
Tiled-MapReduce: Optimizing Resource Usages of
Data-parallel Applications on Multicore with Tiling

Rong Chen, Haibo Chen, and Binyu Zang
Parallel Processing Institute

Fudan University
{chenrong, hbchen, byzang}@fudan.edu.cn

ABSTRACT

The prevalence of chip multiprocessor opens opportunities of run-
ning data-parallel applications originally in clusters on a single ma-
chine with many cores. MapReduce, a simple and elegant pro-
gramming model to program large scale clusters, has recently been
shown to be a promising alternative to harness the multicore plat-
form.

The differences such as memory hierarchy and communication
patterns between clusters and multicore platforms raise new chal-
lenges to design and implement an efficient MapReduce system
on multicore. This paper argues that it is more efficient for Map-
Reduce to iteratively process small chunks of data in turn than
processing a large chunk of data at one time on shared memory
multicore platforms. Based on the argument, we extend the gen-
eral MapReduce programming model with “tiling strategy”, called
Tiled-MapReduce (TMR). TMR partitions a large MapReduce job
into a number of small sub-jobs and iteratively processes one sub-
job at a time with efficient use of resources; TMR finally merges the
results of all sub-jobs for output. Based on Tiled-MapReduce, we
design and implement several optimizing techniques targeting mul-
ticore, including the reuse of input and intermediate data structure
among sub-jobs, a NUCA/NUMA-aware scheduler, and pipelining
a sub-job’s reduce phase with the successive sub-job’s map phase,
to optimize the memory, cache and CPU resources accordingly.

We have implemented a prototype of Tiled-MapReduce based
on Phoenix, an already highly optimized MapReduce runtime for
shared memory multiprocessors. The prototype, namely Ostrich,
runs on an Intel machine with 16 cores. Experiments on four differ-
ent types of benchmarks show that Ostrich saves up to 85% mem-
ory, causes less cache misses and makes more efficient uses of CPU
cores, resulting in a speedup ranging from 1.2X to 3.3X.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Frameworks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

General Terms

Design, Performance

Keywords

MapReduce, Tiled-MapReduce, Tiling, Multicore

1. INTRODUCTION
Multicore or many cores, as another form embodying Moore’s

Law, is commercially prevalent recently. With the commodity avail-
ability of Quad-cores and eight cores on a chip, it is foreseeable
that tens to hundreds (even thousands) of cores on a single chip
will appear in the near future [1]. With the continuously increasing
number of cores, it is vitally important to fully harness the abundant
computing resources with still ease-to-use programming models.

MapReduce [2], designed to program large clusters with rela-
tively simple functional primitives, has shown its power in solv-
ing non-trivial data-parallel problems such as document clustering,
web access stats, inverted index and statistical machine translation.
In most cases, programmers only need to implement two interfaces:
Map, which processes the input data and converts it into a num-
ber of key/value pairs; and Reduce, which aggregates values in the
key/value pairs according to the key. Consequently, MapReduce
frees programmers from handling tough tasks such as distributing
data, specifying parallelism and fault tolerance.

While initially MapReduce is implemented on clusters, Ranger
et al. have demonstrated the feasibility of running MapReduce ap-
plications on shared memory multicore machines with Phoenix [3],
which is heavily optimized by Yoo et al. [4]1. Phoenix uses the
pthread library to assign tasks among CPU cores and relies on
shared memory to handle inter-task communications. Compared
to the cluster version, MapReduce on multicore is able to take ad-
vantage of fast inter-task communications in shared memory, thus
avoids the expensive network communications among tasks.

Though Phoenix has demonstrated the applicability of running
MapReduce on multicore, it is still limited in exploiting many fea-
tures of commodity multicore systems due to its way of processing
all (thus very large) input data at one time. As a result, the input
and intermediate data will persist along the entire life cycle of a
processing phase (i.e., Map or Reduce). Hence, a relatively large
data-parallel application can easily cause resource pressures on the
runtime, operating systems and the CPU caches, which could sig-
nificantly degrade the performance. Based on the above observa-
tion, we argue that it is more efficient to iteratively process small

chunks of data in turn than processing a large chunk of data at one

1Note that the version of Phoenix we use in this paper is 2.0.0 re-
leased in May, 2009, which was a best available implementation on
shared memory systems.

time on shared memory multicore platforms, due to the potential of
better cache/memory locality and less contentions.

To remedy the above problems, this paper proposes Tiled-MapReduce,
which applies the “tiling strategy” [5] in compiler optimization, to
shorten the life cycle and limit the footprint of the input and in-
termediate data, and to optimize the resource usages of the Map-
Reduce runtime and mitigate contentions, thus increases perfor-
mance. The basic observation is that the reduce function of many
data-parallel applications can be written as commutative and asso-
ciative, including all 26 MapReduce applications in the test suite
of Phoenix [3] and Hadoop [6]. Based on this observation, Tiled-

MapReduce further partitions a big MapReduce job into a number
of small sub-jobs and processes each sub-job in turn. The runtime
system will finally merge the results of each sub-job and output the
final results. In Tiled-MapReduce, the runtime only consumes the
resources required for a sub-job as well as the output for each sub-
job, which are usually much smaller than those of processing one
big task in a time.

Tiled-MapReduce also enables three optimizations otherwise im-
possible for MapReduce. First, as each sub-job is processed in turn,
the data structures and memory spaces for the input and intermedi-
ate data can be reused across the sub-job boundaries. This avoids
the costs of expensive memory allocation and deallocation, as well
as the data structures construction. Second, processing a small sub-
job provides the opportunity to fully exploit the memory hierarchy
of a multicore system, resulting in better memory and cache local-
ity. Finally, according to our measurements, the Reduce phase on
a multicore machine is usually not balanced, even using dynamic
scheduling. This gives us the opportunity to overlap the execution
of a sub-job’s Reduce phase with its successor’s Map phase, which
can fully harness the CPU cores.

The incremental computing nature of Tiled-MapReduce would
also be beneficial to the online MapReduce model [7], which sup-
ports online aggregation and allows users to see the early results of
an online job. It would also be useful to handle incremental com-
puting that operates on the newly appended data and combines the
new results with the previous results [8]. To support these two com-
puting models , Tiled-MapReduce is also built with the support to
periodically display the intermediate results after a sub-job is done,
as well as the support for continuous computation that saves the
partial results of sub-jobs for further computation reuse.

It should be noted that Tiled-MapReduce does not require a deep
understanding of the underlying MapReduce implementation, thus
is orthogonal to a specific MapReduce implementation (e.g., the
algorithm and data structures). Tiled-MapReduce also mostly re-
tains the existing programming interfaces of MapReduce, with only
two optional interfaces for the purpose of input reuse, which also
have the counterparts in other MapReduce implementations such as
Google’s MapReduce [2] and Hadoop [6]. Further, Tiled-MapReduce

retains the fault tolerance capability in MapReduce, and addition-
ally allows the saving and restoring of data at the granularity of
a sub-job, to defend against a whole machine crash, since current
multicore systems lack separate hardware failure domains.

We have implemented a prototype of Tiled-MapReduce based
on Phoenix. The system, called Ostrich, outperforms Phoenix due
to the mentioned optimizations. Experiments on a 16-core Intel
machine using four different types data-parallel applications (Word
Count, Distributed Sort, Log Stats, and Inverted Index) show that:
Ostrich can save up to 85% memory, causes less cache misses and
makes more efficient uses of CPU cores, resulting in a speedup
from 1.2X to 3.3X.

In summary, this paper makes the following contributions:

• The analysis that iteratively processing small chunks of data

is more efficient than processing a large chunk of data for
MapReduce on multicore platforms.

