread in the source
node. Most of the work is done using data parallelism. Handling
each memory data batch includes mapping guest VM memory
pages; handling unused pages and page table pages; and restoring
the data. By contrast, handling disk data only includes receiving
disk data.

However, restoring data into disk image is not parallelized as
it will ultimately be serialized by the disk itself. In this case, an
additional disk thread is spawned to pipeline disk data restoring
with disk data receiving. Finally, receiving and restoring CPU and
device states and resuming the VM are done by the migration
process itself.

3.2 Resource Usage Control

As the live VM migration tool needs to consume multiple resources
that may also be needed by the production VMs, we try to control
the amount of resources used by the tool to minimize disruption to
other VMs, while use the spare resoures as much as possible.

Network Rate Control in Live Migration: In both the source
node and the destination node, a network monitor daemon is
spawned to collect the network usage of each NIC from the ker-
nel. The destination daemon will periodically (1 second by default)
negotiate with the source daemon to adjust the network bandwidth
used by migration. In principle, the migration process will only
consume the spare network bandwidth. The network bandwidth
of each map consumer is adjusted by the daemon according to
the network statistics of the corresponding NIC. To ensure a suc-
cessful migration with certain requirement on migration time and
downtime, a specific amount of bandwidth will be reserved by the
migration process.

CPU Rate Control: There are lots of VMM scheduling strate-
gies [12] to ensure the fairness and performance of VMs. The CPU
usage of the migration process can be directly controlled by the
VMM scheduler. By downgrading the execution priority of the mi-
gration process, we can limit its CPU consumption against the de-
vice backend daemons on a privileged VM. By upgrading its prior-
ity, we can devote more CPU resources into VM management tool.
By default, its priority is set below the average.

Limiting Memory Consumption: As the time spent on differ-
ent primitive operations varies and depends on the underlying exe-
cution environments (including software and hardware), there may
be load imbalance between the producer and the consumer. Thus,
the memory used to cache the data may become very large. To mit-
igate this problem, we maintain a memory pool for each pipeline
stage. The memory buffers used to cache the “intermediate data”
are directly allocated from this pool. The memory pool only con-
tains a specific amount of memory (e.g., 128 MByte). If it is empty,
the following allocation requests will be blocked. Thus, the total
memory consumption can be limited.

4. Scaling Mutation to Kernel Address Space

After applying data and pipeline parallelism to the live VM
migration, there is a serious kernel serialization: the frequent
mmap/munmap operations from multiple threads require concur-
rent mutation to the address space of the management tool. This
is unfortunately completely serialized by most existing OS ker-
nel. For example, Linux and Solaris use a single read/write lock

and FreeBSD uses a single write lock, which serializes the ad-
dress space mutation. Windows prior Windows 7 similarly use a
system-wide PFN lock. Though Windows 7 does not publish its
implementation details, our evaluation with a concurrent mmap
microbenchmark on a 4-core machine shows that it may have a
similar scalability issue3.

This section first illustrates and analyzes the problem and then
describes the range lock abstraction to mitigate it.

4.1 Serialized Address Space Mutation

The live VM migration operation needs to frequent memory map-
ping operations that map the guest VM memory into the address
space of the VM management tool and unmap the memory after
reading or writing the corresponding data. Figure 3 shows the main
body of the VM migration algorithms. When being parallelized,
each thread will : 1) first use the mmap syscall to allocate a new
virtual memory area (VMA) (line 5) ; 2) then use an ioctl syscall to
map the guest VM memory into the address space of the manage-
ment tool (line 7-9); and 3) finally munmap the area when the data
has been processed (line 13).

Unfortunately, Linux, like other similar operating systems, pro-
tects the per-process address space using a single lock (called
mmap sem in Linux). All the three steps are treated as mutation to
the address space by Linux, which should be mutually exclusive by
acquiring the mmap sem in write mode for all related operations.
Worse even, mutating the process address space such as mapping
the guest VM pages in ioctl and cleaning the mapping of the guest
pages in munmap is pretty time-consuming, as it requires further
calls to the hypervisor. Specifically, when mapping the guest VM
pages using ioctl, the privileged VM has to build up the page ta-
ble through hypercalls for each guest page. As the guest page does
not belong to the privileged VM, such map operations (namely, the
foreign page map) are rather costly. This significantly enlarges the
critical section in the live VM migration operation.

To give a sense of how severe will the contention be, we profiled
the execution time of the live VM migration operation and found
that more than 8.91%, 22.94% and 16.08% of total execution time
are spent within the mmap sem. With a number of concurrent
threads, the time spent on the critical section will be accumulated,
which significantly degrade the performance.

One intuitive solution is to increase the memory chunk size pro-
cessed in each thread, which may reduce the frequency of issuing
the address space mutation operations. However, this will increase
the size of the critical section for these operations, which, however,
may even further exacerbate the contention on the critical section.
Another approach to mitigating the contention would be using mul-
tiple processes instead of threads to parallelize the VM operations.
Unfortunately, the relative complex task dispatching and synchro-
nization make such an approach less appealing.

