
292 | Nature | Vol 622 | 12 October 2023

Article

DNA-based programmable gate arrays for
general-purpose DNA computing

Hui Lv1,2, Nuli Xie1, Mingqiang Li1, Mingkai Dong3, Chenyun Sun1, Qian Zhang1, Lei Zhao1,4,
Jiang Li5,6, Xiaolei Zuo1,7, Haibo Chen3, Fei Wang1 ✉ & Chunhai Fan1 ✉

The past decades have witnessed the evolution of electronic and photonic integrated
circuits, from application specific to programmable1,2. Although liquid-phase DNA
circuitry holds the potential for massive parallelism in the encoding and execution of
algorithms3,4, the development of general-purpose DNA integrated circuits (DICs) has
yet to be explored. Here we demonstrate a DIC system by integration of multilayer
DNA-based programmable gate arrays (DPGAs). We find that the use of generic
single-stranded oligonucleotides as a uniform transmission signal can reliably integrate
large-scale DICs with minimal leakage and high fidelity for general-purpose computing.
Reconfiguration of a single DPGA with 24 addressable dual-rail gates can be programmed
with wiring instructions to implement over 100 billion distinct circuits. Furthermore,
to control the intrinsically random collision of molecules, we designed DNA origami
registers to provide the directionality for asynchronous execution of cascaded DPGAs.
We exemplify this by a quadratic equation-solving DIC assembled with three layers of
cascade DPGAs comprising 30 logic gates with around 500 DNA strands. We further
show that integration of a DPGA with an analog-to-digital converter can classify
disease-related microRNAs. The ability to integrate large-scale DPGA networks without
apparent signal attenuation marks a key step towards general-purpose DNA computing.

Liquid-phase biocomputing exploiting biomolecular interactions has
been actively explored due to its massive parallelism and intrinsic com-
patibility with biological systems. For example, computational DNA reac-
tion networks including automata5, logic circuits6–8, decision-making
machines9,10 and neural networks11 have been realized, which have dem-
onstrated potential in molecular information processing4,12, synthetic
intelligent devices13 and biomedical applications14–16. Despite this pro-
gress, most of these computing systems are tailored in hardware to imple-
ment a specific algorithm or a limited number of computational tasks.

General-purpose electronic integrated circuits allow software pro-
gramming rather than application-specific custom hardware fabrication
to perform a certain function, providing a higher-level platform for pro-
totyping computational machines without the requirement of previous
knowledge of the underlying physics. Notably, classic silicon-based and
emerging carbon nanotube-based computers and quantum computers
have undergone similar evolution from application-specific (for example,
application-specific integrated circuit) to general-purpose (for exam-
ple, field-programmable gate array, FPGA)2,17–20. Programmability and
scalability constitute two critical factors in achieving general-purpose
computing. Programmability enables specification of the device to
perform various algorithms whereas scalability allows the handling
of a growing amount of work by the addition of resources to the sys-
tem. Unlike electronic integrated circuits, in which gates are physically
localized and universal electrical signals are transmitted in a directional

manner, biomolecular components in DNA integrated circuits (DICs)
diffuse and mix in solution21, which hinders the development of scalable
and programmable biocomputing devices. In a typical DNA computing
system, limitation in the orthogonality of DNA components and diffi-
culty in controlling the intrinsically random collision of molecules make
it practically challenging to realize general-purpose DNA computing.

Intense efforts have been made to explore the programmability of
DNA circuits22,23. However, due to the general lack of directionality for
the integration of these liquid-phase systems, scalability is yet to be
explored for programmable DNA systems. Analogous to the subcom-
ponent assembly in electronic24 or quantum25 circuits, spatial compart-
mentation has been introduced in cellular26 and synthetic27–29 molecular
reaction systems to increase directionality, which nevertheless has
shown limited scalability at the system level29. Inspired by silicon-based
FPGAs in which electrons form a universal signal for intradevice pro-
gramming and interdevice communication, here we developed highly
scalable, DNA-based, programmable gate arrays (DPGAs; Extended Data
Fig. 1) by employing generic single-stranded DNA oligonucleotides as
a uniform transmission signal (DNA–UTS).

Scalable DPGA architecture
In a typical design for a scalable DPGA architecture enabled by DNA–
UTS, a task circuit that could not be implemented with one DPGA

https://doi.org/10.1038/s41586-023-06484-9

Received: 9 September 2021

Accepted: 26 July 2023

Published online: 13 September 2023

 Check for updates

1School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine,
Shanghai Jiao Tong University, Shanghai, China. 2Zhangjiang Laboratory, Shanghai, China. 3Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China.
4Xiangfu Laboratory, Jiashan, China. 5The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences,
Shanghai, China. 6Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China. 7Institute of Molecular Medicine, Shanghai Key Laboratory
for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. ✉e-mail: wangfeu@sjtu.edu.cn; fanchunhai@sjtu.edu.cn

https://doi.org/10.1038/s41586-023-06484-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06484-9&domain=pdf
mailto:wangfeu@sjtu.edu.cn
mailto:fanchunhai@sjtu.edu.cn

Nature | Vol 622 | 12 October 2023 | 293

was divided into subcircuits, each mapped to and executed by one
DPGA (Fig. 1). As a mimic of electronic integrated circuit instruc-
tions, we established a molecular instruction set with approximately
1,000 instructions (over 2,000 oligonucleotides) that defines all legal
wires on DPGAs. Molecular instructions for each subcircuit were mixed
with involved computing units, forming a unique routing pattern that
implements the function of the subcircuit. Twenty-four addressable
logic gates of four types (AND, OR, NOT and XOR) were designed as
computing units, the combination of which constituted a complete
set of Boolean functions (Supplementary Fig. 2), offering high pro-
gramming space on single DPGAs (Supplementary Text 6.2). The
operation of DPGAs was based on receiving and sending DNA–UTS
between gates and DPGAs along a programme-configured pathway.
To avoid inter-DPGA crosstalk we further designed a DNA origami
register to direct asynchronous computing processing of cascade
DPGAs. Analogous to its electronic counterpart, intermediate values
calculated from an upstream DPGA were written to the DNA origami
register via DNA strand displacement, which were then transmitted
to a downstream DPGA.

In this design, dual-rail logic gates characteristic of dual-rail input/
output ports, which allow two DNA strands representing high and low
signals to pass through simultaneously (Fig. 2a and Extended Data
Fig. 3), were adopted to realize DPGAs. The uniformity of molecular
design for input/output ports of all gates allowed arbitrary routing
and integration of DPGAs, which was based on the given logic function
followed by formulaic generation of corresponding DNA sequences
(Supplementary Text 3.3 and 3.4). For example, a dual-rail AND gate
was implemented by two hybridized DNA molecules with three specific
domains that functioned as switches: one domain (blue) responded to
low signal of either input whereas two-series ones (yellow) responded
to high signal for each input port, respectively (Fig. 2b). During imple-
mentation of DPGAs, the input of DNA strands triggered strand dis-
placement reactions (SDRs)30 to realize logic functions (Extended Data
Fig. 4). Configuration of DPGAs was realized by addressing and connect-
ing the required gates for a target circuit. Under these circumstances
a configured DPGA could be abstracted as a higher-level computing

unit, in which input ports for logic gates at the input layer and output
ports for logic gates at the output layer function as DPGA-level input
and output ports, respectively (Fig. 2a).

Sequential SDRs were used to realize series switches, in which the
first input (in2H) hybridized with ‘S3’, which displaced ‘S5’ to expose the
toehold for in1H; in1H then hybridized and released ‘S4’, which acted as
the output (Fig. 2c). We optimized the molecular design structurally
and found that a gapped structure formed by S3, S4 and S5 with one
unpaired base in S3 could suppress the leak reaction pathway and also
allow a high computing speed (Fig. 2d,e, Extended Data Fig. 5 and Sup-
plementary Text 4.1).

We first tested individual dual-rail gates, the function of which lays
the foundation for DPGA programming. Both normalized high (outH)-
and low (outL)-output signals generated the correct results, which
were consistent with the truth tables within 20 min for all four types
of gate (Fig. 2f and Supplementary Fig. 25), showing that the 1 nt gap
design provided higher computing speed than, and comparable leak-
age to, previously reported SDR-based AND gates in large-scale DICs6,31.
Importantly, even without any purification following strand annealing
(Supplementary Figs. 21–23), we observed very low leakage (below 0.1)
for all gates, which reflects the fault tolerance of DPGA. To interpret the
outcome of one given execution, the dual-rail result was defined by the
difference between outH and outL (dual-rail result, (outH – outL + 1)/2).
The conversion map from outH and outL to dual-rail result is shown in
Fig. 2g. In particular, the dual-rail results of the AND gate under all four
input combinations fell within the correct ON and OFF state regions.
Measurements of all types of dual-rail gate showed dual-rail results
lower than 0.2 for all logical FALSE conditions and values higher than
0.8 for all TRUE conditions (Fig. 2h).

Having demonstrated the programmability within single gates,
we next explored whether DNA–UTS could wire intergate and
inter-DPGA transmission to implement computing circuits. For
intergate transmission within single DPGAs, input values that enter
a configured circuit via input ports are processed to generate out-
put values transmitting to output ports for readout. Three types of
wire—input port-to-gate, gate-to-gate and gate-to-output port—are

Write

Retrieve

DNA origami register

Output

Storage unit

AND
09

AND
07

AND
06

NOT
14

NOT
12

NOT
13

NOT
15

OR
01

OR
00

OR
02

OR
03

AND
08

XOR
18

XOR
20

XOR
19

XOR
21

...

