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Abstract

Today’s cloud tenants are facing severe security threats
such as compromised hypervisors, which forces a strong ad-
versary model where the hypervisor should be excluded out
of the TCB. Previous approaches to shielding guest VMs ei-
ther suffer from insufficient protection or result in suboptimal
performance due to frequent VM exits (especially for I/O
operations). This paper presents CloudVisor-D, an efficient
nested hypervisor design that embraces both strong protec-
tion and high performance. The core idea of CloudVisor-D
is to disaggregate the nested hypervisor by separating ma-
jor protection logics into a protected Guardian-VM along-
side each guest VM. The Guardian-VM is securely isolated
and protected by the nested hypervisor and provides secure
services for most privileged operations like hypercalls, EPT
violations and I/O operations from guest VMs. By lever-
aging recent hardware features, most privileged operations
from a guest VM require no VM exits to the nested hypervi-
sor, which are the major sources of performance slowdown
in prior designs. We have implemented CloudVisor-D on a
commercially available machine with these recent hardware
features. Experimental evaluation shows that CloudVisor-D
incurs negligible performance overhead even for I/O inten-
sive benchmarks and in some cases outperforms a vanilla hy-
pervisor due to the reduced number of VM exits.

1 Introduction

One premise of multi-tenant clouds is that the cloud will
guarantee the privacy and integrity of tenants’ virtual ma-
chines (VMs). However, this premise is severely threatened
by exploits against the usually-vulnerable hypervisor (includ-
ing the management VM or the host OS). In fact, with the
code size and complexity of the hypervisor continually in-
creasing, the number of discovered security vulnerabilities
of the hypervisor increases as well. As shown in Table 1,
the total number of uncovered security vulnerabilities in the
Xen hypervisor [18] has increased from 32 in 2012 to 303 in
2019.

There have been several software approaches to shield-
ing a VM from an untrusted hypervisor, which can be
mainly classified into the “in-the-box” or “out-of-the-box”
approaches. The “in-the-box” approach attempts to harden
the hypervisor layer using various techniques such as the
hypervisor decomposition [22, 54, 58], the control flow in-

Year Xen KVM VMWare

2012 32 16 18
2013 50 19 16
2014 32 20 14
2015 54 15 9
2016 35 12 24
2017 47 13 21
2018 29 9 31
2019 24 7 21

Table 1: The numbers of vulnerabilities discovered in
Xen [8], KVM [5] and VMWare [7] from 2012 to 2019.

tegrity [63] and minimizing the hypervisor layer [33]. How-
ever, while such an approach can thwart attackers exploiting
the hypervisor vulnerabilities to a certain extent, they cannot
eliminate the risks of exploiting hypervisor vulnerabilities.

The “out-of-the-box” approach exploits a nested hypervi-
sor to deprivilege the commodity hypervisor and securely in-
terposes all interactions between guest VMs and the hyper-
visor to protect privacy and integrity. Specifically, CloudVi-
sor [72] introduces a small nested hypervisor underneath the
Xen hypervisor and securely isolates the Xen hypervisor and
its VMs. It uses cryptographic approaches to guaranteeing
the privacy and integrity of guest data. However, this design
is at the cost of notably increased VM exits to the nested hy-
pervisor. For instance, these numerous VM exits bring up to
54.5% performance overhead for I/O intensive workloads.

Recently, there have been increasing interests to leverage
the secure hardware modules like Intel SGX [13,47] to guar-
antee the security and privacy of applications executing in an
untrusted hypervisor [19, 28, 53, 61]. Such an approach can
provide reliable protection agasint an stronger threat model
which contains the adversary controlling hardware. However,
two facts limit its usage for VM protection in a virtualized en-
vironment. First, the SGX enclaves are only available to run
in user mode, preventing its use to provide a VM containing
both user and kernel mode. Second, the hardware limitations
(e.g., limited EPC memory at 128/256 MB) usually incur sig-
nificant performance overhead for memory intensive work-
loads (sometimes 3X [15, 50, 61]).