Read Protection of Guest VM Mapping: After a close inspec-
tion on the routine of mapping guest VM pages in the VM man-
agement tool, we find that holding the mmap sem semaphore in
write mode is too costly and largely unnecessary, as it only pro-
tects a private Xen-specific field in the VMA, which stores the
grant mapping information. 4 Figure 4 shows how the guest VM
memory is mapped. First, the mmap sem is hold in write mode
(line 3). Then the virtual memory area containing the requesting
address is searched (line 4). After that, the required batch of guest

3 In the microbenchmark, each thread mmaps a 4 MByte memory, touches
the memory (thus causing page faults) and unmaps the memory. Our evau-
lation results in a 4-core machine with Windows 7 (x64 sp1) show that the
execution time using 4 cores increases from 765ms in 1 core to 2,684ms in
4 core.
4 Grant map is a mechanism used by Xen to share memory between VMs.

 1 map_consumer(...)
 2 ...
 3 while (task = get_task()) {
 4 ...
 5 addr = mmap(NULL, batch*PAGE_SIZE,
 prot, MAP_SHARED, fd, 0);
 6 ioctlx.num = batch;
 7 ioctlx.addr = addr;
 8 ioctl(fd,
 IOCTL_PRIVCMD_MMAPBATCH_V2, &ioctlx);
 9 ...
10 memory_process()
11 ...
12 munmap(addr, batch*PAGE_SIZE);

Figure 3. The main body of a parallel live VM migration opera-
tion.

1 privcmd_ioctl_mmap_batch(...)
2 ...
3 down_write(&mm->mmap_sem);
4 vma = find_vma(mm, m.addr);
5 ...
6 ret = traverse_pages(m.num,

sizeof(xen_pfn_t), &pagelist,
mmap_batch_fn, &state);

7 up_write(&mm->mmap_sem);
8 ...

Figure 4. The main body of mapping the guest VM memory.

VM memory is mapped by constructing the page table through the
mmap batch fn call for each page (line 6). Finally, mmap sem is re-
leased (line 7). As mapping guest VM memory (line 4 and 6) does
not modify other virtual memory areas, the mmap sem can be hold
in read mode with a fine-grained lock to protect the field.

4.2 Range Lock

After changing the protection of mapping guest VM pages from
write mode to read mode, there is still serious contention as the mu-
tation to an address space is serialized. Actually, this is not a spe-
cific problem to PMigrate, but a general problem to most operating
systems that use a per-process lock to serialize concurrent muta-
tion to an address space. Though Clements et al. [14] have demon-
strated the effectiveness in parallelizing the process of read ac-
cesses to address space (i.e., page faults) with write accesses (e.g.,
mmap) using a RCU balanced tree, the mutation to the address
space like mmap/munmap still requires acquiring the mmap sem
in write mode. Hence, there is still only one mmap/munmap oper-
ation can proceed at a time.

To address this problem, an intuitive approach would be decom-
posing the per-process semaphore into a number of fine-grained
locks that protect only the requesting ranges of an address space.
However, the requesting range of a mmap/munmap system call is
usually dynamic and unpredictable. Further, the requesting ranges
from different requests may overlap. Hence, it is impossible to use
a set of predefined fixed-size locks, which are also pretty costly in
terms of space and execution time. To this end, we propose a dy-
namic lock-service to the address space, which is called range lock.

Range lock leverages a skip list [25] that dynamically maintains
the address ranges that are currently locked. To acquire a range
lock to a specific range, the range lock function searches the skip
list using the requesting address range ([start, start+len]). If there
is already an existing/overlapping range in the skip list, another
thread should be mutating the specific range and the requesting
thread should wait and retry. Otherwise, a range will be added to
the skip list, indicating that the range lock is granted. To release a
range lock, the range unlock function uses the requesting address
to search the skip list and deletes the corresponding range in the list.
The reason why we use a skip list is because both range lock and

 mmap(brk is similar):
 Down_write(mmap_sem)
 1. Obtain the address to map
 Lock_range(addr, len)
 2. Update VMAs/add new VMA
 Unlock_range(addr, len)
 Up_write(mmap_sem)

 mremap:
 Down_write(mmap_sem)
 Lock_range(addr, len)
 1. Do remap
 Unlock_range(addr, len)
 Up_write(mmap_sem)

 munmap:
 Down_write(mmap_sem)
 1. Adjust first and last VMA
 Lock_range(addr, len)
 2. Detach VMAs
 Up_write(mmap_sem)
 3. Cleanup page table
 4. Free pages
 5. TLB shoot down
 Unlock_range(addr, len)

 guest_map:
 Down_read(mmap_sem)
 1. Find VMA
 Lock_range(addr, len)
 Up_read(mmap_sem)
 1. Buildup page table for
 guest VM page
 2. Map guest page through
 hypercalls
 Unlock_range(addr, len)

Figure 5. How range lock is integrated to Linux using hierarchical
locking.

range unlock requires intensive searching for existing/overlapping
ranges and other data structures storing ranges such as interval tree
and segment tree are a little bit too heavyweight for our purpose.

Ideally, it would be better to use a concurrent skip list to min-
imize the critical section. However, as typical concurrent skip list
only supports either lookup or concurrent changes to one element in
one operation, while range lock requires first looking up the range
and then updates two elements (i.e., start, start + len) in the skip list.
It would require non-trivial complexity and/or overhead to make
the skip list concurrent. Hence, the skip list is currently protected
by a spinlock. As the critical section of the range lock routines are
very short, this spinlock does not become a new bottleneck in our
evaluation.

