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DNA-based programmable gate arrays for 
general-purpose DNA computing

Hui Lv1,2, Nuli Xie1, Mingqiang Li1, Mingkai Dong3, Chenyun Sun1, Qian Zhang1, Lei Zhao1,4, 
Jiang Li5,6, Xiaolei Zuo1,7, Haibo Chen3, Fei Wang1 ✉ & Chunhai Fan1 ✉

The past decades have witnessed the evolution of electronic and photonic integrated 
circuits, from application specific to programmable1,2. Although liquid-phase DNA 
circuitry holds the potential for massive parallelism in the encoding and execution of 
algorithms3,4, the development of general-purpose DNA integrated circuits (DICs) has  
yet to be explored. Here we demonstrate a DIC system by integration of multilayer 
DNA-based programmable gate arrays (DPGAs). We find that the use of generic 
single-stranded oligonucleotides as a uniform transmission signal can reliably integrate 
large-scale DICs with minimal leakage and high fidelity for general-purpose computing. 
Reconfiguration of a single DPGA with 24 addressable dual-rail gates can be programmed 
with wiring instructions to implement over 100 billion distinct circuits. Furthermore,  
to control the intrinsically random collision of molecules, we designed DNA origami 
registers to provide the directionality for asynchronous execution of cascaded DPGAs. 
We exemplify this by a quadratic equation-solving DIC assembled with three layers of 
cascade DPGAs comprising 30 logic gates with around 500 DNA strands. We further 
show that integration of a DPGA with an analog-to-digital converter can classify 
disease-related microRNAs. The ability to integrate large-scale DPGA networks without 
apparent signal attenuation marks a key step towards general-purpose DNA computing.

Liquid-phase biocomputing exploiting biomolecular interactions has 
been actively explored due to its massive parallelism and intrinsic com-
patibility with biological systems. For example, computational DNA reac-
tion networks including automata5, logic circuits6–8, decision-making 
machines9,10 and neural networks11 have been realized, which have dem-
onstrated potential in molecular information processing4,12, synthetic 
intelligent devices13 and biomedical applications14–16. Despite this pro-
gress, most of these computing systems are tailored in hardware to imple-
ment a specific algorithm or a limited number of computational tasks.

General-purpose electronic integrated circuits allow software pro-
gramming rather than application-specific custom hardware fabrication 
to perform a certain function, providing a higher-level platform for pro-
totyping computational machines without the requirement of previous 
knowledge of the underlying physics. Notably, classic silicon-based and 
emerging carbon nanotube-based computers and quantum computers 
have undergone similar evolution from application-specific (for example, 
application-specific integrated circuit) to general-purpose (for exam-
ple, field-programmable gate array, FPGA)2,17–20. Programmability and 
scalability constitute two critical factors in achieving general-purpose 
computing. Programmability enables specification of the device to 
perform various algorithms whereas scalability allows the handling 
of a growing amount of work by the addition of resources to the sys-
tem. Unlike electronic integrated circuits, in which gates are physically 
localized and universal electrical signals are transmitted in a directional 

manner, biomolecular components in DNA integrated circuits (DICs) 
diffuse and mix in solution21, which hinders the development of scalable 
and programmable biocomputing devices. In a typical DNA computing 
system, limitation in the orthogonality of DNA components and diffi-
culty in controlling the intrinsically random collision of molecules make 
it practically challenging to realize general-purpose DNA computing.

Intense efforts have been made to explore the programmability of 
DNA circuits22,23. However, due to the general lack of directionality for 
the integration of these liquid-phase systems, scalability is yet to be 
explored for programmable DNA systems. Analogous to the subcom-
ponent assembly in electronic24 or quantum25 circuits, spatial compart-
mentation has been introduced in cellular26 and synthetic27–29 molecular 
reaction systems to increase directionality, which nevertheless has 
shown limited scalability at the system level29. Inspired by silicon-based 
FPGAs in which electrons form a universal signal for intradevice pro-
gramming and interdevice communication, here we developed highly 
scalable, DNA-based, programmable gate arrays (DPGAs; Extended Data 
Fig. 1) by employing generic single-stranded DNA oligonucleotides as 
a uniform transmission signal (DNA–UTS).

Scalable DPGA architecture
In a typical design for a scalable DPGA architecture enabled by DNA–
UTS, a task circuit that could not be implemented with one DPGA 
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was divided into subcircuits, each mapped to and executed by one 
DPGA (Fig. 1). As a mimic of electronic integrated circuit instruc-
tions, we established a molecular instruction set with approximately 
1,000 instructions (over 2,000 oligonucleotides) that defines all legal 
wires on DPGAs. Molecular instructions for each subcircuit were mixed 
with involved computing units, forming a unique routing pattern that 
implements the function of the subcircuit. Twenty-four addressable 
logic gates of four types (AND, OR, NOT and XOR) were designed as 
computing units, the combination of which constituted a complete 
set of Boolean functions (Supplementary Fig. 2), offering high pro-
gramming space on single DPGAs (Supplementary Text 6.2). The 
operation of DPGAs was based on receiving and sending DNA–UTS 
between gates and DPGAs along a programme-configured pathway. 
To avoid inter-DPGA crosstalk we further designed a DNA origami 
register to direct asynchronous computing processing of cascade 
DPGAs. Analogous to its electronic counterpart, intermediate values 
calculated from an upstream DPGA were written to the DNA origami 
register via DNA strand displacement, which were then transmitted 
to a downstream DPGA.

In this design, dual-rail logic gates characteristic of dual-rail input/
output ports, which allow two DNA strands representing high and low 
signals to pass through simultaneously (Fig. 2a and Extended Data 
Fig. 3), were adopted to realize DPGAs. The uniformity of molecular 
design for input/output ports of all gates allowed arbitrary routing 
and integration of DPGAs, which was based on the given logic function 
followed by formulaic generation of corresponding DNA sequences 
(Supplementary Text 3.3 and 3.4). For example, a dual-rail AND gate 
was implemented by two hybridized DNA molecules with three specific 
domains that functioned as switches: one domain (blue) responded to 
low signal of either input whereas two-series ones (yellow) responded 
to high signal for each input port, respectively (Fig. 2b). During imple-
mentation of DPGAs, the input of DNA strands triggered strand dis-
placement reactions (SDRs)30 to realize logic functions (Extended Data 
Fig. 4). Configuration of DPGAs was realized by addressing and connect-
ing the required gates for a target circuit. Under these circumstances 
a configured DPGA could be abstracted as a higher-level computing 

unit, in which input ports for logic gates at the input layer and output 
ports for logic gates at the output layer function as DPGA-level input 
and output ports, respectively (Fig. 2a).