In this paper, we present CloudVisor-D, a design that
securely and efficiently shields VMs from a compro-
mised hypervisor. Like prior solutions such as CloudVisor,
CloudVisor-D leverages nested virtualization to protect the
privacy and integrity of guest VMs. However, CloudVisor-
D tackles the deficiency of nested virtualization through a
disaggregated design by decomposing the nested hypervi-
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sor functionality into a tiny nested hypervisor (RootVisor) in
the privileged mode and a set of Guardian-VMs in the non-
privileged mode. Such a disaggregated design provides one
Guardian-VM for each guest VM and offloads most protec-
tion logics to each Guardian-VM, while the tiny RootVisor
is responsible for isolating all the Guardian-VMs from the
commercial hypervisor (SubVisor) and guest VMs. Note that
a Guardian-VM is not a full-fledged VM but only contains a
few service handlers and is invisible to the SubVisor. Thus,
it consumes a very small amount of resources.

Recent hardware advances (e.g., VMFUNC and virtualiza-
tion exception) enable the self-handling of VM exits and ef-
ficient EPT switching in the guest mode. Based on these new
hardware features, a Guardian-VM can handle offloaded VM
operations without VM exits. Assisted by the Guardian-VM,
the guest VM is able to directly invoke the hypercall handling
functions in the SubVisor without trapping into the RootVi-
sor. By utilizing the virtualization exception, normal EPT vi-
olations are converted to exceptions in the guest mode, which
are then redirected to the SubVisor by the Guardian-VM for
processing.

However, it is non-trivial to handle VM operations se-
curely in the guest mode. A VM or the SubVisor may ma-
liciously switch EPT to bypass or even attack the Guardian-
VM. Even if there are some existing solutions [27,39,44,49]
that try to defend against this type of attack, none of them
defeats the new variant of attack we encounter since these
solutions assume that the attacker is not able to modify the
CR3 register value, which is not the case in CloudVisor-
D. CloudVisor-D provides a series of techniques to defend
against this attack. First, the RootVisor creates an isolated
environment to make Guardian-VMs tamperproof. Second,
each Guardian-VM enforces that it interposes all commu-
nication paths in the guest mode between a guest VM and
the SubVisor. The complete mediation is achieved by using
the dynamical EPTP list manipulation technique and the iso-

lated Guardian-VM page table technique.
Based on the tamperproof and complete mediation proper-

ties, a Guardian-VM can handle VM operations without trust-
ing guest VMs and the SubVisor. Specifically, a Guardian-
VM requires that the corresponding VM can only invoke
functions within a limited range, which is listed in a jump

table. Moreover, it provides a shadow EPT to the SubVisor
for each guest VM and carefully checks the updates made to
the shadow EPT by the SubVisor before copying them back
to the real EPT. Finally, the Guardian-VM also protects the
privacy and integrity of their guest VMs’ I/O data.

We have implemented CloudVisor-D based on the Xen
4.5.0 and deployed it on a commodity Intel Skylake machine.
The code size of CloudVisor-D (including the RootVisor
and Guardian-VM) is roughly equal to that of CloudVisor,
which means it does not increase the TCB size. Our eval-
uation shows that CloudVisor-D significantly improves the
performance of nested virtualization. Specifically, the EPT

violation handling achieves 85% speedup compared with
CloudVisor. Further, CloudVisor-D can efficiently support
PV (Para-Virtualization) VMs. It introduces negligible over-
heads for most benchmarks compared with a vanilla Xen and
in some cases outperforms the vanilla Xen due to the reduced
number of VM exits.

Contributions. To summarize, this paper makes the follow-
ing contributions:

• A disaggregated nested virtualization design to shield
VMs from an untrusted hypervisor which reduces a
large number of VM exits.

• A set of techniques to achieve the same level of security
as the nested virtualization.

• Implementation and evaluation of our design on a com-
mercially available machine.

2 Motivation & Background

2.1 Attack Surface of Virtualization Layer

VMM

Guest
VM

Hardware

Management
VM/Host OS

!

Guest
VM

"

#

$

Non-root mode Root mode

VM exit VM entry

attack VM attack surface VMM attack surface

Figure 1: The attack surface in a typical cloud.