Ideally, the entire address space can be protected in a fine-
grained manner using range lock, where all accesses to different
portions of the address space can be completely parallelized. In
practice, there are a number of memory states that should be main-
tained consistently for an OS kernel. Further, current Linux ker-
nel still uses a red/black tree like data structure to maintain both
virtual memory areas and memory states, completely replacing
it into a new data structure will be very resource-intensive due
to a number of other correlated data structures such as reverse
map and mmap cache [14]. As a result, PMigrate currently only
uses range lock to parallelize the time-consuming parts inside the
mmap/munmap/foreign map calls by removing them from the criti-
cal sections protected by the mmap mem and protecting them by the
Range Locks, while still leaving the original data structure intact.
This makes the related changes to Linux relatively small, yet still
brings notable performance improvement. For example, the current
range lock implementation comprises of 290 SLOCs and the re-
lated change to Linux is only with 120 SLOCs. The implementation
is stable enough that it passed Linux Test Project [6].

Specifically, as shown in Figure 5, we still acquire the mmap sem
in mmap but additionally also acquires the corresponding range
lock, as most operations in mmap just update the red/black tree
for an address space, which is not time consuming. For munmap,
we keep the mmap sem in write mode for the portions of updating
red/black tree. However, for the rest code in munmap such as clear-
ing page table entries and free pages, freeing unused page table
pages and shooting down local and remote TLBs, we release the
mmap sem but still keep the corresponding range lock. Similarly,
in guest map, we use both mmap sem in read mode and the range
lock to protect the VMA lookup (line 4 in Figure 4) but only use
the range lock to protect the rest of execution. As the mutation
and lookup of VMA tree usually only consists of a small portion
of execution time, applying the range lock significantly increases
the parallelism and boosts the performance of mutation-intensive
workloads, as shown in section 6.

5. Implementation

To demonstrate the applicability of our parallelized scheme, we
have implemented PMigrate based on Xen, a popular open-source
VMM that has been used in many cloud platforms such as Amazon
EC2, OpenNebula and OpenStack. To demonstrate the wide appli-
cability of PMigrate, we further port PMigrate to KVM, a hosted-
mode VMM that is also widely deployed in many cloud platforms.

Implementation on Xen: The current Xen VMM only supports
live migration of memory and CPU states. We have parallelized
live VM migration, namely PMigrate-Xen. The current PMigrate
system is built by extending the vanilla Xen tools (version 4.1.2)
by parallelizing most operations as shown in section 3 with the
address space optimization mentioned in section 4. The overall
implementation adds/changes 1,860 SLOCs to Xen tools and the
privileged VM (i.e., Domain0) kernel.

Implementation on KVM: KVM supports live VM migration
with both memory and persistent storage. The migration request
is handled by the I/O thread which is also responsible to handle
the I/O operations related to the guest VM. In vanilla KVM, the
I/O thread uses an event-driven mode to handle both the migration
process and guest I/O requests with time-slicing. In each migration
time slice, namely one iteration, the I/O thread only processes a
small chunk of data according to the rate limit. Then it will switch
to handle the I/O requests from the guest VM and wait for the
next migration time slice. Such iteration strategy spends too much
time on generating dirty bitmap of memory and disk images and
resetting the access right of dirty pages into readonly. It also results
in notable performance disruption on the I/O intensive guest VMs
as we will show in Section 6.2.2. Thus, we change the KVM’s
iteration strategy into image-oriented as the PMigrate-Xen, which
sends the entire VM image in the first iteration and sends the dirtied
data in the following iterations. Further, to keep the migration alive,
in PMigrate-KVM, we let the I/O thread spawn a new migration
thread to handle the migration task. Otherwise, I/O thread will be
monopolized by the migration task as handling one image iteration
is very time-consuming.

In the source node, the migration thread spawns a memory
task producer and a disk task producer to prepare the memory
and disk data. Several sender threads are spawned to handle the
memory and disk tasks. One problem in preparing disk data is that
the vanilla-KVM uses asynchronous I/O (AIO) operations to issue
read request to disk data and let the I/O thread to handle the AIO
completion notification. The I/O thread handles the notification
when it is monitoring the guest VM I/O or when it is processing
the disk data in migration. However, in PMigrate-KVM, the disk
producer will process the disk data in migration and it executes
with the I/O thread in parallel, resulting in a race condition in AIO
processing. To handle this problem, we change the AIO operations
into synchronized I/O operations. Using synchronized I/O will not
block the migration process, as the disk task producer executes in
parallel with the consumer threads.

In the destination node, the migration thread spawns several
receiver threads to handle the memory data and receive the disk
data. It also spawns a disk writer thread to restore disk data into the
disk image.

The overall implementation takes about 2,270 SLOCs, which
includes 830 SLOCs to change its iteration strategy into image-
oriented.

6. Evaluation

This section evaluates the effectiveness of parallelizing live VM
migration operation.

Vanilla PMigrate

Migration Time (sec) 422.8(3.6) 112.4(3.9)
Downtime (millisec) 310.0(11.5) 408.0(12.5)
of Pre-copy Iterations 5.7(1.2) 4.3(0.6)

Total Memory Send (GByte) 16.2(0.0) 16.2 (0.0)
Downtime Send (MByte) 1.8(0.4) 1.7(0.2)
Avg. Network Cost (MByte/s) 39.3(0.3) 148.0(5.0)
Avg. CPU usage 89.6(0.5)% 364.9(14.0)%
Total CPU Cost (CPU-sec) 378.9(2.0) 409.9(1.9)

Table 3. Key metrics (with STDEV) of live migrating an idle VM
on vanilla Xen and PMigrate-Xen.