Sequential SDRs were used to realize series switches, in which the 
first input (in2H) hybridized with ‘S3’, which displaced ‘S5’ to expose the 
toehold for in1H; in1H then hybridized and released ‘S4’, which acted as 
the output (Fig. 2c). We optimized the molecular design structurally 
and found that a gapped structure formed by S3, S4 and S5 with one 
unpaired base in S3 could suppress the leak reaction pathway and also 
allow a high computing speed (Fig. 2d,e, Extended Data Fig. 5 and Sup-
plementary Text 4.1).

We first tested individual dual-rail gates, the function of which lays 
the foundation for DPGA programming. Both normalized high (outH)- 
and low (outL)-output signals generated the correct results, which 
were consistent with the truth tables within 20 min for all four types 
of gate (Fig. 2f and Supplementary Fig. 25), showing that the 1 nt gap 
design provided higher computing speed than, and comparable leak-
age to, previously reported SDR-based AND gates in large-scale DICs6,31. 
Importantly, even without any purification following strand annealing 
(Supplementary Figs. 21–23), we observed very low leakage (below 0.1) 
for all gates, which reflects the fault tolerance of DPGA. To interpret the 
outcome of one given execution, the dual-rail result was defined by the 
difference between outH and outL (dual-rail result, (outH – outL + 1)/2). 
The conversion map from outH and outL to dual-rail result is shown in 
Fig. 2g. In particular, the dual-rail results of the AND gate under all four 
input combinations fell within the correct ON and OFF state regions. 
Measurements of all types of dual-rail gate showed dual-rail results 
lower than 0.2 for all logical FALSE conditions and values higher than 
0.8 for all TRUE conditions (Fig. 2h).

Having demonstrated the programmability within single gates, 
we next explored whether DNA–UTS could wire intergate and 
inter-DPGA transmission to implement computing circuits. For 
intergate transmission within single DPGAs, input values that enter 
a configured circuit via input ports are processed to generate out-
put values transmitting to output ports for readout. Three types of 
wire—input port-to-gate, gate-to-gate and gate-to-output port—are 
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thus required for programming of DPGAs to carry out a calculation 
(Fig. 3a). We established a molecular instruction set that defines all 
legal wires on DPGAs, containing three types of wiring instructions: 
type 1 instruction (WIR1) conducts an input to a gate; type 2 instruc-
tion (WIR2) conducts an output signal from an upstream gate to an 
input port of a downstream gate; and type 3 instruction (WIR3) con-
ducts an output signal from a gate to an output port of DPGAs (Fig. 3b 
and Supplementary Text 2.1). All legal wires can be synthesized and 
assembled beforehand, allowing programming of the DPGA with the 

addition of the corresponding wires. WIR1 was implemented with 
an ssDNA input that entered an entry gate. Following execution of 
this gate, the resulting DNA–UTS as the output was transmitted to a 
downstream gate via WIR2, which was implemented with ten ssDNA 
strands (Fig. 3b). We designed noise thresholds and signal amplifiers 
for molecular implementations of wiring instructions (Supplementary 
Text 2.2 and Extended Data Fig. 6) to suppress signal decay during 
transmission along the reaction pathway that potentially limits the  
depth of DICs27,32.

+

+

Desired reaction

Leak reaction

b

d

c

a

S2

S1
Dual-rail AND

in1L → outL

in2L → outL

in1H + in2H → outH

S5S4

S3

S5S4

S3

Inner function DNA implementationInput port Output port

Inputs

in1

in2 Output
out

Computing unit

in1H

in1H

in1H

in1H

in2H

in2H

in2H

outH
outH

outH

outH

outL
outL

in1L
inL

in2L

Switching scheme

1 nt gap

S5S4

S3

2

4

6

8

10

12

14

16

D
is

ta
nc

e 
(n

m
)

6,500 7,000 7,500

0 nt gap

Time (ns)

6,500 7,000 7,500

1 nt gap

Time (ns)

0 400 800 1,200

d1 d2 d3

2 nt gap

Time (ns)

e

Inputs
Outputs

in1

in2

in3

in4

out1

out2

Input port
Output port

AND

09Logical addr:

DPGA

Gate type:

S5

S4 S3

Hydrogen
bond

d1d2
d3

in1H

Time (min)

f

ou
t L

1.0

0.8

0.6

0.4

0.2

0

0

0.2

0.4

0.6

0.8

1.0

 00

 01

 10

 11

g

outH

O
N

O
FF

U
nd

e�
ne

d

0 5 10 20

Fl
uo

re
sc

en
ce

 in
te

ns
ity

outLoutH

15 1.00.80.60.40.20

2

outH+1 – outL
Dual-rail result = h

outH

1.00.80.60.40.20

ou
t L

1.0

0.8

0.6

0.4

0.2

0

AND
09

NOT
15

OR
03

XOR
20

XOR
21

0

0

0.2

0.4

0.6

0.8

1.01.0

0.8

0.6

0.4

0.2

0

0.8 1.0

0.8

1.0
00

10

11

XOR

OR

NOT

AND

01

Und
e�

ne
d st

at
e

Und
e�

ne
d st

at
e

ON st
at

e

OFF
 st

at
e

ONOFF Unde�ned

00

01

11

10

00

01

11

10
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f, Experimental measurement of kinetics for a dual-rail AND gate with all four 
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Signal transduction of WIR2 was realized via SDRs. The exhibition of 
a steep ramp suggested that we could effectively suppress leaked signal 
(below 0.4) to approach 0 and amplify genuine output (above 0.6) to 

approach 1 (Fig. 3d). Similarly, WIR3 was implemented with ten DNA 
strands to transduce signals via SDRs (Supplementary Fig. 4). Cascaded 
gates with increased layers were challenged to test the cooperation of 
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type 1, 2 and 3 wiring instructions (Fig. 3e and Supplementary Figs. 28–31).  
Low- and high-output signals for all input combinations went to the 
correct states within 1 h. Dual-rail results were higher than 0.8 for those 

supposed to be 1 and lower than 0.2 for those supposed to be 0. Hence 
we established that programmable and reliable intra-DPGA DNA–UTS 
transmission could be realized with a subset of wiring instructions.
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two-bit adder circuit that receives two two-bit inputs and calculates their sum  
to generate a three-bit result. d, Computing results of the adder circuit for all 
possible input combinations. e, Schematic diagram and equivalent logic 