...

...

...

Output

Inputs

Task circuit

Molecular instructions

+

Algorithm decomposition

Addressing Routing

Subcircuit
1

Subcircuit
2

Intermediate
output

Inter-DPGA routing

DPGA

Computing unit

DNA–UTS

DNA–UTS

Subcircuit
1

Subcircuit
2

01

07 15

03

21

02

03

08

09

09

Fig. 1 | Schematic workflow of DPGA programming. A complex task circuit
beyond the capability of a single DPGA was divided into subcircuits, for which
molecular instructions were generated. Involved computing units of each
subcircuit, as shown by the logical arrangement in the scheme, were called by

their logical address and the function was implemented via intra-DPGA routing
with molecular instructions. The transmission of intermediate output between
subcircuits was realized via DNA origami register-mediated inter-DPGA
routing.

294 | Nature | Vol 622 | 12 October 2023

Article

thus required for programming of DPGAs to carry out a calculation
(Fig. 3a). We established a molecular instruction set that defines all
legal wires on DPGAs, containing three types of wiring instructions:
type 1 instruction (WIR1) conducts an input to a gate; type 2 instruc-
tion (WIR2) conducts an output signal from an upstream gate to an
input port of a downstream gate; and type 3 instruction (WIR3) con-
ducts an output signal from a gate to an output port of DPGAs (Fig. 3b
and Supplementary Text 2.1). All legal wires can be synthesized and
assembled beforehand, allowing programming of the DPGA with the

addition of the corresponding wires. WIR1 was implemented with
an ssDNA input that entered an entry gate. Following execution of
this gate, the resulting DNA–UTS as the output was transmitted to a
downstream gate via WIR2, which was implemented with ten ssDNA
strands (Fig. 3b). We designed noise thresholds and signal amplifiers
for molecular implementations of wiring instructions (Supplementary
Text 2.2 and Extended Data Fig. 6) to suppress signal decay during
transmission along the reaction pathway that potentially limits the
depth of DICs27,32.

+

+

Desired reaction

Leak reaction

b

d

c

a

S2

S1
Dual-rail AND

in1L → outL

in2L → outL

in1H + in2H → outH

S5S4

S3

S5S4

S3

Inner function DNA implementationInput port Output port

Inputs

in1

in2 Output
out

Computing unit

in1H

in1H

in1H

in1H

in2H

in2H

in2H

outH
outH

outH

outH

outL
outL

in1L
inL

in2L

Switching scheme

1 nt gap

S5S4

S3

2

4

6

8

10

12

14

16

D
is

ta
nc

e
(n

m
)

6,500 7,000 7,500

0 nt gap

Time (ns)

6,500 7,000 7,500

1 nt gap

Time (ns)

0 400 800 1,200

d1 d2 d3

2 nt gap

Time (ns)

e

Inputs
Outputs

in1

in2

in3

in4

out1

out2

Input port
Output port

AND

09Logical addr:

DPGA

Gate type:

S5

S4 S3

Hydrogen
bond

d1d2
d3

in1H

Time (min)

f

ou
t L

1.0

0.8

0.6

0.4

0.2

0

0

0.2

0.4

0.6

0.8

1.0

 00

 01

 10

 11

g

outH

O
N

O
FF

U
nd

e�
ne

d

0 5 10 20

Fl
uo

re
sc

en
ce

 in
te

ns
ity

outLoutH

15 1.00.80.60.40.20

2

outH+1 – outL
Dual-rail result = h

outH

1.00.80.60.40.20

ou
t L

1.0

0.8

0.6

0.4

0.2

0

AND
09

NOT
15

OR
03

XOR
20

XOR
21

0

0

0.2

0.4

0.6

0.8

1.01.0

0.8

0.6

0.4

0.2

0

0.8 1.0

0.8

1.0
00

10

11

XOR

OR

NOT

AND

01

Und
e�

ne
d st

at
e

Und
e�

ne
d st

at
e

ON st
at

e

OFF
 st

at
e

ONOFF Unde�ned

00

01

11

10

00

01

11

10

Fig. 2 | Uniform dual-rail computing units with logic-gated DNA–UTS
transmission. a, Computing units in DPGAs, shown by their logical
arrangement, possess uniform input/output interfaces with packaged internal
implementation for required logic functions. Of note, a configured DPGA
functions as a higher-level integrable computing unit with input/output
interfaces similar to a logic gate. b, Modular and automated molecular
implementation of computing units. For a dual-rail AND gate, the switching
scheme was generated according to the required logic function and then DNA
molecules comprising the corresponding molecular switches were generated.
c, SDRs for series switches and potential leak pathway. d, A gapped S3/S4/S5
structure with a 1 nt gap was employed for the realization of series switches to
optimize both computing speed and signal leakage. e, Molecular dynamics
simulations for the leak reaction pathway in c with 0, 1 or 2 nt gaps showing that

a 1 nt gap could effectively suppress leak reaction similar to the 0 nt gap.
f, Experimental measurement of kinetics for a dual-rail AND gate with all four
possible input combinations. g, Relationship between dual-rail result and two
output signals. Regions within green dashed lines represent correct outputs
for both outH and outL, which lead to the correct dual-rail result (below 0.4 or
above 0.6). Regions between red and green dashed lines represent one correct
output and another undefined or wrong; dual-rail results can still show the
correct value. Dual-rail results for the AND gate showing that all four input
combinations fell within the correct regions. h, All four types of dual-rail
computing unit generated correct high- and low-output signals. Edge colour
indicates input combination, marker shape indicates gate type and face colour
indicates the obtained dual-rail result.

Nature | Vol 622 | 12 October 2023 | 295

Signal transduction of WIR2 was realized via SDRs. The exhibition of
a steep ramp suggested that we could effectively suppress leaked signal
(below 0.4) to approach 0 and amplify genuine output (above 0.6) to

approach 1 (Fig. 3d). Similarly, WIR3 was implemented with ten DNA
strands to transduce signals via SDRs (Supplementary Fig. 4). Cascaded
gates with increased layers were challenged to test the cooperation of

i

a

b

ed

c

f g

h

DPGA1 DPGA2

DPGA3

WIR4(1,3,00,00)

00

01

02
0203

00

01

00

01

02

03

00

00

01

02

00 out

Time

in1

in1

in2

in3

in4

ou1

ou2

00

01

02

03

00

00

01

02

03

DPGA

Input port

Output port

WIR1

WIR2

WIR3Computing unitXOR
22

WIR2 (07,09,2)
AND
09

AND
07

OR
03 WIR3 (ou1,03,00)

XOR
18WIR1 (in1,18,1)

WIR4 (1,2,01,00)

s

DPGA1

DPGA1

DPGA2

DPGA2

DPGA310 0

1 00 11

in12

11

outL

Biotin

Retrieval

0 nm

7.5 nm

DNA origami

Streptavidin

+

–

+

–

Th
WIR2

01

00

01

10

11

outL

outL

outH

outH

outL
outH

DNA origami

Retrieval

Write Read

07.out 09.in-2

Ampli�er

+
–

+

–

Threshold

S5
S6

S7S2

S1

S9

S10

S8
S4

S3

WIR2 (07,09,2)

out_upL

in_downL

fuelL

Fast

Slow

a
b
c
1

s

Time (min)

Fl
uo

re
sc

en
ce

 in
te

ns
ity

Fl
uo

re
sc

en
ce

 in
te

ns
ity

Fl
uo

re
sc

en
ce

 in
te

ns
ity

01

0 6030
s 1 1 1 11 0 1 1

0

0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0

1 0 1 0 1 0 1

a

b

c
0

0.2

0.4

0.6

0.8

1.0

[in
_d

ow
n H

] (
n.

u.
)

[out_upH] (n.u.)

0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1.0

0.4

1.0

0

0.6

0.2

0.8

0 321
Time (h)

in12 = 0

0.4

1.0

0

0.6

0.2

0.8

0 321
Time (h)

in12 = 1
 1

 1

 2

 2

 3

 3

 4

 4

 5

 5

 6

 6

0.4

1.0

0

0.6

0.2

0.8

Circuit layer
0 642 12108

D
ua

l-
ra

il
re

su
lts

in12 = 0
in12 = 0
(with WIR4)

in12 = 1
in12 = 1
(with WIR4)

AND
09

AND
07

AND
06

AND
10

AND
11

NOT
14

NOT
12

NOT
13

NOT
17

NOT
15

NOT
16

OR
01

OR
00

OR
02

OR
04

OR
03

OR
05

AND
08

XOR
18

XOR
20

XOR
19

XOR
21

XOR
22

XOR
23

09
AND

14
NOT

00
OR

21
XOR

06
AND

08
AND

09
AND

12
NOT

18
XOR

19
XOR

05
OR

Origami register

03
OR

11
AND

07
AND

10
AND

Fig. 3 | Intra- and inter-DPGA transmission mediated by wiring
instructions. a, A DPGA contains 24 dual-rail logic gates (six each of OR, AND,
NOT and XOR, shown by the logical arrangement) as computing units, in which
intra-DPGA programming is realized using three types of wiring instruction
(WIR1, WIR2 and WIR3). Cascaded DPGAs asynchronously operate with signal
transmission mediated by WIR4s. b, Schematic illustration and molecular
implementation of WIR2. WIR2 contains two functional modules: a threshold
that filters out noise and a converter and amplifier that convert and restore
signal to a fixed level. Two DNA–UTSs were transmitted in parallel through high
and low channels via SDRs. Orange-bordered box shows the DNA–UTS
transmission process through the low channel. Dashed lines indicate the
upstream binding region. c, A WIR4 contains a DNA origami register and a WIR2
to wire two configured DPGAs. Dashed box shows SDRs of the write and read

processes for the DNA origami register. d, Transduction performance of a WIR2
showing nonlinear response in which output lower than 0.4 was suppressed by
threshold and that higher than 0.6 was amplified toward 1. n.u., normalized
units. e, Circuit diagram (left) and computing kinetics (right) of a four-layered
circuit involving WIR1s, WIR2s and WIR3s. f, Atomic force microscopy (AFM)
images showing temporal storage and readout of an output signal with a DNA
origami register. Scale bar, 100 nm. g, Circuit diagram of a cascade circuit
containing 11 layers of dual-rail gates, which was divided and implemented by
three configured DPGAs. h, Computing kinetics of one- to six-layer subcircuits
implemented by a single DPGA without WIR4, with input 0 (left) and 1 (right) for
gate 12, respectively. i, Dual-rail results of the cascade circuit showing decayed
performance when implemented by one DPGA and maintained performance
when it was implemented by three DPGAs connected by WIR4s.