6.1 Experimental Setup

All experiments were conducted on two Intel machines, each of
which is with two 1.87 GHz Six-Core Intel Xeon E7 chips. Each
core has a separate 32 KByte L1 data cache and 256 KByte L2
cache and each chip has a shared 18 MByte L3 cache. The size of
physical memory is 32 GByte. Each machine is equipped with a
quad-port Intel 82576 Gigabit Network Controller and a quad-port
on-board Broadcom Gigabit Network Controller. We use another
Intel machine as the NFS server to provide the shared global storage
for guest VMs on Xen. We use an Intel machine as the client
machine. It is with four 2.00 GHz Ten-Core Intel Xeon E7 chips
and one quad-port Intel 82576 Gigabit NIC . All machines were
connected to a subnet through a Gigabit switch. The maximum
throughput of a single network connection is 117.6 MByte/s with
the round trip time be 0.076ms, while the maximum throughput of
an SSH connection is 48.6 MByte/s.

We evaluate the performance of PMigrate for both Xen and
KVM. We use Debian GNU/Linux 6.0, Xen 4.1.2 and the man-
agement VM with Linux kernel version 3.2.6. The KVM version
is kvm-qemu 0.14.0 with the host VM kernel version 3.2.6. The
guest VM is launched using hardware-assisted virtualization tech-
nologies [1] with 16 GByte memory in total and a 16 GByte disk
image running Debian GNU/Linux 6.0. All tests were conducted
with five or six times with a very low variability and we report the
average as well as the standard deviation.

6.2 Performance and Scalability of Parallelization

6.2.1 Parallelized Live VM migration in Xen

We use two widely-used applications, memcached [18] and Post-
greSQL 9.1.2 [7], as well as an idle VM to evaluate the perfor-
mance of memory-intensive, CPU-intensive and idle VMs for live
VM migration. We spawn 8 consumer threads and set no limit on
the maximum network bandwidth for each thread. The connections
are with the SSH-style connection, which is the same as the vanilla
Xen. The Intel NIC is used by migration, while the Broadcom NIC
is used by the guest VM through an emulated network device. To
minimize impact to the VM workloads, we separate the physical
CPU set so that the migration process can be scheduled on a differ-
ent core set from the production VMs. We let each two consumer
threads share one port of the NIC.

Idle VM: Table 3 compares the basic metrics of live migrating
an idle VM. It can be seen that the migration time is reduced by
3.76X, as the average data transferring throughput is increased
by 3.76X. Although the average CPU utilization of PMigrate is
increased by 4.07X, the total CPU cost is increased by only 8.2%.

PostgreSQL PostgreSQL [7] is a wide-used SQL server. In
the evaluation, we use pgbench as the client to generate SQL
requests using the workload from TPC-B [2]. The target database
contains 5,000,000 accounts and the workload is generated using
32 concurrent connections through 8 threads. PostgreSQL is CPU-

Vanilla PMigrate

Migration Time (sec) 473.6(5.7) 115.8(10.8)
Downtime (millisec) 1,420.6(166.5) 746.6(74.2)
of Pre-copy Iter. 29(0) 29(0)

Total Memory Send (GByte) 16.4(0.1) 16.8(0.03)
Downtime Send (MByte) 39.6(6.1) 28.4(9.0)
Avg. Network Cost (MByte/s) 35.4(0.31) 149.7(14.4)
Avg. CPU usage 82.8(2.1)% 359.7(46.5)%
Total CPU Cost (CPU-sec) 497.3 525.9
Avg. PostgreSQL Thr. (Trans/s) 497.3(3.6) 416.4(12.5)
Avg. Thr. Degrade 4.4% 20.31%

Table 4. Key metrics (with STDEV) of live migrating a Post-
greSQL server VM on vanilla Xen and PMigrate-Xen.

intensive and will generate moderate disk I/O workloads. However,
the dirty rate of memory is low.

Table 4 compares the key metrics of live migrating a VM with
PostgreSQL. It can be seen that the migration time is reduced by
4.09X and the total downtime is also reduced by 1.90X. The perfor-
mance improvement is mainly due to the increased average migra-
tion network throughput (4.23X), as more CPU cores means more
data will be available to be sent out. However, the accumulated
CPU and network cost are not increased even if more resources are
devoted into parallelized live migration. The performance degrada-
tion of PostgreSQL server on PMigrate-Xen is about 16% larger
than that on vanilla Xen. It is mainly due to the side effect of the
PMigrate threads on the NFS driver.

Memcached Memcached [18] caches multiple key/value pairs
in memory. Each time the server receives a request containing a key,
it will respond with the corresponding value. We use the memaslap
testsuite from the libmemcached library [5] as the memcached
client. The client first warms up the memcached server with multi-
ple key/value pairs to fill the memory and then randomly issues get
operations through 4 concurrent connections from 4 threads. The
workload of memcached is both memory and network intensive.