Multi-tenant cloud usually adopts virtualization to provi-
sion multiple guest VMs atop a single physical machine to
maximize resource usage [18,62]. As such, the virtualization
layer becomes a key target for attackers to compromise guest
VMs. An attacker can exploit vulnerabilities to “jail-break”
into the hypervisor, which is Step 1 in Figure 1. Such a
threat does exist given a large number of vulnerabilities dis-
covered every year with the increasing complexity of the hy-
pervisor layer (Table 1). The attacker can also exploit vulner-
abilities to tamper with the host OS (in the case of hosted vir-
tualization) or the management VM (in the case of hostless
virtualization) (Step 2 ). After compomising the hypervisor
or the host OS, the attacker can gain control of all other guest
VMs (Step 3 and 4 ).
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Operation
Control Flow in

Xen

Control Flow in

CloudVisor
Times

Hypercall VM → Xen→ VM
VM → CloudVisor
→ Xen → ... →

CloudVisor → VM
> 2X

EPT violation

handling
VM → Xen → VM

VM → CloudVisor
→ Xen → ... →

CloudVisor → VM
2 - 6X

DMA operation

VM → Xen →

Dom0 → Xen →

VM

VM → CloudVisor
→ Xen → Cloud-
Visor → Dom0 →

... → CloudVisor →
Xen → CloudVisor
→ VM

> 2X

Table 2: Overhead analysis of VM operations.

2.2 Overheads of Nested Virtualization

To protect guest VMs from the untrusted hypervisor, the
nested virtualization approach tries to exclude the hypervi-
sor layer out of the trusted computing base (TCB) and thus
provides stronger protection from the vulnerable hypervisor
layer. Here, we use CloudVisor [72] as an example to illus-
trate the details of the nested virtualization and its overheads.
One design advantage of CloudVisor is that it separates secu-
rity protection from resource management. Such separation
allows CloudVisor to focus on protection and keep its TCB
small while the untrusted hypervisor’s TCB is enlarged as
more functionalities are continuously added to it.

CloudVisor introduces a tiny nested hypervisor in the most
privileged level (root mode) and deprivileges the Xen hy-
pervisor and the host OS (Dom0) to the guest mode (non-
root mode). The nested hypervisor interposes all communi-
cations between the Xen hypervisor and guest VMs. Cloud-
Visor guarantees that the Xen hypervisor is unable to access
a guest’s memory and disk storage. Therefore, CloudVisor ef-
fectively resolves the threats in the untrusted hypervisor. Yet,
the nested virtualization incurs a large number of VM exits
and introduces large overhead for I/O operations involving
excessive VM exits [72].

Table 2 lists a set of example operations which are com-
monly used in a virtualized system.

Hypercall: Each hypercall firstly gets trapped into CloudVi-
sor, which forwards this hypercall into the Xen hypervisor for
processing, as shown in Figure 2 (a). During this process, the
hypervisor may execute sensitive instructions (e.g., CPUID)
or access guest’s memory, either of which will cause a VM
exit. When the hypervisor finishes processing, it tries to re-
sume the guest and triggers another VM exit into CloudVisor.
Therefore, as shown in Table 2, a hypercall in CloudVisor in-
troduces at least twice as many ring crossings as that in Xen,
causing non-trivial overheads for each hypercall.

EPT Violation: The control flow of EPT violation handling
in CloudVisor is similar to the hypercall operation, as shown
in Figure 2 (a). One EPT violation first traps the VM into
CloudVisor, which then lets Xen handle this violation. Cloud-
Visor disallows Xen to access guests’ memory by configur-
ing its EPT (extended page table). During the handling of the
guest’s EPT violation, any modification to the guest’s EPT

Non-root Mode

Root  Mode

CloudVisor
! "

# $ %

&

'

(

…

VM Xen Dom0

Non-root Mode

Root  Mode

CloudVisor

!