296 | Nature | Vol 622 | 12 October 2023

Article

type 1, 2 and 3 wiring instructions (Fig. 3e and Supplementary Figs. 28–31).
Low- and high-output signals for all input combinations went to the
correct states within 1 h. Dual-rail results were higher than 0.8 for those

supposed to be 1 and lower than 0.2 for those supposed to be 0. Hence
we established that programmable and reliable intra-DPGA DNA–UTS
transmission could be realized with a subset of wiring instructions.

a b

d

i

a1
+

–

a0

b0
b1

s = comp(a,b)

s1
s0

a > b
a = b
a < b s = 00

s = 01
s = 10

s1
s0

s2
ADD

a1
a0

b1
b0

s = add(a,b)

s1

s0

a1

a0

b1

b0

Routing

WIR1 (a1,07,0)

WIR1 (a1,09,0)

WIR1 (a0,06,0)

WIR2 (06,10,0)

WIR2 (06,12,0)

WIR2 (09,10,1)

WIR3 (s2,11,02)

WIR3 (s3,10,03)

.

.

.

.

.

.

Function:
s = a × b

Wiring

instructions

a1
a0

b0
b1 s1

s0

s3
s2

MUL

DPGA
compiler

c

e

15

s0

s1

s2

s3

a1

a0

b1

b0

f

1.0

0

0.8

s1 s0s3 s2

R
es

ul
t

a
b

00
00

00 00 00
01

01 01 01 01
10

10 10 10 10
11 00 01 10 11 00 01 10 11 00 01 10 11

11 11 11 11

g h

outH

ou
t L

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

0

0.1

0.2

0.3

0.4

0.5

Warning
Und

e�
ne

d st
at

e

D
ev

ia
tio

n
fr

om
 id

ea
l

D
yn

am
ic

 r
an

ge

VP angle

1
2
3
4
6
7
8
11

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0 No. of gates

 0.2 0.4 0.6 0.8

Dynamic range BetterWorse

 1.00

Similiarity to intended
results

Same
D

ifferent

30

60

90

0

Ideal vector

Results vector

VP angle

DPGA

OR
01

OR
02

OR
04

OR
03

OR
05

AND
06

NOT
12

XOR
18

OR
00

AND
09

AND
07

AND
10

AND
11

NOT
14

NOT
13

NOT
17

NOT NOT
16

AND
08

XOR
20

XOR
19

XOR
21

XOR
22

XOR
23

s1

s0

s2

a1

a0

b1

b0

AND
09

AND
07

OR
01

AND
08

XOR
19

XOR
20

XOR
21

AND
09

AND
07

OR
00

NOT
12

NOT
13

NOT
15

NOT
14

AND
06

AND
08

XOR
18

XOR
19

D
R

(s
0)

 =
 0

.8
3

D
R

(s
1)

 =
 0

.5
3

D
R

(s
2)

 =
 0

.5
6

D
R

(s
3)

 =
 0

.7
0

0.2

0.4

0.6

1.0

0

0.8

R
es

ul
t

0.2

0.4

0.6

a
b

00
00

00 00 00
01

01 01 01 01
10

10 10 10 10
11 00 01 10 11 00 01 10 11 00 01 10 11

11 11 11 11

s1 s0s2

1.0

0

0.8

R
es

ul
t

0.2

0.4

0.6

a
b

00
00

00 00 00
01

01 01 01 01
10

10 10 10 10
11 00 01 10 11 00 01 10 11 00 01 10 11

11 11 11 11

s1 s0

Fig. 4 | DPGA reconfiguration for multitask operation. a, Workflow for
programming an exemplary function using the DPGA compiler. The function
s = a × b (s represents the product of a and b that needs to be computed) was
input into the DPGA compiler. The compiler then parsed the command and
generated wiring instructions, as shown in the red box, to configure DPGA.
The molecular components of each instruction were automatically generated
with a custom-written software. Experimental implementation of DPGA
programming was achieved by mixing DNA strands representing these instructions
and the involved logic gates. b, Computing results of two-bit multiplication.
c, Schematic diagram and equivalent logic gate-level layout in DPGA for a
two-bit adder circuit that receives two two-bit inputs and calculates their sum
to generate a three-bit result. d, Computing results of the adder circuit for all
possible input combinations. e, Schematic diagram and equivalent logic

gate-level layout in DPGA for a two-bit comparison circuit generates three
possible outputs: s = 0 when a is lower than b; s = 1 when a = b; and s = 2 when a is
greater than b. f, Computing results of the comparison circuit for all possible
input combinations. g, Vector proximity (VP) angle for each circuit is plotted
versus the corresponding dynamic range; n = 103 (circuit information provided
in Supplementary Table 6). Inset, scheme illustration of dynamic range and
vector proximity angle for quantifying the performance of an implemented
circuit (see Supplementary Fig. 61 for details). h, Scatter plot of dynamic
ranges and vector proximity angles based on circuit size. i, Scatter plot of
792 computing results showing that all dual-rail results fell within the correct
region, with nine of them corrected from an undefined state for outH or outL
under binarization rules.

Nature | Vol 622 | 12 October 2023 | 297

n1 n0n2

d

i = 7

i + 1
or
1

Condition circuit Processing circuit

Input date i

Input date i

c N
ex

t
d

ay

1 2 3 4 5 6 7

State machine: what day is the next day?

DPGA2

√ 0 = 0 5 = 2.2√ 6 = 2.4√ 8 = 2.8√7 = 2.6√1 = 1.0√ 2 = 1.4√ 3 = 1.7√ 4 = 2.0√ 9 = 3.0√

c

i0

i1

i2

i0

i1

i2

n0

n1

n2

00

00

01

10

11DPGA1

f

a b c

e

C
om

p
ut

in
g

re
su

lts

C
om

p
ut

in
g

re
su

lts

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

√

r = √a

r0

r1

r0

r1

r–1
r–2
r–3
r–4

r0r1 r–1r–2r–3r–4
√ a3 a2 a1 a0. =

r1r0 r–1r–2r–3r–4.

a3

a2

a1

a0

Ones Tenths r–1

r–2 r–3

r–4

a3

a2

a1

a0

a3

a2

a1

a0

a3

a2

a1

a0

DPGA2 DPGA3DPGA1

DPGA1

DPGA2

DPGA3

D
at

a

Instructions

j

k

02

signx

signc

x0

x1

x2 – bx + c=0

x = (b + sqrt(b2 – 4c))/2

b1

b0

b0

r1

r0

s3

s3

s2

s2

s1

s0

Signed b Signed c

Signed x

DPGA1 DPGA2

Origami
register 1

Origami
register 2

Instructions

0

5

10

15

20 Via WIR4
Direct input

First layer Second layer Third layer

V
P

 a
ng

le
In

te
ns

ity
 (n

.u
.)

0

0.2

0.4

0.6

0.8

1.0

signx

x0

x1

x2 + x – 2 = 0

0 40 80 120 160 200 240
Time (min)

In
te

ns
ity

 (n
.u

.)
0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160 200 240
Time (min)

signx

x0

x1

x2 – 3x = 0

g

h i

signx

x0

x1

b1

b1

b1

r1

r1

r1

r0

r0

DPGA3

DPGA4

DPGA5

signb

signb

signb

s
r

AND
09

AND
09

NOT
14

NOT
14

AND
06

OR
01

OR
02

AND
10

XOR
21

XOR
20

c1

c0

0

O
ut

p
ut

OR
05

AND
08

NOT
14

OR
01

OR
00

AND
09

NOT
14

AND
11

AND
07

AND
07

AND
06

NOT
12

NOT
13

NOT
14

OR
00

OR
00

AND
09

AND
09

AND
08

NOT
13

OR
02

b2 – 4c sqrt()

(r + b)/2–1

(r + b)/2–2

(r + b)/2–3

In
p

ut
s

AND
06

AND
08

NOT
12

AND
08

XOR
19

OR
00

XOR
18

OR
01

OR
02

AND
06

AND
09

AND
10

AND
11

NOT
13

NOT
12

NOT
14

XOR
18

AND
08

OR
05

OR
01

AND
08

NOT
14

OR
00

AND
09

AND
09

NOT
14

AND
06

Fig. 5 | Computing circuits implemented by multiple DPGAs. a, Schematic
for a fixed-point square-rooting circuit. A one-digit decimal input (0–9) is
represented by four binary digits. The integer digit of output is represented by
two bits and the decimal digit by four bits. b, DPGA-level circuit diagram of the
square-rooting circuit. c, Logic gate-level layouts of the three paralleled
DPGAs. d, Computing results for all ten valid inputs. e, DPGA-level circuit
diagram of a conditional branching algorithm with two cascaded DPGAs. The
upstream DPGA1 executes the condition circuit to determine whether input
equals 7 by generating an intermediate output c. The downstream DPGA2

performs adding-one or setting-one operation based on the received signal
c from DPGA1. f, The equivalent logic gate-level layouts. g, Final computing
results for all valid input combinations. h, An equation-solving circuit that
calculates the larger root of a quadratic equation. The root formula for this
equation was divided into five parts with each assigned to one DPGA.
i, Computing kinetics of DPGAs on the third layer when solving equation
x2 – 3x = 0. j, Computing kinetics of DPGAs on the third layer when solving
equation x2 + x – 2 = 0. k, Comparison of VP angles obtained from DPGAs in the
network wired by WIR4s and that run individually.