• The Tiled-MapReduce programming model extension that al-
lows the exploits of the multicore environment for data-parallel
applications.

• Three optimizations that optimize the memory, cache and
CPU usages of the Tiled-MapReduce runtime.

• A prototype implementation with experimental evaluation,
which demonstrates the effectiveness of Tiled-MapReduce.

The rest of the paper is organized as follows. Section 2 presents
the background of MapReduce, the Phoenix implementation and
the “tiling strategy” in parallel computing. Section 3 discusses the
possible performance issues with Phoenix and illustrates the design
spaces and optimization opportunities of MapReduce on multicore.
Section 4 describes the extension from Tiled-MapReduce and its
overall execution flow. Section 5 describes the optimization for the
resource usages in Tiled-MapReduce. Section 6 presents the per-
formance evaluation results. Section 7 relates our work to previous
work. Finally, we conclude the paper with a brief discussion on
future work in section 8.

2. BACKGROUND
This section presents a short review on the MapReduce program-

ming model, uses Phoenix as an example to illustrate MapReduce
for multicore platforms, and briefly describes the tiling strategy in
compiler optimization.

2.1 MapReduce Programming Model
The MapReduce [2] programming model mostly only requires

programmers to describe the computation using two primitives in-
spired by functional programming languages, Map and Reduce.
The map function usually independently processes a portion of the
input data and emits multiple intermediate key/value pairs, while
the reduce function groups all key/value pairs with the same key
to a single output key/value pair. Additionally, users can provide
an optional combine function that locally aggregates the inter-
mediate key/value pairs to save networking bandwidth and reduce
memory consumptions.

Many data-parallel applications could be easily implemented with
MapReduce model, such as Word Count, Distributed Grep, Inverted

Index and Distributed Sort [2]. The pseudo-code in Figure 1 shows
the Word Count application counting the number of occurrences of
each word in a document. The map function emits a 〈word, 1〉
pair for each word in document, and the reduce function counts
all occurrences of a word as the output. The combine function is
similar to the reduce function, but only processes a partial set of
key/value pairs.

2.2 The Phoenix Implementation for Multicore
Phoenix [3] [4] is an implementation of MapReduce on shared

memory multiprocessor systems using the pthread library. It showed
that applications written with the MapReduce programming model
have competitive scalability and performance with those directly
written with the pthread library on a multicore platform.

The lower part of Figure 1 uses a flow chart to illustrate the out-
line of Phoenix from input to output, which goes through three
main phases, including Map, Reduce and Merge. The right part
illustrates the overall execution flow of processing a MapReduce
job on Phoenix runtime. The key data structure of Phoenix runtime
is the Intermediate Buffer, which is formed as a matrix of buckets

spawn

Worker

Worker

Worker

Worker

Worker

Worker

Intermediate Buffer

F
in
al
 B
uf

fe
r

O
ut
pu

t
B
uf

fe
r

Input MAP REDUCE

Worker

MERGE Output

R .

M

R

Dispatcher

MapReduce

Job

...

...

...

...

...

...

split

split

split

...

split

map

reduce

merge

// input = a document

map (input) {

for each word in input

emit_intermediate (word, 1);

}

// key = word

// values = a set of values

combine (key, values) {

int sum = 0;

for each value in values

sum += value;

emit_combine (key, sum);

}

reduce (key, values) {

int sum = 0;

for each value in values

sum += value;

emit (key, sum);

}

Figure 1: Pseudo-code of Word Count on MapReduce and the execution flow of the Phoenix Library: the Map workers generate output

to the rows of the Intermediate Buffer and the Reduce workers aggregate the columns of the Buffer to generate output to the Final Buffer.

and stores the intermediate data produced in the Map phase and
consumed by the Reduce phase. Each row of the buffer is exclu-
sively used by a worker in the Map phase while each column of the
buffer is exclusively used by a worker in the Reduce phase. A Map-
Reduce application starts a job by invoking the dispatcher, which
spawns multiple workers and binds them to different CPU cores.
In the Map phase, each worker repeatedly splits a piece of input
data and processes them using the programmer-supplied map func-
tion. The map function parses the input data and emits multiple
intermediate key/value pairs to the corresponding row of Interme-

diate Buffer. The runtime also invokes the combine function (if
provided by users) for each worker to perform local reduction at the
end of the Map phase. In the Reduce phase, each worker repeatedly
selects a reduce task, which sends the intermediate data from the
corresponding column of Intermediate Buffer to the programmer-
supplied reduce function. It processes all values belonging to
the same key and generates the final result for a key. In the Merge

phase, all results generated by different reduce workers are merged
into a single output sorted by key.

2.3 Tiling Strategy in Compiler Optimization
The tiling strategy, also known as blocking, is a common tech-

nique to efficiently exploit the memory hierarchy. It partitions data
to be processed into a number of blocks, computes the partial re-
sults of each block, and merges the final results. The tiling strat-
egy is also commonly used in the compiler community to reduce
the latency of memory accesses [5] and increase the data locality.
For example, loop tiling (also known as loop blocking) is usually
used to increase the data locality, by partitioning a large loop into
smaller ones. Several variations of tiling are also used to optimize
many central algorithms in matrix computations [9], including the
fixed-size tiling, the recursive tiling, and a combination of them.

3. OPTIMIZING OPPORTUNITIES OF

MapReduce ON MULTICORE
Though Phoenix has successfully demonstrated the feasibility

of running MapReduce applications on multicore, it also comes
with some deficiencies when processing jobs with a relatively large
amount of data, which would be common for machines with abun-
dant memory and CPU cores.

This problem is not due to the implementation techniques of
Phoenix. In fact, Phoenix has been heavily optimized from three
layers: algorithm, implementation and OS interaction [4], which
results in a significant improvement over its initial version. We at-
tribute the performance issues to mainly the programming model of
MapReduce on multicore, which process all input data at one time.

First, in cluster environments, the map tasks and reduce tasks are
usually executed in different machines and data exchange among
tasks are done through networking, compared to shared memory
in multicore environments. Hence, the contentions on cache and
shared data structures, instead of networking communications, are
the major performance bottlenecks processing large MapReduce
jobs on multicore.

Second, there is a strict barrier between the Map and the Reduce
phase, which requires the MapReduce runtime to keep all the input
and intermediate data through the Map phase. This requires a large
amount of resource allocations and comes with a large memory
footprint. For relatively large input data, this creates pressure on
the memory systems and taxes the operating systems (e.g., mem-
ory management), which are with imperfect performance scalabil-
ity on large scale multicore systems [10]. Further, it also limits
the effects of some optimizations (such as the combiner) due to re-
stricted cache and memory locality. For example, the combiner in-
terface, which is the key to reduce networking traffic of MapReduce
applications in the cluster environments, was shown to make lit-
tle performance improvement along with other optimizations (e.g.,
prefetching) [4].

Third, cache and memory accesses in current multicore systems
tend to be non-uniform, which makes exploiting memory hierar-
chy even more important. Unlike in cluster environments, MapRe-
duce workers in a multicore platform can be easily controlled in a
centralized way, making it possible to control memory and cache
accesses in a fine-grained way.

Finally, many resources of a commodity multicore platform are
universally shared and accessible to MapReduce workers, which
makes global failures (e.g., failures resulting in a whole machine
crash) more pervasive. Hence, it is not suitable to simply adopt
the fault-tolerance model of clusters that mainly focuses on single
worker failures.

(8)

reduce

(10) merge

(4)

map

(6)

combine

(2)

spawn

MapReduce

Job

Dispatcher

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

It
e
rt
io
n
 W

in
d
o
w

Intermediate Buffer

I
te

ra
ti
on

 B
uf

fe
r

F
in
a
l
B
uf

fe
r

O
ut
pu

t
B
uf

fe
r

current iteration

Input Map Combine Reduce

Workers

Merge

Split 0

Split 1

Split 2

Split M

(3)

split

Output

R .