gate-level layout in DPGA for a two-bit comparison circuit generates three 
possible outputs: s = 0 when a is lower than b; s = 1 when a = b; and s = 2 when a is 
greater than b. f, Computing results of the comparison circuit for all possible 
input combinations. g, Vector proximity (VP) angle for each circuit is plotted 
versus the corresponding dynamic range; n = 103 (circuit information provided 
in Supplementary Table 6). Inset, scheme illustration of dynamic range and 
vector proximity angle for quantifying the performance of an implemented 
circuit (see Supplementary Fig. 61 for details). h, Scatter plot of dynamic  
ranges and vector proximity angles based on circuit size. i, Scatter plot of 
792 computing results showing that all dual-rail results fell within the correct 
region, with nine of them corrected from an undefined state for outH or outL 
under binarization rules.
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Fig. 5 | Computing circuits implemented by multiple DPGAs. a, Schematic 
for a fixed-point square-rooting circuit. A one-digit decimal input (0–9) is 
represented by four binary digits. The integer digit of output is represented by 
two bits and the decimal digit by four bits. b, DPGA-level circuit diagram of the 
square-rooting circuit. c, Logic gate-level layouts of the three paralleled 
DPGAs. d, Computing results for all ten valid inputs. e, DPGA-level circuit 
diagram of a conditional branching algorithm with two cascaded DPGAs. The 
upstream DPGA1 executes the condition circuit to determine whether input 
equals 7 by generating an intermediate output c. The downstream DPGA2 

performs adding-one or setting-one operation based on the received signal 
c from DPGA1. f, The equivalent logic gate-level layouts. g, Final computing 
results for all valid input combinations. h, An equation-solving circuit that 
calculates the larger root of a quadratic equation. The root formula for this 
equation was divided into five parts with each assigned to one DPGA.  
i, Computing kinetics of DPGAs on the third layer when solving equation 
x2 – 3x = 0. j, Computing kinetics of DPGAs on the third layer when solving 
equation x2 + x – 2 = 0. k, Comparison of VP angles obtained from DPGAs in the 
network wired by WIR4s and that run individually.
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For inter-DPGA wiring we adopted a fourth type of wiring instructions 

(WIR4s) to realize inter-DPGA DNA–UTS transmission—that is, output 
signals from upstream DPGA1 were transmitted to downstream DPGA2. 
To suppress inter-DPGA crosstalk and signal attenuation, each WIR4 was 
implemented in a signal relay-like manner with a DNA origami register 
followed by a WIR2 (Fig. 3c). The spatial confinement and addressability 
of DNA origami33,34 controls the intrinsic stochasticity of molecular 
interactions in solution. In a typical WIR4 the DNA origami register 
temporally stores the outputs from DPGA1, then a downstream WIR2 
transmits the output to the entry gate of DPGA2, providing the direc-
tionality for asynchronous execution of cascaded DPGAs. Output signal 
was written onto DNA origami via SDR that was mediated by the exposed 
toehold (5 nt), which was read out by a retrieval strand with a longer 
toehold (7 nt) at the opposite end and was confirmed both visually 
(Fig. 3f and Supplementary Text 5.8) and quantitively (Supplementary 
Figs. 44 and 45). Asynchrony was realized by isolation of DNA origami 
after capturing the output from the upstream DPGA and releasing 
the stored signal to the downstream DPGA (Supplementary Fig. 6). 
Importantly, we found that the use of WIR4s effectively improved circuit 
depth as illustrated by the performance of an 11-layer circuit consisting 
of 11 dual-rail gates with different addresses (Fig. 3g–i).

Thus, we reason that the use of DNA origami registers for physical 
separation of DPGAs restricts transient binding between unmatched 
DNA strands, which greatly attenuates signal decay at enlarged circuit 
sizes. In addition, WIR4 facilitates reaction kinetics by dividing a long 
reaction pathway into shorter ones, which shortens time delay in a 
signal relay-like manner. Given that signal decay is dependent on the 
length of the reaction pathway, the use of WIR4 improves the depth 
scalability of DICs.

Multitask reconfiguration
Having established DPGA wiring with DNA–UTS, we next explored the 
reconfiguration of DPGAs for multitask operations. We developed 
a compiler to convert a programme in natural language or Boolean 
expressions to a subset of wiring instructions (Extended Data Fig. 7 and 
Supplementary Text 7). By taking the two-bit multiplying function as 
an example, we compiled the programme to a group of wiring instruc-
tions that called eight dual-rail gates with eight WIR1s, six WIR2s and 
four WIR3s (Fig. 4a). The routing pattern of DPGA is shown in Fig. 4a. 
We successfully tested this multiplying circuit on all 16 possible inputs 
with correct computing results (Fig. 4b and Supplementary Fig. 37). 
Dynamic range, defined by the difference between the highest OFF state 
value and the lowest ON state value, was used to quantify the ON/OFF 
contrast of computing results (Supplementary Fig. 64c). Of note, all 
four outputs showed dynamic ranges over 0.5 (Fig. 4b), suggesting that 
the multiplying circuit operated correctly with high ON/OFF contrast.

To evaluate the generality and robustness of multitask reconfigu-
ration of DPGAs with wiring instructions, we experimentally tested 
103 circuits with 792 calculations by reconfiguring a single DPGA 
(Supplementary Table 6), which implemented various basic circuit 
structures including single gates, cascaded gates, fan-in and fan-out 
of gates and complex functional circuits. The size of these DNA circuits 
ranged from a single gate with 17 strands to 11 gates with more than 
300 strands in one reaction. Addition is a basic operation for digital 
computers. We implemented a two-bit addition algorithm by calling 
seven gates on DPGA (Fig. 4c). Three output ports generated correct 
results for all 16 cases (Fig. 4d). We also demonstrated the use of DPGAs 
for implementation of comparison operations that are popularly used 
in logical statements to determine equality or difference between vari-
ables (Fig. 4e). A two-bit comparison function computing the numeric 
comparison between variables a and b was implemented with a cir-
cuit involving 11 dual-rail gates on a DPGA, which were correctly per-
formed for every possible pairing of a and b (Fig. 4f). Importantly, we 
observed correct computing results for all 792 calculations within 2 h 

of reactions (Supplementary Fig. 64b). By examining the robustness 
of DPGA reconfiguration using dynamic range and vector proximity 
when executing diverse functions, we demonstrate the realization of 
reliable computing of DICs even with the involvement of 11 dual-rail 
gates (Fig. 4g–i and Supplementary Text 6.1). By taking the circuit size 
of 11 gates as a practical upper limit, we estimated that the program-
ming space of single DPGAs would reach 100 billion unique patterns 
for tree-structured circuits, at least two orders of magnitude higher 
than existing approaches (under 100,000 for MAYA-III22 and roughly 
1 billion for IBC23; Supplementary Text 6.2).

To evaluate the capability of error-free computing with single-DPGA 
programming, we further inspected the distribution of generated 
results from 792 experiments. Although 2% of outH and outL fell within 
undefined states (0.4 below outH, outL under 0.6), all dual-rail results 
led to correct Boolean values based on binarization rules (Fig. 4i). 
Therefore, the circuits exhibited a high level of noise tolerance with 
dual-rail gates. We demonstrated large-scale computing for circuits 
containing up to 300 DNA strands in one tube, with a high DNA concen-
tration (1× = 100 nM), and with all hybridized strands directly used (after 
annealing) without further purification. We reason that the combina-
tion of sequential displacement reactions with the thresholding and 
amplification in configured DPGAs contributes to improved scalability 
of DICs in a single reaction (Supplementary Fig. 63).

