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Tiled-MapReduce: Efficient and Flexible MapReduce Processing
on Multicore with Tiling

RONG CHEN and HAIBO CHEN, Shanghai Jiao Tong University

The prevalence of chip multiprocessors opens opportunities of running data-parallel applications originally
in clusters on a single machine with many cores. MapReduce, a simple and elegant programming model
to program large-scale clusters, has recently been shown a promising alternative to harness the multicore
platform.

The differences such as memory hierarchy and communication patterns between clusters and multicore
platforms raise new challenges to design and implement an efficient MapReduce system on multicore. This
article argues that it is more efficient for MapReduce to iteratively process small chunks of data in turn than
processing a large chunk of data at a time on shared memory multicore platforms. Based on the argument,
we extend the general MapReduce programming model with a “tiling strategy”, called Tiled-MapReduce
(TMR). TMR partitions a large MapReduce job into a number of small subjobs and iteratively processes one
subjob at a time with efficient use of resources; TMR finally merges the results of all subjobs for output.
Based on Tiled-MapReduce, we design and implement several optimizing techniques targeting multicore,
including the reuse of the input buffer among subjobs, a NUCA/NUMA-aware scheduler, and pipelining a
subjob’s reduce phase with the successive subjob’s map phase, to optimize the memory, cache, and CPU
resources accordingly. Further, we demonstrate that Tiled-MapReduce supports fine-grained fault tolerance
and enables several usage scenarios such as online and incremental computing on multicore machines.

Performance evaluation with our prototype system called Ostrich on a 48-core machine shows that Ostrich
saves up to 87.6% memory, causes less cache misses, and makes more efficient use of CPU cores, resulting
in a speedup ranging from 1.86x to 3.07x over Phoenix. Ostrich also efficiently supports fine-grained fault
tolerance, online, and incremental computing with small performance penalty.
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3:2 R. Chen and H. Chen

1. INTRODUCTION

Multicore or many-core processors, as another form embodying Moore’s Law, are com-
mercially prevalent recently. With the commercial availability of twelve cores on a
chip, it is foreseeable that hundreds (or even thousands) of cores on a single chip will
appear in the near future [Borkar 2007]. With the continuously increasing number of
cores, it is vitally important to fully harness the abundant computing resources with
still ease-to-use programming models.

MapReduce [Dean and Ghemawat 2008], designed to program large clusters with
relatively simple functional primitives, has shown its power in solving nontrivial data-
parallel problems such as document clustering, Web access statistics, inverted in-
dex, and statistical machine translation. In most cases, programmers only need to
implement two interfaces: Map, which processes the input data and converts it into
a number of key/value pairs; and Reduce, which aggregates values in the key/value
pairs according to the key. Consequently, MapReduce frees programmers from han-
dling tough tasks such as distributing data, specifying parallelism, and tolerating
faults.

While MapReduce was initially designed for clusters, Ranger et al. have demon-
strated the feasibility of running MapReduce applications on shared memory
multicore machines with Phoenix [Ranger et al. 2007], which is heavily optimized
by Yoo et al. [2009]1. Phoenix uses the pthread library to assign tasks among CPU
cores and relies on shared memory to handle inter-task communications. Compared
to the cluster version, MapReduce on multicore is able to take advantage of fast
inter-task communications with shared memory, thus avoids the expensive network
communications among tasks.

Though Phoenix has demonstrated the applicability of running MapReduce on mul-
ticore, it is still limited in exploiting many features of commodity multicore systems
due to its way of processing all (thus very large) input data at a time. As a result,
the input and intermediate data will persist along the entire lifecycle of a processing
phase (i.e., Map or Reduce). Hence, a relatively large data-parallel application can eas-
ily cause resource pressures on the runtime, operating systems, and the CPU caches,
which could significantly degrade the performance. Based on the preceding observa-
tion, we argue that it is more efficient to iteratively process small chunks of data in
turn than processing a large chunk of data at one time on shared memory multicore
platforms, due to the potential of better cache/memory locality and less contentions.

To remedy these problems, this article proposes Tiled-MapReduce, which applies the
tiling strategy [Coleman and McKinley 1995] in compiler optimization, to shorten the
lifecycle and limit the footprint of the input and intermediate data, and to optimize the
resource usages of the MapReduce runtime and mitigate contentions, thus increasing
performance. The basic observation is that the reduce function of many data-parallel
applications can be written as commutative and associative, including all 26 MapRe-
duce applications in the test suite of Phoenix [Ranger et al. 2007] and Hadoop [Bialecki
et al. 2005]. Based on this observation, Tiled-MapReduce further partitions a big Map-
Reduce job into a number of small subjobs and processes each subjob in turn. The
runtime system will finally merge the results of each subjob and generate the final
results. In Tiled-MapReduce, the runtime only consumes the resources required for
a subjob as well as the output for each subjob, which are usually much smaller than
those of processing one big task at a time.

Tiled-MapReduce also enables three optimizations otherwise impossible for Map-
Reduce. First, as each subjob is processed in turn, the data structures and memory

1Note that the version of Phoenix we use in this article is 2.0.0 released in May, 2009.
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spaces for the input and intermediate data can be reused across the subjob bound-
aries. This avoids the costs of expensive memory allocation and deallocation, as well
as the construction of data structures. Second, processing a small subjob provides the
opportunity for fully exploiting the memory hierarchy of a multicore system, result-
ing in better memory and cache locality. Finally, according to our measurements, the
Reduce phase on a multicore machine is usually not balanced, even with dynamic
scheduling. This gives us the opportunity to overlap the execution of a subjob’s Reduce
phase with its successor’s Map phase, which can fully harness the CPU cores. Besides,
Tiled-MapReduce supports a fine-grained fault-tolerance scheme for multicore that
saves the result at the granularity of subjobs, to save the cost of rerunning an entire
MapReduce job after the victim machine gets recovered from a whole machine crash.

In addition, the incremental computing nature of Tiled-MapReduce also enables the
online MapReduce model [Condie et al. 2010], which supports online aggregation and
allows users to see the early results of an online job. It also enables incremental com-
puting on MapReduce that operates on the newly appended data and combines new
results with previous results [Popa et al. 2009]. To support these two computing mod-
els, Tiled-MapReduce is built with the support to periodically display the intermediate
results after a subjob is done, as well as the support for continuous computation that
saves the partial results of subjobs for further computation reuse.

It should be noted that Tiled-MapReduce does not require a deep understanding
of the underlying MapReduce implementation, thus is orthogonal to a specific Map-
Reduce implementation (e.g., the algorithm and data structures). Tiled-MapReduce
also mostly retains the existing programming interfaces of MapReduce, with only two
optional interfaces for the purpose of input reuse, which actually have the counter-
parts in other MapReduce implementations such as Google’s MapReduce [Dean and
Ghemawat 2008] and Hadoop [Bialecki et al. 2005].

We have implemented a prototype of Tiled-MapReduce based on Phoenix. The
system, called Ostrich, outperforms Phoenix due to the mentioned optimizations. Ex-
periments on a 48-core AMD machine using four different types of data-parallel appli-
cations (Word Count, Distributed Sort, Log Statistics, and Inverted Index) show that
Ostrich can save up to 87.6% memory, causes less cache misses, and makes more effi-
cient use of CPU cores, resulting in a speedup from 1.86x to 3.07x. We also show that
the costs of supporting fine-grained fault tolerance, online, and incremental computing
are very small.

In summary, this article makes the following contributions.

— An analysis is given wherein iteratively processing small chunks of data is more ef-
ficient than processing a large chunk of data for MapReduce on multicore platforms.

— The Tiled-MapReduce programming model extension is given that allows exploiting
multicore environments for data-parallel applications.

— Three optimizations are provided that optimize the memory, cache, and CPU usage
of the Tiled-MapReduce runtime.

— The enabled fine-grained fault tolerance is given, as well as online and incremental
MapReduce computing based on Tiled-MapReduce.

The rest of the article is organized as follows. Section 2 presents the background of
MapReduce, the Phoenix implementation, and the “tiling strategy” in parallel com-
puting. Section 3 discusses the possible performance issues with Phoenix and illus-
trates the design spaces and optimization opportunities of MapReduce on multicore.
Section 4 describes the extension from Tiled-MapReduce and its overall execution
flow. Section 5 describes the optimization for the resource usage in Tiled-MapReduce.
Section 6 describes two computing models based on Tiled-MapReduce, online and
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3:4 R. Chen and H. Chen

Fig. 1. Pseudocode of Word Count application on MapReduce and the execution flow of the Phoenix Library:
the Map workers generate output to the rows of the Intermediate Buffer and the Reduce workers aggregate
the columns of the Buffer to generate output to the Final Buffer.

incremental computing. Section 8 relates our work to previous work. Finally, we con-
clude the article with a brief discussion on future work in Section 9.