M
I .

R
R

(1) init

(5)

emit_intermediate

emit_combine

(7)

(9)

emit

EX
TE
N
SI
O
N

Figure 2: Execution Flow of Tiled-MapReduce.

4. TILED-MAPREDUCE
This section describes the extension to the MapReduce program-

ming model and shows the major changes to runtime to support
Tiled-MapReduce, as well as the execution flow of Tiled-MapReduce.

4.1 Extensions to MapReduce
Being aware of the life-cycle problem with MapReduce on mul-

ticore, we extend the general MapReduce programming model with
Tiled-MapReduce. It uses the “tiling strategy” and divides a large
MapReduce job into a number of independent small sub-jobs and
iteratively processes one sub-job at a time with efficient uses of
resources, given that the reduce interface for many data-parallel
applications can be implemented as commutative and associative.

To support iterative processing of a number of sub-jobs derived
from a large MapReduce job, Tiled-MapReduce replaces the gen-
eral Map phase with a loop of Map and Reduce phases. In each it-
eration, Tiled-MapReduce processes a sub-job and generates a par-
tial result, which can be either saved for computation reuse [8] or
provided for users to know the status of the computation [7]. Tiled-

MapReduce also extends the general Reduce phase to process the
partial results of all iterations, rather than the intermediate data.
The output generated by the Reduce phase is compatible with the
output of the general Reduce phase. To differentiate with that in the
final Reduce phase, we rename the Reduce phase within one sub-
job as the Combine phase. The lower part of Figure 2 illustrates the
processing phases in Tiled-MapReduce.

Note that though it was claimed that the combiner interface made
little performance improvements on multicore in the context of the
general MapReduce programming model with prefetching of data
in the reduce phase. Tiled-MapReduce mainly uses such an inter-
face for the purpose of shortening the life cycle of input and inter-
mediate data, which could improves the cache and memory locality
and enable further optimizations in section 5.

4.2 Fault Tolerance and Computation Reuse
Being aware of the global failures (e.g., whole machine crash) in

a multicore platform and the possible need of computation reuse,
Ostrich, Tiled-MapReduce extends the fault tolerance model with
the support of backing up the results of individual sub-jobs to save
the associated computation during a global failure or computation
reuse. Generally, each sub-job in Ostrich can backup their partial
results to persistent storage (e.g., disk, NFS) independently and in
parallel. Ostrich uses self-certified pathname [11] to bookkeep sub-
jobs that are backed up. During recovering from a global failure,
Tiled-MapReduce could load the saved results and only compute
those that are not book-kept, which saves a lot of time associated
with re-execution. The detailed implementation of fault tolerance
and computation reuse in Ostrich is hidden to user programmers,
such as I/O parallelism and naming. They are only required to im-
plement two interfaces that are pervasive in MapReduce for clusters
(such as Google’s MapReduce [2] and Hadoop [6]), serialize
and deserialize, which converts key/value pairs to and from a
character stream. In most cases, user programmers can simply use
the default serialize and deserialize functions provided
by Tiled-MapReduce framework.

4.3 Execution Flow
The top part of Figure 2 illustrates the overall execution flow of a

Tiled-MapReduce job and the implementation of Tiled-MapReduce

runtime.
A Tiled-MapReduce job is initiated by invoking the mr_dispatcher

function, which initializes and configures the Dispatcher accord-
ing to the arguments and runtime environments (e.g., available re-
sources). Then, the Dispatcher spawns N Workers and binds them
to CPU cores. The Dispatcher also iteratively splits a chunk from
input data in the Iteration Window, whose size is dynamically ad-
justed according to the runtime configuration. The chunk of data
will be further split into M pieces, which forms M map tasks.

In the Map phase, a Worker selects a map task from the Iteration

Window whenever it is idle, and invokes the programmer-provided
map function, which parses the input data and generates interme-
diate key/value pairs. The emit_intermediate function pro-

vided by the runtime will be invoked to insert a key/value pair to
Intermediate Buffer, which is organized as an M by R matrix of
buckets, where R is the number of reduce tasks.

In the Combine phase, the Workers select the reduce tasks in
turn and invokes the programmer-provided combine function to
process a column in the Intermediate Buffer. The structure of the
Iteration Buffer is an I by R matrix of buckets, where I is the total
number of iterations.

When all sub-jobs have finished, the Workers invoke the programmer-
provided reduce function to do the final reduce operation on the
data in each column of the Iteration Buffer. The reduce function
inserts the final result of a key to Final Buffer by invoking the emit
function. Finally, the results from all reduce tasks are merged and
sorted into a single Output Buffer.

5. OPTIMIZING RESOURCE USAGES
The support of iterative processing of small sub-jobs allows fine-

grained management of resources among sub-jobs. This opens
opportunities for new optimizations on resource usages in Tiled-

MapReduce. In this section, we describe three optimizations that
aim at improving the memory efficiency, data locality and task par-
allelism.

5.1 Memory Reuse
In general MapReduce programming model, the input data is

kept in memory in a MapReduce job’s whole life cycle. The in-
termediate data is also kept in memory in a whole MapReduce
phase. These create significant pressure to the memory systems.
Tiled-MapReduce mitigates the memory pressure due to intermedi-
ate data by limiting the required memory for the input and interme-
diate data to a sub-job level. However, it also requires frequent al-
locations and deallocations of memory along with the sub-job cre-
ation and destruction. To reduce such overhead, Ostrich is designed
to reuse the memory for input data and intermediate data among
sub-jobs.

5.1.1 Input Data Reuse

The input data in MapReduce is usually required to be kept in
memory along with the whole MapReduce process. For example,
in Word Count, the intermediate buffer will keep a pointer to a
string in the input data as a key, instead of copying the string to
another buffer. For a relatively large input, the input data will be
one of the major consumers of memory and there is poor cache
locality in accessing them.

Ostrich is designed to balance the benefit of a large memory foot-
print and the cost of additional memory copies. For applications
that likely have abundant duplicated keys (or values), it would be
more worthwhile to copy the keys (or values) instead of keeping
a pointer to the input data. Copying the keys (or values) together
can also improve the data locality, as the copied keys (or values)
can be put together, instead of being scattered randomly across the
input data. Hence, Ostrich allows the copy of keys (or values) at
the combine phase.

By breaking the dependency between the intermediate data and
the input data, Ostrich supports the reuse of a fix-sized memory
buffer to hold the input data for each sub-job. The memory buffer
is remapped to the corresponding portion of input data when a new
sub-job starts.

Optional Interfaces: acquire and release. To support dy-
namically acquiring and releasing input data, Ostrich provides two
optional interfaces, namely acquire and release, which will
be invoked at the beginning and end of each sub-job. An exam-
ple of the acquire and release functions for the Word Count

application is shown as below. In the example, the acquire and
release functions simply map and unmap a portion of the input
file into/from memory.

// input = data structure of a document

acquire (input, offset, len) {

input f len = len;

input fdata = mmap (0, len , PROT,

MAP_PRIVATE, input fd , offset);

}

release (input) {

munmap (input fdata , input flen);

}

These two interfaces are not provided from scratch. In fact, there
are counterparts of the acquire and release interfaces in Goo-
gle’s own implementation and Hadoop. For example, Hadoop re-
quires programmers to implement the RecordReader interface
to process a piece of input split generated from the InputSplit
interface. The acquire interface resembles the constructor
function of RecordReader interface, which is used to get data
from a piece of input. The release interface also resembles the
close function of the RecordReader interface, which closes a
piece of input. Nevertheless, the two interfaces are optional, as Os-
trich has provided multiple default implementations for input with
general data structures like the Google’s MapReduce and Hadoop,
in order to reduce the effort of programmers.