298 | Nature | Vol 622 | 12 October 2023

Article
For inter-DPGA wiring we adopted a fourth type of wiring instructions

(WIR4s) to realize inter-DPGA DNA–UTS transmission—that is, output
signals from upstream DPGA1 were transmitted to downstream DPGA2.
To suppress inter-DPGA crosstalk and signal attenuation, each WIR4 was
implemented in a signal relay-like manner with a DNA origami register
followed by a WIR2 (Fig. 3c). The spatial confinement and addressability
of DNA origami33,34 controls the intrinsic stochasticity of molecular
interactions in solution. In a typical WIR4 the DNA origami register
temporally stores the outputs from DPGA1, then a downstream WIR2
transmits the output to the entry gate of DPGA2, providing the direc-
tionality for asynchronous execution of cascaded DPGAs. Output signal
was written onto DNA origami via SDR that was mediated by the exposed
toehold (5 nt), which was read out by a retrieval strand with a longer
toehold (7 nt) at the opposite end and was confirmed both visually
(Fig. 3f and Supplementary Text 5.8) and quantitively (Supplementary
Figs. 44 and 45). Asynchrony was realized by isolation of DNA origami
after capturing the output from the upstream DPGA and releasing
the stored signal to the downstream DPGA (Supplementary Fig. 6).
Importantly, we found that the use of WIR4s effectively improved circuit
depth as illustrated by the performance of an 11-layer circuit consisting
of 11 dual-rail gates with different addresses (Fig. 3g–i).

Thus, we reason that the use of DNA origami registers for physical
separation of DPGAs restricts transient binding between unmatched
DNA strands, which greatly attenuates signal decay at enlarged circuit
sizes. In addition, WIR4 facilitates reaction kinetics by dividing a long
reaction pathway into shorter ones, which shortens time delay in a
signal relay-like manner. Given that signal decay is dependent on the
length of the reaction pathway, the use of WIR4 improves the depth
scalability of DICs.

Multitask reconfiguration
Having established DPGA wiring with DNA–UTS, we next explored the
reconfiguration of DPGAs for multitask operations. We developed
a compiler to convert a programme in natural language or Boolean
expressions to a subset of wiring instructions (Extended Data Fig. 7 and
Supplementary Text 7). By taking the two-bit multiplying function as
an example, we compiled the programme to a group of wiring instruc-
tions that called eight dual-rail gates with eight WIR1s, six WIR2s and
four WIR3s (Fig. 4a). The routing pattern of DPGA is shown in Fig. 4a.
We successfully tested this multiplying circuit on all 16 possible inputs
with correct computing results (Fig. 4b and Supplementary Fig. 37).
Dynamic range, defined by the difference between the highest OFF state
value and the lowest ON state value, was used to quantify the ON/OFF
contrast of computing results (Supplementary Fig. 64c). Of note, all
four outputs showed dynamic ranges over 0.5 (Fig. 4b), suggesting that
the multiplying circuit operated correctly with high ON/OFF contrast.

To evaluate the generality and robustness of multitask reconfigu-
ration of DPGAs with wiring instructions, we experimentally tested
103 circuits with 792 calculations by reconfiguring a single DPGA
(Supplementary Table 6), which implemented various basic circuit
structures including single gates, cascaded gates, fan-in and fan-out
of gates and complex functional circuits. The size of these DNA circuits
ranged from a single gate with 17 strands to 11 gates with more than
300 strands in one reaction. Addition is a basic operation for digital
computers. We implemented a two-bit addition algorithm by calling
seven gates on DPGA (Fig. 4c). Three output ports generated correct
results for all 16 cases (Fig. 4d). We also demonstrated the use of DPGAs
for implementation of comparison operations that are popularly used
in logical statements to determine equality or difference between vari-
ables (Fig. 4e). A two-bit comparison function computing the numeric
comparison between variables a and b was implemented with a cir-
cuit involving 11 dual-rail gates on a DPGA, which were correctly per-
formed for every possible pairing of a and b (Fig. 4f). Importantly, we
observed correct computing results for all 792 calculations within 2 h

of reactions (Supplementary Fig. 64b). By examining the robustness
of DPGA reconfiguration using dynamic range and vector proximity
when executing diverse functions, we demonstrate the realization of
reliable computing of DICs even with the involvement of 11 dual-rail
gates (Fig. 4g–i and Supplementary Text 6.1). By taking the circuit size
of 11 gates as a practical upper limit, we estimated that the program-
ming space of single DPGAs would reach 100 billion unique patterns
for tree-structured circuits, at least two orders of magnitude higher
than existing approaches (under 100,000 for MAYA-III22 and roughly
1 billion for IBC23; Supplementary Text 6.2).

To evaluate the capability of error-free computing with single-DPGA
programming, we further inspected the distribution of generated
results from 792 experiments. Although 2% of outH and outL fell within
undefined states (0.4 below outH, outL under 0.6), all dual-rail results
led to correct Boolean values based on binarization rules (Fig. 4i).
Therefore, the circuits exhibited a high level of noise tolerance with
dual-rail gates. We demonstrated large-scale computing for circuits
containing up to 300 DNA strands in one tube, with a high DNA concen-
tration (1× = 100 nM), and with all hybridized strands directly used (after
annealing) without further purification. We reason that the combina-
tion of sequential displacement reactions with the thresholding and
amplification in configured DPGAs contributes to improved scalability
of DICs in a single reaction (Supplementary Fig. 63).

Parallel and serial integration of DPGAs
Given the modular nature of DPGAs, we further tested whether recon-
figurable DPGAs could be integrated into larger-scale circuits for practi-
cally accessible computing capability. In principle, algorithms that are
divisible into independent parts could be implemented with parallel
DPGA circuits. As a proof of concept, we employed three differently
configured entities of DPGAs in parallel to operate the square-rooting
function to one decimal digit (Fig. 5a,b). In this algorithm, one decimal
digit was represented by four bits using binary-coded decimal code. The
square root r was represented by fixed-point binary, the integer digit by
two bits and the decimal digit by four bits. The circuit was divided and
implemented with three parallel configured DPGAs (Fig. 5c). We found
that the whole DPGA circuit computed the results in under 2 h for all
experiments (Fig. 5d and Supplementary Fig. 41). Of note, 21 dual-rail
gates with over 300 DNA strands were involved in this DPGA circuit, in
which the largest subcircuit contained 130 strands.

Because DPGAs can be integrated with WIR4s, configured DPGAs
could be serially assembled to implement high-depth circuits. To
demonstrate this we implemented a finite-state machine via condi-
tional branching (Fig. 5e). Days of the week from Monday to Sunday
were assigned numbers 1–7. The state machine computing the number
representing the next day was implemented by two cascaded DPGAs,
with one as condition circuit to decide whether the input was 7 and the
other as processing circuit (Fig. 5f). Signal transmission through WIR4
was performed using polyethylene glycol (PEG) precipitation-based
origami purification and magnetic field-mediated isolation (Supple-
mentary Figs. 51 and 52). Both approaches resulted in correct comput-
ing results with nearly identical performance under all seven input
combinations (Fig. 5g and Supplementary Fig. 52), suggesting that the
scalability of DPGA is intrinsic and also independent of the solution
transfer methodology. Thus, the potential for parallelly and serially
connecting DPGAs paves the way for the construction of DPGA net-
works to implement complex algorithms including arbitrary digital
operations.

The modular design of DPGAs allows the integration of multiple
DPGAs into a network. We next developed a DPGA network to solve
quadratic equations with the expression x2 – bx + c = 0, where b
and c are two-bit integers (Fig. 5h). The larger of the solutions x
can be calculated by the root formula for quadratic equations:
x b b c= (+ (− 4))/22 . This algorithm was implemented with an

Nature | Vol 622 | 12 October 2023 | 299

11-layered DIC containing 30 dual-rail gates. In our design, the circuit
was divided and mapped to a network with five cascaded DPGA, where
intermediate values s = b2−4c and r = √s. The function was confirmed
experimentally with two functions: x2 – 3x = 0 and x2 + x – 2 = 0 (Fig. 5i,j).
Comparing WIR4-mediated DPGA networks and individual DPGAs with
directly added ideal input we found that, in the presence of WIR4s,
downstream DPGAs maintained little deviation from ideal values
despite roughly threefold reduction in operating speed (Fig. 5k and
Extended Data Fig. 9). Hence the development of DPGA networks, albeit
at the cost of time consumption, holds the potential for implementa-
tion of large-scale integration circuits for high-complexity operation.