2. BACKGROUND

This section presents a short review on the MapReduce programming model, uses
Phoenix as an example to illustrate MapReduce for multicore platforms, and briefly
describes the tiling strategy in compiler optimization.

2.1. MapReduce Programming Model

The MapReduce [Dean and Ghemawat 2008] programming model mostly only requires
programmers to describe the computation using two primitives inspired by functional
programming languages, Map and Reduce. The map function usually independently
processes a portion of the input data and emits multiple intermediate key/value pairs,
while the reduce function groups all key/value pairs with the same key to a single
key/value pair. Additionally, users can provide an optional combine function that locally
aggregates the intermediate key/value pairs to save networking bandwidth and reduce
memory consumption.

The pseudocode in Figure 1 shows the Word Count application counting the number
of occurrences of each word in a document. The map function emits a 〈word, 1〉 pair for
each word in document, and the reduce function counts all occurrences of a word as
the output. The combine function is similar to the reduce function, but only processes
a partial set of key/value pairs.

2.2. The Phoenix Implementation for Multicore

Phoenix [Ranger et al. 2007; Yoo et al. 2009] is an implementation of MapReduce on
shared memory multiprocessor systems using the pthread library. It showed that ap-
plications written with the MapReduce programming model have competitive scalabil-
ity and performance with those directly written with the pthread library on a multicore
platform.

The lower part of Figure 1 uses a flowchart to illustrate the outline of Phoenix from
input to output, which goes through three main phases, including Map, Reduce, and
Merge. The right part illustrates the overall execution flow of processing a MapReduce
job on the Phoenix runtime. The key data structure of Phoenix runtime is the Interme-
diate Buffer, which is formed as a matrix of buckets and stores the intermediate data
produced in the Map phase and consumed by the Reduce phase. Each row of the buffer
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�

�

�

�

�

�

�

�
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is exclusively used by a worker in the Map phase while each column of the buffer is
exclusively used by a worker in the Reduce phase. A MapReduce application starts
a job by invoking the dispatcher, which spawns multiple workers and binds them to
different CPU cores. In the Map phase, each worker repeatedly splits a piece of in-
put data and processes them using the programmer-supplied map function. The map
function parses the input data and emits multiple intermediate key/value pairs to the
corresponding row of Intermediate Buffer. The runtime also invokes the combine func-
tion (if provided by users) for each worker to perform local reduction at the end of the
Map phase. In the Reduce phase, each worker repeatedly selects a reduce task, which
sends the intermediate data from the corresponding column of Intermediate Buffer
to the programmer-supplied reduce function. It processes all values belonging to the
same key and generates the final results for a key. In the Merge phase, all results
generated by different reduce workers are merged into a single output sorted by key.

2.3. Tiling Strategy in Compiler Optimization

The tiling strategy, also known as blocking, is a common technique to efficiently exploit
the memory hierarchy. It partitions data to be processed into a number of blocks, com-
putes the partial results of each block, and merges the final results. The tiling strategy
is also commonly used in the compiler community to reduce the latency of memory ac-
cesses [Coleman and McKinley 1995] and increase the data locality. For example, loop
tiling (also known as loop blocking) is usually used to increase the data locality, by
partitioning a large loop into smaller ones. Several variations of tiling are also used to
optimize many central algorithms in matrix computations [Golub and Van Loan 1996],
including the fixed-size tiling, the recursive tiling, and a combination of them.

3. CHALLENGES AND OPPORTUNITIES OF MAPREDUCE ON MULTICORE

This section compares the differences between MapReduce on clusters and that on
multicore and discusses possible optimization and enhancing opportunities for Map-
Reduce on multicore.

3.1. Performance and Scalability

Though Phoenix has successfully demonstrated the feasibility of running MapReduce
applications on multicore, it also comes with some deficiencies when processing jobs
with a relatively large amount of data, which would be common for machines with
abundant memory and CPU cores.

This problem is not due to the implementation techniques of Phoenix. In fact, Phoe-
nix has been heavily optimized from three layers: algorithm, implementation, and OS
interaction [Yoo et al. 2009], which results in a significant improvement over its ini-
tial version. We attribute the performance issues to mainly the programming model of
MapReduce on multicore, which process all input data at one time.

First, in cluster environments, the map tasks and reduce tasks are usually executed
in different machines and data exchange among tasks is done through networking,
compared to shared memory in multicore environments. Hence, the contentions on
cache and shared data structures, instead of networking communications, are the ma-
jor performance bottlenecks for processing large MapReduce jobs on multicore.

Second, there is a strict barrier between the Map and the Reduce phase, which re-
quires the MapReduce runtime to keep all the input and intermediate data through the
Map phase. This requires a large amount of resource allocations and comes with a large
memory footprint. For relatively large input data, this creates pressure on the mem-
ory systems and taxes the operating systems (e.g., memory management), which have
imperfect performance scalability on large-scale multicore systems [Song et al. 2011].
Further, it also limits the effects of some optimizations (such as the combiner) due to
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3:6 R. Chen and H. Chen

restricted cache and memory locality. For example, the combiner interface, which is the
key to reduce networking traffic of MapReduce applications in cluster environments,
was shown to make little performance improvement along with other optimizations
(e.g., prefetching) [Yoo et al. 2009].

Finally, cache and memory accesses in current multicore systems tend to be nonuni-
form, which makes exploiting the memory hierarchy even more important. Unlike
those in cluster environments, MapReduce workers in a multicore platform can be
easily controlled in a centralized way, making it possible to control memory and cache
accesses in a fine-grained way.

3.2. Fault Tolerance

The failure model supposed by the MapReduce programming model targets at a large
cluster of commodity machines, which has a large number of independent machines
running MapReduce tasks. Hence, it simply takes a per-task-based fault-tolerance
model that restarts a task in a failed machine to a new machine. However, such a
failure model cannot be simply applied to MapReduce on multicore platforms.

First, many resources of a commodity multicore platform are universally shared and
accessible to MapReduce workers, which makes global failures (e.g., failures resulting
in a whole machine crash) more pervasive. Actually, there are currently no separate
failure domains on current multicore platforms and a single failure on a CPU core,
memory cell, and interconnect may easily crash the entire machine.

Second, compared to cluster environments, many resources of a commodity multi-
core platform are still relatively restricted, such as CPU and main memory. Therefore,
it would be very expensive for multicore platforms to apply the fault-tolerance model
based on redundant resources in the cluster platform such as backup tasks for strag-
glers and active failure detection.

Finally, all intermediate data generated in the Map phase and partial results gen-
erated in the Reduce phase are only stored in main memory until the Merge phase
produces the final results and stores to persistent storage. Hence, the entire job needs
to be reexecuted for memory failures, which is very costly.

3.3. Going Beyond Batch Processing

The MapReduce programming model has become a state-of-the-art for processing
large-scale data. However, it is usually restricted to batched tasks. Only supporting
batched processing is not appealing for many applications requiring online and incre-
mental processing. Supporting online computation is very important as many usage
scenarios require getting the results along with the computation, not waiting for a very
long-time until the entire task has been completed. For example, users prefer contin-
uous queries and a rough result for a long-time query to determine the next step, thus
the runtime should support returning online reports according to the current progress.

Similarly, as many computing tasks are redundant or partially redundant, it may be
very efficient to reuse previous computation results if only a small portion of input has
been changed. For example, the real-time fraud detection tool prefers just processing
incremental records of the system log, which requires the runtime to support reusing
the results of prior computation.

4. TILED-MAPREDUCE

In this section, we describe the Tiled-MapReduce programming model that aims at
addressing the challenges with MapReduce on multicore. We first illustrate the ex-
tension to the MapReduce programming model and show the execution flow of Tiled-
MapReduce, as well as the major changes to runtime to support Tiled-MapReduce.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 1, Article 3, Publication date: April 2013.
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Fig. 2. Execution flow of Tiled-MapReduce.

Finally, we introduce the fine-grained fault-tolerance mechanism adopted in Tiled-
MapReduce on multicore platforms.

4.1. Extension to MapReduce Programming Model

Being aware of the challenges and opportunities with MapReduce on multicore, we
extend the general MapReduce programming model with Tiled-MapReduce. It uses
the “tiling strategy” to decompose a large MapReduce job into a number of independent
and small subjobs and iteratively processes one subjob at a time with efficient use of
resources, given that the reduce interface for many data-parallel applications can be
implemented as commutative and associative.

To support iterative processing of a number of subjobs derived from a large Map-
Reduce job, Tiled-MapReduce replaces the general Map phase with a loop of Map and
Reduce phases. In each iteration, Tiled-MapReduce processes a subjob and generates
a partial result that can be either saved for computation reuse [Popa et al. 2009] or
provided for users to know the status of the computation [Condie et al. 2010]. Tiled-
MapReduce also extends the general Reduce phase to process the partial results of
all iterations, rather than the intermediate data. The output generated by the Reduce
phase is compatible with the output of the general Reduce phase. To differentiate with
that in the final Reduce phase, we rename the Reduce phase within one subjob as
the Combine phase. The lower part of Figure 2 illustrates the processing phases in
Tiled-MapReduce.