5.1.2 Intermediate Data Reuse

The use of Tiled-MapReduce provides opportunities to reuse the
Intermediate Buffer among sub-jobs. This could save the expensive
operations such as concurrent memory allocation and deallocation,
as well as the building of data structures. Instead of constructing an
Intermediate Buffer for each sub-job, Ostrich uses a global buffer
to hold the intermediate data generated in the Map phase. Ostrich
will indicate that the buffer is empty at the end of a sub-job, but
will not free the memory until all sub-jobs have finished.

It is possible that the Iteration Buffer used to store partial results
from all iterations is too large for the final Reduce phase. Hence,
Ostrich adds a new internal phase, namely Compress, to further
combine the partial results among sub-jobs. When the size of par-
tial results exceeds a threshold (e.g., 32), the Compress phase will
invoke the combine function to combine the partial results among
sub-jobs. The results generated in the Compress phase are also
stored in the Iteration Buffer. The previous partial results will be
simply discarded and the memory space is reused for the subse-
quent sub-jobs. It should be noted that the Compress phase is an
internal phase of Ostrich and thus is transparent to programmers.

5.2 Exploiting Locality

5.2.1 Data Locality

The memory access pattern of MapReduce inherently has poor
temporal and spatial locality. With regards to temporal locality, a
MapReduce application usually sequentially touches the whole in-
put data only once in the Map phase to generate the intermediate
data. It also randomly touches discrete parts of intermediate data
multiple times in the Map and Reduce phases to group key/value
pairs and generates the final results. For spatial locality, though the
input data is sequentially accessed in the Map phase, a large num-
ber of key-compare operations results in poor spatial locality. Even
worse, each reduce task accesses the key/value pairs generated by
different map workers in different time, causing poor spatial local-
ity in the Reduce phase and even severe thrashing when the physical
memory is exhausted.

Main
Memory

M
u
ltic

o
re
 C
h
ip

W
o
rk
e
r

W
o
rk
e
r

W
o
rk
e
r

R
e
p
e
a
te
r

M
u
ltic

o
re
 C
h
ip

W
o
rk
e
r

W
o
rk
e
r

W
o
rk
e
r

W
o
rk
e
r

Dispatcher

MapRed Job

R
e
p
e
a
te
r

Main
Memory

Job
buffer

Output Buffer

Core

Private$

Shared $

Iteration
Buffer

Iteration
Buffer

Intermediate
buffer

W
o
rk
e
r

Intermediate
buffer

Final Buffer

Figure 3: The logical view of the multicore oriented scheduling

model used by Tiled-MapReduce.

Tiled-MapReduce provides opportunities to improve data local-
ity for data-parallel applications. As each time only a small sub-job
is handled, the working set of the sub-job could be relatively small.
A small working set is beneficial to exploit the cache hierarchy in a
multicore platform. Specifically, Ostrich estimates the working set
of a sub-job by first running a sample sub-job to collect its memory
requirements. Based on the collected data, Ostrich automatically
estimates the size of each sub-job according to the cache hierar-
chy parameters. Currently, Ostrich tries to make the working set of
each sub-job fit into the last-level cache.

5.2.2 NUCA/NUMA-Aware Scheduler

Currently commodity multicore hardware usually organizes caches
in a non-uniform cache access (NUCA) way. The memory also
tends to be organized in a non-uniform way (i.e., NUMA) as the
number of cores increases. Thus, the latency of accessing caches or
memory on remote chips is much slower than that on local cache [10].
Further, the cost of synchronization among threads on different
cores also increases with the growing of cores. In a MapReduce
runtime, even if the working set of each sub-job fits into the local
cache, the cross-chip cache accesses still cannot be avoided in the
Combine phase. Thus, current MapReduce schedulers (e.g., Phoe-
nix) have problems in scaling well on multicore systems, mainly
due to the fact that they use all cores belonging to different chips to
serve a single MapReduce job.

According to our measurement on Phoenix, MapReduce scales

better with the increase of the input size than on the number of

cores. For example, the total execution time (66s) of the Word
Count application using four cores to process 1 Gbyte input four
times and merging the final results is notably less than the time
(80s) of using 16 cores to process 4 Gbyte input once. Hence, we
propose a NUCA/NUMA-aware scheduler that runs each iteration
on a single chip and allocates memory from local memory pool,
which could significantly reduce the remote cache and memory ac-
cess in the Combine phase. NUCA/NUMA-aware scheduler also
increases the utilization of caches by eliminating the duplication of
input data and intermediate data among the many core caches.

Figure 3 provides the overview of the NUCA/NUMA-aware sched-
uler. The main thread as the Dispatcher spawns a Repeater thread
for each chip (a scheduling group), which further spawns Worker

it
e
r

r
-N
-1

RED-N

MAP-1

MAP-2

MAP-3

RED-3

MAP-N

T
im

e

MAP-1

RED-2

MAP-3

RED-3

MAP-N

RED-N

C C C C

RED-2

it
e
r
-1

it
e
r
-2

it
e
r
-N

it
e
r
-1

it
e
r
-2

C C C C

idle

map task

reduce task

Barriers

RED-1

Speedup

Cores
PIPELINE

RED-1

MAP-2

Figure 4: The task pipeline optimization of Tiled-MapReduce:

the left figure shows the original execution flow, while the right

figure depicts the execution flow after the task pipeline optimiza-

tion.

threads on each cores within the chip. Each Repeater has a private
Job Buffer to receive sub-jobs from Dispatcher, a private Interme-

diate Buffer used by workers to store the output of the Map phase
and a private Iteration Buffer to store the partial results generated
by workers in the Combine phase.

Using a NUCA/NUMA-aware scheduler might cause some im-
balance among Repeaters in different scheduling groups, due to un-
balanced workloads assignment to these groups. To balance work-
load among them, Ostrich implements the work-stealing mecha-
nism proposed by Cilk [12], to allow a Repeater to actively steal
jobs from other scheduling group when it has done all the local
jobs.

5.3 Task Parallelism and Thread Reuse

5.3.1 Software Pipeline

In general MapReduce programming model, there is a strict bar-
rier between the Map and Reduce phases: the workers in one phase
can only be started until all workers in the previous phase has been
finished. Hence, the execution time of a job is determined by the
slowest worker in each phase. The imbalance of tasks can be solved
by dynamic scheduling in the Map phase. However, in the Reduce

phase, as all values for the same key must be in one reduce task, it
is not always feasible to generate a large number reduce tasks for
dynamic scheduling. For example, applications with only a small
number of keys can only generate a small number of reduce tasks.
Moreover, the workload of each key could be imbalanced as the
number of key/value pairs with the same key can vary significantly.

Tiled-MapReduce uses software pipeline to create parallelism
among adjacent sub-jobs, since there is no data dependency be-
tween one sub-job’s Reduce phase and its successor’s Map phase.
Figure 4 illustrates the Pipeline optimization in Tiled-MapReduce.
The y-axis is the time and the x-axis is a list of cores. The left
of the figure is the execution flow of the normal Tiled-MapReduce

runtime, which has strict barriers between each phase and can have
many idle states due to the imbalance of tasks. The right of figure
is the execution flow with Pipeline optimization, which overlaps

the Reduce phase of the current sub-job and the Map phase of its
successor.