Table 5 compares the key metrics of live migrating a mem-
cached VM. It can be seen that the migration time is reduced by
9.88X. The tremendous performance improvement is due to two
major reasons: 1) the average migration network throughput is in-
creased by 3.8X; and 2) As the data processing and transferring
speed is significantly increased, the execution time of each pre-
copy iteration is also reduced, resulting in much less data being
dirtied. As shown in the table, the total memory sent is reduced by
2.58X. Further, the total downtime is reduced by 279.89X. As the
data migration speed on vanilla Xen is not faster than the mem-
ory dirty speed of the memcached server, the last migration iter-
ation (which is offline) is mandated after several pre-copy itera-
tions. As a result, a total of 9.2 GByte memory is transferred dur-
ing the downtime. On the other side, as the data migration speed
on PMigrate-Xen is much faster, the total amount of data to be sent
during the downtime is greatly reduced to only 0.02 GByte after
29 pre-copy iterations. Thus, it is no surprise the total downtime on
PMigrate-Xen is much shorter than that on vanilla Xen. Through
PMigrate-Xen devotes more resources into parallelized live migra-
tion, the accumulated CPU and network cost is not increased, but
instead reduced by 2.40X and 2.59X, respectively. The throughput
of memcached on vanilla Xen is 17.4 MByte/s with a total of nonre-
sponse time of 251.9s. While the throughput of it on PMigrate-Xen
is 15.3 MByte/s with a total of non-responsive time less than 2.7s.
Though the performance degradation of the server on PMigrate-
Xen is about 9% larger than that on vanilla Xen, the overall nega-
tive performance impact is notably reduced as the migration time
and downtime is significantly reduced.

Vanilla PMigrate

Migration Time (sec) 1,586.1(13.7) 160.5(2.2)
Downtime (sec) 251.9(12.1) 0.9(0.03)
Non-response Time (sec) ≈ 253.0(11.4) <2.7(0.6)

of Pre-copy Iterations 9.7(0.6) 29(0)
Total Memory Send (GByte) 58.6(0.03) 22.7(0.5)
Downtime Send (GByte) 9.2(0.3) 0.04(0.0)
Avg. Network thr. (MByte/s) 38.0(0.3) 145.0(4.3)
Avg. CPU usage 95.5(1.5)% 392.6(18.3)%
Total CPU Cost (CPU-sec) 1,514.1 629.9
Avg. Memcached Thr. (MByte/s) 17.4(0.9) 15.3(0.5)
Avg. Thr. Degradation 25.5% 34.6%

Table 5. Key metrics (with STDEV) of live migrating a mem-
cached server VM on vanilla Xen and PMigrate-Xen.

Vanilla PMigrate

Migration Time (sec) 203.9(8.6) 57.4(6.1)
Downtime (millisec) 630.7(59.5) 15.8(1.7)
of Pre-copy Iterations 9,735.7(314.6) 1(0)
Downtime send (MByte) 10.1(5.7) 2.1(0.4)
Total Memory Send (MByte) 396.8(7.2) 395.6(6.5)
Total Disk Send (GByte) 16(0.0) 16(0.0)
Avg. Network Thr. (MByte/s) 82.4(3.6) 294.7(32.0)

Table 6. Key metrics (with STDEV) of live migrating an idle VM
on vanilla KVM and PMigrate-KVM.

6.2.2 Parallelized Live Migration of KVM

We also use an idle VM and a VM running memcached [18] to
evaluate the performance of live migrating an idle and memory-
intensive VM in KVM. As KVM further supports disk data migra-
tion, we further use DBench [3], a well-known file-system bench-
mark, to evaluate the performance of live migrating a I/O inten-
sive VM. We spawn 4 consumer threads, and set no limit on the
maximum network bandwidth for each thread. The connections are
through the Intel NIC with each thread using one port, where the
Broadcom NIC is used by the guest VM through an emulated net-
work device. In both PMigrate-KVM and vanilla KVM, each zero-
page is compressed into 1 byte. We do not show the CPU usage
because a guest VM execute as a process in the host OS, which
makes the CPU statistic inaccurate.

Idle VM: Table 6 compares the basic metrics of live migrat-
ing an idle VM. It can be seen that the migration time is re-
duced by 3.55X as the average data transferring throughput is in-
creased by 3.58X. The total number of iterations are greatly re-
duced, as PMigrate-KVM changes the iteration strategy into image-
oriented5, which reduces the accumulated cost on preparing each
iteration.

Memcached: Table 7 compares the key metrics of live migrat-
ing a memcached VM. The migration time is reduced by 2.49X and
the downtime is reduced by 4.81X. The performance improvement
is mainly from the increased migration network throughput due to
parallelization. Further, as the vanilla KVM uses the I/O thread to
process both the network requests of live migration a guest VM, the
network I/O of the guest VM is significantly disrupted. The aver-
age throughput is reduced by 86.8% during migration on vanilla
KVM. In contrast, the throughput is reduced by only 5.05% on
PMigrate-KVM. Further, on vanilla KVM, the throughput of the
memcached server drops to only 0.22 MByte/s after the migration
has been started for 185s and it lasts about 163.0s, which means

5 For vanilla KVM, each pre-copy iteration only transfers a specific number
memory or disk data (e.g., 2MByte), which results in a high pre-copy
interation count.