DPGA-based nonlinear classifier
Molecular circuits have been developed for identification of disease-
associated biomarkers15,16, but are generally linear and thus limited
when processing information from multiple biomarkers that may not
always be linearly separable. We sought to address this problem by
exploiting the high integrability of DPGA to construct a nonlinear clas-
sifier. We targeted a cancer classifier based on miRNA expression levels
and used training on miRNA expression data for kidney renal clear cell
carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) to develop
a decision tree circuit with three miRNA inputs of mir-200c, mir-204
and mir-887 (Fig. 6a and Supplementary Text 5.12). The classifier was
implemented by integration of DPGA and analog-to-digital convert-
ers (ADCs) (Fig. 6b), the latter converting an analog single-rail miRNA

signal to a dual-rail DNA–UTS that could then be further processed by
DPGAs (Fig. 6c). The DNA signals generated by ADCs were transmitted
to DPGA via WIR4s. Using mir-204 as a model, we verified the testing
of ADC conversion (Fig. 6d,e).

In experimental tests of the nonlinear classifier using synthetic
miRNA molecules (18 KIRC and 5 healthy samples, represented by
coloured dots in Fig. 6f), after receiving DNA–UTS from ADCs, DPGA
computed correct outH and outL in 2 h for 23 tested samples (Fig. 6g
and Extended Data Fig. 10). Analysis of the dual-rail output of the
classifier showed agreement between the molecular computation,
model prediction and actual disease states labelled in TCGA (Fig. 6h).
Although these classifier tests involved synthetic miRNA in Tris-EDTA
(TE) buffer, experiments could also be run with DPGA in cell culture
(Supplementary Fig. 61) and with ADC receiving miRNA signals from
the serum-containing solution (Supplementary Fig. 62), suggesting
that it should be possible to interface DPGAs directly with cells and
body fluids. Because the programmability and scalability of DPGAs
allow them to be coupled with diverse types of ADC, we anticipate that
integrated DPGAs will be able to process information from biomark-
ers beyond miRNAs and might prove useful for clinical and diagnostic
applications.

Discussion
Our generic DNA computing system achieves effective signal trans-
mission in DPGAs through the use of DNA–UTS, which functions like

f

g

h

mir-200c

mir-204

mir-887

Classi�er
result

mir-200c ≤ 9.10

mir-204 ≤ 6.16

mir-887 ≤ 2.84

Yes

Yes

Yes

No

No

No

Healthy

Healthy

KIRC

KIRC

miRNA out H out L

1×

1×
2×

2×

th×

Fast

Slow

DPGA

C
la

ss
i�

er
 r

es
ul

t

Sample number

a b

c
Analog single-rail input

Digital dual-rail output

ADC

O
ut

p
ut

0 1 2
Time (h)

0

0.5

1.0 Sample 13

0 1 2
Time (h)

0 1 2
Time (h)

Sample 3

outH

outL

Sample 21

th = 0.55

d e

0 5 10 15 20 25
0

0.5

1.0

Classi�er
result

0

0.2

0

0.4

0.6

0.8

1.0

0.5
00.20.40.61.0 0.81.0

0

0.2

0.4

0.6

0.8

1.0

m
ir-

20
4

mir-887

H
ea

lth
y

Healthy

K
IR

C

KIRC

3

13

21

0 1 2 3 4

1

In
te

ns
ity

 (a
.u

.)

Time (h)

[mir-204] = 0.12 [mir-204] = 0.86

0 1 2 3 4
0

Time (h) mir-204 input

D
ua

l-
ra

il
ou

tp
ut

0

0.4
0.6

1.0

0 0.2 0.4 0.6 0.8 1.0

KIRC class
Healthy class

ADC
(th = 0.66)

ADC
(th = 0.55)

ADC
(th = 0.51)

AND
10

OR
02

NOT
15

0.2

0.8

outH
outL

outH
outL

mir-200c

Fig. 6 | Nonlinear KIRC classification using integrated DPGAs. a, An in
silico-trained nonlinear classifier model using three miRNAs as input. b, Circuit
diagram of the KIRC classifier. Single-rail RNA inputs were converted to
dual-rail DNA outputs via an ADC module. c, The SDR network of ADC. When
the miRNA level was above threshold, the excess was amplified and converted
to outH that served as the outcome of ADC. When the miRNA level was below
threshold, no outH was generated and outL was preserved to generate a low
signal. d, Verification of testing of the ADC conversion using mir-204 as a
model. Normalized outL and outH levels with two miRNA levels (0.12 and 0.86,
respectively) in the test set entered the ADC module with a threshold of 0.55.
e, Plot of input versus high- and low-output signals of ADC. OutL was generated
for input levels under 0.55 whereas outH was generated for input levels above

0.60. Only when the input level was 0.60, which is only slightly higher than
0.55, did outL and outH fail to reach the correct range throughout the test
duration. f, Visualization of the trained classifier model and experimental
results of 23 randomly selected cases from the test set. Yellow-bordered region
indicates the space for KIRC from in silico training. Coloured dots represent
experimentally tested cases from a test set with 119 cases (grey dots). Output
levels are represented by the corresponding colour in the colour bar to the
right. g, Computing the kinetics of DPGA for samples 3, 13 and 21, which
are marked by dashed circles in f. h, Testing of the KIRC classifier for all
23 randomized samples shows that molecular computing output is consistent
with model prediction and actual disease states in the TCGA database. a.u.,
arbitrary units; th, the concentration of threshold.

300 | Nature | Vol 622 | 12 October 2023

Article
electrons or photons in electronic/photonic integrated circuits. The
resultant programmable DIC, rather than simply implementing a spe-
cific algorithm, can execute large-scale computation paths with an
instruction set containing over 2,000 oligonucleotides and reach the
complexity threshold for general-purpose computing. Various applica-
tions, such as diagnosis based on nonlinear classification, can be readily
targeted by simply coupling DPGA with specific ADCs.

DPGA circuits can be programmably generated to execute various
functions (Extended Data Fig. 2). The programmability of DPGAs is
enabled by the use of dual-rail gates featuring uniform input/output
interfaces, which allows each gate to be addressed, analogous to that
in FPGA. Gates are connected via the address information in both DPGA
and FPGA. The sequence of wiring instructions is dependent on the
addresses of upstream/downstream gates, and also independent of
their logic functions. Also of note, the dual-rail gates in DPGA can
be called multiple times (for example, gate 09 was used five times in
the equation-solving circuit), allowing the circuit to be reconfigured
without the need for redesign of DNA sequences. The reusability of
circuits is functionally equivalent to the physical reorganization in
FPGA. As the computing units of DPGAs, the instructions of these
dual-rail gates are compatible with conventional compiling syntax,
offering great potential for software development of programmable
general-purpose DNA computers. In particular, because the sequences
for all logic gates are orthogonal, the DNA strands can be mass produced
via high-throughput DNA synthesis35 (Supplementary Fig. 29).

DNA origami registers that mediate signal transmission between spa-
tiotemporally separated circuits are the key to DPGA-level integration.
These can direct signal transmission in liquid-phase circuits to integrate
and mediate asynchronous execution of cascaded DPGAs, at the expense
of manual transmission of intermediate data. The use of DNA origami
registers greatly suppresses both the transient binding that limits circuit
size and the signal decay that limits circuit depth, thereby facilitating
higher-ordered integration of multilayer DPGAs and increasing the
programme complexity that can be realized. Large-scale integration of
DPGA networks with up to five cascade DPGAs, 30 logic gates and around
500 participating strands, for example, are equivalent to the achievable
circuit depth of 11 layers of logic gates and 30 steps of cascaded SDRs
(Extended Data Fig. 10) and break the current limit of programmable
DNA circuits (Supplementary Fig. 57). Although the DNA-based register
design requires manual intervention, it allows for the introduction of
all-DNA circuits with high complexity and scalability without having
the requirement for other biomolecular components (for example,
enzymes22, light/electronic transducers36 or microfluidics29).

We believe that the programmability and integrability of DICs can be
extended in several areas. First, our DPGA compiler provides a highly
generic and user-friendly interface for the development of DNA com-
puting, which can automatically compile target functions and generate
corresponding DNA instructions without previous knowledge of their
internal implementation. Second, the hierarchy of DPGAs combined
with data register could be transplanted to other molecular reaction
systems. For example, rather than using SDRs for molecular implemen-
tation, DNA-processing enzymes that can generate and degenerate
DNA strands provide new tools for implementation of feedback digital
circuits5. Third, the manual transfer currently required for inter-DPGA
transmission might be further automated—for example, by encapsula-
tion of each DPGA within a vesicular compartment29 or localization of
each DPGA on a DNA origami template27. The magnetic field-assisted
method is potentially integrable36 in a microfluidic system, and fully
automated execution of DICs might be possible by coupling DPGAs
with droplet-based microfluidics37.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,

acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-023-06484-9.

1. Burks, A. W. in A History of Computing in the Twentieth Century (ed. Metropolis, N.)
311–344 (Elsevier, 1980).

2. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
3. Chen, X. & Ellington, A. D. Shaping up nucleic acid computation. Curr. Opin. Biotechnol.

21, 392–400 (2010).
4. Li, J., Green, A. A., Yan, H. & Fan, C. Engineering nucleic acid structures for programmable

molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).
5. Benenson, Y. et al. Programmable and autonomous computing machine made of

biomolecules. Nature 414, 430–434 (2001).
6. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand

displacement cascades. Science 332, 1196–1201 (2011).
7. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic

circuits. Science 314, 1585–1588 (2006).
8. Wang, F. et al. Implementing digital computing with DNA-based switching circuits. Nat.