Parallel and serial integration of DPGAs
Given the modular nature of DPGAs, we further tested whether recon-
figurable DPGAs could be integrated into larger-scale circuits for practi-
cally accessible computing capability. In principle, algorithms that are 
divisible into independent parts could be implemented with parallel 
DPGA circuits. As a proof of concept, we employed three differently 
configured entities of DPGAs in parallel to operate the square-rooting 
function to one decimal digit (Fig. 5a,b). In this algorithm, one decimal 
digit was represented by four bits using binary-coded decimal code. The 
square root r was represented by fixed-point binary, the integer digit by 
two bits and the decimal digit by four bits. The circuit was divided and 
implemented with three parallel configured DPGAs (Fig. 5c). We found 
that the whole DPGA circuit computed the results in under 2 h for all 
experiments (Fig. 5d and Supplementary Fig. 41). Of note, 21 dual-rail 
gates with over 300 DNA strands were involved in this DPGA circuit, in 
which the largest subcircuit contained 130 strands.

Because DPGAs can be integrated with WIR4s, configured DPGAs 
could be serially assembled to implement high-depth circuits. To 
demonstrate this we implemented a finite-state machine via condi-
tional branching (Fig. 5e). Days of the week from Monday to Sunday 
were assigned numbers 1–7. The state machine computing the number 
representing the next day was implemented by two cascaded DPGAs, 
with one as condition circuit to decide whether the input was 7 and the 
other as processing circuit (Fig. 5f). Signal transmission through WIR4 
was performed using polyethylene glycol (PEG) precipitation-based 
origami purification and magnetic field-mediated isolation (Supple-
mentary Figs. 51 and 52). Both approaches resulted in correct comput-
ing results with nearly identical performance under all seven input 
combinations (Fig. 5g and Supplementary Fig. 52), suggesting that the 
scalability of DPGA is intrinsic and also independent of the solution 
transfer methodology. Thus, the potential for parallelly and serially 
connecting DPGAs paves the way for the construction of DPGA net-
works to implement complex algorithms including arbitrary digital 
operations.

The modular design of DPGAs allows the integration of multiple 
DPGAs into a network. We next developed a DPGA network to solve 
quadratic equations with the expression x2 – bx + c = 0, where b  
and c are two-bit integers (Fig. 5h). The larger of the solutions x  
can be calculated by the root formula for quadratic equations: 
x b b c= ( + ( − 4 ) )/22 . This algorithm was implemented with an  
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11-layered DIC containing 30 dual-rail gates. In our design, the circuit 
was divided and mapped to a network with five cascaded DPGA, where 
intermediate values s = b2−4c and r = √s. The function was confirmed 
experimentally with two functions: x2 – 3x = 0 and x2 + x – 2 = 0 (Fig. 5i,j). 
Comparing WIR4-mediated DPGA networks and individual DPGAs with 
directly added ideal input we found that, in the presence of WIR4s, 
downstream DPGAs maintained little deviation from ideal values 
despite roughly threefold reduction in operating speed (Fig. 5k and 
Extended Data Fig. 9). Hence the development of DPGA networks, albeit 
at the cost of time consumption, holds the potential for implementa-
tion of large-scale integration circuits for high-complexity operation.

DPGA-based nonlinear classifier
Molecular circuits have been developed for identification of disease- 
associated biomarkers15,16, but are generally linear and thus limited 
when processing information from multiple biomarkers that may not 
always be linearly separable. We sought to address this problem by 
exploiting the high integrability of DPGA to construct a nonlinear clas-
sifier. We targeted a cancer classifier based on miRNA expression levels 
and used training on miRNA expression data for kidney renal clear cell 
carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) to develop 
a decision tree circuit with three miRNA inputs of mir-200c, mir-204 
and mir-887 (Fig. 6a and Supplementary Text 5.12). The classifier was 
implemented by integration of DPGA and analog-to-digital convert-
ers (ADCs) (Fig. 6b), the latter converting an analog single-rail miRNA 

signal to a dual-rail DNA–UTS that could then be further processed by 
DPGAs (Fig. 6c). The DNA signals generated by ADCs were transmitted 
to DPGA via WIR4s. Using mir-204 as a model, we verified the testing 
of ADC conversion (Fig. 6d,e).

In experimental tests of the nonlinear classifier using synthetic 
miRNA molecules (18 KIRC and 5 healthy samples, represented by 
coloured dots in Fig. 6f), after receiving DNA–UTS from ADCs, DPGA 
computed correct outH and outL in 2 h for 23 tested samples (Fig. 6g 
and Extended Data Fig. 10). Analysis of the dual-rail output of the 
classifier showed agreement between the molecular computation, 
model prediction and actual disease states labelled in TCGA (Fig. 6h). 
Although these classifier tests involved synthetic miRNA in Tris-EDTA 
(TE) buffer, experiments could also be run with DPGA in cell culture 
(Supplementary Fig. 61) and with ADC receiving miRNA signals from 
the serum-containing solution (Supplementary Fig. 62), suggesting 
that it should be possible to interface DPGAs directly with cells and 
body fluids. Because the programmability and scalability of DPGAs 
allow them to be coupled with diverse types of ADC, we anticipate that 
integrated DPGAs will be able to process information from biomark-
ers beyond miRNAs and might prove useful for clinical and diagnostic 
applications.

Discussion
Our generic DNA computing system achieves effective signal trans-
mission in DPGAs through the use of DNA–UTS, which functions like 
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diagram of the KIRC classifier. Single-rail RNA inputs were converted to 
dual-rail DNA outputs via an ADC module. c, The SDR network of ADC. When 
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duration. f, Visualization of the trained classifier model and experimental 
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indicates the space for KIRC from in silico training. Coloured dots represent 
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23 randomized samples shows that molecular computing output is consistent 
with model prediction and actual disease states in the TCGA database. a.u., 
arbitrary units; th, the concentration of threshold.
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electrons or photons in electronic/photonic integrated circuits. The 
resultant programmable DIC, rather than simply implementing a spe-
cific algorithm, can execute large-scale computation paths with an 
instruction set containing over 2,000 oligonucleotides and reach the 
complexity threshold for general-purpose computing. Various applica-
tions, such as diagnosis based on nonlinear classification, can be readily 
targeted by simply coupling DPGA with specific ADCs.

