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Abstract
Intel Software Guard Extensions (SGX) enables user-level
code to create private memory regions called enclaves, whose
code and data are protected by the CPU from software and
hardware attacks outside the enclaves. Recent work intro-
duces library operating systems (LibOSes) to SGX so that
legacy applications can run inside enclaves with few or even
no modifications. As virtually any non-trivial application
demands multiple processes, it is essential for LibOSes to
support multitasking. However, none of the existing SGX
LibOSes support multitasking both securely and efficiently.

This paper presents Occlum, a system that enables secure
and efficient multitasking on SGX. We implement the LibOS
processes as SFI-Isolated Processes (SIPs). SFI is a software in-
strumentation technique for sandboxing untrusted modules
(called domains). We design a novel SFI scheme namedMPX-
based, Multi-Domain SFI (MMDSFI) and leverage MMDSFI to
enforce the isolation of SIPs. We also design an independent
verifier to ensure the security guarantees of MMDSFI. With
SIPs safely sharing the single address space of an enclave,
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the LibOS can implement multitasking efficiently. The Oc-
clum LibOS outperforms the state-of-the-art SGX LibOS on
multitasking-heavy workloads by up to 6, 600× on micro-
benchmarks and up to 500× on application benchmarks.
CCS Concepts. • Security and privacy → Trusted com-
puting; • Software and its engineering→Multiprocess-
ing / multiprogramming / multitasking.
Keywords. Intel SGX, library OS, multitasking, Software
Fault Isolation, Intel MPX
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1 Introduction
Intel Software Guard Extensions (SGX) [39] is a promising
trusted execution environment (TEE) technology. It enables
user-level code to create private memory regions called en-
claves, whose code and data are protected by the CPU from
software attacks (e.g., a malicious OS) and hardware attacks
(e.g., memory bus snooping) outside the enclaves. SGX pro-
vides a practical solution to the long-standing problem of
secure computation on untrusted platforms such as public
clouds. SGX developers who use Intel SGX SDK [38] are re-
quired to partition SGX-protected applications into enclave
and non-enclave halves. This leads to tremendous effort to
refactor legacy code for SGX. Recent work [19, 21, 55] tries to
minimize the effort by introducing library operating systems
(LibOSes) [30] into enclaves. With a LibOS providing system
calls, legacy code can run inside enclaves with few or even
no modifications.
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Figure 1. An overview of Occlum system, which consists of
three components: the toolchain, the verifier, and the LibOS.
The gray area represents an enclave.

One highly desirable feature for LibOSes, or any OSes
in general, is multitasking. Multitasking is important since
virtually any non-trivial application demands more than one
process. UNIX has long been known of its philosophy on
the rule of composition: design programs to be connected
with other programs [47]. In the modern era of cloud com-
puting, even a single-purpose, cloud-native application in a
container often requires running the main application along
with some dependent services (e.g., sshd [14], etcd [48], and
fluentd [31]). So multitasking is an indispensable feature.
However, existing SGX LibOSes cannot support multi-

tasking both securely and efficiently. The most advanced,
multitasking SGX LibOS is Graphene-SGX [55], which im-
plements LibOS processes as Enclave-Isolated Processes (EIPs).
Each EIP is hosted by one instance of the LibOS inside an
enclave; that is, n EIPs require n LibOS instances and n en-
claves. The strong enclave-based isolation between EIPs,
however, causes performance and usability issues. First, pro-
cess creation is extremely expensive due to the high cost
of enclave creation. Process creation on Graphene-SGX is
reported to be nearly 10, 000× slower than that on Linux [55].
Second, inter-process communication (IPC) between EIPs
is also expensive. EIPs, which are isolated completely by
enclave boundaries, have to communicate with each other
by transferring encrypted messages through untrusted mem-
ory. The encryption and decryption add significant overhead.
Third, synchronizing between multiple LibOS instances is
painful. The most notable example is the encrypted file sys-
tem. As there are multiple LibOS instances, the metadata
and data of the file system are thereby spread across mul-
tiple enclaves. Thus, maintaining a unified view of the file
system across EIPs is difficult and inefficient. This explains
why Graphene-SGX lacks a writable, encrypted file system.
For the above reasons, it is not clear how to achieve secure
and efficient multitasking in SGX LibOSes—up until now.

In this paper, we present Occlum, a system that enables
secure and efficient multitasking in a LibOS for Intel SGX.
Different from prior work on SGX LibOSes, we explore an
opportunity of synergy between compiler techniques and Li-
bOS design. Specifically, we propose to implement the LibOS
processes as SFI-Isolated Processes (SIPs), which reside along-
side the LibOS in the single address space of an enclave (see
Figure 1a). Software Fault Isolation (SFI) [56] is a software
instrumentation technique for sandboxing untrusted mod-
ules (called domains). We design a novel SFI scheme named
MPX-based, Multi-Domain SFI (MMDSFI), which, compared
with existing SFI schemes, is unique in its support of an un-
limited number of domains without any constraints on their
addresses and sizes. Thus, we can leverage MMDSFI to imple-
ment intra-enclave isolation mechanisms for SIPs, including
inter-process isolation and process-LibOS isolation.

To ensure the trustworthiness of Occlum’s isolation mech-
anisms based on MMDSFI, we introduce the Occlum verifier,
which is an independent binary verifier that takes as input
an ELF binary and statically checks whether it is compli-
ant with the security policies of MMDSFI. We describe in
depth the design of the verifier and prove its security guaran-
tees mathematically. By introducing the verifier, we exclude
Occlum’s MMDSFI-enabled toolchain—which is large and
complex—from the Trusted Computing Base (TCB) and rely
only on the verifier as well as the LibOS for security.

With MMDSFI implemented by the Occlum toolchain and
verified by the Occlum verifier, the Occlum LibOS can safely
host multiple SIPs inside an single enclave. Since the SIPs
reside inside the same address space, there are new oppor-
tunities for sharing between SIPs. As a result, the Occlum
LibOS can improve both performance and usability of mul-
titasking, achieving fast process startup, low-cost IPC, and
writable encrypted file system.

We have implemented the Occlum system, which consists
of the three components shown in Figure 1b: the toolchain,
the verifier, and the LibOS. Our prototype implementation
comprises over 20, 000 lines of source code in total and is
available on GitHub [10]. Experimental evaluation on CPU-
intensive benchmarks shows that MMDSFI incurs an average
of 36% performance overhead. Despite this overhead incurred
by MMDSFI, the Occlum LibOS outperforms the state-of-
the-art SGX LibOS on multitasking-heavy workloads by up
to 6, 600× on micro-benchmarks and up to 500× on appli-
cation benchmarks. Furthermore, the security benchmark
(RIPE [59]) shows that MMDSFI prevents all memory attacks
that may break the isolation of SIPs. These results demon-
strate that our SIP-based approach is secure and efficient.

This paper has four major contributions:
1. We propose SFI-Isolated Processes (SIPs) to realize secure

and efficient multitasking on SGX LibOSes, which is radically
different from the traditional approach (§3);

2. We design a novel SFI scheme namedMPX-based, Multi-
Domain SFI (MMDSFI) to enforce the isolation of SIPs (§4);



3. We describe in depth our binary verifier that statically
checks whether an ELF binary is compliant with the security
policies enforced by MMDSFI (§5) and present a security
analysis against two common classes of attacks (§7);

4. We design and implement the first SIP-based, multitask-
ing LibOS for Intel SGX (§6 and §8) and demonstrate its
performance and security advantages with various bench-
marks (§9).