Vanilla PMigrate

Migration Time (sec) 348.7(7.1) 140.2(6.5)
Downtime (millisec) 553.7(69.8) 115.1(65.2)
Non-response Time (sec) ≈ 163.0 (3.6) <1.0 (0.0)

of Pre-copy Iterations 16,776.7(3.6) 5.3(0.6)
Downtime Send (MByte) 37.8(12.9) 32.5(20.9)
Total Memory Send (GByte) 19.1(4.9) 23.5(1.5)
Total Disk Send (GByte) 16.2(0.3) 16.0(0.01)
Avg. Network Cost (MByte/s) 90.7(2.4) 289.1(13.5)
Avg. Memcached Thr. (MByte/s) 2.3(0.3) 15.9(2.1)
Avg. Thr. Degradation 86.8% 8.36%

Table 7. Key metrics (with STDEV) of live migrating a mem-
cached VM on vanilla KVM and PMigrate-KVM.

Vanilla PMigrate

Migration Time (sec) 256.1(20.0) 77.1(13.6)
Downtime (millisec) 455.7(62.2) 102.9(12.1)
of Pre-copy Iterations 12,159.0(677.2) 3.7(1.2)
Downtime Send (MByte) 33.3(5.9) 37.4(12.8)
Total Memory Send (MByte) 603.8(45.3) 690.9(164.4)
Total Disk Send (GByte) 19.8(1.0) 17.2(0.4)
Avg. Network Cost (MByte/s) 81.3(2.5) 242.1(7.0)
Avg. DBench Thr. (MByte/s) 963.9(11.8) 974.3(38.9)
Avg. Thr. Degradation 6.05% 4.72%

Table 8. Key metrics (with STDEV) of live migrating a DBench
VM on vanilla KVM and PMigrate-KVM.

that the server has nearly no response to the clients for a long pe-
riod. As it takes nearly no workload during migration on vanilla
KVM, it has less memory dirtied during memory precopy than that
on PMigrate-KVM.

DBench: DBench is a file-system benchmark that will generate
modest workload on the file system, which will result in data write
into the disk. Table 8 compares the key metrics of live migrating
a DBench VM. The migration time is reduced by 3.32X. The
downtime is reduced by 4.43X. The performance improvement is
mainly due to the increased migration network throughput and the
reduced amount of disk data (about 2.6 GByte) being transferred as
less data are dirtied within a shorter pre-copy time. PMigrate-KVM
reaches a lower network throughput (compared to the Idle VM case
and the memcached VM case) due to disk throttling in the source
node as the migration process will contend with DBench VM on
disk accesses.

6.2.3 Sources of Speedup and Scalability

Scalability and contribution of range lock: We spawns 1, 2, 4 and
8 consumer threads to do migration and restrict maximum network
bandwidth for each thread to be 40 MByte/s as this is the maximum
network throughput the vanilla Xen migration process can achieve.
As PMigrate-KVM scales well on our 12-core Intel machines, we
omit its scalability evaluation in this section.

Figure 6 and Figure 7 show the scalability of migrating the idle
VM and the memcached VM respectively, by using PMigrate with-
out optimization, PMigrate with the read-lock optimization and
PMigrate with the range lock optimization. The range lock opti-
mization significantly boosts the performance, as it significantly
reduces the size of the critical sections of the address space man-
agement operations protected by the mmap sem. Table 9 shows the
average cost of each single memory management operation used in
live VM migration, which confirms the performance benefit from
read lock and range lock. After introducing the read lock, the time
spent on mmap and munmap can be reduced. After introducing the

range lock, the time spent on mmap and munmap are significantly
reduced.

Performance of only Using Multiple Cores: To show whether
PMigrate-Xen can work well with a single NIC port, we run
PMigrate-Xen using an idle VM with 4 consumer threads shar-
ing the same NIC port. The total migration time is 148.4s, which
is quite close to that with four cores and four NIC ports (149.3s).
this shows that PMigrate still performs reasonably well without an
excessive number of NICs or bandwidth. Actually, the major bene-
fit lies in using multiple cores to process and prepare the data to be
sent. However, the average data transferring throughput of 112.1
MByte/s, which almost saturates the port. Here, adding additional
NICs can further improve the performance if more cores are used
for migration.

Performance of only using Multiple NICs: We also evaluate
whether using multiple NICs along can provide reasonably good
speedup. We assign four NIC ports to PMigrate-Xen and bind 4
threads to a single core. The total migration time is 377.28s, with an
average throughput of 49.32 MB/s. The result indicates that using
multiple NICs along can have very little performance benefit as
there is not enough data prepared by CPUs to be sent through NICs.

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

Number of consumer threads

112.4
149.3

279.3

418.4 422.8baseline

w/o opt.
Read lock

Range lock

Figure 6. PMigrate Scalability of migrating idle VM on Xen us-
ing PMigrate without optimization, PMigrate with read lock and
PMigrate with range lock.

 0

 400

 800

 1200

 1600

 2000

 1 2 4 8

E
x
e
c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Number of consumer threads

160.5302.1

986.6

1592.4
1581.3

baseline

w/o opt.
Read lock

Range lock

Figure 7. PMigrate Scalability of migrating memcached VM on
Xen using PMigrate without optimization, PMigrate with read lock
and PMigrate with range lock.

6.3 Impact on Other Co-located VMs

Ideally, if the resources of a virtual machine are abundant, the mi-
gration tool can be assigned with separated resources to the pro-
duction VMs. In such cases, the performance impact of PMigrate
on other VMs can be minimized. To evaluate the effectiveness of
PMigrate in leveraging spare resources, we run a Xen VM with
memcached serving requests from clients and measure its through-
put during the parallel migration of an idle Xen VM.