Note that it was claimed that the combiner interface made little performance im-
provements on multicore in the context of the general MapReduce programming model
with prefetching of data in the Reduce phase [Yoo et al. 2009]. Tiled-MapReduce
mainly uses such an interface for the purpose of shortening the lifecycle of input and
intermediate data, which may improve the cache and memory locality and enable fur-
ther optimizations. This is detailed in Section 5.

4.2. Execution Flow

The top part of Figure 2 illustrates the overall execution flow of a Tiled-MapReduce
job and the implementation of Tiled-MapReduce runtime.

A Tiled-MapReduce job is initiated by invoking the mr dispatcher function, which
initializes and configures the Dispatcher according to the arguments and runtime en-
vironments (e.g., available resources). Then, the Dispatcher spawns N Workers and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 1, Article 3, Publication date: April 2013.
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binds them to CPU cores. The Dispatcher also iteratively splits a chunk from input
data in the Iteration Window, whose size is dynamically adjusted according to the
runtime configuration. The chunk of data will be further split into M pieces, which
forms M map tasks.

In the Map phase, a Worker selects a map task from the Iteration Window whenever
it is idle, and invokes the programmer-provided map function, which parses the input
data and generates intermediate key/value pairs. The emit intermediate function pro-
vided by the runtime will be invoked to insert a key/value pair to Intermediate Buffer,
which is organized as an M by R matrix of buckets, where R is the number of reduce
tasks.

In the Combine phase, the Workers select the reduce tasks in turn and invoke the
programmer-provided combine function to process a column in the Intermediate Buffer.
The structure of the Iteration Buffer is an I by R matrix of buckets, where I is the total
number of iterations.

When all subjobs have finished, the Workers invoke the programmer-provided
reduce function to do the final reduce operation on the data in each column of the
Iteration Buffer. The reduce function inserts the final results for a key to the Final
Buffer by invoking the emit function. Finally, the results from all reduce tasks are
merged and orted into a single Output Buffer.

4.3. Runtime Support of Tiled-MapReduce

The runtime of Tiled-MapReduce, called Ostrich, is based on Phoenix, which extends
several parts to efficiently support the tiling strategy.

4.3.1. Iteration Window. The memory access pattern of MapReduce inherently has poor
temporal and spatial locality. With regards to temporal locality, a MapReduce applica-
tion usually sequentially touches the whole input data only once in the Map phase to
generate the intermediate data. It also randomly touches discrete parts of intermedi-
ate data multiple times in the Map and Reduce phases to group key/value pairs and
generates the final results. For spatial locality, though the input data is sequentially
accessed in the Map phase, a large number of key-compare operations results in poor
spatial locality. Even worse, each reduce task accesses the key/value pairs generated
by different map workers in different time, causing poor spatial locality in the Reduce
phase and even severe thrashing when the physical memory has been exhausted.

Tiled-MapReduce provides opportunities to improve data locality for data-parallel
applications. The runtime uses the Iteration Window to dynamically adjust the input
size for each subjob. As each time only a small subjob is handled, the working set of
the subjob can be relatively small. A small working set is beneficial to exploit the cache
hierarchy in a multicore platform. Specifically, Ostrich estimates the working set of a
subjob by first running a sample subjob to collect its memory requirements. Based on
the collected data, Ostrich automatically estimates the size of each subjob according
to the cache hierarchy parameters. Currently, Ostrich tries to make the working set of
each subjob fit into the last-level cache.

4.3.2. Intermediate Buffer. The use of Tiled-MapReduce provides opportunities to reuse
the Intermediate Buffer among subjobs. This could save expensive operations such as
concurrent memory allocation and deallocation, as well as building data structures.
Instead of constructing an Intermediate Buffer for each subjob, Ostrich uses a global
buffer to hold the intermediate data generated in the Map phase. Ostrich will indicate
that the buffer is empty at the end of a subjob, but will not free the memory until all
subjobs have finished.

Ostrich uses an additional Iteration Buffer to store partial results from all itera-
tions, which is possibly too large for the final Reduce phase. Hence, Ostrich adds a
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Fig. 3. Pseudocode of Word Count application to support fault tolerance (i.e., serialize and deserialize)
and input buffer reuse (i.e., acquire and release).

new internal phase, namely Compress, to further combine the partial results among
subjobs. When the size of partial results exceeds a threshold (e.g., 32), the Compress
phase will invoke the combine function to combine the partial results among subjobs.
The results generated in the Compress phase are also stored in the Iteration Buffer.
The previous partial results will be simply discarded and the memory space is reused
for the subsequent subjobs. It should be noted that the Compress phase is an internal
phase of Ostrich and thus is transparent to programmers.

4.3.3. Thread Pool. The partition of a large job into a number of subjobs increases the
number of thread creations and destructions. To avoid such overhead, Ostrich uses a
worker thread pool to serve tasks in all phases within a subjob. The worker thread in
the pool is also reused among subjob boundaries. The pool is initialized at the begin-
ning of a MapReduce job and serves all tasks in all phases, including the final Reduce
and Merge phase.

4.4. Fault Tolerance

The difference between cluster and multicore platform demands new features to the
fault-tolerance model. For example, the MapReduce job should survive in global fail-
ures (e.g., whole machine crash) and avoid redundant computation during recovery.
The fault-tolerance operations should exploit the parallelism of a multicore platform
and consume only a few resources. Finally, the low-level details of model should be
mostly hidden from user programmers by using general interfaces.

To achieve the these goals, Ostrich extends the fault-tolerance model with the sup-
port of backing up the partial results of individual subjobs to save the associated com-
putation during a global failure. Generally, each subjob in Ostrich can back up its
partial results to persistent storage (e.g., disk or HDFS [Borthakur 2013]) indepen-
dently and in parallel. Ostrich uses a self-certified pathname [Mazières et al. 1999] to
bookkeep subjobs that are backed up. During recovering from a global failure, Tiled-
MapReduce can load the saved results in parallel and only compute those that are
not bookkept, which saves a lot of time associated with reexecution. For applications
consisting of multiple MapReduce jobs, Ostrich can replace all partial results with the
final results to save storage when the current job has been done.

The detailed implementation of fault tolerance and computation reuse in Ostrich is
hidden from user programmers, such as I/O parallelism and naming. They are only
required to implement two interfaces that are pervasive in MapReduce for clusters
(such as Google’s MapReduce [Dean and Ghemawat 2008] and Hadoop [Bialecki et al.
2005]), serialize and deserialize, which convert key/value pairs to and from a char-
acter stream. Figure 3 shows the pseudocode of the serialize and deserialize func-
tions for the Word Count application. In most cases, user programmers can simply use
the default implementation provided by the Tiled-MapReduce framework.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 1, Article 3, Publication date: April 2013.
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Fig. 4. The key structure in the main memory and persistent storage to support fault tolerance, and an
example of the backup and recovery operations.

Figure 4 illustrates an example of the backup and recovery operations in Ostrich.
At the beginning, Ostrich uses the Unique Identifier provided by user programmers
(e.g., Word-Count-07-25) to make a directory on persistent storage, which stores all
snapshot files of subjobs. Ostrich uses an Iteration Bitmap to record whether the par-
tial result of the corresponding iteration has been saved to the snapshot file. When an
iteration is finished, the combine worker backs up the partial results to a snapshot file
on persistent storage. First, the worker uses the file state (N means in progress and
F means finished), the iteration number, and the range of input data to create a tem-
porary snapshot file. Then, the worker uses the serialize function provided by user
programmers to transfer the partial results in the Iteration Buffer to multiple streams,
and exports them to a temporary file. Finally, the worker atomically renames the tem-
porary snapshot file to the final snapshot file. When a failure happens, users can re-
cover the job with the same Unique Identifier. Ostrich imports partial results from the
final snapshot files in a corresponding directory to the Iteration Buffer through the
deserialize function provided by user programmers, and sets the Iteration Bitmap to
skip these iterations.

5. OPTIMIZING RESOURCE USAGES

The support of iterative processing of small subjobs allows fine-grained management of
resources among subjobs. This opens opportunities for new optimizations on resource
usage in Tiled-MapReduce. In this section, we describe three optimizations that aim
at improving memory efficiency, data locality, and task parallelism.

5.1. Memory Reuse: Input Buffer Reuse

In the general MapReduce programming model, the input data is kept in memory in
a MapReduce job’s whole lifecycle. The intermediate data is also kept in memory in
a whole MapReduce phase. These create significant pressure to the memory systems.
Tiled-MapReduce mitigates the memory pressure due to intermediate data by limiting
the required memory for the input and intermediate data to subjob level, and reusing
the Intermediate Buffer among subjobs. After reusing the Intermediate Buffer, the
Input Buffer then consumes the major portions of memory.