2 Background and Related Work
2.1 Intel Software Guard Extensions (SGX)
The background knowledge about Intel SGX that is relevant
to our discussion is summarized below.

Enclave creation.During enclave creation, the untrusted
OS loads the code and data to the enclave pages, and then
the enclave is marked as initialized. From this moment, CPU
guarantees the protection of the enclave from any code out-
side the enclave. While an enclave is being created, its con-
tents are cryptographically hashed to calculate the measure-
ment. As this process involves a lot of cryptographic compu-
tation, it is expensive to create an enclave.

Enclave dynamic memory management. On SGX 1.0,
after an enclave is initialized, enclave pages cannot be added,
removed, or modified with their permissions. On SGX 2.0,
this restriction has been removed by new SGX instructions.
However, Intel has not yet shipped SGX 2.0 CPUs widely. So
we implement Occlum on SGX 1.0 to maximize its compati-
bility.

Intra-enclave isolation. Currently, there is no hardware
isolation mechanisms that are capable or suitable to partition
an enclave into smaller security domains. Segmentation is
disabled inside enclaves. Page tables are untrusted in SGX’s
security model. Intel Memory Protection Keys (MPK) [26])
is based on page tables. So MPK is also untrusted to SGX.
This is why we turn to SFI for intra-enclave isolation.

SGX threads. Multiple SGX threads can execute inside
an enclave simultaneously. The execution of an SGX thread
may be interrupted by hardware exceptions, causing the
CPU core of the SGX thread to exit the enclave. This is called
an asynchronous enclave exit (AEX). Upon the occurrence
of an AEX, the state of the CPU core is automatically stored
in a prespecified, secure memory area called state save area
(SSA). And later when the SGX thread is about to resume its
execution inside the enclave, the state of the CPU core will
be stored according to SSA.

2.2 Library OSes for Intel SGX
We compare Occlum with the state-of-the-art LibOSes for
SGX—i.e., Haven [21], Scone [19], Panoply [52], andGraphene-
SGX [55]—in three dimensions.

Compatibility. An SGX LibOS may be compatible with
legacy applications at either binary or code level. Haven
and Graphene-SGX are binary level compatible while Scone,

Panoply and Occlum are source code level compatible via
cross compilers.
We argue that the code-level compatibility is acceptable

for most use cases since it has eliminated most of the efforts
required to port applications for SGX. And even a binary-
compatible SGX LibOS sometimes demands recompilation
so that the legacy source code can be modified to work
around the hardware limitatations of SGX or the system
call limitations of the LibOS. Futhermore, the recompilation
of source code provides the opportunity to integrate SGX-
specific, compiler-based hardening techniques [42, 45].

Multitasking. Existing SGX LibOSes cannot support mul-
titasking both securely and efficiently. Haven supports mul-
titasking in a single-address-space architecture like Occlum,
but it lacks isolation for its LibOS processes. Scone, Graphene-
SGX, and Panoply support multitasking with EIPs, but suffer
from performance and usability issues (§3.2).

TCB sizes. As Haven reuses the source code of Draw-
bridge [46], it ends up with a huge TCB. The other four
LibOSes including Occlum are written from scratch and thus
absent of unnecessary OS functionalities. This results in
small TCBs and thus small attack surfaces.

2.3 Intel MPX and SFI
Intel Memory Protection Extensions (MPX) [37] is a set of
extensions to the x86 instruction set architecture to provide
bound checking at runtime. It provides four bound registers
bnd0 - bnd3. Each bound register stores a pair of 64-bit values,
one for the lower bound and the other for the upper bound.
Two instructions, bndcl and bndcu are introduced to check
a given address against a bound register’s lower and upper
bound, respectively. If the check fails, an exception will be
raised by the CPU. These four bound registers are saved
when AEX occurs and are restored when the enclave resumes
its execution from AEX [39]. Occlum does not use MPX’s
expensive bound tables or bound table-related instructions.

Software Fault Isolation (SFI) [56] is a software instrumen-
tation technique for sandboxing untrusted modules (called
domains). Existing SFI schemes have limitations on the num-
ber, addresses, or sizes of domains to simplify their designs
and minimize the overheads. For example, the well-studied
SFI scheme Native Client [50] requires two 40GB unmapped
memory regions around a 4GB-size domain. PittSFIeld [44]
only supports at most 64 − n domains of n-bit address space
on x86-64.
Our SFI scheme MMDSFI intends to sandbox a (poten-

tially) large number of processes inside the limited address
space of an enclave. MMDSFI aims to put no constraints
on the number, addresses, or sizes of domains. We find two
advantages of using MPX registers for domain bounds:

1. Bound registers can represent any address or size for a
domain.

2. During thread switching, bound registers are automati-
cally saved and stored by CPU. Thus, the maximum number



Table 1. A comparison between SIPs and EIPs.

EIPs SIPs

Proc. … Proc.

LibOS

…
Proc.

LibOS

Proc.

LibOS

Proc. … Proc.

LibOS

…
Proc.

LibOS

Proc.

LibOS

Process creation Expensive Cheap
IPC Expensive Cheap
Shared file systems Read-only Writable

of domains does not depend on the number of bound regis-
ters, but the address size of an enclave.
Existing MPX-enabled systems [29, 40] use MPX simply

for reducing the overhead of SFI. MMDSFI fully leverages
MPX’s advantages to achieve the flexibility on the number,
addresses, and sizes of domains.

3 SFI-Isolated Processes (SIPs)
In this section, we give an overview of SIPs by first describ-
ing its threat model, then highlighting its advantages over
traditional EIPs, and finally discussing its feasibility on SGX.

3.1 Threat Model and Security Goals
We assume that attackers can take full control over the hyper-
visor, host OS, and host applications on the target machine.
SIPs are assumed to be benign (at least when loaded by the
LibOS), otherwise their binaries would have been rejected by
our verifier. However, SIPs may have security vulnerabilities
and get compromised by attackers. In short, we assume a
powerful attacker who controls both the infrastructure on
which an enclave is running and some malicious SIPs inside
the enclave.

To defend against such a powerful attacker, Occlum aims
to isolate in-enclave SIPs. Specifically, we enforce the follow-
ing two kinds of isolation: 1) Inter-process isolation, which
protects an SIP from other SIPs; and 2) Process-LibOS isolation,
which protects the LibOS itself from any SIP.

We assume our LibOS is implemented correctly, which
is the (runtime) TCB of Occlum. Iago attacks [24] are not
considered, which can be addressed by orthogonal work like
Sego [43]. Like other SGX LibOSes, Occlum does not hide
file access patterns. We do not consider denial-of-service
attacks.
We do not consider side-channel attacks in this paper.

Side-channel attacks have been shown to be a real threat,
especially to Intel SGX [22, 25, 58]. This field is moving fast:
new attacks have been kept being proposed, so have new
defenses [45, 51]. We believe eventually these efforts that
are independent from ours will be able to provide adequent
defense against side-channel attacks. Also, covert-channel
attacks are out of the scope of this paper.