DPGA circuits can be programmably generated to execute various 
functions (Extended Data Fig. 2). The programmability of DPGAs is 
enabled by the use of dual-rail gates featuring uniform input/output 
interfaces, which allows each gate to be addressed, analogous to that 
in FPGA. Gates are connected via the address information in both DPGA 
and FPGA. The sequence of wiring instructions is dependent on the 
addresses of upstream/downstream gates, and also independent of 
their logic functions. Also of note, the dual-rail gates in DPGA can 
be called multiple times (for example, gate 09 was used five times in 
the equation-solving circuit), allowing the circuit to be reconfigured 
without the need for redesign of DNA sequences. The reusability of 
circuits is functionally equivalent to the physical reorganization in 
FPGA. As the computing units of DPGAs, the instructions of these 
dual-rail gates are compatible with conventional compiling syntax, 
offering great potential for software development of programmable 
general-purpose DNA computers. In particular, because the sequences 
for all logic gates are orthogonal, the DNA strands can be mass produced 
via high-throughput DNA synthesis35 (Supplementary Fig. 29).

DNA origami registers that mediate signal transmission between spa-
tiotemporally separated circuits are the key to DPGA-level integration. 
These can direct signal transmission in liquid-phase circuits to integrate 
and mediate asynchronous execution of cascaded DPGAs, at the expense 
of manual transmission of intermediate data. The use of DNA origami 
registers greatly suppresses both the transient binding that limits circuit 
size and the signal decay that limits circuit depth, thereby facilitating 
higher-ordered integration of multilayer DPGAs and increasing the 
programme complexity that can be realized. Large-scale integration of 
DPGA networks with up to five cascade DPGAs, 30 logic gates and around 
500 participating strands, for example, are equivalent to the achievable 
circuit depth of 11 layers of logic gates and 30 steps of cascaded SDRs 
(Extended Data Fig. 10) and break the current limit of programmable 
DNA circuits (Supplementary Fig. 57). Although the DNA-based register 
design requires manual intervention, it allows for the introduction of 
all-DNA circuits with high complexity and scalability without having 
the requirement for other biomolecular components (for example, 
enzymes22, light/electronic transducers36 or microfluidics29).

We believe that the programmability and integrability of DICs can be 
extended in several areas. First, our DPGA compiler provides a highly 
generic and user-friendly interface for the development of DNA com-
puting, which can automatically compile target functions and generate 
corresponding DNA instructions without previous knowledge of their 
internal implementation. Second, the hierarchy of DPGAs combined 
with data register could be transplanted to other molecular reaction 
systems. For example, rather than using SDRs for molecular implemen-
tation, DNA-processing enzymes that can generate and degenerate 
DNA strands provide new tools for implementation of feedback digital 
circuits5. Third, the manual transfer currently required for inter-DPGA 
transmission might be further automated—for example, by encapsula-
tion of each DPGA within a vesicular compartment29 or localization of 
each DPGA on a DNA origami template27. The magnetic field-assisted 
method is potentially integrable36 in a microfluidic system, and fully 
automated execution of DICs might be possible by coupling DPGAs 
with droplet-based microfluidics37.
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Methods

Preparation of dual-rail gates and wiring instructions
DNA oligonucleotides were dissolved in 1× TE buffer (nuclease free, 
pH 8.0, Sigma-Aldrich), quantified with ultraviolet/visible spectrom-
etry by monitoring their absorption at 260 nm and storage at −20 °C. 
Oligonucleotides labelled with fluorescent dyes or quenchers were 
dissolved in deionized water (Milli-Q) and stored in deionized water 
at −20 °C. Single strands were hybridized to prepare correspond-
ing double-stranded DNA. To suppress potential leakage caused by 
synthetic and quantification errors, we used a lower concentration 
of strands for those destined for release. Hybridized structures were 
prepared by mixing the required strands to the corresponding final 
concentrations in TE buffer (1× TE: 40 mM Tris base, 20 mM acetic 
acid, 2 mM EDTA adjusted to pH 8.0) with 12.5 mM MgCl2. The final 
concentrations are shown in Supplementary Table 1.

Threshold and amplifier complexes of wiring instructions were pre-
pared by annealing separately at a concentration ratio of 1:1.2, the final 
concentration being shown in Supplementary Table 2. Reporters were 
prepared by mixing strands with quenchers and fluorophores, in which 
the former was 50% excess of the latter to reach final concentrations of 
15 and 10 μM, respectively. The buffer for all experiments and annealed 
complexes was TE with 12.5 mM Mg2+. Mixed strands were annealed by 
heating to 95 °C for 2 min, with slow cooling to room temperature at a 
speed of 0.1 °C every 6 s before holding at 4 °C. Hybridized molecules 
were stored at 4 °C for further use.

Fluorescence measurements for DNA reaction kinetics
A Synergy H1 Hybrid Multi-Mode Reader (BioTek) and a Corning 
96-well black assay plate were employed to perform fluorescence 
measurements. All calculations for a circuit were run in parallel on 
the instrument. Fluorescence kinetics data were collected every 1 or 
2 min, depending on the overall duration of the experiment. Excitation 
(emission) wavelengths were 510 nm (540 nm) for dye TET and 640 nm 
(670 nm) for dye Cy5. in general all circuit components, except input 
strand(s), were mixed in TE buffer with 12.5 mM MgCl2. Experiments 
were performed in the 96-well black assay plate (Corning) with a 98 μl 
reaction mixture per well for all experiments. The initial value was 
recorded as baseline. The experiment was then paused for the addition 
of 2 μl of input strand(s) and subsequent mixing by shaking. The plate 
was then replaced in the hybrid reader and the experiment resumed. 
Experiments were performed at a standard concentration of 100 nM 
(1×) for all gate and threshold complexes at a standard concentration 
of 40 nM (0.4×) for individual OR, AND, NOT and XOR gates, two- and 
three-layered circuits, fan-in and -out circuits, four-layered circuits 
and threshold complexes at a standard concentration of 60 nM (0.6×) 
for full-subtractor, two-bit multiplication, two-bit addition, two-bit 
comparison operation and squaring-rooting operation. For amplifier 
in wiring instructions, 2× hybridized molecules and 10× fuel were used. 
For a dual-rail logic circuit, the output trajectories were read using two 
distinct fluorophores—quencher pair TET-BHQ2 and Cy5-BHQ2—at 
a standard concentration of 500 nM (5×). A standard concentration 
of 200 nM (2×) for inputs was used. For each input combination we 
simultaneously recorded the two fluorescence channels representing 
high and low signal, respectively. Combining the output trajectories 
from each pair of experiments into a single plot allows simultaneous 
observation of outputs produced by different input combinations. 
The temperature was maintained at 18 °C throughout the reaction.