The input data in MapReduce is usually required to be kept in memory along with
the whole MapReduce process. For example, in the Word Count application, the Inter-
mediate Buffer will keep a pointer to a string in the input data as a key, instead of
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copying the string to another buffer. For a relatively large input, the input data will
be one of the major consumers of memory and there is poor cache locality in accessing
them.

Ostrich is designed to balance the benefit of a large memory footprint and the cost
of additional memory copies. For applications that likely have abundant duplicated
keys (or values), it would be more worthwhile to copy the keys (or values) instead of
keeping a pointer to the input data. Copying the keys (or values) together can also
improve the data locality, as the copied keys (or values) can be put together, instead
of being randomly scattered across the input data. Hence, Ostrich allows copying keys
(or values) at the combine phase.

By breaking the dependency between intermediate data and input data, Ostrich
supports the reuse of a fix-sized memory buffer to hold the input data for each subjob.
The memory buffer is remapped to the corresponding portion of input data when a new
subjob starts.

Optional interfaces. acquire and release. To support dynamically acquiring and
releasing input data, Ostrich provides two optional interfaces, namely acquire and
release, which will be invoked at the beginning and end of each subjob. Figure 3 shows
the pseudocode of the acquire and the release functions for the Word Count applica-
tion. In the example, the acquire and release functions simply map and unmap a
portion of the input file into/from memory.

These two interfaces are not provided from scratch. In fact, there are counterparts of
the acquire and the release interfaces in Google’s own implementation and Hadoop.
For example, Hadoop requires programmers to implement the RecordReader interface
to process a piece of input split generated from the InputSplit interface. The acquire
interface resembles the constructor function of RecordReader interface, which is used
to get data from a piece of input. The release interface also resembles the close func-
tion of the RecordReader interface, which closes a piece of input. Nevertheless, the two
interfaces are optional, as Ostrich has provided multiple default implementations for
input with general data structures like the Google’s MapReduce and Hadoop, in order
to reduce effort programmer.

5.2. Exploiting Locality: NUCA/NUMA-Aware Scheduler

Currently commodity multicore hardware usually organizes caches in a NonUniform
Cache Access (NUCA) way. The memory also tends to be organized in a nonuni-
form way (i.e., NUMA) as the number of cores increases. Thus, the latency of ac-
cessing caches or memory on remote chips is much slower than that on local cache
[Boyd-Wickizer et al. 2008]. Further, the cost of synchronization among threads on
different cores also increases with a growing amount of cores. In a MapReduce run-
time, even if the working set of each subjob fits into the local cache, the cross-chip
cache accesses still cannot be avoided in the Combine phase. Thus, current MapReduce
schedulers (e.g., Phoenix) have problems in scaling well on multicore systems, mainly
due to the fact that they use all cores belonging to different chips to serve a single
MapReduce job.

According to our measurement on Phoenix, MapReduce scales better with the in-
crease of the input size than on the number of cores. For example, the total execution
time (66s) of the Word Count application using four cores to process 1GByte input four
times and merging the final results is notably less than the time (80s) of using 16
cores to process 4GByte input once. Hence, we propose a NUCA/NUMA-aware sched-
uler that runs each iteration on a single chip and allocates memory from local mem-
ory pool, which could significantly reduce the remote cache and memory accesses in
the Combine phase. The NUCA/NUMA-aware scheduler also increases the utilization
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Fig. 5. The logical view of the multicore-oriented
scheduling model used by Tiled-MapReduce.

Fig. 6. The task pipeline optimization of Tiled-
MapReduce: the left figure shows the original
execution flow, while the right figure depicts the ex-
ecution flow after the task pipeline optimization.

of caches by eliminating the duplication of input data and intermediate data among
caches in multiple cores.

Figure 5 provides an overview of the NUCA/NUMA-aware scheduler. The main
thread serving as the Dispatcher spawns a Repeater thread for each chip (a schedul-
ing group), which further spawns Worker threads on each core within the chip. Each
Repeater has a private Job Buffer to receive subjobs from Dispatcher, a private In-
termediate Buffer used by workers to store the output of the Map phase and a pri-
vate Iteration Buffer to store the partial results generated by workers in the Combine
phase.

Using a NUCA/NUMA-aware scheduler might cause some imbalance among Re-
peaters in different scheduling groups, due to unbalanced workloads assignment to
these groups. To balance workload among them, Ostrich implements the work-stealing
mechanism proposed by Cilk [Frigo et al. 1998], to allow a Repeater to actively steal
jobs from other scheduling groups when it has done all the local jobs.

5.3. Task Parallelism: Software Pipeline

In a general MapReduce programming model, there is a strict barrier between the Map
and Reduce phases: the workers in one phase can only be started until all workers in
the previous phase have finished. Hence, the execution time of a job is determined by
the slowest worker in each phase. The imbalance of tasks can be solved by dynamic
scheduling in the Map phase. However, in the Reduce phase, as all values for the
same key must be in one reduce task, so it is not always feasible to generate a large
number reduce tasks for dynamic scheduling. For example, applications with only a
small number of keys can only generate a small number of reduce tasks. Moreover, the
workload of each key could be imbalanced as the number of key/value pairs with the
same key can vary significantly.

Tiled-MapReduce uses a software pipeline to create parallelism among adjacent
subjobs, since there is no data dependency between one subjob’s Reduce phase and
its successor’s Map phase. Figure 6 illustrates the pipeline optimization in Tiled-
MapReduce. The y-axis is the time and the x-axis is a list of cores. The left of the
figure is the execution flow of the normal Tiled-MapReduce runtime, which has strict
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barriers between each phase and can have many idle states due to the imbalance of
tasks. The right of figure is the execution flow with pipeline optimization, which over-
laps the Reduce phase of the current subjob and the Map phase of its successor.

As the reuse of the Intermediate Buffer among subjobs also creates resource
dependency between adjacent subjobs, Ostrich uses a dual buffer to eliminate the
dependency. This will increase the memory consumption, but can shorten the total
execution time. Users can avoid the use of a dual buffer by disabling the software
pipeline optimization.

6. NEW COMPUTING MODELS BASED ON TILED-MAPREDUCE

Compared to the general MapReduce programming model, Tiled-MapReduce not only
improves the performance and robustness on multicore platforms, but also enables
new computing models. This section describes how Ostrich is adjusted to support the
online computing and incremental computing models.

6.1. OOPS: Ostrich Online Prototype System

MapReduce has been used as the processing engine of high-level query languages,
such as Sawzall [Pike et al. 2005], Pig [Olston et al. 2008], and Hive [Thusoo et al.
2009]. In many cases, users may prefer to observe the progress of their aggregation
queries and control the query execution on-the-fly, which is known as online aggre-
gation [Hellerstein et al. 1997] in the database community. However, the query sub-
mitted to the MapReduce processing engine will not return any results until the final
accurate results have been found, since the general MapReduce programming model
is naturally designed to be bulk-processing. To demonstrate the flexibility of Tiled-
MapReduce, we build a prototype based on Ostrich to support online aggregation,
called OOPS (Ostrich Online Prototype System).

To support online aggregation, OOPS generates the online output according to par-
tial results of completed subjobs, which is quite close to the current progress and is
naturally supported in Tiled-MapReduce. By reusing partial results, OOPS minimizes
the performance overhead through avoiding repeated aggregations to the same inter-
mediate data. The implementation of OOPS is also quite simple, since we only need to
append a Show phase to the end of each subjob. In the Show phase, the Worker thread
checks whether to return the online output according to user’s configuration. If needed,
the Worker thread invokes the show function with the online results produced by the
reduce function from current partial results. Figure 7 illustrates the pseudocode of the
show function for the Word Count application. The implementation of the show function
is similar to the execution on the final results, which sorts the results by occurrence
and dumps the top 10 words to screen. Hence, there is almost no additional burden to
programmers.

OOPS also supports selective online aggregation according to the requirements of
performance and latency. Programmers can use the progress information to decide
whether to execute and output the online results. To harness the multicore resources,
programmers may write a parallelized version of the show function, or even run a new
MapReduce job to generate online results. Therefore, it is possible to concurrently run
the show function and other subjobs on the same core due to the NUCA/NUMA-aware
scheduler. To avoid potential contention on resources, the runtime can allocate the set
of cores used by the current subjob to the show function.

Online aggregation could also be used to show the trend of results, such as the
monthly change in an annual report. In these cases, the runtime should ensure the
consistency between the ordering of input data and online output. OOPS provides the
support for out-of-order execution of subjobs and invoking the show functions in order,
which resembles current out-of-execution/in-order commit of instructions in modern
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Fig. 7. Pseudocode of Word Count application to
support online aggregation (i.e., Show).