3.2 Advantages of SIP
SIPs have performance and usability advantages compared
to the traditional EIPs. A comparison between SIPs and EIPs
is summarized in Table 1 and explained below.

Process creation.Creating a newEIP requires three steps:
(1) creating a new enclave, (2) doing local attestation with
other enclaves, and (3) duplicating the process state over
an encrypted stream. In contrast, creating an SIP does not
involve any of the three steps. Thus, SIPs are significantly
cheaper to create than EIPs.

IPC. IPCs between EIPs are typically implemented by
sending and receiving encrypted data through untrusted
buffers outside the enclave. Yet, IPC between SIPs is simply
copying data from one SIP to another, with no encryption
involved.

Sharedfile system. In the traditional EIP-based approach,
there are multiple instances of the LibOSes communicating
via secure communication channels. This setup must face
the challenge of data synchronization. To avoid this diffi-
culty, traditional LibOSes like Graphene-SGX only support a
read-only, encrypted file system. In contrast, all SIPs inside
an enclave share the same instance of the LibOS. Thus, a
writable, encrypted file system can be implemented relatively
easily.

3.3 Spawn Instead of Fork
fork system call requires a forked child process to have the
same address space as its parent process. This semantic is
incompatible with single-address-space OSes [13], including
Occlum, where all processes reside in a single address space.
So, in Occlum, processes are created with the spawn system
call, which is similar to libc’s posix_spawn and Solaris’s
spawn [28].

Most uses of fork and exec can be readily replaced with
spawn. As for those applications such as Apache, PostgreSQL,
and Redis that use fork alone, the existence of their Win-
dows ports or versions [3, 11, 15] implies that fork-based
code can be rewritten to use spawn-like APIs. Our experi-
ence in porting multi-process applications for Occlum also
confirms that replacing fork with spawn is not as hard as
one might expect (§9.1).

Putting the compatibility issues aside, spawn is considered
superior to fork. A recent paper [20] reflects on the pros and
cons of fork and concludes that “we should acknowledge
that fork’s continued existence as a first-class OS primitive
holds back systems research, and deprecate it.

4 MPX-Based, Multi-Domain SFI
(MMDSFI)

Occlum uses a novel SFI scheme named MPX-based, Multi-
Domain SFI (MMDSFI) to enforce the isolation of SIPs.
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Figure 2. The design of MMDSFI. All assembly code follows the AT&T syntax. The bound register bnd0 and bnd1 are initialized
by the LibOS to the range [D.begin,D.end) and [cfi_label, cfi_label], respectively. The operand <reg> denotes a general-
purpose register; <scratch_reg>, a scratch register for storing intermediate values; <mem>, a memory address; <domain_id>,
the ID of the domain that the code belongs to.

4.1 Overview
MMDSFI requires a memory layout shown in Figure 2a. A
domain of MMDSFI has two main memory regions: the re-
gion C for the user code, and the region D for the user data.
Region C and D are mapped to enclave pages with RWX and
RW permissions, respectively. Region D is surrounded by two
guard regions G1 and G2, which are of the same size and
not mapped to any enclave pages, thus triggering exceptions
when accessed. These guard regions, as a common technique
of SFI, are introduced to simplify the instrumentation (§4.2)
and facilitate some optimizations (§4.3). Multiple domains
can coexist in a single address space, and the memory ranges
of these domains are exclusive to each other. All domains
share a single instance of the LibOS, which is in charge of
managing the domains and processing system calls from
them.

As an SFI scheme, the security goal of MMDSFI is to sand-
box untrusted user code. The untrusted code is first compiled—
with the instrumentation required byMMDSFI—into a binary.
Then, the binary is loaded by the LibOS into a domain: the
code of the binary is loaded into the region C and the data
into the region D. This domain is then run as an SIP (so
actually the two terms of domain and SIP can be used inter-
changeably for our discussion). Together with the compile-
time instrumentation of MMDSFI and the runtime support of
the LibOS, we can guarantee that the untrusted user code is
sandboxed. Specifically, the following two security policies
are enforced:

The memory access policy. For any memory access in-
struction I in C , I must access the memory within range
[D.begin,D.end), whereD.begin andD.end are addresseswhere
the region D begins and ends.

The control transfer policy. For any control transfer in-
struction I inC , I must target an addresswithin [C.begin,C.end),
where C.begin and C.end are the addresses where the region
C begins and ends.

If an instruction violates the security policies above, then
the instruction is invalid. Our goal is to guarantee that any
invalid instruction is either prevented or detected.

4.2 Instrumentation
MMDSFI instruments the untrusted code by inserting checks
for or rewriting unsafe instructions to enforce the aforemen-
tioned security policies.

Confining memory accesses. To this end, we introduce
mem_guard pseudo-instruction, which takes amemory operand
<mem> and checks whether <mem> is within the data range
[D.begin,D.end) of the current domain. If the check passes,
it does nothing; otherwise, it triggers an exception, which
can then be captured by the LibOS. As shown in Figure
2b, mem_guard pseudo-instruction can be implemented effi-
ciently with two MPX bound check instructions. As the first
example shown in Figure 2c, MMDSFI inserts mem_guard
before every unsafe memory access instruction so that its
memory accesses are confined within [D.begin,D.end).
Confining control transfers.Before describing howMMDSFI

confines control transfers, let’s take a few relevant obser-
vations. First, since x86 instructions are variable-length, a
faulty control transfer could jump into the middle of (pseudo-
)instructions and execute unpredictable instructions. This
would completely jeopardize the validity of SFI and thus
must not be allowed. Second, some instruction sequences
must be treated as a whole. One such example is mem_guard
and its guarded memory access instruction, which must be
executed as a whole. Otherwise, jumping in between the two
instructions would skip the mem_guard, thereby bypassing
the memory access confinement. So, this, too, must not be
allowed. Third, indirect control transfer instructions need
runtime checks while direct control transfer instructions do
not. A direct control transfer instruction (e.g., jmp <imm>,
where <imm> denotes an immediate value) has its target ad-
dress hard-coded in the instruction and thus can be verified



at compile time. Yet, an indirect control transfer instruc-
tion (e.g., jmp <reg>) gives its target address in a register
or a memory location, which cannot be determined until
runtime. Thus, indirect control transfer instructions need
runtime checks.
Based on the above observations, we enforce a coarse-

grained control-flow integrity (CFI) [56] in MMDSFI by intro-
ducing a pair of pseudo-instructions: cfi_label and cfi_guard,
as shown in Figure 2b.

cfi_label has the following interesting properties:
(1) No operation. It has no visible impact on CPU;
(2) Alignment. The encoding has a fixed length of 8 bytes;
(3) Nonexistence. The first 4 bytes of the encoding does

not appear anywhere in the uninstrumented code, including
both the untrusted user code and the trusted LibOS code;
(4) Uniqueness. The last 4 bytes of the encoding is the

unique ID of the domain where the cfi_label resides.
To satisfy these properties, we implement cfi_labelwith

a special 8-byte nop instruction, as shown in Figure 2b. This
nop is not in its most common form, so it is not supposed to
be emitted by any off-the-shelf compiler. The nop is encoded
in 8 bytes with the last 4 bytes being any 32-bit value of our
choice. So, when loading instrumented code into a domain,
the LibOS rewrites the last 4 bytes of all cfi_labels to the
value of the ID of the current domain. This is to satisfy the
uniqueness property required above.