Commun. 11, 121 (2020).
9. Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).
10. Chao, J. et al. Solving mazes with single-molecule DNA navigators. Nat. Mater. 18,

273–279 (2019).
11. Cherry, K. M. & Qian, L. L. Scaling up molecular pattern recognition with DNA-based

winner-take-all neural networks. Nature 559, 370–376 (2018).
12. Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. Programmable autonomous

synthesis of single-stranded DNA. Nat. Chem. 10, 155–164 (2018).
13. Zhang, Y. et al. Selective transformations between nanoparticle superlattices via the

reprogramming of DNA-mediated interactions. Nat. Mater. 14, 840–847 (2015).
14. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted

transport of molecular payloads. Science 335, 831–834 (2012).
15. Lopez, R., Wang, R. & Seelig, G. A molecular multi-gene classifier for disease diagnostics.

Nat. Chem. 10, 746–754 (2018).
16. Zhang, C. et al. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol. 15,

709–715 (2020).
17. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube

transistors. Nature 572, 595–602 (2019).
18. Debnath, S. et al. Demonstration of a small programmable quantum computer with

atomic qubits. Nature 536, 63–66 (2016).
19. Athanas, P. M. & Silverman, H. F. Processor reconfiguration through instruction-set

metamorphosis. Computer 26, 11–18 (1993).
20. Ruiz-Rosero, J., Ramirez-Gonzalez, G. & Khanna, R. Field programmable gate array

applications—a scientometric review. Computation 7, 63 (2019).
21. Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat.

Rev. Genet. 13, 455–468 (2012).
22. Pei, R., Matamoros, E., Liu, M., Stefanovic, D. & Stojanovic, M. N. Training a molecular

automaton to play a game. Nat. Nanotechnol. 5, 773–777 (2010).
23. Woods, D. et al. Diverse and robust molecular algorithms using reprogrammable DNA

self-assembly. Nature 567, 366–372 (2019).
24. Rabaey, J. M. Digital Integrated Circuits: A Design Perspective (Prentice Hall, 1995).
25. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits.

Nature 583, 226–231 (2020).
26. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science

367, 464–468 (2020).
27. Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially localized

architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).
28. Bian, X., Zhang, Z., Xiong, Q., De Camilli, P. & Lin, C. A programmable DNA-origami

platform for studying lipid transfer between bilayers. Nat. Chem. Biol. 15, 830–837 (2019).
29. Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat.

Nanotechnol. 14, 369–378 (2019).
30. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold

exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).
31. Li, W., Zhang, F., Yan, H. & Liu, Y. DNA based arithmetic function: a half adder based on

DNA strand displacement. Nanoscale 8, 3775–3784 (2016).
32. Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using

strand-displacing polymerase. Nat. Nanotechnol. 14, 1075–1081 (2019).
33. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210

(2010).
34. Ke, Y. G., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Self-assembled water-soluble nucleic acid

probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).
35. Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87

(2017).
36. Lauback, S. et al. Real-time magnetic actuation of DNA nanodevices via modular

integration with stiff micro-levers. Nat. Commun. 9, 1446 (2018).
37. Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear biochemical

circuits. Nat. Chem. 8, 760–767 (2016).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2023

https://doi.org/10.1038/s41586-023-06484-9

Methods

Preparation of dual-rail gates and wiring instructions
DNA oligonucleotides were dissolved in 1× TE buffer (nuclease free,
pH 8.0, Sigma-Aldrich), quantified with ultraviolet/visible spectrom-
etry by monitoring their absorption at 260 nm and storage at −20 °C.
Oligonucleotides labelled with fluorescent dyes or quenchers were
dissolved in deionized water (Milli-Q) and stored in deionized water
at −20 °C. Single strands were hybridized to prepare correspond-
ing double-stranded DNA. To suppress potential leakage caused by
synthetic and quantification errors, we used a lower concentration
of strands for those destined for release. Hybridized structures were
prepared by mixing the required strands to the corresponding final
concentrations in TE buffer (1× TE: 40 mM Tris base, 20 mM acetic
acid, 2 mM EDTA adjusted to pH 8.0) with 12.5 mM MgCl2. The final
concentrations are shown in Supplementary Table 1.

Threshold and amplifier complexes of wiring instructions were pre-
pared by annealing separately at a concentration ratio of 1:1.2, the final
concentration being shown in Supplementary Table 2. Reporters were
prepared by mixing strands with quenchers and fluorophores, in which
the former was 50% excess of the latter to reach final concentrations of
15 and 10 μM, respectively. The buffer for all experiments and annealed
complexes was TE with 12.5 mM Mg2+. Mixed strands were annealed by
heating to 95 °C for 2 min, with slow cooling to room temperature at a
speed of 0.1 °C every 6 s before holding at 4 °C. Hybridized molecules
were stored at 4 °C for further use.

Fluorescence measurements for DNA reaction kinetics
A Synergy H1 Hybrid Multi-Mode Reader (BioTek) and a Corning
96-well black assay plate were employed to perform fluorescence
measurements. All calculations for a circuit were run in parallel on
the instrument. Fluorescence kinetics data were collected every 1 or
2 min, depending on the overall duration of the experiment. Excitation
(emission) wavelengths were 510 nm (540 nm) for dye TET and 640 nm
(670 nm) for dye Cy5. in general all circuit components, except input
strand(s), were mixed in TE buffer with 12.5 mM MgCl2. Experiments
were performed in the 96-well black assay plate (Corning) with a 98 μl
reaction mixture per well for all experiments. The initial value was
recorded as baseline. The experiment was then paused for the addition
of 2 μl of input strand(s) and subsequent mixing by shaking. The plate
was then replaced in the hybrid reader and the experiment resumed.
Experiments were performed at a standard concentration of 100 nM
(1×) for all gate and threshold complexes at a standard concentration
of 40 nM (0.4×) for individual OR, AND, NOT and XOR gates, two- and
three-layered circuits, fan-in and -out circuits, four-layered circuits
and threshold complexes at a standard concentration of 60 nM (0.6×)
for full-subtractor, two-bit multiplication, two-bit addition, two-bit
comparison operation and squaring-rooting operation. For amplifier
in wiring instructions, 2× hybridized molecules and 10× fuel were used.
For a dual-rail logic circuit, the output trajectories were read using two
distinct fluorophores—quencher pair TET-BHQ2 and Cy5-BHQ2—at
a standard concentration of 500 nM (5×). A standard concentration
of 200 nM (2×) for inputs was used. For each input combination we
simultaneously recorded the two fluorescence channels representing
high and low signal, respectively. Combining the output trajectories
from each pair of experiments into a single plot allows simultaneous
observation of outputs produced by different input combinations.
The temperature was maintained at 18 °C throughout the reaction.

Preparation and operation of DNA origami registers
According to Rothemund’s method38, 90 × 60 nm2 rectangular-shaped
DNA origami structures were assembled from the staple and
output-binding strands and M13m18 ssDNA (NEB). The positions and
sequences of the staple and output-binding strands are representd
by different colours in Supplementary Figs. 49, 54 and 55. In a 100 μl

system we used 50 nM staple strand, 100 nM output-binding strand
and 10 nM M13 ssDNA to form origami. DNA origami was annealed
and assembled in 1× Tris-acetate-DNA (TAE)-Mg2+ buffer (Tris 40 mM,
acetic acid 20 mM, EDTA 2 mM and magnesium acetate 12.5 mM,
pH 8.0) in a Thermocycler (Bio-Rad) with the following setup: incuba-
tion at 95 °C for 2 min, slow cooling to 60 °C at 12 s per 0.1 °C, incubation
at 60 °C for 12 min, slow cooling to 25 °C at 12 s per 0.1 °C then reten-
tion at 4 °C for up to 24 h. The assembled rectangular DNA origami
structures were separated from excess staple and output-binding
strands using PEG precipitation39. Briefly, DNA origami structures at
20 mM MgCl2 were mixed 1:1 (v/v) with a precipitation buffer containing
15% PEG8000 w/v (no. MW:8000, Sigma), 5 mM Tris, 1 mM EDTA and
505 mM NaCl. The solution was mixed in a 1.5 ml centrifuge tube and
spun at 12,000 rpm and 4 °C for 15 min in a centrifuge (Eppendorf). The
supernatant was removed by pipette. The precipitate was dissolved
in 20 μl of 1× TAE-Mg2+ buffer and incubated overnight at 40 °C and
400 rpm. The concentration of the purified rectangular DNA origami
was quantified with a microvolume ultraviolet-visible spectropho-
tometer (NanoDrop). We added a fivefold excess of block strands to
the origami with incubation for 2 h at room temperature, followed by
storage at 4 °C until further use.

To test the writing and reading efficiency of the DNA origami register,
the concentrations of free-state output were recorded with a TET-BHQ2
reporter. (1) The output strand (100 nM) was incubated with DNA
origami (10 nM), with one binding area containing 21 sites and a 500 nM
reporter for 2 h at room temperature. (2) The output strand was incu-
bated with DNA origami for 2 h, then 1 μM each of retrieval and reporter
were added with incubation for a further 2 h at room temperature.
(3) The output strand was incubated with reporter for 2 h. Fluorescence
intensity for each reaction was measured.