As the reuse of Intermediate Buffer among sub-jobs also cre-
ates resource dependency between adjacent sub-jobs, Ostrich uses
a dual-buffer to eliminate the dependency. This will increase the
memory consumption, but can shorten the total execution time.
Users can avoid the use of a dual-buffer by disabling the software
pipeline optimization.

5.3.2 Thread Pool

The partition of a large job into a number of sub-jobs increases
the number of thread creations and destructions. To avoid such
overhead, Ostrich uses a worker thread pool to serve tasks in all
phases within a sub-job. The worker thread in the pool is also
reused among sub-job boundaries. The pool is initialized at the
beginning of a MapReduce job and serves all tasks in all phases,
including the final Reduce and Merge phase.

6. EVALUATION
This section presents the experimental results for Ostrich on an

Intel multicore machine. We mainly compare the performance of
Ostrich with Phoenix, currently the best available MapReduce im-
plementation on shared memory systems. We also compare Ostrich
with Hadoop, as Hadoop can also be executed in a single machine
with multicore.

All experiments were conducted on an Intel 16-Core machine
with 4 Xeon 1.6GHz Quad-cores chips. Each chip has two 8-way
2 Mbyte L2 caches and each L2 cache is shared by two cores in the
same die. The size of the physical memory is 32 Gbyte. We use
Debian Linux with kernel version 2.6.24.3, which is installed on a
137G SCSI hard disk with an ext3 file system. All input data are
stored in a separated partition in a 300G SCSI disk. The memory
allocator for both Ostrich and Phoenix is the Streamflow alloca-
tor [13], which was shown to have good scalability on multicore
platforms. We run the experiment five times and report the average
result.

6.1 Tested Applications
As the performance benefit of Tiled-MapReduce is sensitive to

characteristics of key/value pairs of MapReduce applications, we
chose four different MapReduce applications representing four ma-
jor types of MapReduce applications regarding the attributes of
key/value pairs. Word Count has a large number of keys and each
key has many duplicated key/value pairs, for which Tiled-MapReduce

is expected to have significant performance speedup. Distributed
Sort also has a large number of keys, but there is no duplicate
among key/value pairs. In such a case, Tiled-MapReduce is ex-
pected to show still notable performance improvements. Log Statis-
tics has a large number of key/value pairs, but with only a few
numbers of keys. Inverted Index has only a few key/value pairs
with no duplicated pairs. For these two cases, Tiled-MapReduce is
expected to have relatively less performance improvement because
there is very few numbers of keys or key/value pairs.

The following are brief descriptions of four benchmarks. If not
mentioned, the combine function is the same to reduce func-
tion.

Word Count (WC) It counts the number of occurrences of each
word in a document. The key is the word and the value is the
number of occurrences. The map function emits a 〈word, 1〉 pair
for each word in document and the reduce function sums the val-
ues for each word and emits a 〈word, total count〉 pair.

Distributed Sort (DS) It models the TeraSort benchmark [14] and
uses the internal sorting logic of a MapReduce runtime to sort a set

of records. The key is the key of the record and the value is the
record itself. The map function emits a 〈key, record〉 pair for each
record and the reduce function leaves all pairs unchanged. The
sorting of records happens in both the reduce and the merge phase,
which perform the local and global sorting according to keys, re-
spectively.

Log Statistics (LS) It calculates the cumulative online time for
each user from a log file. The key is the user ID and the value
is the time of login or logout. The map function parses the log file
and emits 〈user ID, ±time〉 pairs. The reduce function adds
up the time for each user and emits a 〈user ID, total time〉 pair.

Inverted Index (II) It generates a position list for the word a user
specified in a document. The key is the word and the value

is its position. The map function scans the document and emits
〈word, position〉 pairs. The combine function emits all pairs
unchanged. The reduce function sorts all positions of the word
and emits a 〈word, list(position)〉 pair.

Modification WC DS LS II

Input Data Reuse 11 + 3 Default Default 11 + 3

Fault Tolerance Default Default Default Default

Table 1: The required code modification for Tiled-MapReduce,

in addition to the code in Phoenix. “Default” indicates that pro-

grammers simply use the default implementation provided by Os-

trich.

Table 1 lists the code modifications to port a MapReduce appli-
cation in Phoenix to Ostrich. To support input data reuse, program-
mers need to provide 11 and 3 lines of code for the acquire and
release functions for WC, which maps/unmaps a portion of the in-
put file into/from memory accordingly. Such code can be written by
simply reusing the code that processes input data in Phoenix. For
II, the acquire and release function is identical to WC, as the input
type is the same with WC. For all the four applications, program-
mers can simply use the default serialize and deserialize
functions provided by the runtime to support fault tolerance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 1 2 4 1 2 4 1 2 4

S
p

e
e

d
u

p

WC DS LS II

PHO

OST

Figure 5: Overall speed over Phoenix using 16 cores with 1, 2

and 4 Gbyte input

6.2 Overall Performance
Figure 5 shows the speedup of Ostrich compared to Phoenix.

The input size for each benchmark is 1, 2 and 4 Gbyte. As shown
in the figure, the largest speedup comes from Word Count, in which
Ostrich outperforms Phoenix by 2.79X, 3X and 3.28X for the input
size of 1, 2 and 4 Gbyte accordingly. While for Distributed Sort,

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16

S
c
a
la

b
ili

ty

Number of Cores

Word Count

OST

PHO

 0

 10

 20

 30

 40

 50

 1 2 4 8 16
Number of Cores

Distributed Sort

OST

PHO

 0

 2

 4

 6

 8

 10

 1 2 4 8 16
Number of Cores

Log Statictics

OST

PHO

 0

 1

 2

 3

 4

 5

 1 2 4 8 16
Number of Cores

Inverted Index

OST

PHO

Figure 6: A comparison of the scalability of Ostrich with that of Phoenix.

the speedup is 1.93X, 2.05X and 2.21X accordingly. The speedup
is relatively small for Log Statistics (1.26X, 1.31X and 1.35X) and
Inverted Index (1.23X, 1.24X and 1.25X). This is because the first
two applications have relatively larger number of intermediate data
and keys, which expose more optimization space compared to the
later two.

Figure 6 compares the scalability of Ostrich with that of Phoe-
nix. As shown in the figure, Ostrich has much better scalability
than Phoenix for the four tested applications. With an increasing
number of cores, Ostrich enjoys much larger speedup compared to
the performance data on a single core. This confirms the effec-
tiveness of Tiled-MapReduce and the associated optimizations. It
should be noted that the scalability ratio of DS exceeds the number
of cores. This is due to the fact that DS spends most of the execu-
tion time in the Merge phase, whose performance is much sensitive
to the cache locality. As the number of cores increases, the size of
total caches increases and the working set for each core decreases,
which lead to less cache misses and thus a super-linear speedup.
Further, the performance of II actually degrades when the number
of cores increases from 8 to 16, due to the poor scalability of the
Reduce phase and the increased time spent on such a phase.

In the following sections, we will categorize the source of the
speedups and improved scalability.

 0

 1

 2

 3

 4

 5

 6

P
H
O
-
1

O
S
T
-
1

P
H
O
-
2

O
S
T
-
2

P
H
O
-
4

O
S
T
-
4

P
H
O
-
1

O
S
T
-
1

P
H
O
-
2

O
S
T
-
2

P
H
O
-
4

O
S
T
-
4

P
H
O
-
1

O
S
T
-
1

P
H
O
-
2

O
S
T
-
2

P
H
O
-
4

O
S
T
-
4

P
H
O
-
1

O
S
T
-
1

P
H
O
-
2

O
S
T
-
2

P
H
O
-
4

O
S
T
-
4

M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n
 (

G
B

)

WC DS LS II

Input

Intermediate

Figure 7: The benefits of input and intermediate data reuse: a

comparison of the memory consumption for Ostrich to Phoenix

with 1, 2 and 4 Gbyte input. OST-N and PHO-N represent the

performance data for Ostrich and Phoenix with N Gbyte input.