# $

%

…

VM Xen

"

(a)

(b)

Figure 2: Figure (a) shows the control flows of hypercall
operation and EPT violation handling in CloudVisor. Figure
(b) shows the control flow of I/O operation in CloudVisor.

causes a new EPT violation, which is trapped to CloudVisor
and handled by it. In the worst case, modifying the whole 4-
level EPT pages causes 4 extra ring crossings. As shown in
Table 2, there are at most 6 times as many ring crossings as
that in Xen for EPT violation handling.

I/O Operation: CloudVisor only supports emulated I/O de-
vices. It intercepts all interactions among guest VM, Xen hy-
pervisor and Dom0 to do encryption or decryption (Figure 2
(b)). Therefore, it causes at least twice ring crossings. Since
the Dom0 is untrusted and unable to access guest’s memory,
it triggers one VM exit when it reads (writes) data from (to)
the guest memory when handling I/O. That means the whole
I/O operation causes more than twice as many ring crossings
as that in Xen, as shown in Table 2.

2.3 Advances in Hardware Virtualization

There are two trends in the recent advances of the In-
tel hardware virtualization technology 1. The first is the
lightweight context switch. Current hardware supports a VM-
FUNC [2] instruction that provides VM functions for non-
root guest VM to invoke without any VM exits. EPTP switch-
ing is the only VM function currently supported by the hard-
ware, whose function ID is 0. It allows a VM to load a new
value for its EPTP and thus establishes a new EPT, which
controls the subsequent address translation from GPA (guest
physical address) to HPA (host physical address). The EPTP
can only be chosen from an EPTP list configured in advance
by the hypervisor.

The procedure for using VMFUNC is as follows. In the
preparation stage, the hypervisor allocates an EPTP list (a

1We do not find any similar hardware trends on other platforms like
ARM and AMD. But the CloudVisor-D approach is applicable to these plat-
forms when similar hardware features are available.
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4-KBytes page), which contains at most 512 valid EPTP en-
tries. Then the address of the list is written into the guest’s
VMCS (Virtual Machine Control Structure). During run time,
the guest invokes the VMFUNC instruction and uses an
EPTP entry index as the parameter. Afterwards, the hardware
searches the list and installs the target EPT. If the index is
larger than 511 or the selected EPTP entry points to an in-
valid EPT structure, a VM exit occurs and notifies the hy-
pervisor. Figure 3 is an example of the VMFUNC workflow.
When Line 1 and Line 2 are executed, the EPT pointer in
the guest’s VMCS will be changed to the EPTP0 and EPTP2.
If the argument of VMFUNC is an index pointing to an in-
valid EPT structure as Line 3 shows, it will trigger a VM
exit waking up the hypervisor.

VMCS

VM

EPT Pointer EPT 0 EPT 1 EPT 2 EPT 511

①: vmfunc(0x0, 0x0); !!"#$%&"'(")*"+,+-"*.)/&0"/1"2343"+

②: vmfunc(0x0, 0x2); !!"#$%&"'(")*"+,+-"*.)/&0"/1"2343"5

③: vmfunc(0x0, 0x4); !!"#$%&"'(")*"+,+-"26616

ERROR

……

……

……

EPTP List

……

EPTP 0

EPTP 1

EPTP 2

0

0

…

EPTP 511

……

7

8

9

Figure 3: The workflow of VMFUNC.

The EPTP switching function has four essential character-
istics. First, the EPTP switching provided by VMFUNC is
faster than a VM exit (134 cycles vs. 301 cycles on an Intel
Skylake Core i7-6700K processor). Second, when the VPID
(Virtual-Processor Identifier) is enabled, VMFUNC will not
invalidate any TLB entry. The TLB entries of one EPT are
different from those of other EPTs [27]. Thus, there is no
need to flush the TLB after invoking VMFUNC. Third, the
VMFUNC instruction can be invoked at any protection ring
in non-root mode, including Ring 3 (user mode). Fourth, the
VMFUNC instruction only changes the EPTP value and does
not affect other registers, especially the CR3 register, pro-
gram counter and stack pointer.