Fig. 8. An example of execution flow on OOPS with
in-order online results.

processors. The iteration number assigned by the partition function for each subjob is
used to describe the order of subjobs. The runtime uses an Online Bitmap to record the
finished jobs, and invokes the show function when all previous subjobs have done.

Figure 8 illustrates an example of the execution flow on OOPS with 4 cores. OOPS
executes the show function at the end of each iteration, with the progress and cores
information. The show function first uses the is show subroutine to selectively output
the online results from the second iteration, and then executes the do show subroutine
on the cores used by the current iteration. To ensure the sequential orders of the on-
line output, the runtime delays the Show phase of the fourth iteration until the third
iteration has been completed.

Multitier online aggregation is naturally supported by OOPS, and users only need
to provide different show functions for different MapReduce jobs. Figure 9 illustrates
the execution flow of two-tier online aggregation. OOPS invokes the show function
S1 and S2 for each iteration in the first and second tier of the MapReduce job, re-
spectively. The implementation of the S1 function is similar to that of the second-tier
MapReduce job.

OOPS trivially reserves the fault-tolerance model of Tiled-MapReduce. The snapshot
files of partial results could be used to generate the online results asynchronously, even
on a remote machine.

The OOPS implementation has three minor changes, including aggregation com-
puting, scheduling, and configuration, which are about 55, 90, and 10 lines of C code,
respectively.

6.2. OstInc: Ostrich Incremental Computing System

The workload processed by MapReduce applications is often mutable. For exam-
ple, new records are periodically appended to the system logs, and the Web pages
crawled from the network are continuously changing. This incremental nature of work-
loads suggests that the programming model should support performing large-scale
computation incrementally. The general MapReduce applications have to be executed
repeatedly with small changes in their input. To demonstrate the flexibility of Tiled-
MapReduce, we build a prototype based on Ostrich to support incremental computing,
called OstInc (OSTrich INCremental computing system).

OstInc reuses the backup and the recovery functions that enable fine-grained fault
tolerance to support two types of incremental computing, namely append-only and
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Fig. 9. The execution flow of two-tier online aggregation
on OOPS.

Fig. 10. The impact of iteration size on
the proportion of reuse in incremental
computing.

partial. For append-only incremental computing tasks such as processing incremental
log files and reporting periodical statistical results, the new input data is just appended
to the end of previous input data and previous saved results can be fully reused. For
partial incremental computing such as modified Web pages and rendered pictures, only
partial previous input data is modified and previous results should be reused as much
as possible.

Currently, OstInc needs the Unique Identifier of the previous job and a compatible
partition. It also assumes the behavior of two executions is compatible, meaning that
same input would result in same output.

Figure 11 illustrates examples of how OstInc supports append-only and partial
incremental computing. For append-only incremental computing, OstInc reuses the
backup function to store the input length and final results to persistent storage, and
reloads them via the Unique Identifier. OstInc directly reuses the previous final results
as the partial results of the first iteration of the current job, and skips the reexecution
of the subjob to process such input.

For partial incremental computing, OstInc reuses previous results at iteration level.
Hence, programmers need to use a compatible partition function for the current job.
OstInc hashes the input of each iteration using the MD5 hash as the Iteration Descrip-
tor, and backs it up with the partial results to persistent storage. OstInc then loads all
Iteration Descriptors to main memory at the beginning of the current job, according to
the Unique Identifier. For each iteration, OstInc matches the MD5 hash of input with
them to decide whether the iteration can be skipped. The results of unmatched itera-
tion will be backed up for future reuse. The proportion of input reuse depends on the
granularity of iterations. In Figure 10, for the same input with seven random changes,
the job with 10 iterations has only 3 iterations (30%) to be reused. while the job with
100 iterations has 89 reused iterations (89%).

Due to the flexibility of Tiled-MapReduce, Ostrich can trivially support incremental
computing. The OstInc implementation has three minor changes, including schedul-
ing, task backup, and matching, with about 35, 40, and 25 lines of C code, respectively.

7. EVALUATION

This section presents the experimental results for Ostrich and its applications by
using an AMD multicore machine. Since Ostrich follows the programming interfaces,
basic algorithms, and data structure from the initial version of Phoenix [Ranger et al.
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Fig. 11. Examples of OstInc to support append-only and partial incremental computing.

2007], we mainly compare the performance of Ostrich with Phoenix [Yoo et al. 2009],
to demonstrate the performance benefit of Ostrich due to the tiling strategy and
the associated optimizations. We also compare Ostrich with Phoenix++ [Talbot et al.
2011], a recent refinement of Phoenix with several sophisticated optimizations on
data structures and the combiner abstraction after the our initial implementation of
Ostrich [Chen et al. 2010]. Finally, we evaluate the performance of OOPS and OstInc
described in Section 6.

All experiments were conducted on a 48-core machine with eight 2.4 GHz 6-core
AMD Opteron chips. Each core has its own private 64KByte instruction and data
caches, and a 512KByte L2 cache. The cores on each chip share a 5MByte L3 cache.
The size of the physical memory is 128GByte. We use Debian Linux with kernel ver-
sion 3.2.10, which is installed on a 40GByte SCSI hard disk with an ext3 file system.
All input data are stored in a separated partition in a 116GByte SCSI disk. The mem-
ory allocator for both Ostrich and Phoenix is the jemalloc-3.0.0 [Evans 2013], which
was shown to have good scalability on multicore platforms. We run the experiment
five times and report the average result.

7.1. Tested Applications

As the performance benefit of Tiled-MapReduce is sensitive to characteristics of
key/value pairs of MapReduce applications, we chose four different MapReduce ap-
plications representing four major types of MapReduce applications regarding the
attributes of key/value pairs. Word Count has a large number of keys and each key
has many duplicated key/value pairs (likeness: Term-vector, Sequence-Count [Ahmad
et al. 2011a]). Distributed Sort also has a large number of keys, but there is no du-
plicate among key/value pairs (likeness: Self-Join, Tera-Sort [Ahmad et al. 2011a]).
Log Statistics has a large number of key/value pairs, but with only a few numbers
of keys (likeness: Histogram-Ratings/Movies, Classification [Ahmad et al. 2011a]). In-
verted Index has only a few key/value pairs, and key/value pairs cannot be aggregated
(likeness: Grep, Ranked-Inverted-Index [Ahmad et al. 2011a]). In a relatively small
number of cores (e.g., 12 cores), Tiled-MapReduce is expected to have significant per-
formance speedup on Word Count, and still show notable performance improvement
on Distributed Sort. It’s mainly due to the improvement of cache locality through tiling
workloads and using a NUCA/NUMA-aware scheduler. For Log Statistics and Inverted
Index, Tiled-MapReduce is expected to have relatively less performance improvement
because there are a very few numbers of keys or key/value pairs. It still benefits from
the elimination of CPU idle time via the software pipeline. In a relatively large number
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Fig. 12. The required code modification for Tiled-
MapReduce, in addition to the code in Phoenix.
“Default” indicates that programmers simply use
the default implementation provided by Ostrich.

Fig. 13. Overall speed over Phoenix on four bench-
marks for 1 to 48 cores with 1GByte input.

of cores (e.g., 48 cores), Tiled-MapReduce is expected to have significant performance
speedup on four benchmarks because of much better scalability than Phoenix.

The following are brief descriptions of four benchmarks. If not mentioned, the
combine function is the same as the reduce function.

Word Count (WC). It counts the number of occurrences of each word in a document.
The key is the word and the value is the number of occurrences. The map function
emits a 〈word, 1〉 pair for each word in the document and the reduce function sums
the values for each word and emits a 〈word, total count〉 pair.

Distributed Sort (DS). It models the TeraSort benchmark [Gray 2013] and uses the
internal sorting logic of a MapReduce runtime to sort a set of records. The key is the key
of the record and the value is the record itself. The map function emits a 〈key, record〉
pair for each record and the reduce function leaves all pairs unchanged. The sorting of
records happens in both the reduce and the merge functions, which perform local and
global sorting according to keys, respectively.

Log Statistics (LS). It calculates the cumulative online time for each user from a log
file. The key is the user ID and the value is the time of login or logout. The map function
parses the log file and emits 〈user ID, ±time〉 pairs. The reduce function adds up the
time for each user and emits a 〈user ID, total time〉 pair.

Inverted Index (II). It generates a position list for the word a user specified in a
document. The key is the word and the value is its position. The map function scans
the document and emits 〈word, position〉 pairs. The combine function is an identity
function that emits all pairs unchanged. The reduce function sorts all positions of the
word and emits a 〈word, list(position)〉 pair.