6.3 The Benefit of Memory Reuse
We first investigate the benefit of the memory reuse optimiza-

tion. In Figure 7, we compare the memory consumption of the
four benchmarks on Ostrich versus Phoenix with the input size of

1, 2 and 4 Gbyte. The main memory consumption in Phoenix is
from input data which are kept in memory in a MapReduce job’s
whole life cycle. Due to the input reuse optimization, Ostrich sig-
nificantly reduces the memory consumption for the input data. For
the intermediate data, as Phoenix has already applied the combine
optimization to reduce the memory space for intermediate data, Os-
trich only has a small performance improvement for WC. For DS
and II, as the key/value pairs cannot be locally combined, Ostrich
shows no saving in intermediate data but additionally adds a small
space overhead due to the copied keys and the spaces for Iteration
Buffer. For LS, as the intermediate data is relatively small, Ostrich
shows no space saving for intermediate data. Anyway, copying
keys and grouping data into a small centralized intermediate buffer
do increase the cache locality.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

S
p
e
e
d
u
p

WC DS LS II

Without NUCA/NUMA-Aware Scheduler

With NUCA/NUMA-Aware Scheduler

Figure 8: The effect of NUCA/NUMA-Aware Scheduler on four

benchmarks for 4 to 16 cores with 1 Gbyte input.

6.4 The Benefits of Exploiting Cache Locality

6.4.1 Improvement from NUCA/NUMA-Aware
Scheduler

We compared the performance of Ostrich in two configurations.
The configuration without NUCA/NUMA-aware scheduler parti-
tions all threads into a single group and makes them sequentially
dispose sub-jobs together, which is also used by Phoenix. By con-
trast, the NUCA/NUMA-aware scheduler partitions cores on the
same chip into the same group and dispatch sub-jobs in parallel.

Figure 8 shows the effect of NUCA/NUMA-aware scheduler on
four benchmarks with 4, 8, 12 and 16 cores. The improvement of
NUCA/NUMA-aware scheduler is from the elimination of cross-
chip cache access in Combine phase. WC, GS and LS benchmarks
spend relatively more time in Combine phase to reduce the inter-
mediate data, resulting in more performance improvement. Hence,
the first three applications (i.e., WC, DS, and LS) enjoy around

20% performance speedup (19%, 22% and 19% accordingly) for
16 cores. Inverted Index has relatively smaller speedup (8%) be-
cause there are relative few operations in Combine phase, so the
benefit from scheduler is limited. As Ostrich treats all cores within
a chip as a group, the behavior of the new scheduler is the same to
original scheduler when the number of cores is less than or equal to
4 (the number of cores in a chip). Hence, there is little performance
improvement.

For all the four applications, the performance improvement in-
creases with the number of cores. Thus, it is reasonable to foresee
that Ostrich could have even more improvement for future multi-
core with abundant cores, especially for the tiled architecture [15].

 0

 5

 10

 15

 20

 25

 30

 35

 64 192 320 448 576 704 832 960

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Sub-jobs per Gbyte

1GB Input

2GB Input

4GB Input

320 sub-jobs

640 sub-jobs

1280 sub-jobs

Figure 9: The impact of iteration size on execution time using 16

cores with 1, 2 and 4 Gbyte input.

6.4.2 Relevance of Iteration Size

Tiled-MapReduce provides good opportunities to exploit the mem-
ory hierarchy, by limiting the footprint of a sub-job within a certain
range. Figure 9 shows the execution time of the Word Count appli-
cation with the number of sub-jobs to process each 1 Gbyte input
data using 16 cores. The results shows that WC benchmark has the
best performance when the each iteration size is close to 3.2 Mbyte
(320 sub-jobs per Gbyte), for 1, 2 and 4 Gbyte input data. This is
because the size of the overall last level caches (i.e., L2) in a chip
is 4 Mbyte. The rest space of the cache is used to store other data
such as intermediate buffer. Thus, Tiled-MapReduce tends to enjoy
the best performance when the footprint of a sub-job just fit in the
last level cache, as creating more sub-jobs would suffer more from
the associated overhead with merging these sub-jobs. One can use
only a small sample input to estimate the size of each sub-job to get
an optimal job partition.

6.4.3 Improved Cache Locality

Figure 10 presents the L2 cache miss rate of four benchmarks
on Ostrich versus Phoenix using 16 cores with 1, 2 and 4 Gbyte
input. The L2 cache miss rate is collected using OProfile [16],
which indicates the total number of L2 cache misses divided by
the total number of retired instructions. The miss rate of WC, DS
and LS benchmark running on Ostrich is from 3.1X to 7.1X fewer
compared to that on Phoenix. As the working set of each sub-
job matches the total L2 cache size of a chip (i.e., 4 Mbyte), thus
it ensures that the data fetched in Map phase could be reused in
the Combine phase within private cache of a chip and unlikely be
accessed after being flushed to memory. The cache miss rate of II
benchmark for Ostrich is close to that of Phoenix, as there are few
optimizing spaces in II due to the fact there is very few intermediate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4 1 2 4 1 2 4 1 2 4

L
2
 C

a
c
h
e
 M

is
s
 R

a
te

WC DS LS II

PHO

OST

Figure 10: A comparison of the L2 miss rate on Ostrich to Phoe-

nix using 16 cores for four benchmarks with 1, 2 and 4 Gbyte

input.

 0

 2

 4

 6

 8

 10

wc wc/p ds ds/p ls ls/p ii ii/p

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Map

Combine /Active

Combine /Idle

Reduce

Merge

Figure 11: The benefit of Pipeline with a breakdown of time in all

phases using 16 cores with 1 Gbyte input. The label ’/p’ means

with Pipeline.

data and the Combine phase could not decrease the workload in
Reduce phase.

6.5 The Benefit of Pipeline
As the major benefit of Pipeline optimization is from the elimi-

nation of wait time in the Combine phase, we further split the time
spent on the Combine phase into active time and idle time. The
active time is the average of total execution time of all workers
during Combine phase, and the idle time is the difference between
the active time and the time spent on Combine phase.

Figure 11 shows the time breakdown of benchmarks with and
without Pipeline optimization using 16 cores with 1 Gbyte input.
The idle time dominates the Combine phase of II (83%), because
it only indexes one word. Thus only one worker is active in the
Combine phase, which results in a notable imbalance. For LS, the
number of login records of each User ID is remarkably different,
so the workload of each worker in Combine phase is imbalanced.
Hence, Pipeline brings a relative large improvement, reducing 21%
of time spent on the Combine phase. For DS, the default partition
function cannot thoroughly balance the workload, thus Pipeline still
have some benefit, close to 15%. For WC, which has a large num-
ber of keys and duplicated pairs for dynamic load balancing, the
improvement from Pipeline is limited (5%).

0%

1%

2%

3%

4%

5%

6%

 32 64 96 128 160 192 224 256 288 320

O
v
e
rh

e
a
d

Number of Backup Operations

WC with 1GB input

Figure 12: The performance overhead of backup operations for

WC benchmark using 16 cores with 1 Gbyte input. Each backup

operation writes the unsaved partial results of all sub-jobs.