Time Cost
Idle Memcached

no-opt rd-lock range no-opt rd-lock range
mmap 1.39 1.80 0.05 1.10 1.26 0.18
guest map 18.1 16.3 14.8 16.8 15.5 15.2
munmap 7.27 6.22 0.75 5.57 5.30 0.85

Table 9. Average cost of a single memory management operation
in live VM migration on Xen using PMigrate without optimization,
PMigrate with read lock and PMigrate with range lock in microsec-
ond.

Our evaluation found that during migration, the average through-
put degraded from 42 MByte/s to 34.6 MByte/s. By contrast,
the original Xen tools cause a performance degradation from 42
MByte/s to 38 MByte/s. This performance gap is due to the fact
that we leverage multiple cores and NICs to do scheduling and
these threads may inference with each other. However, the paral-
lelized migration significantly shortens the overall migration time.
This indicates that the parallelization may even help to reduce the
impact on other VMs as a whole.

However, if the resources in a virtualized platform are limited,
the migration tool may cause performance degradation on other
co-located VMs. To evaluate the effectiveness of our resource rate
control, we illustrate the effectiveness of our network rate control
mechanism and our CPU rate control mechanism.

Network Rate Control To evaluate the effectiveness of net-
work rate control mechanism of PMigrate, we run a VM with
Apache web server serving requests from clients and measure its
throughput during the parallel migration of an idle VM. The migra-
tion process uses two NICs, one of which is shared with the apache
web server. Before the migration starts, the throughput of the web
server is 101.7 MByte/s. While during the migration, its through-
put only drops to 91.1 MByte/s. The average network bandwidth
of the shared NIC consumed by the parallel migration process is
17.6 MByte/s, while the bandwidth of another NIC consumed by
it is 57.2 MByte/s. The migration process does limit its network
consumption of the busy NIC shared with other VMs.

CPU Rate Control To evaluate the effectiveness of CPU rate
control of PMigrate, we run a VM with a memcached server serv-
ing requests from clients and measure its throughput during the
parallel migration of an idle VM. The VM running memcached
with four virtual CPUs (VCPU) scheduling on 4 physical CPUs.
The throughput of the memcached server is 48.4 MByte/s before
migratoin and the CPU usage is above 100%. During parallel mi-
gration, we spawns 4 consumer threads. We compare the through-
put of the memcached server VM under two conditions: 1) The
vanilla Xen migration process shares a physical CPU of the mem-
cached server VM during migration (for example, CPU2); and 2)
The PMigrate-Xen process shares only three physical CPUs of the
memcached server VM (for example, CPU2, CPU3 and CPU4).
As the result, the total migration time is reduced from 131s to
41s. While the throughput of memcached during migration drops to
48.1% from the origin on vanilla Xen and 34.9% on PMigrate-Xen.
It can be seen that PMigrate-Xen does not introduce much further
performance impact to VMs sharing CPU compared to vanilla Xen.
However, the parallelized migration significantly shortens the over-
all migration time, which can help to reduce the overall impact on
other VMs.

6.4 Combining PMigrate with Compression

There have been several techniques [15, 23] on improving the
performance of live VM migration, such as data compression. Here
we show that techniques on improving the serial performance of
live VM migration can also be applied to PMigrate by taking data
compression as an example. We modify the vanilla KVM and

Vanilla PMigrate

Migration Time (sec) 114.7(0.1) 28.8(0.5)
Downtime (millisec) 45.3(0.6) 54.3(15.4)
of Pre-copy Iterations 906.3(0.6) 1(0)

Total Memory Send (MByte) 122.8(1.2) 120.3(0.06)
Memory Compress Rate 28.0(0.0)% 28.1(0.0)%
Total Disk Send (MByte) 1692.0(2.9) 1693.8(0.6)
Disk Compress Rate 10.0(0.0)% 10.0(0.0)%
Total Compress Time (sec) 41.5(0.06) 10.8(0.06)

Table 10. Key metrics (with STDEV) of live migration with an idle
VM on vanilla KVM and PMigrate-KVM with data compression.

PMigrate-KVM migration process to compress the memory data
and disk data during migration using the quicklz [8] compression
library. Figure 10 compares the basic metrics of live migrating
an idle VM with 4 GByte memory and 16 GByte disk on vanilla
KVM and PMigrate-KVM with 4 consumer threads. It can be seen
that the migration time on both cases is reduced (compared to that
shown in Table 6) due to the reduced amount of memory and disk
data being transferred. The data compression rates on both cases
are similar. The total compression time is significantly reduced on
PMigrate-KVM as it takes more threads to process the data.

7. Related Work

Live VM Migration: Currently, most hypervisors have provided
the support for live VM migration, such as VMWare [19, 22],
Xen [13] and KVM [16]. Among these operations, VM migration
has been extensively studied. Other than VM migration with only
memory and within LAN, Bradford et al. [11] further extend Xen
with the support of live VM migration with persistent states across
wide-area network.