With the properties above, we can use cfi_labels to “la-
bel” the valid targets of indirect control transfers. Specifically,
MMDSFI inserts a cfi_label at every valid target address
of indirect control transfers (e.g., the start address of a func-
tion). And only at these addresses can cfi_labels be found.
Thus, the inserted cfi_labels can be used at runtime to
verify indirect control transfers by the pseudo-instruction
that is to be introduced below.

cfi_guard pseudo-instruction checks whether the ad-
dress given in a register operand <reg> is a valid target of in-
direct control transfers. If it is a valid target, cfi_guard does
nothing; otherwise, it raises an exception. The validity of a
target address can be easily determinedwith cfi_labels. As
shown in Figure 2b, cfi_guard is implemented in a sequence
of three instructions: the first mov loads the value at the target
address into a scratch register <scratch_reg>, then two fol-
lowing bound checks compare the value in <scratch_reg>
with bnd1, which has been set by the LibOS to the range
[cfi_label, cfi_label]. So the two bound checks are es-
sentially a test for equality. If and only if the value at the
target address equals to cfi_label can the target be valid.
With cfi_guards, we now can confine indirect control trans-
fers to target only valid addresses. See figure 2c for some
typical examples of instrumentation.
Using the three pseudo-instructions, we can instrument

any unsafe memory access or control transfer instruction as
shown in figure 2c, thus enforcing the security policies of

Categories Sample Instructions How to Verify?

Scale-Index-Base 
(SIB) addq $1, -8(rax,rbx,4)

Check that the destination 
is within [W.begin, W.end) 
according to the range 
analysis

Implicit register-based push $1 Same as above

RIP-relative addq %rcx, 1234(%rip) Same as above

Direct memory offset
movq %rax,
$1122334455667788 Reject

Vector SIB vscatterdps %zmm7, 
(%r12,%zmm6,4){%k3} Reject

Categories All Instructions How to Verify?

Direct control transfer

jmp *<rel> 
jcc *<rel> 
loop *<rel> 
loopcc *<rel> 
call *<rel>

Check that the target specified 
by <rel> is not a register-based 
indirect control transfer 
instruction

Register-based indirect 
control transfer

jmp *<reg> 
call *<reg>

Check that the instruction is 
guarded by a cfi_guard

Memory-based indirect 
control transfer

jmp *<mem> 
call *<mem> Reject

Return-based indirect 
control transfer

ret 
ret <imm> Reject

Figure 3. Stage 3 verifies control transfer instructions by
classifying them into four categories.

MMDSFI. The correctness of MMDSFI is discussed formally
in §5.

4.3 Optimizations
A naive implementation of MMDSFI instrumentation has
to insert a mem_guard for every memory accesses. This can
easily lead to an intolerable performance penalty. However,
thanks to our enforcement of CFI, we can employ standard
dataflow analysis [17] on the control-flow graph (CFG) to
seize optimization opportunities enabled by the guard re-
gions (§4.1). Specifically, we can use range analysis to track
the ranges of possible values in registers before and after
each instruction, and perform the following two optimiza-
tions [60]:

(1) Redundant check elimination. Recall that the data region
D is surrounded by the guard regions G1 and G2 that will
trigger exceptions if accessed. So, if a memory address x has
been confined within the data range [D.begin,D.end), then
any memory address determined by the range analysis to
be within [x −Gi .size,x +Gi .size] is also safe and requires
no check via mem_guard, whereGi .size is the size of a guard
region.
(2) Loop check hoisting. In a loop, if there is a mem_guard

whose memory operand <mem> is increased or decreased by
a constant value smaller thanGi .size per loop iteration, then
a new mem_guard can be inserted before the loop and the
original, in-loop mem_guard can be eliminated due to the
same reason in the first optimization. The net result is that
the mem_guard will be executed only once per loop instead
of once per loop iteration.
While more optimizations based on range analysis are

possible, we found these two optimizations are sufficient to
reduce the overhead to an acceptable level (§9.3).

5 Binary Verification
To ensure the trustworthiness of Occlum’s security proper-
ties based on MMDSFI, we introduce the Occlum verifier,
which is an independent binary verifier that takes an ELF



Input: C , the code segment of an ELF binary
Output: R , the set of all reachable instructions in C

1 R ← {};
2 S ← Get all the addresses of cfi_labels by scanning C byte by byte;
3 while S , {} do
4 addr ← Pop an item from S ;
5 while true do
6 if addr is not within C then
7 abort;

8 instr ← Disassemble the instruction at addr ;
9 if instr is invalid then

10 abort;
11 else if instr ∈ R then
12 break;
13 else if instr overlaps with any i ∈ R then
14 abort;

15 R ← R ∪ {instr };

16 if instr is a direct control transfer then
17 target_addr ← Calculate the target of instr ;
18 S ← S ∪ {target_addr };
19 if instr is an unconditional control transfer then
20 break;

21 addr ← addr + instr .length;

Algorithm 1: Stage 1 disassembles the binary completely
and reliably, generating R the set of all reachable instruc-
tions.

Categories Sample Instructions How to Verify?

Scale-Index-Base 
(SIB) addq $1, -8(rax,rbx,4)

Check that the destination 
is within [D.begin - Gi.size, 
D.end + Gi.size) according 
to the range analysis

Implicit register-based push $1 Same as above

RIP-relative addq %rcx, 1234(%rip) Same as above

Direct memory offset
movq %rax,
$1122334455667788 Reject

Vector SIB vscatterdps %zmm7, 
(%r12,%zmm6,4){%k3} Reject

Figure 4. Stage 4 verifies memory access instructions by
classifying them into five categories. Direct memory offset,
which can hard-code a 64-bit memory address in mov, is
rejected because no fixed addresses can be assumed to be
within a domain. Vector SIB is rejected because it allows one
instruction to access to multiple non-contiguous memory
locations.

binary as input and statically checks whether it is compliant
with the security policies of MMDSFI.

By introducing the Occlum verifier, we exclude the Oc-
clum toolchain from the TCB. This is desirable for two rea-
sons. First, the implementation of an SFI, including MMDSFI,
is error-prone since it involves dealing with the low-level
details of machine code (e.g., x86 has approximately 1000
distinct instructions) and it is usually implemented upon

the huge codebase of a compiler (e.g., GCC and LLVM have
millions of lines of source code). Second, even if the Occlum
toolchain can be proven flawless, the Occlum verifier can still
be very useful. In some interesting use cases [36, 54], the user
may want to use binaries from untrusted origins. So these
binaries can be generated by some arbitrary toolchains; and
the Occlum toolchain being flawless is irrelevant. Thus, we
must verify the binaries before loading them into enclaves.
The verifier consists of four stages: (1) complete disas-

sembly, (2) instruction set verification, (3) control transfer
verification, and (4) memory access verification. If and only
if all the four stages pass, can the input binary be claimed to
be compliant with MMDSFI and safe to run upon the Occlum
LibOS inside an enclave.