6.6 Fault Tolerance
Figure 12 shows the relation between performance overhead and

the number of backup operations, for WC benchmark using 16
cores with 1 Gbyte input. The performance overhead of the fault
tolerance mechanism depends on the frequency of backup opera-
tions. In the tested configuration using 1 Gbyte input, there are
320 sub-jobs in the optimal configuration. Performing backup op-
erations on every 10 sub-jobs incurs less than 1% performance
overhead, while doing backup operations after each sub-job incurs
about 5.1% overhead. Thus, there is a tradeoff between the cost of
backup and the benefit from the efficiency of recovery from fault.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

E
x
e
c
u
ti
o
n
 T

im
e
(S

e
c
)

Number of Worker Processes

PHO

OST

Figure 13: A comparison on the throughput of MapReduce

servers based on Ostrich and Phoenix with the number of worker

processes from 1 to 16. The workload has 100 mixed MapReduce

jobs, which are randomly generated from our four benchmarks

with about 100 Mbytes input.

6.7 Ostrich as MapReduce Server
To demonstrate the effectiveness of using Ostrich when process-

ing multiple MapReduce jobs in batch mode, we built a MapRe-
duce server using both Ostrich and Phoenix. The server forks mul-
tiple worker processes to process MapReduce requests in paral-
lel. Each worker process uses a part number of cores to serve
requests. Figure 13 shows the performance comparison of Map-
Reduce servers based on Ostrich and Phoenix, with the number of
worker processes from 1 to 16. For the server with 16 worker pro-
cesses, each process exclusively uses one core and continuously
serves the MapReduce requests. As shown in the figure, the Map-

 0

 25

 50

 75

 100

 125

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

1-core

16-core

standalone

(1/1/1)

(16/16/1)

(16/1/16)

Ostrich Hadoop

Figure 14: The performance comparison between Ostrich and

Hadoop for WC benchmark with 100 Mbytes input. The labels

upon histogram are the configuration, and the symbol of (C/J/T)

corresponds with #cores, #jvm and #threads/jvm.

Reduce server based on Ostrich outperforms that based on Phoenix
under each configuration, and the speedup increases from 1.44X
to 1.90X with the decrease of worker processes, due to the bet-
ter cache locality and performance scalability in Ostrich. The re-
sults also show that running multiple MapReduce jobs in parallel
is a much better way to maximize the overall throughput, since the
scalability of MapReduce is not linear in many cases, especially
when the number of cores exceeds 8 in our evaluation. However,
contention on shared caches might result in performance degrada-
tion, which is shown by our results when the number of worker
processes exceeds 8.

6.8 Performance Comparison with Hadoop
As Hadoop can also run on a single machine, and is built with

support for task parallelism in scheduler, readers might be inter-
ested in how the performance of Hadoop compares to that of Os-
trich. We thus compared the performance of WC benchmark with
100 Mbytes input on Ostrich and Hadoop (version 0.19.1). We
did not choose a larger input size for comparison because Hadoop
scales poorly with the input size and consumes around half an hour
in our machine to process 1 Gbyte input.

As shown from the Figure 14, Ostrich is orders of magnitude
faster (more than 50X) than Hadoop on Intel 16-Core machine.
Note that the stand-alone mode of Hadoop (used for debugging)
avoids the overhead of HDFS and communication with the remote
JobTracker, but the current version can only run on 1 core. The
reason for the deficiency is that the Hadoop needs to create mul-
tiple objects (e.g., String, Text(Line, Token)) of a single piece of
input, which causes redundant uses of memory and processing of
the objects (e.g., ReadLine, Tokenize, Serialize and Deserialize).
Besides, the exchange of intermediate data between Map and Re-
duce phase uses disk files. Finally, using a JVM makes it hard for
the runtime to exploit memory hierarchy of multicore. Neverthe-
less, some techniques like group-based scheduling in Ostrich could
improve the performance of Hadoop in multi-threaded mode (i.e.,
(16/1/16)), which uses only a single buffer and requires a big lock
to protect the buffer.

6.9 Discussions
Our evaluation results confirm that Ostrich has good performance

due to the described optimizations. However, to get an optimal re-
sult, there are still some design spaces to exploit, such as the size
of the Iteration Window and whether copying keys/values or
not. Hence, an auto-tuning scheme would be useful. For example,
Ostrich could first process a small portion of input and monitor the

cache miss rate or operating system activities (swapping status) to
make an optimal decision, which is a part of our future work.

7. RELATED WORK
Our work is related to the research in programming models for

data-parallel applications, nested data parallelism and multicore re-
lated research. We briefly discuss the most related work in turn.

7.1 Programming Model and Runtime Related
to MapReduce

MapReduce [2] is a popular programming model developed in
Google. An open-source implementation, namely Hadoop [6] is
provided by Apache, which is implemented in Java and uses HDFS
as the underlying file system. Zaharia et al. [17] uses a heterogeneity-
aware scheduler to improve Hadoop’s performance in heteroge-
neous environments, such as virtual clusters. The currently imple-
mentation of Hadoop focuses on cluster environments rather than
on a single machine. It does not exploit the data locality at the
granularity of a single machine, neither does it provide a multicore-
oriented scheduler.

There is also some work aiming at extending the programming
model of MapReduce for other purposes. For example, the database
community extends the MapReduce programming model by adding
one additional phase, namely Merge, to join two tables [18]. Online
MapReduce [7] supports the online aggregation and allows users to
get the partial results of an online job. Such a MapReduce model
has a good match with the incremental computing nature of Ostrich.

Ranger et al. [3] provide a MapReduce implementation on mul-
ticore platform. Their implementation, namely Phoenix, success-
fully demonstrated that applications written using MapReduce are
comparable in performance to their pthread counterparts. Com-
pared to MapReduce, Tiled-MapReduce partitions a big MapRe-
duce job into a number of independent sub-jobs, which improves
resource efficiency and data locality, thus significantly improves the
performance. Yoo et al. [4] heavily optimize Phoenix from three
layers: algorithm, implementation and OS interaction. Recently,
Mao et al. [19] also builds a MapReduce runtime for multicore that
many algorithm and data-structure level optimizations over Phoe-
nix [3]. In contrast, Ostrich optimizes MapReduce mainly at the
programming model level by limiting the data to be processed in
each MapReduce job, which significantly reduces the footprint and
enables other locality-aware optimizations. Hence, Ostrich is or-
thogonal to these optimizations and can further improve the perfor-
mance of these systems.

The popularity of MapReduce is also embodied in running Map-
Reduce on other heterogeneous environments, such as on GPUs [20]
and Cell [21]. To ease the programming of MapReduce applica-
tions on heterogeneous platforms such as GPUs and CPUs, Hong et
al. [22] recently developed a system called MapCG, which provides
source-code level compatibility between these two platforms. Cou-
pled with a lightweight memory allocator and hashtable on CPUs,
they showed that MapCG has considerable performance advantage
over Phoenix and Mars.

Merge [23] is a programming model that targets heterogeneous
multicore platform. It uses library-based model which is similar to
MapReduce to hide the underlying machine heterogeneity. It also
allows automatic mapping of the computation tasks into available
resources.

Dryad [24] is a program model for data-parallel applications
from Microsoft. Dryad abstracts tasks as nodes in the resource
graph and relies on the runtime to map the nodes to the graph.
DryadLINQ [25] integrates Dryad with high-level language (i.e.,
.NET) and allows users to program using SQL like programming

language. DryadInc [8] supports the incremental computing model
and the reuse of existing computation results. Tiled-MapReduce

supports the save of the partial results of a sub-job, which also en-
ables the continuous computation and computation reuse.

Romp [26] is a toolkit that translates GNU R [27] programming
to OpenMP program. It was also claimed to support the translation
of the MapReduce program to the OpenMP counterpart.