Preparation and operation of DNA origami registers
According to Rothemund’s method38, 90 × 60 nm2 rectangular-shaped 
DNA origami structures were assembled from the staple and 
output-binding strands and M13m18 ssDNA (NEB). The positions and 
sequences of the staple and output-binding strands are representd 
by different colours in Supplementary Figs. 49, 54 and 55. In a 100 μl 

system we used 50 nM staple strand, 100 nM output-binding strand 
and 10 nM M13 ssDNA to form origami. DNA origami was annealed 
and assembled in 1× Tris-acetate-DNA (TAE)-Mg2+ buffer (Tris 40 mM, 
acetic acid 20 mM, EDTA 2 mM and magnesium acetate 12.5 mM,  
pH 8.0) in a Thermocycler (Bio-Rad) with the following setup: incuba-
tion at 95 °C for 2 min, slow cooling to 60 °C at 12 s per 0.1 °C, incubation 
at 60 °C for 12 min, slow cooling to 25 °C at 12 s per 0.1 °C then reten-
tion at 4 °C for up to 24 h. The assembled rectangular DNA origami 
structures were separated from excess staple and output-binding 
strands using PEG precipitation39. Briefly, DNA origami structures at 
20 mM MgCl2 were mixed 1:1 (v/v) with a precipitation buffer containing 
15% PEG8000 w/v (no. MW:8000, Sigma), 5 mM Tris, 1 mM EDTA and 
505 mM NaCl. The solution was mixed in a 1.5 ml centrifuge tube and 
spun at 12,000 rpm and 4 °C for 15 min in a centrifuge (Eppendorf). The 
supernatant was removed by pipette. The precipitate was dissolved 
in 20 μl of 1× TAE-Mg2+ buffer and incubated overnight at 40 °C and 
400 rpm. The concentration of the purified rectangular DNA origami 
was quantified with a microvolume ultraviolet-visible spectropho-
tometer (NanoDrop). We added a fivefold excess of block strands to 
the origami with incubation for 2 h at room temperature, followed by 
storage at 4 °C until further use.

To test the writing and reading efficiency of the DNA origami register, 
the concentrations of free-state output were recorded with a TET-BHQ2 
reporter. (1) The output strand (100 nM) was incubated with DNA  
origami (10 nM), with one binding area containing 21 sites and a 500 nM 
reporter for 2 h at room temperature. (2) The output strand was incu-
bated with DNA origami for 2 h, then 1 μM each of retrieval and reporter 
were added with incubation for a further 2 h at room temperature.  
(3) The output strand was incubated with reporter for 2 h. Fluorescence 
intensity for each reaction was measured.

Execution of cascaded DPGAs
All circuit components of the upstream DPGA were mixed and incu-
bated for 2 h to complete the reaction. For PEG precipitation-based 
transfer, the DNA origami register was added to a final concentration 
of 10 nM with incubation for a further 1 h. The origami was then puri-
fied using PEG precipitation then quantified by NanoDrop and added 
to the reaction system of the downstream DPGA to a final concentra-
tion of 10 nM. The corresponding WIR2s in WIR4 were also added and 
incubated for 2 h, and then its output was transferred to the follow-
ing DPGA using the same signal transfer operations. For magnetic 
field-mediated transfer, biotin-modified DNA origami registers were 
incubated with Streptavidin-modified Magnetic Beads (New England 
Biolabs, 4 mg ml–1) to form MB-origami registers. MB-origami register 
was added to a final concentration of 10 nM following incubation of 
upstream DPGA. After incubation for 1 h to write DPGA output to DNA 
origami register, a magnetic field was applied and the upstream DPGA 
solution removed. The retrieval strand was then added to retrieve the 
stored output, which was transferred to the downstream DPGA reac-
tion system. After receiving output signals, the downstream DPGA was 
incubated for 2 h and its output transferred to the following DPGA using 
the same signal transfer operations. Reaction kinetics were recorded 
with fluorescence reporters.

Execution and results of the 11-layered circuit
The 11-layer circuit, consisting of 11 dual-rail gates with different 
addresses, facilitated either implementation of the circuit by one DPGA 
or division into multiple DPGAs. First, we increased circuit depth from 
left to right and performed each calculation in a single reaction system. 
We found that, when circuit depth reached five layers, computing speed 
dramatically slowed and the signal dropped to leakage level (Fig. 3h). 
Also, the dual-rail results decayed along with the circuit layer. The com-
puting results significantly deviated from the normal ON or OFF states 
at the five-layer depth (Fig. 3i). Next, we divided the circuit into three 
subcircuits and implemented each with one configured DPGA, among 



Article
which information was transmitted through WIR4s. We found that, 
when circuit depth was increased to 11 layers, the outcome remained 
within the correct range (Fig. 3i and Supplementary Fig. 48). Further 
analysis showed that WIR4s, especially the internal DNA origami reg-
isters, improved implementable circuit size and depth primarily by 
limiting transient binding and time delay (Extended Data Fig. 8 and 
Supplementary Fig. 47).

Data normalization and dual-rail result calculation
All data were normalized from the raw fluorescence level to relative 
concentrations of output signals when plotted, faciltating quantitative 
analysis of the data despite differences in instrument performance, cir-
cuit functions and molecular implementations. The microplate reader 
supports up to 96 parallel kinetics experiments, and the difference in 
fluorescence readout caused by the instrument was negligible among 
these parallel experiments. Each set of parallel experiments performed 
was for the same circuit but with different inputs. The minimum level 
(output 0) was determined by the minimum of all tested data points at 
time t = 0. For a given fluorophore, parallel experiments had at least one 
output signal that increased (that is, a maximal ON completion level); 
maximum level (output 1) was determined by the average of the last five 
data points for the highest signal. The fluorescence data shown in Fig. 1e 
were normalized in this way. The fluorescence level that corresponds 
to standard concentration (1×) was obtained from the highest signal 
produced from the reporter on a plate. Negligible concentration (0×) 
corresponds to the background fluorescence of the reaction mixture 
when any input strand/strands have been joined at t = 0, which was 
obtained from the first measurement of the lowest signal produced from 
a reporter on a plate. All experiments on a single plate were normalized 
together, allowing direct comparison between the output of a circuit for 
different input patterns. We used two different reporters of the same 
circuit to read high-signal outH and low-signal outL, and thus the obtained 
signals for outH and outL were normalized independently. Following 
normalization, the dual-rail result was calculated using this equation:

Dual − rail result =
out − out + 1

2
.H L

Error flags were calculated using equation:

∣∣ ∣ ∣ ∣∣ ∣ ∣
Error flag =

out − out − 1
2

+
out + out − 1

2
,H L H L

where |…| represents the absolute value of inner contents.