Stage 1 - Complete disassembly. This stage aims to
find out every instruction reachable, i.e., any instruction that
may be executed as part of the untrusted user program. To
this end, it disassembles the input ELF binary and generates
the set of all reachable instructions, which is denoted as R.
Our x86 disassembler is extended with the three pseudo-
instructions introduced in the last section. So an instruc-
tion in R can be either a real x86 instruction or a pseudo-
instruction, which is not distinguished for our discussion.
Every instruction in R is uniquely identified by its memory
address. This resulting set R is the subject of the verification
to be carried out in the remaining four stages.

Disassembling an arbitrary binary statically, reliably, and
completely is impossible; existing disassembly algorithms are
based on heuristics, providing only best-effort results [18,
41, 49]. However, thanks to the introduction of cfi_label,
our disassembly algorithm can give the completely accurate
results as long as the input binary can eventually pass all the
remaining stages of the verifier. (And for those binaries that
are to be rejected by the verifier, it does not really matter if
the disassembly results are accurate or not.)
The disassembly algorithm is shown in figure 1. Firstly,

the disassembler gets all cfi_labels by scanning the code
section of the binary byte by byte (line 2). Guaranteed by
the LibOS, the user program must start its execution from
cfi_labels. From each of these starting points (line 4), the
disassembly algorithm follows the sequential execution of
the program (line 21) and every direct control transfer (line
17). Note that the indirect control transfers can only target at
cfi_labels (due to the control transfer policy to be verified
in Stage 3), which are the starting points themselves. So the
branches of indirect control transfers have been implicitly
covered. As we have started from every possible starting
point and followed every possible branch, we end up with R
containing all reachable instructions.

Stage 2 - Instruction set verification. The goal of this
stage is to make sure that R does not include any dangerous
instructions that can perform privileged tasks that are meant
for the LibOS. The dangerous instructions can be classified
into the following three categories:



(1) SGX instructions, e.g., eexit, which exits the current
enclave, and emodpe/eaccept, which extends/restricts the
memory permissions of enclave pages at runtime;

(2) MPX instructions, e.g., bndmk and bndmov, which mod-
ify the values of MPX bound registers;
(3) Miscellaneous instructions, e.g., xrstor, which can

enable or disable some CPU features including MPX, and
wrfsbase/wrgsbase, which modifies FS/GS segment bases.

Note that these dangerous instructions are not supposed
to be used in normal user programs. So forbidding them
does not restrict the functionality of user programs. The
implementation of this stage is quite straightforward: simply
scan R to check that no such dangerous instructions exist.
Stage 3 - Control transfer verification. This stage ver-

ifies every control transfer instructions in R by classifying it
into one of four categories and checking it with the criteria
of its belonging category as shown in Figure 3.

If a binary passes Stage 1-3 of the verification and is loaded
into a domain by the LibOS, then we can prove the lemma
and theorem below.
Lemma 5.1. Any register-based indirect control transfer in
the domain can only jump to the cfi_labels in the domain.
Proof. To prove it by contradiction, assume there exists an
occurrence of register-based indirect control transfer that
violates the lemma.

Let S = {I1, · · · , In} be the CPU execution trace of the do-
main up until the violation occurs, where I1 is a cfi_label,
In is the violating register-based indirect control transfer,
and n ≥ 2. Without loss of generality, we can assume that
In is the first violation in the trace; that is, no 1 < j < n
such that Ij is also an occurrence of register-based indirect
control transfer that violates the lemma. Otherwise, we can
simply restart our analysis on Ij instead of In .

Our verification in Stage 3 has checked that In is properly
guarded with a cfi_guard, yet still In jumps to a location
other than some cfi_label in the domain. This implies that
In−1 cannot be the cfi_guard and must be a control transfer
instruction that jumps to In . Yet, such In−1 is impossible
according to the exhaustive case analysis below:

(1) In−1 cannot be a direct control transfer since our verifi-
cation in Stage 3 has checked that any direct control transfer
does not jump to a register-based indirect control transfer
instruction;

(2) In−1 cannot be a register-based indirect control transfer
otherwise it would be a violation that happened before In ,
which contradicts our assumption that In is the first;

(3) In−1 cannot be amemory-based indirect control transfer
as our verification in Stage 3 rejects it;

(4) In−1 cannot be a return-based indirect control transfer
as our verification in Stage 3 rejects it.

By contradiction, we prove the lemma. □

Theorem 5.2. Any control transfer in the domain is com-
pliant with the control transfer policy of MMDSFI (§4.1).

Proof. For any control transfer instruction in the domain,
it must belong to one of the four categories listed in Figure
3. The first category is covered implicitly by the complete
disassembly in Stage 1; the second category is implied by
Lemma 5.1; the third and the fourth categories are forbidden
by the verification in Stage 3. Thus, the theorem stands in
all cases. □

Stage 4 - Memory access verification. With the CFI of
R verified in Stage 3, this stage first builds the CFG for R,
then leverages this CFG to do the cfi_label-aware range
analysis described in §4.3, and finally verifies every memory
access instruction in R by classifying it into one of five cate-
gories and checking it with the simple and straightforward
criteria of its belonging category as shown in Figure 4.

If a binary passes Stage 1-4 of the verification and is loaded
into a domain by the LibOS, then we can prove the theorem
below.
Theorem 5.3. Any memory access instruction in the do-
main is compliant with thememory access policy ofMMDSFI
(§4.1).
Proof. Any memory access instruction, regardless of how
its destination is specified, has been either verified with the
cfi_label-aware range analysis or rejected by our verifica-
tion in Stage 4. Thus, we prove the theorem. □

6 Library OS
In this section, we give an overview of the Occlum LibOS
(see Figure 1a) with an emphasis on its unique aspects.

ELF loader. A typical program loader in a Unix-like OS
performs tasks such as parsing program binaries (e.g., ELFs),
copying program images, and initializing CPU states. Beyond
these basic tasks, the program loader in Occlum has four
extra responsibilities. First, the loader checks that the ELF
binaries to be loaded are verified and signed by the Occlum
verifier. Second, the loader rewrites all cfi_labels in the
program image so that the last four bytes of the cfi_labels
are set to the ID of the domain associated with the new
SIP. Third, the loader inserts into the process image a small
piece of trampoline code that jumps to the entry point of
the LibOS, thereby enabling the LibOS system calls. This
trampoline code is the only way out of the sandbox enforced
by MMDSFI. The address of this trampoline code is passed to
libc via the auxiliary vector [34]. Fourth, the loader initializes
MPX bound registers according to the memory layout of the
SIP’s domain.

Syscall interface. LibOS system calls are just function
calls, except that the users must go through the trampoline
code inserted by the ELF loader. With SIPs sandboxed by
MMDSFI, the only chance for faulty SIPs to compromise
the LibOS is through system calls. So, at the entry point of
the LibOS is a piece of carefully-written assembly, which
performs sanity checks, switches between user/LibOS stack,



switches between user/LibOS thread-local storage, and even-
tually calls system call dispatching routine. After system call
finishes, before returning to the SIP, LibOS will ensure that
the return address target is a cfi_label of corresponding
SIP.