7.2 Nested Data Parallelism
Many data-parallel languages and their implementations, e.g.,

NESL [28], are designed to support nest data parallelism, which
is critical for the performance of nested parallel algorithm. Mean-
while, the nested data processing has been explored by the database
community for several decades, such as Volcano [29] dataflow query
processing systems. We observed that the MapReduce program-
ming model also could be paralleled in two dimensions and it could
be efficiently implemented on multicore architecture. Our work is
on the programming model level and introduces several additional
optimizations to reduce the pressure on the system resources, in-
cluding main memory, caches and processors.

7.3 Multicore Research
A multicore operating system, named Corey [10], proposes three

new abstractions (address ranges, shares and kernel cores), to scale
a MapReduce application (i.e., Word Revert Index) running on Corey.
The work in Corey is orthogonal to Ostrich. The abstractions in
Corey, if available in commodity OSes, could further improve the
efficiency of Ostrich due to the reduced time spent in the OS kernel.

Thread clustering [30] schedules threads with similar cache affin-
ity to close cores, thus improves the cache locality. Tiled-MapReduce

also aims to improve cache locality, but tries to limit the working
set and fits data in a sub-job in cache.

8. CONCLUSION AND FUTURE WORK
Multicore is prevalent and it is important to harness the power

of the likely abundant CPU cores. MapReduce is a promising pro-
gramming model for multicore platforms, to fully utilize the power
of such processing resources.

This paper argued that the environmental differences between
clusters and multicore open new design spaces and optimization
opportunities to improve performance of MapReduce on multicore.
Based on the observation, this paper proposed Tiled-MapReduce,
that uses the “tiling strategy” to partition a large MapReduce job
into a number of small sub-jobs and handles the sub-jobs itera-
tively. This paper also explored several optimizations otherwise im-
possible for MapReduce, to improve the memory, cache and CPU
efficiency. Experimental results showed that our implementation,
namely Ostrich, outperforms Phoenix by up to 3.3X and saves up
to 85% memory. Our profiling results confirmed that the improve-
ment comes from the reduced memory footprint, better data locality
and task parallelism.

In our future work, we plan to explore the integration of Ostrich
with the cluster version of MapReduce (e.g., Hadoop) on multicore
based clusters, to exploit multiple levels (e.g., both multicore and
cluster level) of data locality and parallelism. We will also investi-
gate the potential use of the tiling strategy in the cluster version of
MapReduce.

9. ACKNOWLEDGMENT
We thank the anonymous reviewers for their insightful comments.

This work was funded by China national 973 program under grant
numbered 2005CB321602, a research grant from Intel numbered

MOE-INTEL-09-04 and Shanghai Leading Academic Discipline
Project (Project Number: B114).

10. REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,”
in Proceedings of the 44th annual Design Automation

Conference (DAC), 2007, pp. 746–749.
[2] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[3] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and
multiprocessor systems,” in Proceedings of the 13th IEEE

International Symposium on High-Performance Computer

Architecture (HPCA), 2007, pp. 13–24.
[4] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth:

Scalable MapReduce on a Large-Scale Shared-Memory
System,” in Proceedings of 2009 IEEE International

Symposium on Workload Characterization (IISWC), 2009,
pp. 198–207.

[5] S. Coleman and K. McKinley, “Tile size selection using
cache organization and data layout,” in Proceedings of the

1995 ACM SIGPLAN Conference on Program Language

Design and Implementation (PLDI), 1995, pp. 279–290.
[6] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley,

“Hadoop: a framework for running applications on large
clusters built of commodity hardware,” Wiki at http://lucene.

apache. org/hadoop, 2005.
[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy, and R. Sears, “MapReduce Online,” in
Proceedings of the 7th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2010.
[8] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing

work in large-scale computations,” in Workshop on Hot

Topics in Cloud Computing (HotCloud), 2009.
[9] G. Golub and C. Van Loan, Matrix computations. Johns

Hopkins University Press, 1996.
[10] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,

R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: An operating system for many cores,”
in Proceedings of the 8th USENIX Symposium on Operating

System Design and Implementation (OSDI), 2008, pp. 43–57.
[11] D. M. Eres, M. Kaminsky, M. F. Kaashoek, and E. Witchel,

“Separating key management from file system security,” in
Proceedings of the 17th ACM Symposium on Operating

System Principles (SOSP), 1999, pp. 124–139.
[12] M. Frigo, C. E. Leiserson, and K. H. Randall, “The

implementation of the cilk-5 multithreaded language,” in
Proceedings of the 1998 ACM SIGPLAN Conference on

Program Language Design and Implementation (PLDI),
1998, pp. 212–223.

[13] S. Schneider, C. Antonopoulos, and D. Nikolopoulos,
“Scalable locality-conscious multithreaded memory
allocation,” in Proceedings of the 5th International

Symposium on Memory Management (ISMM), 2006, pp.
84–94.

[14] J. Gray, http://www.hpl.hp.com/hosted/sortbenchmark/.
[15] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, S. Devabhaktuni, R. Barua et al., “Baring
It All to Software: The Raw Machine,” IEEE Computer,
vol. 30, no. 9, pp. 86–93, 1997.

[16] J. Levon, OProfile Manual,
http://oprofile.sourceforge.net/doc/, Victoria University of
Manchester.

[17] M. Zaharia, A. Konwinski, A. Joseph, U. Berkeley, R. Katz,
and I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” in Proceedings of the 8th

USENIX Symposium on Operating System Design and

Implementation (OSDI), 2008, pp. 86–93.
[18] H. Yang, A. Dasdan, R. Hsiao, and D. Parker,

“Map-reduce-merge: simplified relational data processing on
large clusters,” in Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data

(SIGMOD), 2007, pp. 1029–1040.
[19] Y. Mao, R. Morris, and F. Kaashoek, “Optimizing

MapReduce for Multicore Architectures,” Computer Science
and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Tech. Rep.
MIT-CSAIL-TR-2010-020, 2010.

[20] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang,
“Mars: a MapReduce framework on graphics processors,” in
Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2008, pp.
260–269.

[21] M. de Kruijf and K. Sankaralingam, “MapReduce for the
Cell BE Architecture,” Department of Computer Sciences,
The University of Wisconsin-Madison, Tech. Rep. TR1625,
2007.

[22] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin,
“MapCG: Writing Parallel Program Portable between CPU
and GPU,” in Proceedings of the 19th International

Conference on Parallel Architectures and Compilation

Techniques (PACT), 2010.
[23] M. Linderman, J. Collins, H. Wang, and T. Meng, “Merge: a

programming model for heterogeneous multi-core systems,”
in Proceedings of the 13th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2008, pp. 287–296.
[24] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: distributed data-parallel programs from sequential
building blocks,” in Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer

Systems (EuroSys), 2007, pp. 59–72.
[25] Y. Yu, M. Isard, D. Fetterly, M. Budiu, ÃŽlfar Erlingsson,

P. K. Gunda, and J. Currey, “DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language,” in Proceedings of the 8th USENIX

Symposium on Operating System Design and Implementation

(OSDI), 2008, pp. 1–14.
[26] F. Jamitzky, “Romp: OpenMP binding for GNU R,”

http://code.google.com/p/romp/, 2009.
[27] D. B. et al., “The R project for statistical computing,”

http://www.r-project.org/, 2010.
[28] G. E. Blelloch, “Programming parallel algorithms,”

Communications of the ACM, vol. 39, no. 3, pp. 85–97, 1996.
[29] G. Graefe, “Volcano, an extensible and parallel query

evaluation system,” IEEE Transactions on Knowledge and

Data Engineering, vol. 6, no. 1, pp. 120–135, 1994.
[30] D. Tam, R. Azimi, and M. Stumm, “Thread clustering:

sharing-aware scheduling on smp-cmp-smt multiprocessors,”
in Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems (EuroSys), 2007, pp.
47–58.