The second trend is to allow a guest to handle its own VM
exits. One significant sign of this trend is the new virtualiza-
tion exception (VE) [2]. If the VE feature is enabled, an EPT
violation can be transformed into an exception (Vector 0x14)
without any VM exit. Before using the VE, the hypervisor
configures the guest’s VMCS to enable virtualization excep-
tion support and registers a VE information page into VMCS.
The guest kernel should prepare a corresponding handler for
the new exception and register it into IDT (Interrupt Descrip-
tor Table). During runtime, most EPT violations will be trans-
formed into virtualization exceptions. The VE handler can
know the GPA and GVA (guest virtual address) that cause
this exception by reading the VE information page, which is
filled by the hardware.
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Figure 4: The architecture of CloudVisor-D.

3 CloudVisor-D Approach

3.1 System Overview

For the sake of performance and security, CloudVisor-D
has two main goals:

• Goal-1: To reduce the number of VM exits caused by
the nested virtualization.

• Goal-2: To achieve the same level of security as the
nested virtualization.

Prior nested virtualization designs intercept all commu-
nications between guest VMs and the hypervisor to limit
the hypervisor’s ability to directly read or write guest VMs’
CPU registers, memory pages and disk storages. It conse-
quently incurs large overheads, as we have demonstrated in
Section 2.2. The main contribution of CloudVisor-D is to
delegate intensively used VM operations to an agent (the
Guardian-VM) for each VM in non-root mode to reduce the
large number of VM exits (Goal-1). CloudVisor-D provides
a para-virtualization model for guest VMs to invoke these
operations proactively.

Figure 4 is the architecture of CloudVisor-D. CloudVisor-
D architecture consists of a tiny nested hypervisor (we call it
RootVisor in our paper) in root mode and a set of Guardian-
VMs in Ring 0 of non-root mode. The hypervisor is deprivi-
leged to non-root mode and called SubVisor for convenience.
The tiny RootVisor has full system privilege and manages all
the important data structures such as EPTs. It also sets up a
Guardian-VM for each guest VM. All interactions between
a guest VM and the SubVisor pass through the correspond-
ing Guardian-VM or the RootVisor. The Guardian-VM is re-
sponsible for forwarding and checking most VM operations
in non-root mode while the RootVisor is occasionally awak-
ened up to handle some inevitable VM exits in root mode
such as external interrupts.

A Guardian-VM is not a full-fledged VM but only contains
some service handlers. It supports two kinds of interfaces for
guest VMs: the remote call and the local call. Neither of the
interfaces causes any VM exit. By using the remote call, a
guest can request the SubVisor’s services with the help of
the Guardian-VM, including the hypercalls and EPT viola-
tion handlers. By using the local call, a guest can request the
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local helper functions in the Guardian-VM. We provide I/O
related helper functions that encrypt, decrypt and check data
integrity of I/O data.

To achieve (Goal-2), we regard CloudVisor-D as a refer-
ence monitor [14], which means it should satisfy the follow-
ing two security properties [29, 30] 2.

• Tamperproof: CloudVisor-D isolates the RootVisor
and each Guardian-VM and makes their states (includ-
ing memory and CPU registers) unmodifiable by the
corresponding guest VM and the SubVisor.

• Complete Mediation: CloudVisor-D (including the
tiny RootVisor and the Guardian-VM) interposes all
communications between guest VMs and the SubVisor.

To support the tamperproof property, CloudVisor-D guar-
antees the authenticated booting procedure of the RootVisor
by leveraging the trusted platform module (TPM) [16] and
users could remotely attest the integrity of the RootVisor.
Furthermore, the memory address spaces of the RootVisor
and all Guardian-VMs are isolated from guest VMs and the
SubVisor (Section 4.1).

To enforce the complete mediation property, we propose
a series of techniques (Section 4.4) to ensure that all com-
munications in non-root mode have to be intercepted and
checked by the Guardian-VM while the RootVisor intercepts
and monitors the left communication paths that cause VM ex-
its.