Figure 12 lists the code modifications to port a MapReduce application in Phoenix
to Ostrich. To support input data reuse, programmers need to provide 11 and 3 lines
of code for the acquire and release functions for WC, which maps/unmaps a portion
of the input file into/from memory accordingly. Such code can be written by simply
reusing the code that processes input data in Phoenix. For II, the acquire and release
functions are identical to WC, as the input type is the same with WC. For all the
four applications, programmers can simply use the default serialize and deserialize
functions provided by the runtime to support fault tolerance.
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Fig. 14. A comparison of the scalability of Ostrich with that of Phoenix.

Fig. 15. A comparison of the peak memory con-
sumption for Ostrich to Phoenix with 1-, 2-, and
4GByte input. OST-N and PHO-N represent the
data for Ostrich and Phoenix with NGByte input.

Fig. 16. A comparison of the memory footprint on
Ostrich versus Phoenix for WC benchmark with
1GByte input.

7.2. Overall Performance

Figure 13 shows the speedup of Ostrich compared to Phoenix for 1 to 48 cores. The
input size for each benchmark is 1GByte. As shown in the figure, the largest speedup
comes from WC, in which Ostrich outperforms Phoenix by 1.91x, 2.53x, and 3.07x for
1, 12, and 48 cores accordingly, while for DS, the speedup is 1.24x, 2.14x, and 2.38x
accordingly. The speedup is relatively small for LS (1.22x) and II (1.10x) with less than
12 cores. This is because they have relatively less numbers of intermediate data and
keys, which limits the optimization space compared to the former two. But Ostrich still
distinctly overcomes Phoenix by 2.40x and 1.86x on LS and II with 48 cores.

Figure 14 compares the scalability of Ostrich with that of Phoenix. As shown in
the figure, Ostrich has much better scalability than Phoenix for the four tested ap-
plications. With an increasing number of cores, Ostrich enjoys much larger speedup
compared to the performance on a single core. This confirms the effectiveness of Tiled-
MapReduce and the associated optimizations. The scalability of Phoenix on all bench-
marks stagnates or even drops when more cores are involved, which is mainly due to
the poor scalability of the Reduce and Merge phases and the increased proportion of
the time spent on these phases.

In the following sections, we will categorize the source of the speedups and improved
scalability.

7.3. The Benefit of Memory Reuse

7.3.1. Peak Memory Consumption. We first investigate the benefit of the memory reuse
optimization. In Figure 15, we compare the peak memory consumption of the four
benchmarks on Ostrich versus Phoenix with the input size of 1-, 2-, and 4GByte. The
main memory consumption in runtime is from input data and intermediate data.
Due to the input buffer reuse optimization, Ostrich significantly reduces the memory
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consumption for the input data. For the intermediate data, as Phoenix has already
applied the combine optimization to reduce the memory space for intermediate data,
Ostrich only has a small improvement over intermediate data for WC. For DS and
II, as the key/value pairs cannot be locally combined, Ostrich shows no saving in
intermediate data but additionally adds a small space overhead due to the copied keys
and the spaces for the Iteration Buffer. For LS, as the intermediate data is relatively
small, Ostrich shows no space saving for intermediate data. Anyway, copying keys and
grouping data into a small centralized Intermediate Buffer does increase the cache
locality.

7.3.2. Memory Footprint. Ostrich also reduces the memory footprint of MapReduce
applications in their whole lifecycle, through tiling workloads and reusing buffers.
Figure 16 shows both the size and the time of memory consumption for WC on Ostrich
is significantly better than that on Phoenix. The increment of memory consumption
on Ostrich is less and more steady, since the Input Buffer and Intermediate Buffer
are allocated in the first iteration and reused among the rest of the iterations. On the
contrary, the memory consumption on Phoenix increases with the processing of input
data, and the stale data occupies the memory and is not released until the entire job
is finished.

7.4. The Benefits of Exploiting Cache Locality

7.4.1. Improvement from NUCA/NUMA-Aware Scheduler. We compared the performance of
Ostrich in two configurations. The configuration without the NUCA/NUMA-aware
scheduler partitions all threads into a single group and makes them sequentially dis-
pose of subjobs together, which is also used by Phoenix. By contrast, the NUCA/NUMA-
aware scheduler partitions cores on the same chip into the same group and dispatches
subjobs in parallel.

Figure 17 shows the effect of the NUCA/NUMA-aware scheduler on four benchmarks
with 6, 12, 24, and 48 cores. The improvement of the NUCA/NUMA-aware scheduler
is from the elimination of cross-chip cache accesses in the Combine phase. WC, DS,
and LS benchmarks spend relatively more time in the Combine phase to reduce the
intermediate data, resulting in more performance improvement. Hence, the first three
applications (i.e., WC, DS, and LS) enjoy around 70% performance speedup (79%, 58%,
and 69% accordingly) for 48 cores. Inverted Index has relatively smaller speedup (24%)
because there are relatively few operations in the Combine phase, so the benefit from
the scheduler is limited. As Ostrich treats all cores within a chip as a group, the be-
havior of the new scheduler is the same as the original scheduler when the number of
cores is less than or equal to 6 (the number of cores in a chip). Hence, there is little
performance improvement.

For all the four applications, performance improvement increases with number of
cores. Thus, it is reasonable to foresee that Ostrich could have even more improve-
ment for future machines with abundant cores, especially for the tiled architecture
[Waingold et al. 1997].

7.4.2. Relevance of Iteration Size. Tiled-MapReduce provides good opportunities to ex-
ploit the memory hierarchy by limiting the footprint of a subjob within a certain range.
Figure 18 shows the execution time of the Word Count application with different num-
ber of subjobs to process each 1GByte input data using 48 cores. The results show
that the WC benchmark has the best performance when each iteration size is close to
6.3MByte (160 subjobs per GByte), for 1-, 2-, and 4GByte input data. This is because
the size of the overall last-level cache (i.e., L3) in a chip is 6MByte. The remaining
space of the cache is used to store other data such as the Intermediate Buffer. Thus,
Tiled-MapReduce tends to enjoy the best performance when the footprint of a subjob
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Fig. 17. The effect of NUCA/NUMA-aware sched-
uler on four benchmarks for 6 to 48 cores with
1GByte input.

Fig. 18. The impact of iteration size on execution
time using 48 cores with 1-, 2-, and 4GByte input.

Fig. 19. A comparison of the data cache miss ratio
on Ostrich to Phoenix using 48 cores for four bench-
marks with 1-, 2-, and 4GByte input.

Fig. 20. A comparison of the remote cache access
times on Ostrich to Phoenix using 48 cores for four
benchmarks with 1-, 2-, and 4GByte input.

just fits in the last-level cache, as creating more subjobs would suffer more from the
associated overhead caused by merging these subjobs. One can use a small sample
input to estimate the size of each subjob to get an optimal job partition.

7.4.3. Improved Cache Locality. Figure 19 and Figure 20 present the data cache miss
ratio and remote cache operations of four benchmarks on Ostrich versus Phoenix using
48 cores with 1-, 2-, and 4GByte input. All data is collected using OProfile [Levon
2004] with the patch from AMD CodeAnalyst [AMD 2013]. The data cache miss ratio
indicates the total number of data cache misses divided by the total number of load
operations. The miss ratio of WC, DS, and LS benchmarks running on Ostrich is from
2.4x to 4.4x fewer compared to that on Phoenix. As the working set of each subjob
matches the total L2 and L3 cache size of a chip (i.e., 3- and 5MByte), thus it ensures
that the data fetched in the Map phase may be reused in the Combine phase within the
private cache of a chip and is unlikely be accessed after being flushed to memory. The
cache miss ratio of the II benchmark for Ostrich is close to that of Phoenix, as there are
few optimizing spaces in the II due to the fact that there are very few intermediate data
and the Combine phase cannot reduce the memory consumption. The remote cache
operations indicate the total number of data accesses from the remote cache. Compared
to Phoenix, Ostrich reduces more than 90% remote cache accesses for all benchmarks
due to the NUCA/NUMA-aware scheduler, which avoids accessing intermediate data
from cache of remote chips.
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Fig. 21. The benefit of the pipeline with a break-
down of time in all phases using 48 cores with
1GByte input. The label “/p” means with pipeline.

Fig. 22. The performance and storage overhead of
backup operations for WC benchmark using 48 cores
with 1GByte input, while performing backup opera-
tions after each iteration.

7.5. The Benefit of Pipeline

As the major benefit of pipeline optimization is from the elimination of wait time in
the Combine phase, we further split the time spent on the Combine phase into active
time and idle time. The active time is the average of total execution time of all workers
during the Combine phase, and the idle time is the difference between the active time
and the time spent on the Combine phase.