AFM Imaging
The DNA rectangle origami were imaged with PeakForce mode on a 
Multimode VIII AFM machine (Bruker, Inc.). Before scanning the sample 
using a peak-force fluid tip, approximately 30 μl of TAE-Mg2+ buffer was 
added to the liquid cell to infiltrate the tip. For the writing of output 
strand on the DNA origami register, that and the output strand were 
mixed at a 1:10 molar ratio and incubated for 1 h, followed by PEG8000 
purification to remove unbound strands. The retrieval strand (100×) 
was added with incubatoin for 4 h to replace the stored output strand. 
Streptavidin (Sigma) was used to visualize the storage process of a 
biotin-modified output strand on the DNA origami register which, 
before writing, after writing and after data retrieval, was mixed with 
streptavadin at a 1:10 ratio and incubated at room temperature for 
30 min. Finally, 5 μl of the mixture solution was deposited on a freshly 
cleaved mica surface and incubated for 3 min. AFM imaging was per-
formed after washing the sample by TAE-Mg2+ buffer five times.

Molecular dynamics simulation
Data on the leak mechanism were acquired through molecular simu-
lations using the coarse-grained model oxDNA40. oxDNA is top-down 

parametrized and describes each nucleotide as a site with six aniso-
tropic interactions: excluded volume, stacking, cross-stacking, hydro-
gen bonding, backbone connectivity and electrostatic repulsion. Here 
we used the updated oxDNA2 force field with explicit electrostatics41.

The initial structures of the six simulated systems were originally 
obtained in PDB format and then exported to oxDNA format using the 
TacoxDNA webserver42. Structures were relaxed in two steps. A Monte 
Carlo simulation was performed using the DNA_relax force fields and 
a further relaxation using the max_backbone_force option in a molec-
ular dynamics simulation with the DNA2 force field. During the two 
processes, mutual traps based on the intended design were applied to 
enforce relaxation to the intended design. The external forces and back-
bone force limitations were then released and a production simulation 
run performed using the same force field. To reduce simulation time, 
a mutual trap was applied in systems with gaps of 0, 1 and 2 nt. The dis-
tances between T(21) and A(51) (distance 1), C(10) and G(62) (distance 2) 
and C(0) and G(72) (distance 3) were monitored (Supplementary Fig. 16).

Simulations for all simulated systems were performed in the canoni-
cal NVT ensemble at 300 K using an Anderson-like thermostat in 
a periodic cubic box of length 40.87 nm. The simulation time step for 
integration was 15.15 fs (0.005 oxDNA time units) and molecular dynam-
ics steps were set between 3 × 108 and 2 × 109, which was sufficient to 
study the leak mechanism for each system. The particle translational 
diffusion coefficient was set to 2.5, which is about two orders of mag-
nitude faster than in the experiment43, to accelerate diffusive dynam-
ics and improve sampling. The Newtonian step of an Anderson-like 
thermostat was 103 and configurations were saved for analysis every 
1 × 104 steps. The salt condition for all simulations in this paper was set 
to monovalent NaCl concentration as 1 M NaCl44. The suite of oxDNA 
analysis scripts (distance.py, bond_analysis.py and contact_map.py)45 
was used for a detailed exploration of the leak mechanism.

Decision tree training and validation
We used miRNA-seq data from the TCGA KIRC dataset for training the 
decision tree classifier. We randomly divided 521 KIRC and 71 healthy 
samples of this dataset into a training set and a test set with an 8:2 ratio in 
silico model. The decision tree classifier was trained with miRNA expres-
sion values in base –2 logarithm of reads per million, and threshold 
values for each miRNA were obtained (training set included 414 KIRC 
and 59 healthy samples) to classify cancer and healthy groups using 
Scikit-learn (Sklearn) by Python. This classifier was validated using 
a test set (including 107 KIRC and 12 healthy samples). The expres-
sion values of mi204, 200c and 887 from the database were scaled to 
0–100 nM. DPGA performs proof-of-concept nonlinear classification 
with these miRNA inputs.

Data availability
The data that support the findings of this study are available in the 
manuscript or the Supplementary Information. Source data are pro-
vided with this paper. All other data is available on request.

Code availability
Source codes used in this study (Visual DSD, MATLAB, Python) are 
available from GitHub (https://github.com/FeiWANG-SJTU/DPGA). All 
other codes are available from the corresponding authors on reason-
able request.
 

38. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 
297–302 (2006).

39. Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).
40. Ouldridge, T. E., Louis, A. A. & Doye, J. P. K. Structural, mechanical, and thermodynamic 

properties of a coarse-grained DNA model. J. Chem. Phys. 134, 085101 (2011).
41. Snodin, B. E. K. et al. Introducing improved structural properties and salt dependence 

into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

https://github.com/FeiWANG-SJTU/DPGA


42. Suma, A. et al. TacoxDNA: a user-friendly web server for simulations of complex DNA 
structures, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).

43. Sulc, P. Coarse-grained Modelling of Nucleic Acids (Univ. of Oxford, 2014).
44. Doye, J. P. et al. The oxDNA coarse-grained model as a tool to simulate DNA origami. 

Methods Mol. Biol. 2639, 93–112 (2023).
45. Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA 

nanostructures through interactive visualization, editing and molecular simulation. 
Nucleic Acids Res. 48, e72 (2020).

Acknowledgements We thank L. Qian (Caltech) and Y. Huang (Peking University) for helpful 
discussions. This work was supported by the National Key R&D Program of China (grant no. 
2021YFF1200300), the National Natural Science Foundation of China (grant nos. T2188102, 
21991134, 21904060, 22025404 and 22104088), the Science Foundation of Shanghai 
Municipal Science and Technology Commission (grant nos. 20dz1101000 and 21TQ1400222) 
and the New Cornerstone Investigator Program. Molecular dynamics simulations were run on 
the π2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao 
Tong University.

Author contributions C.F. and F.W. conceived the research. F.W. designed the circuits and 
wrote the sequence-generating and -compiling programmes. H.L. performed the majority of 
the experiments. N.X. performed AFM experiments. C.S. and Q.Z. performed magnetic 
field-related experiments. M.L. and F.W. performed simulations. L.Z. trained the nonlinear 
classification model. F.W., C.F. and H.L. analysed data and wrote the manuscript. M.D., J.L. and 
H.C. participated in data analysis and discussions. C.F., H.C., J.L., N.X., M.D. and X.Z. reviewed 
and edited the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-023-06484-9.
Correspondence and requests for materials should be addressed to Fei Wang or Chunhai Fan.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-023-06484-9
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Outline of the design strategy for general-purpose 
DICs. a, Architecture for electronic chips integration. b, Hierarchical 
illustration of scalable DPGA integration (shown by the logical arrangement). 
We referred architectural properties of programmable electronic integrated 
circuits to design general-purpose DICs. In electronic integrated circuits, 
general-purpose chips can be physically integrated, with the information 
exchange between chips and storage realized via electrons. Analogous to 
electronic signal, DNA-UTS is used to transmit information. Inter-gate and 

inter-DPGA information transmission are all enabled by DNA-UTS. With 
uniform transmitted signals, integrability is permitted both at the gate and the 
DPGA levels. Asynchronous execution of cascaded DPGAs interdicts molecular 
diffusion between DPGAs, allowing DPGA integration. Hence, the scalability  
is enabled with the use of DNA-UTS and DNA origami register. In addition, 
arbitrary gate connection is allowed in a DPGA, providing rich programming 
space. In all, the programmability and the scalability support general-purpose 
computing with DICs.