Execution of cascaded DPGAs
All circuit components of the upstream DPGA were mixed and incu-
bated for 2 h to complete the reaction. For PEG precipitation-based
transfer, the DNA origami register was added to a final concentration
of 10 nM with incubation for a further 1 h. The origami was then puri-
fied using PEG precipitation then quantified by NanoDrop and added
to the reaction system of the downstream DPGA to a final concentra-
tion of 10 nM. The corresponding WIR2s in WIR4 were also added and
incubated for 2 h, and then its output was transferred to the follow-
ing DPGA using the same signal transfer operations. For magnetic
field-mediated transfer, biotin-modified DNA origami registers were
incubated with Streptavidin-modified Magnetic Beads (New England
Biolabs, 4 mg ml–1) to form MB-origami registers. MB-origami register
was added to a final concentration of 10 nM following incubation of
upstream DPGA. After incubation for 1 h to write DPGA output to DNA
origami register, a magnetic field was applied and the upstream DPGA
solution removed. The retrieval strand was then added to retrieve the
stored output, which was transferred to the downstream DPGA reac-
tion system. After receiving output signals, the downstream DPGA was
incubated for 2 h and its output transferred to the following DPGA using
the same signal transfer operations. Reaction kinetics were recorded
with fluorescence reporters.

Execution and results of the 11-layered circuit
The 11-layer circuit, consisting of 11 dual-rail gates with different
addresses, facilitated either implementation of the circuit by one DPGA
or division into multiple DPGAs. First, we increased circuit depth from
left to right and performed each calculation in a single reaction system.
We found that, when circuit depth reached five layers, computing speed
dramatically slowed and the signal dropped to leakage level (Fig. 3h).
Also, the dual-rail results decayed along with the circuit layer. The com-
puting results significantly deviated from the normal ON or OFF states
at the five-layer depth (Fig. 3i). Next, we divided the circuit into three
subcircuits and implemented each with one configured DPGA, among

Article
which information was transmitted through WIR4s. We found that,
when circuit depth was increased to 11 layers, the outcome remained
within the correct range (Fig. 3i and Supplementary Fig. 48). Further
analysis showed that WIR4s, especially the internal DNA origami reg-
isters, improved implementable circuit size and depth primarily by
limiting transient binding and time delay (Extended Data Fig. 8 and
Supplementary Fig. 47).

Data normalization and dual-rail result calculation
All data were normalized from the raw fluorescence level to relative
concentrations of output signals when plotted, faciltating quantitative
analysis of the data despite differences in instrument performance, cir-
cuit functions and molecular implementations. The microplate reader
supports up to 96 parallel kinetics experiments, and the difference in
fluorescence readout caused by the instrument was negligible among
these parallel experiments. Each set of parallel experiments performed
was for the same circuit but with different inputs. The minimum level
(output 0) was determined by the minimum of all tested data points at
time t = 0. For a given fluorophore, parallel experiments had at least one
output signal that increased (that is, a maximal ON completion level);
maximum level (output 1) was determined by the average of the last five
data points for the highest signal. The fluorescence data shown in Fig. 1e
were normalized in this way. The fluorescence level that corresponds
to standard concentration (1×) was obtained from the highest signal
produced from the reporter on a plate. Negligible concentration (0×)
corresponds to the background fluorescence of the reaction mixture
when any input strand/strands have been joined at t = 0, which was
obtained from the first measurement of the lowest signal produced from
a reporter on a plate. All experiments on a single plate were normalized
together, allowing direct comparison between the output of a circuit for
different input patterns. We used two different reporters of the same
circuit to read high-signal outH and low-signal outL, and thus the obtained
signals for outH and outL were normalized independently. Following
normalization, the dual-rail result was calculated using this equation:

Dual − rail result =
out − out + 1

2
.H L

Error flags were calculated using equation:

∣∣ ∣ ∣ ∣∣ ∣ ∣
Error flag =

out − out − 1
2

+
out + out − 1

2
,H L H L

where |…| represents the absolute value of inner contents.

AFM Imaging
The DNA rectangle origami were imaged with PeakForce mode on a
Multimode VIII AFM machine (Bruker, Inc.). Before scanning the sample
using a peak-force fluid tip, approximately 30 μl of TAE-Mg2+ buffer was
added to the liquid cell to infiltrate the tip. For the writing of output
strand on the DNA origami register, that and the output strand were
mixed at a 1:10 molar ratio and incubated for 1 h, followed by PEG8000
purification to remove unbound strands. The retrieval strand (100×)
was added with incubatoin for 4 h to replace the stored output strand.
Streptavidin (Sigma) was used to visualize the storage process of a
biotin-modified output strand on the DNA origami register which,
before writing, after writing and after data retrieval, was mixed with
streptavadin at a 1:10 ratio and incubated at room temperature for
30 min. Finally, 5 μl of the mixture solution was deposited on a freshly
cleaved mica surface and incubated for 3 min. AFM imaging was per-
formed after washing the sample by TAE-Mg2+ buffer five times.

Molecular dynamics simulation
Data on the leak mechanism were acquired through molecular simu-
lations using the coarse-grained model oxDNA40. oxDNA is top-down

parametrized and describes each nucleotide as a site with six aniso-
tropic interactions: excluded volume, stacking, cross-stacking, hydro-
gen bonding, backbone connectivity and electrostatic repulsion. Here
we used the updated oxDNA2 force field with explicit electrostatics41.

The initial structures of the six simulated systems were originally
obtained in PDB format and then exported to oxDNA format using the
TacoxDNA webserver42. Structures were relaxed in two steps. A Monte
Carlo simulation was performed using the DNA_relax force fields and
a further relaxation using the max_backbone_force option in a molec-
ular dynamics simulation with the DNA2 force field. During the two
processes, mutual traps based on the intended design were applied to
enforce relaxation to the intended design. The external forces and back-
bone force limitations were then released and a production simulation
run performed using the same force field. To reduce simulation time,
a mutual trap was applied in systems with gaps of 0, 1 and 2 nt. The dis-
tances between T(21) and A(51) (distance 1), C(10) and G(62) (distance 2)
and C(0) and G(72) (distance 3) were monitored (Supplementary Fig. 16).

Simulations for all simulated systems were performed in the canoni-
cal NVT ensemble at 300 K using an Anderson-like thermostat in
a periodic cubic box of length 40.87 nm. The simulation time step for
integration was 15.15 fs (0.005 oxDNA time units) and molecular dynam-
ics steps were set between 3 × 108 and 2 × 109, which was sufficient to
study the leak mechanism for each system. The particle translational
diffusion coefficient was set to 2.5, which is about two orders of mag-
nitude faster than in the experiment43, to accelerate diffusive dynam-
ics and improve sampling. The Newtonian step of an Anderson-like
thermostat was 103 and configurations were saved for analysis every
1 × 104 steps. The salt condition for all simulations in this paper was set
to monovalent NaCl concentration as 1 M NaCl44. The suite of oxDNA
analysis scripts (distance.py, bond_analysis.py and contact_map.py)45
was used for a detailed exploration of the leak mechanism.

Decision tree training and validation
We used miRNA-seq data from the TCGA KIRC dataset for training the
decision tree classifier. We randomly divided 521 KIRC and 71 healthy
samples of this dataset into a training set and a test set with an 8:2 ratio in
silico model. The decision tree classifier was trained with miRNA expres-
sion values in base –2 logarithm of reads per million, and threshold
values for each miRNA were obtained (training set included 414 KIRC
and 59 healthy samples) to classify cancer and healthy groups using
Scikit-learn (Sklearn) by Python. This classifier was validated using
a test set (including 107 KIRC and 12 healthy samples). The expres-
sion values of mi204, 200c and 887 from the database were scaled to
0–100 nM. DPGA performs proof-of-concept nonlinear classification
with these miRNA inputs.

Data availability
The data that support the findings of this study are available in the
manuscript or the Supplementary Information. Source data are pro-
vided with this paper. All other data is available on request.

Code availability
Source codes used in this study (Visual DSD, MATLAB, Python) are
available from GitHub (https://github.com/FeiWANG-SJTU/DPGA). All
other codes are available from the corresponding authors on reason-
able request.

38. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440,
297–302 (2006).

39. Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).
40. Ouldridge, T. E., Louis, A. A. & Doye, J. P. K. Structural, mechanical, and thermodynamic

properties of a coarse-grained DNA model. J. Chem. Phys. 134, 085101 (2011).
41. Snodin, B. E. K. et al. Introducing improved structural properties and salt dependence

into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

https://github.com/FeiWANG-SJTU/DPGA

42. Suma, A. et al. TacoxDNA: a user-friendly web server for simulations of complex DNA
structures, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).

43. Sulc, P. Coarse-grained Modelling of Nucleic Acids (Univ. of Oxford, 2014).
44. Doye, J. P. et al. The oxDNA coarse-grained model as a tool to simulate DNA origami.

Methods Mol. Biol. 2639, 93–112 (2023).
45. Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA

nanostructures through interactive visualization, editing and molecular simulation.
Nucleic Acids Res. 48, e72 (2020).

Acknowledgements We thank L. Qian (Caltech) and Y. Huang (Peking University) for helpful
discussions. This work was supported by the National Key R&D Program of China (grant no.
2021YFF1200300), the National Natural Science Foundation of China (grant nos. T2188102,
21991134, 21904060, 22025404 and 22104088), the Science Foundation of Shanghai
Municipal Science and Technology Commission (grant nos. 20dz1101000 and 21TQ1400222)
and the New Cornerstone Investigator Program. Molecular dynamics simulations were run on
the π2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao
Tong University.

