
A Hierarchical Approach to Maximizing MapReduce Efficiency

Zhiwei Xiao, Haibo Chen, Binyu Zang

Parallel Processing Institute, Fudan University

{zwxiao, hbchen, byzang}@fudan.edu.cn

I. INTRODUCTION

MapReduce [1] has been widely recognized for its elastic

scalability and fault tolerance, with the efficiency being

relatively disregarded, which, however, is equally important

in “pay-as-you-go” cloud systems such as Amazon’s Elastic

MapReduce. This paper argues that there are multiple levels

of data locality and parallelism in typical multicore clusters

that could affect performance.

By characterizing the performance limitation of typi-

cal MapReduce applications on multi-core based Hadoop

clusters, we show that current JVM-based runtime (i.e.,

TaskWorker) fails to exploit data locality and task paral-

lelism at single-node level.

Specifically, the open-source implementation of MapRe-

duce, Hadoop [2], employs a JVM runtime to run the actual

MapReduce tasks, which is suboptimal to explore the cache

hierarchy and task parallelism existing in many multi-core

based commodity clusters. Hadoop requires both key and

value objects to implement the Hadoop Writable interface

to support serialization and deserialization, causing extra

objects creation and destroy overhead as well as memory

footprint.

Moreover, some applications require processing the same

piece of data multiple times or iteratively to get the final

results. Though Hadoop exploits data locality with a single

iteration of jobs by moving computation to its data as much

as possible, unfortunately, it does not consider data locality

across multiple processing iterations, and thus requires the

same data being loaded multiple times from the networking

file systems to nodes that process the data.

Based on the above observations, we propose Azwraith, a

hierarchical MapReduce approach aiming to maximize data

locality and task parallelism of MapReduce applications on

Hadoop. In the hierarchical MapReduce model of Azwraith,

each Map or Reduce task assigned to a single node is treated

as a separate MapReduce job and is further decomposed

into a Map and a Reduce tasks, which are processed by a

MapReduce runtime specially optimized on a single node.

Specifically, Azwraith integrates an efficient MapReduce

runtime (namely Ostrich [3]) for multi-core to Hadoop.

To exploit data locality among nodes at networking level,

Azwraith integrates an in-memory cache system that caches

data in memory that will likely be reused again, to avoid

unnecessary networking and disk traffics.

II. AZWRAITH DESIGN

Instead of writing a new runtime from scratch, we reuse

and adapt an efficient MapReduce implementation for shared

memory multiprocessor to Hadoop, called Ostrich. Ostrich

adopts the “tiling strategy” to MapReduce on multicore

and aggressively exploits task parallelism and data locality

on multicore. To minimize complexity, Azwraith follows

exactly the workflow of Hadoop and leaves most compo-

nents (e.g., TaskTracker, HDFS) untouched. Hadoop with

the Azwraith extension can still run original Java-based jobs

in the normal way.
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Figure 1. Azwraith architecture: the solid (colored) components are that
need to be adjusted for Azwraith: Azwraith replaces the TaskWorker with
Ostrich that exploits the data locality and parallelism in multi-core; The
RPC Client makes the TaskWorker conform the Hadoop RPC protocol and
provides RPC services to the TaskWorker; The DFS Client provides HDFS
accesses for the TaskWorker. User can submit an Azwraith job or an original
Hadoop job to the MapReduce system with JobClient.

Figure 1 shows the overall architecture of Azwraith,

which resembles the original Hadoop. The execution of an

Azwraith job also follows with the workflow of Hadoop.

The client must specify the job type as Azwraith or Hadoop

before submitting a job. The TaskTracker can fork a process

(in case of an Azwraith job) or start a JVM instance (in case

of a Hadoop job) to run the assigned task, according to the

job type.

To adapt the Ostrich runtime as the TaskWorker of

Hadoop, we modify Ostrich to conform to the workflow

and communication protocols of Hadoop, including status

reporting and output format. To communicate with the



TaskTracker, the new TaskWorker is embedded with an RPC

(Remote Procedure Call) client. The RPC client is used to

make the new TaskWorker conform to the Hadoop RPC

protocol and provide RPC services to the TaskWorker. The

TaskWorker accesses the HDFS (Hadoop Distributed File

System) with the DFS client module, which directs accesses

to HDFS.

We further enhance the Azwraith runtime with sevral

optimizations. First, Azwraith overlaps the CPU burst and

the I/O burst to hide the I/O blocking time as much as

possible. Second, Azwraith can aggressively reuse the data

in memory with pointer operations and thus avoid copying

large amount of memory and enjoy a good cache locality.

Thirdly, Azwraith requires applications to implement a set of

aggregative (de)serialization interfaces to (de)serialize a set

of data together, which saves tremendous amount of function

calls and gain a better data-locality than Hadoop.

To enable data reuse among tasks, we design and imple-

ment a cache server as a daemon process on each slave to

serve all HDFS read accesses. The cache server leverages the

shared memory interfaces and the semaphore mechanism in

an operating system to provide control and data information

to cache clients (i.e., TaskWorkers), which access the shared

memory managed by the cache server in the way of access-

ing the local memory. Using shared memory also gains a

memory usage benefit, since all tasks in the same node can

share one single copy of data and thus leave more memory

available for caching and computing.

We also extend the affinity support of the Hadoop sched-

ule, to schedule tasks to nodes where input data are cached.

Azwraith maintains the cache locations information, with

a mapping similar to Hadoop’s disk-local task mapping.

When receiving a task assignment request from a slave

(node), the scheduler would first get the map-tasks list for

the requesting slave (node), and assign a cache-local task if

any. Otherwise, the scheduler works as usual. The extension

to the scheduling system makes around 50 lines of code

changes to Hadoop.

III. EVALUATION

We conducted the experiments on a small-scale cluster

with 1 master node and 6 slave nodes. Each machine was

equipped with two AMD Opteron 12-core processors, 64

GB main memory and 4 SCSI hard drives. Each machine

connected to the same switch through a 1Gb Ethernet link.

We used Hadoop version 0.20.1 running on Java SE Runtime

1.6.0. Azwraith was also built on the same version of

Hadoop.

As shown in Figure 2, Azwraith gains a considerable

speedup over Hadoop with different input sizes, ranging

from 1.4x to 3.5x. Computation-oriented tasks like Word-

Count and LinearRegression gain larger speedup than the

I/O-intensive applications such as GigaSort.
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Figure 2. Overall performance and the breakdown of WordCount,
LinearRegression and GigaSort. The symbol of A-x refers to Azwraith with
xGB input, while H-x refers to Hadoop with xGB input.
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Figure 3. Performance of Azwraith Cache System on K-Means

As shown in Figure 3, with the support of the cache

system, Azwraith gains a 1.43X to 1.55X speedup over

Azwraith without the cache scheme, and 2.06X to 2.21X

over Hadoop.

IV. CONCLUSION

In this paper, we argued that Hadoop has limitations in

exploiting data locality and task parallelism for multi-core

platforms. We then extended Hadoop with a hierarchical

MapReduce scheme. An in-memory cache scheme is also

seamlessly integrated to cache data that is likely to be

accessed in memory. Evaluation showed that the hierarchical

scheme outperforms Hadoop ranging from 1.4x to 3.5x.
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