Extended Data Fig. 2 | Representative DNA circuits experimentally implemented via multi-level programming of DPGAs. The DIC is composed of three 
levels: DNA gates; DPGAs and DPGA networks.
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Extended Data Fig. 3 | Demonstrated advantages of dual-rail gates.  
a, A single-rail gate receives one molecule as an input and generates one 
molecule as output. The concentration of output increases rapidly when the 
output is 1 while slowly when the output is 0. b, A dual-rail gate receives a 
molecule representing 1 or another molecule representing 1 as an input, and 
generates one molecule as output = 0 or another molecule as output = 1. The 
output signal is represented by the difference of two output signals. When 
output = 1, the output signal increases; when output = 0, the output signal 
decreases. c, Implemention of a dual-rail XOR gate with AND-OR gates  
requires six gates. d, Left, heatmap showing the result values with all possible 
combinations of high and low signals, when a result is supposed to be 0. 

Triangular region above the upper red line represents the obtained dual-rail 
results smaller than 0.4. Right, heatmap of error flag with all possible 
combinations of high and low signals. Regions inside the green box have  
error flag values lower than 0.4. e, Five possible computing states for a result 
supposed to be 0. f, Left, heatmap showing the result values with all possible 
combinations of high and low signals, when a result is supposed to be 1. 
Triangular region below the lower red line represents the obtained dual-rail 
result larger than 0.6. Right, heatmap of error flag with all possible combinations 
of high and low signals. Regions inside green boxed have error flag values lower 
than 0.4. g, Five possible computing states for a result supposed to be 1.



Extended Data Fig. 4 | Internal structures and operating mechanisms  
of the four dual-rail gates. a, Schematics showing internal structures of the 
dual-rail gates. AND gate has two series switches to respond to in1H and in2H 
respectively, generating outH in the presence of both in1H and in2H. Another 
switch responds to both L inputs, generating ouL in the presence of either in1L 
or in2L. OR gate has an opposite internal structure of AND gate. NOT gate  
has two switches, one for L input and one for H input. XOR contains four 

input-controlled switches. b–e, Signal transmission paths with all possible 
input combinations for AND (b), OR (c), NOT (d) and XOR (e) gates. High signals 
are shown in red and low signals in green. Single-stranded inputs bind to logic 
gates and release the corresponding output strands through SDRs. For AND 
gate, both in1L (representing in1 = 0) and in2L hybridize with s1 to displace s2 
(=outL). in2H hybridizes with S3 to displace S5, exposing toehold γ for in1H to 
replace S4 (=outH).
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Extended Data Fig. 5 | The complete simulated time trajectories (a) for 
Fig. 2e and distance distributions during the simulation time (b). With 1-nt 
gap, the toehold domain bound reversibly to S3 (middles panel of Distance 1 
trajectory, inset), which did not lead to further branch migration (high 
fluctuation for Distance 2 and 3). Therefore, the presence of only in1H cannot 
generate a fault result, permitting neglectable leakage similar to that of 0-nt 

gap. However, 2-nt gap allowed stable binding of in1H (left panel of Distance 1 
trajectory, indicated by H-bond arrow), and the output strand was replaced via 
branch migration (left panels of Distance 2 and 3 trajectories, indicated by 
H-bond arrows). Insets in (b): Distributions of Distance 1 ranging from 0.5 nm  
to 2.5 nm.



Extended Data Fig. 6 | Experimental optimization and performance 
evaluation of WIR2 and WIR3. a, Molecular reactions for wiring (for WIR2) or 
reading out (for WIR3) an output signal from a gate. Low (green) and high (red) 
signals are transmitted independently. The dashed lines indicate the upstream 
binding region. b, To introduce the threshold-over-amplifier binding priority, 
the duplex region was shortened by 2 bp, which minimized non-specific 
input-threshold binding and the leakage. c, Without Threshold, output from a 
gate could be amplified to close to 1. However, weak signal leakage could also be 

amplified, leading to false result. Thus, the threshold is essential to suppress 
leakage before amplification. d, We used a Threshold molecule (Th) that could 
interact with output quickly. With 0.4× leakage signal, we found Th with a 
concentration higher than 0.4× can effectively suppress leakage. With 1× output 
signal, we found signal transmission speed decreased with Th concentration.  
To balance leakage suppression and computing speed, we used 0.4× to 0.6× 
Threshold for experiments. e, Signal wiring for High signal (left) and Low signal 
(right) using 0.4× threshold.
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Extended Data Fig. 7 | A representative compiling process of the DNA 
Compiler. Statements containing different type of operations and different 
priorities can be compiled into wiring instructions to configure DPGA.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | The signal relay function of WIR4s. a, Possible 
transient binding reactions between unmatched molecules that may affect the 
circuit performance. b, Numerical simulation of the computing process from 
upstream inputs to downstream inputs considering the transient binding. With 
the increase of the circuit size, the exposed toeholds have a higher chance of 
being occupied by unmatched strands via transient binding, leading to 
reduced computing speed. c, Experimental computing kinetics of an OR gate 
when 0, 500, 1000 and 1500 nM unmatched threshold molecules were added, 
respectively. d, Dual-rail results of the OR gate followed by a WIR3 at different 

unmatched threshold levels. e, The 11-layer cascade circuit in Fig. 3g when 
implemented with a single DPGA. f, Simulated computing kinetics of 1- to 11-layer 
subcircuits implemented with a single DPGA without WIR4. g, Simulated dual-
rail results of the cascade circuit showing decayed performance with the 
increase of the circuit depth, which is generally consistent with the experimental 
results. h, Circuit diagram of a cascade circuit containing 11 layers of dual-rail 
gates, which was divided and implemented by three configured DPGAs.  
i, Simulated computing kinetics of the subcircuits in the cascaded DPGAs 
connected by WIR4s.



Extended Data Fig. 9 | Signal decay during the cascade of DPGAs.  
a–b, Illustration of the circuit depth. The largest circuit depth (a) and the 
corresponding SDR pathway that contains 30 steps of reactions (b), beyond 
what can be achieved with a single reaction. c, Schematic illustrations showing 

tested systems with direct ideal input and that transmitted by WIR4s. d, Paired 
comparison showing the increase of the half-competition time (t1/2). d–g, Output, 
leakage and error showing insignificant difference between DPGAs using 
direct input and transmitted input.
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Extended Data Fig .10 | Computing kinetics of 20 experimentally tested samples in addition to that in Fig.  6g in test set. The values in bracket show the 
normalized concentration of mir-200c, mir-204 and mir-887, respectively.
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