Figure 21 shows the time breakdown of benchmarks with and without pipeline op-
timization using 48 cores with 1GByte input. The idle time dominates the Combine
phase of II (89%), because it only indexes one word. Thus only one worker is active in
the Combine phase, which results in a notable imbalance. For LS, the number of login
records of each User ID is remarkably different, so the workload of each worker in the
Combine phase is unbalanced. Hence, the pipeline brings a relatively large improve-
ment, reducing 22% of time spent on the Combine phase. For DS, the default parti-
tion function cannot thoroughly balance the workload, thus the pipeline still has some
benefit (close to 11%). For WC, which has a large number of keys and duplicated pairs
for dynamic load balancing, the improvement from the pipeline is limited (5%).

7.6. Fault Tolerance

7.6.1. Performance Overhead. Figure 22 shows the relationship between performance
overhead and the number of backup operations, using the Word Count benchmark on
48 cores with 1GByte input. The performance overhead of the fault-tolerance mecha-
nism depends on the frequency of backup operations. In the tested configuration using
1GByte input, there are 160 subjobs in the optimal configuration. Performing backup
operations on every 10 subjobs incurs less than 1% performance overhead, while do-
ing backup operations after each subjob incurs about 6% overhead. Thus, there is a
trade-off between the cost of backup and the benefit from the efficiency of recovery
from failure.

7.6.2. Storage Overhead. To support fault tolerance, Ostrich needs additional persis-
tent storage to back up the partial results snapshot for each iteration. The storage
overhead depends on the total size of snapshot, which is indirectly affected by the
number of iterations. Figure 22 shows the relation between storage overhead and the
number of iterations for WC using 48 cores with 1GByte input. The results show that
the fault-tolerance mechanism requires 91MByte storage in the optimal configuration
(i.e., 160 iterations). The storage overhead decreases to 31MByte while configured to
16 iterations.
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Fig. 23. A comparison on the throughput of Map-
Reduce servers based on Ostrich and Phoenix with
the number of worker processes from 1 to 48. The
workload has 100 mixed MapReduce jobs, which are
randomly generated from our four benchmarks with
about 100MByte input.

Fig. 24. A comparison among Phoenix, Phoenix++,
and Ostrich with a breakdown of time in all phases
using 12 and 48 cores with 1GByte input.

7.7. Ostrich as MapReduce Server

To demonstrate the effectiveness of using Ostrich when processing multiple MapRe-
duce jobs in batch mode, we built a MapReduce server using both Ostrich and Phoenix.
The server forks multiple worker processes to process MapReduce requests in paral-
lel. Each worker process uses a partial number of cores to serve requests. Figure 23
shows the performance comparison of MapReduce servers based on Ostrich and Phoe-
nix, with the number of worker processes ranging from 1 to 48. For the server with 48
worker processes, each process exclusively uses one core and continuously serves the
MapReduce requests. As shown in the figure, the MapReduce server based on Ostrich
outperforms the one based on Phoenix under each configuration from 1.60x to 1.94x,
due to better cache locality and performance scalability in Ostrich. The results also
show that running multiple MapReduce jobs in parallel is a much better way to maxi-
mize the overall throughput, since the scalability of MapReduce is not linear in many
cases, especially when the number of cores exceeds 12 in our evaluation. However, con-
tention on shared caches might result in performance degradation, which is shown by
our results when the number of worker processes exceeds 16.

7.8. A Comparison with Phoenix++

Recently, the Phoenix runtime was completely revised by Talbot et al. in Phoe-
nix++ [Talbot et al. 2011] after our initial implementation of Ostrich [Chen et al. 2010].
It provides a flexible intermediate key-value storage abstraction and a more effective
combiner implementation to minimize the overhead and memory usage in the Map
phase. This, however, may be at the cost of additional programmers’ effort in providing
nonstandard storage abstraction and containers. Figure 24 shows the time breakdown
of benchmarks on Phoenix, Phoenix++, and Ostrich using 12 and 48 cores with 1GByte
input. Compared to Phoenix, both Phoenix++ and Ostrich achieve significant perfor-
mance improvement, but a similar effect is derived from different optimization tech-
niques. For WC and LS, Phoenix++ outperforms Ostrich by 1.19x and 1.28x using 48
cores. This is because a large number of duplicated key-value pairs provide immense
optimization space to the effective Intermediate Buffer and combiner implementation.
For example, instead of the standard key/value pair abstraction, Phoenix++ uses a cus-
tomized combiner to do in-place aggregation of key/value pairs, which thus eliminates
the Reduce phase. For DS and II, the improvement of Phoenix++ is limited because
there are no duplicate pairs for in-place aggregation. Ostrich also cannot improve the
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Fig. 25. The performance overhead of OOPS
compared to Ostrich for WC benchmark using
48 cores with different frequency of online
aggregation.

Fig. 26. Top query over 6.4GByte Wikipedia articles.
The vertical lines note the times we observed the top
query answers produced by online aggregation and the
execution time on Ostrich.

performance of the Map phase, and even degrades due to additional memory copy of
keys. However, the tiling strategy and NUCA/NUMA-aware scheduler significantly
improve the locality of intermediate data. Hence, Ostrich outperforms Phoenix++ by
1.48x and 6.53x in Reduce and Merge phases for DS. For II, the improvement is not
obvious because it only has one key.

Phoenix++ focuses on using more effective data structure and abstraction to opti-
mize the aggregation operations, and outperforms Ostrich in WC-like applications. In
contrast, Ostrich focuses on improving the programming model by the tiling strategy,
as well as optimizing cache locality and CPU usages, and thus outperforms in DS-like
applications. Actually, we believe the techniques adopted by Ostrich are orthogonal to
Phoenix++, and these two can combined together for further improvement. To validate
this, we incorporate the in-place associative combiner abstraction in Phoenix++ for the
WC application. As shown in Figure 24, Ostrich++ outperforms Ostrich and Phoenix++
by 1.37x and 1.15x for WC.

7.9. Costs of Supporting New Computing Models

7.9.1. OOPS. Figure 25 shows the performance overhead of one- and two-tier online
aggregation on OOPS, using the Word Count benchmark on 48 cores with 1GByte in-
put. The result shows that one-tier online aggregation incurs 11.1% and 2.7% overhead
while calling the show function for each 1% input and 10% input. For two-tier online
aggregation, the performance overhead increases to 96.2% and 11.0%, respectively.
This is because the show function directly uses qsort to sort the result in one-tier on-
line aggregation, and uses an additional MapReduce job to sort the result in two-tier.
Thus, the performance overhead of OOPS mainly comes from the execution of the show
function.

To show the time/accuracy trade-off in OOPS, we write a WC-like benchmark to
query the top 100 frequent words in 6.4GByte Wikipedia articles [Wikimedia 2013].
The implementation of the show function is less than 5 lines of code using one-tier
online aggregation. Figure 26 presents the progress and accuracy of top query on OOPS
with 1% online aggregation. We note the time at which the top-K words in online
output are the top-K words in the final results. Although the final results appearing in
OOPS is 10.8% later than those in Ostrich, we did observe the top-3, -5, -10, and -20
values at the progress of 9%, 18%, 45%, and 79%, respectively.

7.9.2. OstInc. To evaluate the effectiveness of OstInc for append-only incremental
computing, we run the LS benchmark on OstInc and Ostrich with an incremental log
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Fig. 27. A performance comparison between OstInc
and Ostrich for LS benchmark with an incremental
log file.

Fig. 28. A performance comparison between OstInc
and Ostrich for WC benchmark with a random mod-
ified document.

file from 1- to 2GByte. The new log records are always appended to the end of the file.
Figure 27 shows that OstInc significantly reduces the execution time except for the
first time, because it can fully reuse the previous results for append-only incremental
computing. Thus, the execution time of OstInc depends on the size of fresh data.

For partial incremental computing, the effectiveness of reuse depends on the number
of iterations. We thus evaluate the WC benchmark with a 1GByte document, which is
randomly modified in 20 places. As shown in Figure 28, the first time execution of the
WC benchmark on OstInc incurs less than 11% performance overhead. But the WC
benchmark for modified input on OstInc outperforms that on Ostrich through reusing
the results from unmodified iterations. With an increasing number of iterations, Os-
tInc enjoys more improvement compared to Ostrich. In the configuration with 100
iterations, OstInc reduces 70.4% execution time by skipping 82 iterations.

8. RELATED WORK

Our work is related to the research in programming models and runtime for data-
parallel applications, MapReduce on multicore platforms, and nested data parallelism.
We briefly discuss the most related work in turn.

8.1. Programming Model and Runtime Related to MapReduce

MapReduce [Dean and Ghemawat 2008] is a popular data-parallel programming
model developed in Google. An open-source implementation, namely Hadoop [Bialecki
et al. 2005], is provided by Apache, which is implemented in Java and uses HDFS as
the underlying file system. The current implementation of Hadoop focuses on cluster
environments rather than on a single machine. It does not exploit the data locality
at the granularity of a single machine, neither does it provide a multicore-oriented
scheduler.