Memory management. Occlum preallocates the avail-
able enclave pages of an MMDSFI domain during enclave
initialization. For each domain, the enclave pages are al-
located and set with proper permissions according to the
memory layout described in §4.1. The maxmimum size of the
the code region is prespecified at compile time; so is the data
region. The size of guard regions is set to 4KB. And the linker
of the Occlum toolchain is aware of this 4KB gap between
the code segment and the data segment when generating an
ELF binary for Occlum. The maximum number of MMDSFI
domains is also prespecified at compile time. Note that this
preallocation of enclave pages is intended to work around
the limitation of SGX 1.0 and can be avoided on SGX 2.0.
Memory mapping syscalls, e.g., mmap and munmap, can

only manipulate the memory in the data region of a do-
main. Anonymous memory mappings are fully supported,
but requires the LibOS to manually initialize the allocated
memory pages to zeros. File-backed memory mappings is
implemented by copying the file content to the mapped area.
Shared memory mappings are impossible because SGX can-
not map one EPC page to multiple virtual addresses. For the
sake of security, the users are not allowed to add or remove
the X permission of enclave pages (even on SGX 2.0).
Process management. Occlum provides the spawn sys-

tem call, instead of fork, to create SIPs. SIPs are mapped
one-on-one to SGX threads, which are scheduled transpar-
ently by the host OS. This frees the LibOS from the extra
complexity of process scheduling. IPC between SIPs, e.g.,
signals, pipes, and Unix domain sockets, are implemented
efficiently via shared data structures in the LibOS.
LibOS threads are treated as SIPs that happen to share

resources such as virtual memory, file tables, signal handlers,
etc. The synchronization between LibOS threads, e.g., futex,
eventually relies on the host OS to sleep or wake up the
corresponding SGX threads; but the semantic correctness of
the synchronization primitives only relies on the LibOS.

File systems. To protect the confidentiality and integrity
of persistent data, Occlum provides an encrypted file sys-
tem that transparently encrypts all file data, metadata, and
directories. While Intel SGX SDK contains a library named
Intel SGX Protected File System [1], this library can only pro-
tect the content of individual files, not file metadata and file
directories. We build upon the primitives provided by this
library to implement a complete encrypted file system. Oc-
clum also provides special file systems (e.g., /dev/, /proc/,
etc.), which are completely implemented by the LibOS inside
the enclave. All SIPs share a common cache for file I/O. A
child SIP can inherit the open file table of its parent SIP with

minimal overhead. All SIPs have a unified view of the LibOS
file systems.

Networking. Network-related operations are mostly del-
egated to the host OS, and the LibOS is only responsible
for redirecting, bookkeeping, and sanity checks. So network
I/O is not secure by default and requires user-level network
encryption such as TLS for secure communication.

7 Security Analysis
With all three components of Occlum described, we can now
treat the Occlum system as a whole and examine whether
we have achieved our overall security goal of inter-process
isolation and process-LibOS isolation. More specifically, we
will consider whether two common classes of attacks—code
injection and return-oriented programming (ROP)—could be
used by a malicious SIP to penetrate the isolation enforced
by MMDSFI and the LibOS.

Code injection attacks. SGX 1.0 does not allow enclave
pages to be added, removed, or modified at runtime. To load
programs into an enclave dynamically, the implementation of
SGX LibOSes has to reserve a pool of enclave pages with RWX
permissions when the enclave is launched. So the enclave is
made susceptible to code injection attacks. This is a common
pitfall of all existing SGX LibOSes.

Fortunately, Occlum is immune to code injection attacks.
This is because 1) a SIP can only write to the data region of
its domain, whose enclave pages have no executable permis-
sion (see §4.1); 2) only the LibOS can modify the executable
enclave pages, e.g., when loading new verified binaries; and
3) the LibOS ensures system calls (e.g., mmap and mprotect)
cannot be abused by SIPs. In short, a malicious SIP cannot
inject arbitrary code to bypass the isolation mechanism.

ROP attacks. Now that a malicious SIP cannot inject
new code, it can still attempt to reuse existing code gad-
gets for ROP attacks. ROP attacks are hard to prevent: it has
been shown that static CFIs, including the coarse-grained
CFI integrated with MMDSFI, cannot fully prevent ROP at-
tacks [23, 35].
But this does not change the fact that a malicious SIP

cannot break the isolation enforced by MMDSFI and the
LibOS. First of all, MMDSFI does make ROP attacks harder.
The coarse-grained CFI enforced by MMDSFI prevents the
untrusted code in a domain to jump to arbitrary locations; in
fact, it can only jump to the cfi_labels inside the domain.
This greatly reduces the number of useful gadgets and thus
the odds of success for ROP attacks. More importantly, any
combination of code gadgets by ROP attacks has already
been covered by the verifier (see §5). So even ROP attacks
cannot violate our security policies and break the isolation.

8 Implementation
We have implemented the Occlum system, which consists
of the toolchain, the verifier, and the LibOS. Our prototype



implementation comprises over 20, 000 lines of source code
in total (15, 000 lines of code in Rust for LibOS, 3, 000 lines of
code in C++ for toolchain, and 2000 lines of code in Python
for the verifier). The LibOS and the toolchain has been made
open source on GitHub [10]. We describe briefly about how
the three components are implemented.

The Occlum toolchain. The toolchain is based on LLVM
7.0 [8]. In LLVM’s x86 backend, we add two extra passes:
one instruments control transfer instructions, and the other
instruments memory access instructions and performs the
range analysis-based optimizations.

We modify LLD so that the linker generates ELF executa-
bles that are compatible with MMDSFI. Specifically, the mod-
ified linker ensures that the generated code segments only
contains code (no read-only data) and that a 4KB-gap be-
tween the code and data segments is reserved for the guard
region between the code and data regions.

We modify musl libc [9] to use the system calls provided
by the Occlum LibOS. The posix_spawn API is rewritten to
use Occlum’s spawn instead of vfork and execve.
The Occlum verifier. The implementation of the veri-

fier depends on two libraries. In order to decode individual
x86-64 instructions correctly, we import Zydis [16], a disas-
sembler library supporting all x86-64 instructions, including
all the SGX and MPX instructions we need. In addition, we
import PyVEX [53], a library that converts x86-64 instruc-
tions into its VEX intermediate representation (IR). This
reduces the task of understanding the complex semantics
of x86-64 instructions into manipulating the simple VEX IR
instructions.

TheOcclumLibOS.The LibOS ismostlywritten in Rust [12],
a memory-safe programming language. Thanks to Rust, we
can minimize the odds of low-level, memory-safety bugs in
the LibOS. The LibOS is based on Intel SGX SDK [38] and
Rust SGX SDK [57] for the in-enclave runtime support of C
and Rust, respectively. In addition, we implement a FUSE [7]-
based utility to mount and manipulate Occlum’s encrypted
file system in the host environment. This simplifies the task
of preparing encrypted FS images for the Occlum LibOS in
development environments. Currently, the LibOS only sup-
ports loading statically-linked ELF executables; we will add
support for shared libraries in the future.