Author contributions C.F. and F.W. conceived the research. F.W. designed the circuits and
wrote the sequence-generating and -compiling programmes. H.L. performed the majority of
the experiments. N.X. performed AFM experiments. C.S. and Q.Z. performed magnetic
field-related experiments. M.L. and F.W. performed simulations. L.Z. trained the nonlinear
classification model. F.W., C.F. and H.L. analysed data and wrote the manuscript. M.D., J.L. and
H.C. participated in data analysis and discussions. C.F., H.C., J.L., N.X., M.D. and X.Z. reviewed
and edited the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06484-9.
Correspondence and requests for materials should be addressed to Fei Wang or Chunhai Fan.
Peer review information Nature thanks the anonymous reviewers for their contribution to the
peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-023-06484-9
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Outline of the design strategy for general-purpose
DICs. a, Architecture for electronic chips integration. b, Hierarchical
illustration of scalable DPGA integration (shown by the logical arrangement).
We referred architectural properties of programmable electronic integrated
circuits to design general-purpose DICs. In electronic integrated circuits,
general-purpose chips can be physically integrated, with the information
exchange between chips and storage realized via electrons. Analogous to
electronic signal, DNA-UTS is used to transmit information. Inter-gate and

inter-DPGA information transmission are all enabled by DNA-UTS. With
uniform transmitted signals, integrability is permitted both at the gate and the
DPGA levels. Asynchronous execution of cascaded DPGAs interdicts molecular
diffusion between DPGAs, allowing DPGA integration. Hence, the scalability
is enabled with the use of DNA-UTS and DNA origami register. In addition,
arbitrary gate connection is allowed in a DPGA, providing rich programming
space. In all, the programmability and the scalability support general-purpose
computing with DICs.

Extended Data Fig. 2 | Representative DNA circuits experimentally implemented via multi-level programming of DPGAs. The DIC is composed of three
levels: DNA gates; DPGAs and DPGA networks.

Article

Extended Data Fig. 3 | Demonstrated advantages of dual-rail gates.
a, A single-rail gate receives one molecule as an input and generates one
molecule as output. The concentration of output increases rapidly when the
output is 1 while slowly when the output is 0. b, A dual-rail gate receives a
molecule representing 1 or another molecule representing 1 as an input, and
generates one molecule as output = 0 or another molecule as output = 1. The
output signal is represented by the difference of two output signals. When
output = 1, the output signal increases; when output = 0, the output signal
decreases. c, Implemention of a dual-rail XOR gate with AND-OR gates
requires six gates. d, Left, heatmap showing the result values with all possible
combinations of high and low signals, when a result is supposed to be 0.

Triangular region above the upper red line represents the obtained dual-rail
results smaller than 0.4. Right, heatmap of error flag with all possible
combinations of high and low signals. Regions inside the green box have
error flag values lower than 0.4. e, Five possible computing states for a result
supposed to be 0. f, Left, heatmap showing the result values with all possible
combinations of high and low signals, when a result is supposed to be 1.
Triangular region below the lower red line represents the obtained dual-rail
result larger than 0.6. Right, heatmap of error flag with all possible combinations
of high and low signals. Regions inside green boxed have error flag values lower
than 0.4. g, Five possible computing states for a result supposed to be 1.

Extended Data Fig. 4 | Internal structures and operating mechanisms
of the four dual-rail gates. a, Schematics showing internal structures of the
dual-rail gates. AND gate has two series switches to respond to in1H and in2H
respectively, generating outH in the presence of both in1H and in2H. Another
switch responds to both L inputs, generating ouL in the presence of either in1L
or in2L. OR gate has an opposite internal structure of AND gate. NOT gate
has two switches, one for L input and one for H input. XOR contains four

input-controlled switches. b–e, Signal transmission paths with all possible
input combinations for AND (b), OR (c), NOT (d) and XOR (e) gates. High signals
are shown in red and low signals in green. Single-stranded inputs bind to logic
gates and release the corresponding output strands through SDRs. For AND
gate, both in1L (representing in1 = 0) and in2L hybridize with s1 to displace s2
(=outL). in2H hybridizes with S3 to displace S5, exposing toehold γ for in1H to
replace S4 (=outH).

Article

Extended Data Fig. 5 | The complete simulated time trajectories (a) for
Fig. 2e and distance distributions during the simulation time (b). With 1-nt
gap, the toehold domain bound reversibly to S3 (middles panel of Distance 1
trajectory, inset), which did not lead to further branch migration (high
fluctuation for Distance 2 and 3). Therefore, the presence of only in1H cannot
generate a fault result, permitting neglectable leakage similar to that of 0-nt

gap. However, 2-nt gap allowed stable binding of in1H (left panel of Distance 1
trajectory, indicated by H-bond arrow), and the output strand was replaced via
branch migration (left panels of Distance 2 and 3 trajectories, indicated by
H-bond arrows). Insets in (b): Distributions of Distance 1 ranging from 0.5 nm
to 2.5 nm.

Extended Data Fig. 6 | Experimental optimization and performance
evaluation of WIR2 and WIR3. a, Molecular reactions for wiring (for WIR2) or
reading out (for WIR3) an output signal from a gate. Low (green) and high (red)
signals are transmitted independently. The dashed lines indicate the upstream
binding region. b, To introduce the threshold-over-amplifier binding priority,
the duplex region was shortened by 2 bp, which minimized non-specific
input-threshold binding and the leakage. c, Without Threshold, output from a
gate could be amplified to close to 1. However, weak signal leakage could also be

amplified, leading to false result. Thus, the threshold is essential to suppress
leakage before amplification. d, We used a Threshold molecule (Th) that could
interact with output quickly. With 0.4× leakage signal, we found Th with a
concentration higher than 0.4× can effectively suppress leakage. With 1× output
signal, we found signal transmission speed decreased with Th concentration.
To balance leakage suppression and computing speed, we used 0.4× to 0.6×
Threshold for experiments. e, Signal wiring for High signal (left) and Low signal
(right) using 0.4× threshold.

Article

Extended Data Fig. 7 | A representative compiling process of the DNA
Compiler. Statements containing different type of operations and different
priorities can be compiled into wiring instructions to configure DPGA.

Extended Data Fig. 8 | See next page for caption.

Article
Extended Data Fig. 8 | The signal relay function of WIR4s. a, Possible
transient binding reactions between unmatched molecules that may affect the
circuit performance. b, Numerical simulation of the computing process from
upstream inputs to downstream inputs considering the transient binding. With
the increase of the circuit size, the exposed toeholds have a higher chance of
being occupied by unmatched strands via transient binding, leading to
reduced computing speed. c, Experimental computing kinetics of an OR gate
when 0, 500, 1000 and 1500 nM unmatched threshold molecules were added,
respectively. d, Dual-rail results of the OR gate followed by a WIR3 at different

unmatched threshold levels. e, The 11-layer cascade circuit in Fig. 3g when
implemented with a single DPGA. f, Simulated computing kinetics of 1- to 11-layer
subcircuits implemented with a single DPGA without WIR4. g, Simulated dual-
rail results of the cascade circuit showing decayed performance with the
increase of the circuit depth, which is generally consistent with the experimental
results. h, Circuit diagram of a cascade circuit containing 11 layers of dual-rail
gates, which was divided and implemented by three configured DPGAs.
i, Simulated computing kinetics of the subcircuits in the cascaded DPGAs
connected by WIR4s.

Extended Data Fig. 9 | Signal decay during the cascade of DPGAs.
a–b, Illustration of the circuit depth. The largest circuit depth (a) and the
corresponding SDR pathway that contains 30 steps of reactions (b), beyond
what can be achieved with a single reaction. c, Schematic illustrations showing

tested systems with direct ideal input and that transmitted by WIR4s. d, Paired
comparison showing the increase of the half-competition time (t1/2). d–g, Output,
leakage and error showing insignificant difference between DPGAs using
direct input and transmitted input.

Article

Extended Data Fig .10 | Computing kinetics of 20 experimentally tested samples in addition to that in Fig. 6g in test set. The values in bracket show the
normalized concentration of mir-200c, mir-204 and mir-887, respectively.

	DNA-based programmable gate arrays for general-purpose DNA computing

	Scalable DPGA architecture

	Multitask reconfiguration

	Parallel and serial integration of DPGAs

	DPGA-based nonlinear classifier

	Discussion

	Online content

	Fig. 1 Schematic workflow of DPGA programming.
	Fig. 2 Uniform dual-rail computing units with logic-gated DNA–UTS transmission.
	Fig. 3 Intra- and inter-DPGA transmission mediated by wiring instructions.
	Fig. 4 DPGA reconfiguration for multitask operation.
	Fig. 5 Computing circuits implemented by multiple DPGAs.
	﻿Fig. 6 Nonlinear KIRC classification using integrated DPGAs.
	Extended Data Fig. 1 Outline of the design strategy for general-purpose DICs.
	Extended Data Fig. 2 Representative DNA circuits experimentally implemented via multi-level programming of DPGAs.
	Extended Data Fig. 3 Demonstrated advantages of dual-rail gates.
	Extended Data Fig. 4 Internal structures and operating mechanisms of the four dual-rail gates.
	Extended Data Fig. 5 The complete simulated time trajectories (a) for Fig.
	Extended Data Fig. 6 Experimental optimization and performance evaluation of WIR2 and WIR3.
	Extended Data Fig. 7 A representative compiling process of the DNA Compiler.
	Extended Data Fig. 8 The signal relay function of WIR4s.
	Extended Data Fig. 9 Signal decay during the cascade of DPGAs.
	Extended Data Fig .10 Computing kinetics of 20 experimentally tested samples in addition to that in Fig.