Dryad [Isard et al. 2007] is a programming model for data-parallel applications from
Microsoft. Dryad abstracts tasks as nodes in the resource graph and relies on the run-
time to map nodes to graph. The Bulk Synchronous Parallel (BSP) model [Valiant
1990] also provides high-level abstractions to give programmers an option to avoid
the burden of low-level memory management, communication, and synchronization.
Compared to MapReduce, the applications on Dryad/BSP may be specified by an ar-
bitrary DAG/superstep rather than a sequence of map and reduce operations. Hence,
they sacrifice some simplicity of interfaces for possible efficiency and flexibility.

Piccolo [Power and Li 2010] is a programming model for data-centric applications
that require accessing or changing shared state iteratively. Compared to data-flow
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models (e.g., MapReduce and Dryad), Piccolo provides applications with an explicit
communication mechanism via distributed key-value tables.

OpenCL [Khronos Group 2009] is a programming model for heterogeneous par-
allel computing systems, which provides a common programming layer to users.
SnuCL [Kim et al. 2011] extends the OpenCL semantics to support heterogeneous
CPU/GPU cluster environments. It allows the OpenCL applications to utilize the het-
erogeneous compute nodes as devices of the host node.

The popularity of MapReduce is also embodied in running MapReduce on other
heterogeneous environments, such as on GPUs [He et al. 2008], Cell [de Kruijf and
Sankaralingam 2007], and FPGA [Shan et al. 2010]. To ease the programming of Map-
Reduce applications on heterogeneous platforms such as GPUs and CPUs, Hong et al.
[2010] recently developed a system called MapCG, which provides sourcecode-level
compatibility between these two platforms. Coupled with a lightweight memory allo-
cator and hash table on CPUs, they showed that MapCG has considerable performance
advantage over Phoenix and Mars. Tarazu [Ahmad et al. 2012] is a suite of optimiza-
tions to improve the performance of MapReduce applications on heterogeneous clus-
ters, which provides three new scheduling mechanisms to reduce the network traffic
cost and load imbalance.

8.2. Extension and Optimization to MapReduce

The MapReduce programming model has been applied to a wide range of domains,
including data mining [Ekanayake et al. 2008], machine learning [Chu et al. 2006],
visualization [Stuart et al. 2010], and bioinformatics [Matsunaga et al. 2008]. Sev-
eral SQL-style declarative languages have appeared on top of MapReduce to hide the
domain-specifics difference, such as Sawzall [Pike et al. 2005], Pig [Olston et al. 2008],
Hive [Thusoo et al. 2009], and YSmart [Lee et al. 2011]. The counterpart on top of
Dryad is DryadLINQ [Yu et al. 2008], which integrates Dryad with high-level language
(i.e., .NET) and allows users to program using SQL-like programming language.

Since the MapReduce programming model is naturally designed only to bulk-
processing tasks, there is some work aiming at extending the programming model
for various purposes. For example, the database community extends the MapReduce
programming model by adding an additional phase, namely Merge, to join two ta-
bles [Yang et al. 2007]. Online MapReduce [Condie et al. 2010] extends the MapReduce
runtime using a pipelining scheme to support two features in the database domain, the
online aggregation and continuous query processing.

To improve the performance of iterative MapReduce jobs, Twister [Ekanayake et al.
2010] uses distributed memory caches to avoid repeated input loading from disk.
Spark [Zaharia et al. 2010] enhances the cross-job distributed cache with fault-
tolerance support.

For incremental/continuous computing workloads, DryadInc [Popa et al. 2009]
reuses computation results from previous jobs based on system job graphs of Dryad.
Incoop [Bhatotia et al. 2011] supports executing MapReduce jobs in an incremental
manner by reusing intermediate data from previous runs, and uses a memorization-
aware scheduler to enhance the locality of memorization results. The in situ Map-
Reduce [Logothetis et al. 2011] supports continuous log processing through sliding-
window-based computation and provides two-dimensional incomplete results output.

Tiled-MapReduce naturally supports the preceding purposes by decomposing a large
job into the subjob level, with a special focus on multicore platforms instead of clusters.

The MapReduce system, especially the open-source implementation (i.e., Hadoop)
has been optimized from many aspects, including scheduling [Zaharia et al. 2008],
data locality [Ananthanarayanan et al. 2011], auto-tuning [Babu 2010], and fault tol-
erance [Yang et al. 2010]. MaRCO [Ahmad et al. 2011b] also exploits the commutativity
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and associativity of the reduce function to support overlapping the shuffle and reduce
operations. However, none of these efforts focuses on the multicore platform.

Azwraith [Xiao et al. 2011] has tried to combine a previous version of Ostrich [Chen
et al. 2010] to Hadoop using a hierarchical approach, by which a Map/Reduce task
assigned to each machine is further decomposed to the Ostrich runtime to a series of
Map/Reduce tasks in Ostrich. In this way, Azwraith gains 1.4x to 3.5x performance
speedup over Hadoop due to the exploiting of parallelism and locality in Ostrich.

8.3. MapReduce on Multicore Platforms

Ranger et al. [2007] provide a MapReduce implementation on multicore platform.
Their implementation, namely Phoenix, successfully demonstrates that applica-
tions written using MapReduce are comparable in performance to their pthread
counterparts. Compared to MapReduce, Tiled-MapReduce partitions a big MapReduce
job into a number of independent subjobs, which improves resource efficiency and data
locality, thus significantly improves the performance. Yoo et al. [2009] heavily optimize
Phoenix from three layers: algorithm, implementation, and OS interaction, and Talbot
et al. [2011] further improve Phoenix runtime by flexible containers and more effec-
tive combiner implementation. Mao et al. [2010] also builds a MapReduce runtime for
multicore that applies many algorithm- and data-structure-level optimizations over
Phoenix. In contrast, Ostrich optimizes MapReduce mainly at the programming-model
level by limiting the data to be processed in each MapReduce job, which significantly
reduces the footprint and enables other locality-aware optimizations. Hence, Ostrich
is orthogonal to these optimizations and can further improve the performance of these
systems.

Merge [Linderman et al. 2008] is a programming model that targets heterogeneous
multicore platforms. It uses library-based model that is similar to MapReduce to hide
the underlying machine heterogeneity. It also allows automatic mapping of the compu-
tation tasks into available resources. Lee et al. [2010] implement an OpenCL frame-
work which aims at heterogeneous multicore architectures with local memory. It uses
software-managed caches and coherence protocols to overcome the limitation from in-
ternal local memory.

A multicore operating system, named Corey [Boyd-Wickizer et al. 2008], proposes
three new abstractions (address ranges, shares, and kernel cores) to scale a MapRe-
duce application (i.e., Word Revert Index) running on Corey. The work in Corey is or-
thogonal to Ostrich. The abstractions in Corey, if available in commodity OSes, could
further improve the efficiency of Ostrich due to the reduced time spent in the OS
kernel.

Thread clustering [Tam et al. 2007] schedules threads with similar cache affinity
to close cores, thus improves the cache locality. Tiled-MapReduce also aims to im-
prove cache locality, but tries to limit the working set and fits data in a subjob in
cache.

8.4. Nested Data Parallelism

Many data-parallel languages and their implementations, for example, NESL [Blelloch
1996], are designed to support nested data parallelism, which is critical for the perfor-
mance of nested parallel algorithms. Meanwhile, nested data processing has been ex-
plored by the database community for several decades, such as Volcano [Graefe 1994]
data-flow query processing systems. In the compiler community, Packirisamy and Zhai
[2009] design a new algorithm to exploit parallelism for programs with nested loops
by statically mapping cores to different levels of loop-nests. We observed that the Map-
Reduce programming model also could be paralleled in two dimensions and it could be
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efficiently implemented on multicore architecture. Our work is on the programming-
model level and introduces several additional optimizations to reduce the pressure on
the system resources, including main memory, caches, and processors.

9. CONCLUSION

Multicore is prevalent and it is important to harness the power of the likely abundant
CPU cores. MapReduce is a promising programming model for multicore platforms to
fully utilize the power of such processing resources.

This article argued that the environmental differences between clusters and multi-
core open new design spaces and optimization opportunities to improve performance
of MapReduce on multicore. Based on the observation, this article proposed Tiled-
MapReduce, that uses the “tiling strategy” to partition a large MapReduce job into a
number of small subjobs and handles the subjobs iteratively. This article also explored
several optimizations otherwise impossible for MapReduce, to improve the memory,
cache, and CPU efficiency. We also demonstrated that Tiled-MapReduce can support
fine-grained fault tolerance and two new computing models. Experimental results
showed that our implementation, namely Ostrich, outperforms Phoenix by up to 3.07x
and saves up to 87.6% memory. Our profiling results confirmed that the improvement
comes from the reduced memory footprint, better data locality, and task parallelism.
The overhead of supporting new computing models is also small.
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