9 Evaluation
In this section, we present the experimental results that an-
swer the following questions: (1) To what extent can Occlum
improve the overall performance of real-world, multi-process
applications? (§9.1) (2) What about the performance of indi-
vidual system calls? (§9.2) (3) Does the use of MMDSFI make
user applications more secure? And how much overheads
does MMDSFI incur?(§9.3)

To answer the above questions, we compare Occlum with
Linux and the state-of-the-art SGX LibOS, Graphene-SGX.

The time of process creation on Graphene-SGX is sensitive
to the sizes of the enclaves. For any benchmark whose result
is affected by the time of process creation, we configure
Graphene-SGX to use the minimal enclave size that is able
to run the benchmark.

Experimental setup. We use machines with a two-core,
3.5GHz Intel Core i7 CPU (hyper-threading disabled), 32GB
memory, and a 1TB SSD disk, and 1Gbps Ethernet card. Each
machine supports SGX 1.0. The host runs Linux kernel 4.15.
We install Intel SGX SDK v2.4.0, Rust nightly-2019-01-28, and
Rust SGX SDK v1.0.6. We use the latest version of Graphene-
SGX (commit f30f7e7) at the time of experiment.

9.1 Application benchmarks
We measure the performance of three widely-used applica-
tions: Fish (v3.0.0), a user-friendly command line shell [4];
GCC (v4.4.5), the GNU compiler for C-family programming
languages [33]; and Lighttpd (v1.4.40), a fast Web server [6].
All of them are multi-process applications but have distinct
workload characteristics: Fish is process-intensive (as every
shell command is executed in a separate process), GCC is
CPU -intensive, and Lighttpd is I/O-intensive.

Fish.We use the shell script provided by UnixBench [2].
The test script applies on the data from an input file a series
of transformation using multiple utilities (e.g., sort, od, and
grep), which are connected via pipes or I/O redirections.
Fish does not need any code modification to run on Occlum
since it uses the modern posix_spawn, rather than fork, to
create processes. As shown in Figure 5a, Occlum (19.5ms) is
13.9× slower than Linux (1.4ms), but nearly 500× faster than
Graphene-SGX (9.5s). Occlum is slower than Linux due to
the lack of on-demand loading in enclave (see §9.2).

GCC. We use three C files of varied sizes: the first one is
a “Hello World!” program (5 LOC), the other two are real-
world programs (5K and 50K LOC, respectively) collected
by MIT [5]. While GCC is CPU-intensive in nature, it needs
to create separate processes for its preprocessor, compiler,
assembler, and linker. To start these child processes, GCC
originally uses fork; we refactor the source code to use
posix_spawn instead, which is is about 50 LOC. As shown
in Figure 5b, the compilation time of the three C files ranges
from 25ms to 830ms on Linux, from 9.7s to 11.7s onGraphene-
SGX, and from 229ms to 3.0s on Occlum. In other words,
Occlum is 3.6 × −9.2× slower than Linux, but 3.82 × −42×
faster than Graphene-SGX.

Lighttpd. We use ApacheBench [32] on a client machine
to generate HTTP requests that retrieve 10KB HTML pages
from an instance of Lighttpd Web server running on Linux,
Graphene-SGX, or Occlum. Both the client and server are
in the same local area network. We gradually increase the
concurrency of ApacheBench to simulate an increasing num-
ber of concurrent clients. We configure the master process
of Lighttpd to start two worker processes, both of which
inherit the listening sockets from the master and handle the
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Figure 5. Application benchmarks.

connection requests to the listening sockets together. Similar
to GCC, we refactor the source code to replace fork with
posix_spawn, in about 150 LOC. The results of Lighttpd are
shown in Figure 5c. The peak throughput of both Graphene-
SGX (10% overhead) and Occlum (9% overhead) is slightly
lower than that of Linux.

The results above show that Occlum can deliver a signifi-
cant performance boost to some multi-process applications.

9.2 System call benchmarks
To better understand the results of the application bench-
marks above, we measure the performance of some indi-
vidual system calls. This helps us identify the sources of
performance gain or loss due to the Occlum LibOS.

Process creation time.Wemeasure the process creation
time of different binaries on Linux, Graphene-SGX, and Oc-
clum. There are three binaries of different sizes: 1) a “Hello
World" program of 14KB size, 2) busybox, a collection of com-
mon UNIX utilities combined into a single small executable
of 400KB size, and 3) cc1, the GCC front-end compiler of
14MB size. Process are created using libc’s posix_spawn. Oc-
clum implements posix_spawn using its spawn system call.
Linux and Graphene-SGX use vfork and execve to imple-
ment posix_spawn. vfork is more efficient than fork as it
avoids copying the page tables on Linux and copying the
process state on Graphene-SGX. As shown in 6a, Linux con-
sumes about 170us regardless of the specific binary. For the
small-sized binary (14KB), Occlum consumes 97us, which is
1.6× faster than Linux and over 6, 600× faster than Graphene-
SGX (0.64s). For the median-sized binary, Occlum consumes
1.7ms, which is 10.5× slower than Linux, but over 390×
faster than Graphene-SGX (0.69s). For the large-sized binary,
Occlum consumes 63ms, which is 13× faster than Graphene-
SGX (0.89s). Linux initializes a process’s page table without
actually loading all the pages with their data from disks.
Thus, the process creation time on Linux is insensitive to
binary sizes. Occlum has to load the entire binaries into the
enclave. So the process creation time on Occlum is propor-
tional to the sizes of binaries. Graphene-SGX has to create

a new enclave for each new process, which is very time
consuming.

IPC throughput. We measure the throughput of IPC by
using a common IPC method, pipe. We create two processes
that are connected via a pipe. The throughput of the pipe
is measured under varied buffer sizes. As shown in Figure
6b, Occlum’s throughput is on par with Linux’s throughput,
which is over 3× higher than Graphene-SGX’s throughput.

File I/O throughput. To quantify the performance over-
head of Occlum’s transparent file encryption, we compare
Occlum’s encrypted file systemwith Linux’s Ext4. Andwe ex-
clude Graphene-SGX from this benchmark since Graphene-
SGX does not have a fully-fledged encrypted file system. The
throughput of sequential file reads and writes under different
buffer sizes are shown in Figure 6c and 6d. Compared with
Ext4, Occlum incurs an average overhead of 39% on file reads
and an average overhead of 18% on file writes.
The above results show that the Occlum LibOS greatly

improves the performance of process startup and IPC, while
moderately degrades the performance of file I/O in exchange
for the transparent encryption of persistent data.

9.3 MMDSFI benchmarks
Security. To demonstrate the effectiveness of MMDSFI, we
use RIPE [59] benchmark, which is designed to compare
different defenses against attacks that exploit buffer-overflow
bugs. RIPE builds up a total of 850workable attacks, including
code injection, ROP, return-to-libc, etc. We run RIPE on
Graphene-SGX and Occlum for comparison.