The increasing importance of live VM migration also stimulates
interests in optimization. For example, though most VMMs uses
pre-copy [26] VM migration by default for the sake of reliability,
Hines et al. [15] propose a post-copy based migration methodol-
ogy to reduce repetitive memory transfers under memory-intensive
workloads. To save bandwidth, Svärd et al. [23] design and im-
plement a memory delta compression technique to reduce mem-
ory copy during live VM migration. The storage VM migration
solution in industry has also been evolved dramatically [19]. The
SnowFlock [17] uses a set of technique to support fast application-
aware VM clone, which leverages a post-copy clone policy. Us-
ing a post-copy policy may have the advantage of quickly creat-
ing a replicate VM and makes it alive. However, this suffers from
lengthy post-copy migration time and a break in network collection
may corrupt the target VM. Further, live VM clone usually requires
specific OS support for state consistency.

However, none of the prior solutions have considered the paral-
lelizing the process of VM migration. We believe the work of PMi-
grate can be integrated with most prior optimization, which may
result in further performance improvements.

Scaling Operating Systems: There have been a number of
studies on the scalability of commodity operating systems [10, 14].
Among them, the concurrent address space using RCU balanced
tree [14] is the closest one. However, the RCU balance tree focuses
on parallelizing the process of read accesses to an address space
(e.g., page faults) and mutation to the address space (e.g., mmaps),
while the Range Lock abstraction parallelizes the mutation to an
address space. We believe these two abstractions can be combined
together to further improve the scalability of address space, which
will be our future work. Range lock shares some similarity with
byte-range locking in distributed file systems. However, Range lock
targets at the address space management and is much simpler than
file locking. Further, we are the first to demonstrate that Range Lock

can be easily integrated into existing Linux kernel with very little
programming effort.

8. Conclusion

The increasing amount of resources configured to both physical
and virtual machines created both challenges and opportunities.
This paper made an attempt to parallelize the live VM migration.
Based on a comprehensive analysis on the underlying parallelism,
this paper leveraged both data and pipeline parallelism to paral-
lelize live VM migration. To mitigate intensive contention on con-
current mutation to an address space, this paper further proposed a
new abstraction in operation system, called Range Lock, which pro-
vided more fine-grained protection to concurrent mutation of an ad-
dress space. Performance evaluation with two popular open-source
VMMs showed that the parallelized version significantly boosted
the performance of the live VM migration, yet with small disrup-
tion to running services.

9. Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work was supported by an NetApp Faculty Fellowship,
China National Natural Science Foundation under grant numbered
61003002, a grant from Shanghai Science and Technology Devel-
opment Funds (No. 12QA1401700), a Foundation for the Author
of National Excellent Doctoral Dissertation of PR China and Fun-
damental Research Funds for the Central Universities in China.

References

[1] Intel virtualization technology. http://www.intel.com/technology/virtualization/.

[2] TPC-B. http://www.tpc.org/tpcb/default.asp.

[3] Dbench. http://dbench.samba.org/.

[4] Instance Types of Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/#instance.

[5] LibMemcached. http://libmemcached.org/.

[6] Linux test project. http://ltp.sourceforge.net/.

[7] PostgreSQL. http://www.postgresql.org/.

[8] Quicklz. www.quicklz.com/.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In Proc. SOSP, 2003.

[10] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. Kaashoek,
R. Morris, N. Zeldovich, et al. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX conference on Operating

systems design and implementation, 2010.

[11] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live
wide-area migration of virtual machines including local persistent
state. In Proceedings of the 3rd international conference on Virtual

Execution Environments, pages 169–179, 2007.

[12] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the three cpu
schedulers in Xen. Performance Evaluation Review, 35(2):42, 2007.

[13] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings

of the 2nd conference on Symposium on Networked Systems Design &

Implementation, pages 273–286, 2005.

[14] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable address
spaces using RCU balanced trees. In Proceedings of the 17th inter-

national conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 199–210, 2012.

[15] M. Hines and K. Gopalan. Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning. In
Proceedings of the ACM SIGPLAN/SIGOPS international conference

on Virtual Execution Environments, pages 51–60, 2009.

[16] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
linux virtual machine monitor. In Proceedings of the Linux Sympo-

sium, pages 225–230, 2007.

[17] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble,
E. De Lara, M. Brudno, and M. Satyanarayanan. Snowflock: rapid
virtual machine cloning for cloud computing. In Proceedings of the

4th ACM European conference on Computer systems, pages 1–12,
2009.

[18] R. LERNER. Memcached integration in rails. Linux Journal, 2009.

[19] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai. The design and
evolution of live storage migration in VMware ESX. In Proceedings

of the USENIX Annual Technical Conference, 2011.

[20] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott. Proactive fault
tolerance for HPC with Xen virtualization. In Proceedings of the

21st annual international conference on Supercomputing, pages 23–
32, 2007.

[21] R. Nathuji and K. Schwan. Virtualpower: coordinated power man-
agement in virtualized enterprise systems. In Proceedings of 21st

ACM SIGOPS Symposium on Operating Systems Principles, pages
265–278, 2007.

[22] M. Nelson, B. Lim, and G. Hutchins. Fast transparent migration for
virtual machines. In Proceedings of the USENIX Annual Technical

Conference, 2005.

[23] J. T. Peter Svärd, Benoit Hudzia and E. Elmorth. Evaluation of delta
compression techniques for efficient live migration of large virtual
machines. In Proceeding of the ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, 2011.

[24] M. Powell and B. Miller. Process migration in DEMOS/MP. In
Proceedings of the 9th Symposium on Operating System Principles,
1983.

[25] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[26] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution
facilities for the V-system. In Proceedings of the tenth ACM Sympo-

sium on Operating Systems Principles, 1985.