When the stack protection is disabled by the compiler, 36
code injection, 2 ROP, and 16 return-to-libc attacks succeed
on Graphene-SGX. When the stack protection is enabled, the
successful attacks are reduced to 16 code injection and 12
return-to-libc. With or without the stack protection, Occlum
can prevent all code injection and ROP attacks in RIPE. ROP
attacks in RIPE can be fully prevented by MMDSFI as the
ROP gadgets in RIPE do not start with cfi_labels. Return-
to-libc attacks still succeed (16 without stack protection and
12 with stack protection) since libc functions are normal
functions starting with cfi_labels. These results show that
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MMDSFI is effective in defending against memory-related
attacks. Note that the successful attacks (e.g., return-to-libc)
that are not prevented by MMDSFI do not break the isolation
between SIPs.

CPU overhead. While MMDSFI is intended for the use
in the Occlum LibOS, it can be potentially applied in other
use cases. So it is good to know the overheads of MMDSFI
alone, independent from the Occlum LibOS. We use the
SPECint2006 [27] to measure the overheads of MMDSFI
on CPU-intensive workloads. As shown in Figure 7a, the
average overhead of MMDSFI is 36.6%.

The breakdown of CPU overheads. To further under-
stand the overheads of MMDSFI, we break down the over-
heads into three sources: confining control transfers, con-
fining memory stores, and confining memory loads. And
we conduct this breakdown analysis on two implementa-
tions of MMDSFI: (1) the naive implementation that inserts
mem_guards for all memory loads and stores; (2) the op-
timized implementation that leverages the range analysis-
based optimization to eliminate unnecessary mem_guards
(§4.3). Figure 7b show that the range analysis-based opti-
mizations are effective, reducing the overhead of confining
memory stores from 10.1% to 4.3% and the overhead of con-
fining memory loads from 39.6% to 25.5%.

10 Conclusions
In this paper, we present Occlum, a system that enables
secure and efficient multitasking on SGX LibOSes. We imple-
ment the LibOS processes as SFI-Isolated Processes (SIPs). To
this end, we propose a novel SFI scheme named MPX-based,
Multi-Domain SFI (MMDSFI). We also design an independent
verifier to ensure the security guarantees of MMDSFI. With
SIPs safely sharing the single address space of an enclave, the
LibOS can implement multitasking efficiently. Experimental
results show that Occlum outperforms the state-of-the-art
multitasking SGX LibOS significantly.
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A Artifact Appendix
A.1 Abstract
Our artifacts consist of the Occlum toolchain, the Occlum
LibOS, and some scripts to set up the environment, build the
projects, and run the benchmarks. The hardware require-
ment is Intel x86-64 CPUs with SGX and MPX support.

A.2 Artifact check-list (meta-information)
• Compilation: LLVM (whichwill be downloaded and patched
by the script).
• Transformations: MMDSFI instrumentation implemented
as LLVM passes.
• Run-time environment: Root access to Ubuntu Linux.
• Hardware: Intel x86-64 CPU with SGX and MPX exten-
sions. We recommend i7 Kaby Lake CPUs. To test network
performance, another computer is required to connect as
client with 1Gbps ethernet.
• Output: For benchmarks, the results are printed in consoles.
• Experiments: Using Bash scripts.
• Howmuchdisk space required (approximately)?: 40GB.
• How much time is needed to prepare workflow (ap-
proximately)?: Half a day.
• How much time is needed to complete experiments
(approximately)?: One hour.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: BSD.
• Archived (provide DOI)?: 10.5281/zenodo.3565239

A.3 Description
A.3.1 Howdelivered. The artifacts are available onGitHub:
https://github.com/occlum/reproduce-asplos20. We need to
modify source code from other projects like LLVM. Our
scripts will automatically download the original source code
and then apply the patches.

Note that the artifacts provided are the archive of an early
version of Occlum project. We recommend interesting users
to test on the latest version of Occlum, which can be found
at https://github.com/occlum/occlum.

A.3.2 Hardware dependencies. We recommend testing
on an Intel Core i7 Kaby Lake CPU (i7-7567U was used in
our test). SGX and MPX are required.

A.3.3 Software dependencies. We built and tested our
system on Ubuntu 16.04 with kernel 4.15.0-65-generic.

A.4 Installation
You can get the artifacts from GitHub using the following
command:
git clone https://github.com/occlum/reproduce-asplos20

A.5 Experiment workflow
The overall workflow consists of the following steps:

1. Install the dependencies;

2. Build the LibOS;
3. Build the toolchain;
4. Build and run the macro-benchmarks;
5. Build and run the micro-benchmarks.
We provide scripts for each of the steps above.

A.6 Evaluation and expected result
We will go through the entire experiment workflow by de-
scribing all the commands in each step.

A.6.1 Install the dependencies. Run the following com-
mand:
./prepare.sh

A.6.2 Build the LibOS. Run the following command:
./download_and_build_libos.sh.

This script above will download the source code of the LibOS
and build it.

A.6.3 Build the toolchain. To build and install the toolchain,
run the following command:
cd toolchain && \

./download_and_build_toolchain.sh

This script will install the toolchain at /usr/local/occlum.
To use this toolchain for building benchmarks, export the
installation directory to PATH with the following command:
export PATH=/usr/local/occlum/bin:$PATH

A.6.4 Build and run the macro-benchmarks. As de-
scribed in §9, there are three macro-benchmarks: fish, GCC,
and lighttpd.

fish benchmark. To build the benchmark, run the fol-
lowing command:
cd apps/fish && ./download_and_build_fish.sh

After finsih building the benchmark, run the following com-
mand to run the benchmark:
cd apps/fish && ./run_fish_fish.sh

When the script is done, the LibOSwill print the total running
time of the benchmark repeating for 100 times.

GCCbenchmark.To build GCCwith theOcclum toolchain,
run the following command:
cd apps/gcc && ./download_and_build_gcc.sh

There are three workloads, which can be tested with the
following commands:
cd apps/gcc && \

./run_gcc_helloworld.sh && \

./run_gcc_5K.sh && \

./run_gcc_50K.sh

lighttpd benchmark. To build lighttpd, run the follow-
ing command:
cd apps/lighttpd && ./download_and_build_lighttpd.sh

https://github.com/occlum/reproduce-asplos20
https://github.com/occlum/occlum


Next, open apps/lighttpd/config/lighttpd-server.conf
with your favourite text editor and set server.bind to the
IP address of your machine.
There are two modes of the benchmark. Start a single-

thread server with
cd apps/lighttpd &&

./run_lighttpd_test.sh

or start a multi-threaded server with
cd apps/lighttpd &&

./run_lighttpd_test_multithread.sh

After the server started, you can now test the throughput
and latency by starting the http benchmark program:
cd apps/lighttpd &&

./benchmark-http.sh ${SERVER_IP}:8000

where SERVER_IP is the IP address of the lighttpd server.
This benchmark will show the latency and throughput under
different number of concurrent clients.

A.6.5 Build and testmicro-benchmarks. There are two
micro-benchmarks: one measures the latency of process cre-
ation and the other measures the throughput of IPC.

Spawn benchmark. Run the benchmark with the follow-
ing command:
cd bench/spawn && ./run_spawn_bench.sh

The result will be printed on the console.
Pipe benchmark. Run the benchmark with the following

command:
cd bench/pipe && ./run_pipe_bench.sh

The result will be printed on the console.

A.7 Experiment customization
Since the LibOS and the toolchain are installed, users can
build their own applications with our toolchain and run them
with our LibOS.
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