Based on the two properties, a Guardian-VM is able to
handle VM operations securely in non-root mode. First, one
Guardian-VM provides to its VM a limited number of lo-
cal and remote calls that the VM can invoke (Section 4.5).
Second, we introduce a technique to handle EPT violations
securely in non-root mode, which guarantees that updates
to a VM’s EPT by the SubVisor should be verified by the
Guardian-VM before coming into effect (Section 5). Finally,
Guardian-VMs protects the privacy and integrity of their
guest VMs’ I/O data (Section 6).

3.2 Threat Model and Assumptions

The only software components CloudVisor-D trusts are
the RootVisor and the Guardian-VMs. It also trusts the cloud
provider and the hardware platform it runs on. CloudVisor-D
distrusts the vulnerable commodity hypervisor, which may
try to gain unauthorized access to the guest’s CPU states,
memory pages, and disk data. CloudVisor-D does not trust
the guest VM either since the guest VM can misbehave like
trying to escalate its privilege level and attacking other co-
located VMs and even the hypervisor. We assume that the
guest does not voluntarily reveal its own sensitive data and
has already protected sensitive network data via encrypted

2In fact, the reference monitor model has a third property called “verifi-
able”. Due to the small TCB of CloudVisor-D, it is feasible to completely
test and verify CloudVisor-D, which is our future work.

message channels such as SSL. Finally, we do not consider
physical attacks as well as side-channel attacks between dif-
ferent VMs3.

4 Guardian-VM

In the traditional nested virtualization, a guest VM fre-
quently interacts with the SubVisor to ask it to do VM opera-
tions, which forces the VM to trap into the SubVisor. These
operations include hypercalls, EPT violation handling and
I/O operations. CloudVisor-D provides a Guardian-VM for
each guest VM to help them request SubVisor’s services
without VM exits.

When the RootVisor is booted, it downgrades the SubVi-
sor to non-root mode and creates a SubVisor-EPT for the Sub-
Visor. Then the address translation of SubVisor is controlled
by page table (from GVA to GPA) and SubVisor-EPT (from
GPA to HPA). The RootVisor removes all its own memory
from the SubVisor-EPT to isolate its physcial address space
from the SubVisor. The SubVisor is unaware of the existence
of the SubVisor-EPT.

Although the SubVisor is in non-root mode, it is still al-
lowed to create guest VMs. When creating a VM, the Sub-
Visor sets up all management data structures for this VM,
including an EPT. After that, the SubVisor executes a privi-
leged instruction (i.e., VMLAUNCH in the x86 architecture)
to start this new VM, which causes a VM exit trapping the
SubVisor to the RootVisor. The RootVisor will not install the
EPT initialized by the SubVisor for the guest VM. Instead,
the RootVisor treats the original EPT as a shadow EPT and
creates a new EPT (called Guest-EPT) by copying all address
mappings from the shadow EPT. Therefore, the Guest-EPT
maintains the same GPA to HPA mappings as the shadow
EPT. Then SubVisor also initializes all other necessary data
structures for the VM. After finishing the initialization, the
SubVisor installs the Guest-EPT for the guest VM while leav-
ing the shadow EPT unused. The shadow EPT is made read-
only for the SubVisor by configuring the SubVisor-EPT. We
will discuss more details about the shadow EPT in Section 5.

When the RootVisor initializes a VM, it builds a Guardian-
VM for this VM as well. The Guardian-VM has its own
ETP called Guardian-EPT. The RootVisor maps code and
data pages into the Guardian-VM space by configuring this
Guardian-EPT. To isolate the memory of the VM and its
Guardian-VM from the SubVisor, the RootVisor not only re-
moves all mappings associated with the memory of the VM
and its Guardian-VM from the SubVisor-EPT, but also makes
the Guest-EPT and Guardian-EPT inaccessible to the SubVi-
sor.

In the following subsections, we first introduce how
CloudVisor-D achieves the tamperproof property in Sec-

3We do not consider recent side-channel attacks like Meltdown [42],
Spectre [34] and L1TF [4]. These attacks can be effectively prevented by
CPU vendors’ microcode patches, which are orthogonal to the CloudVisor-
D apporach.
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tion 4.1. Then we deconstruct the complete mediation prop-
erty into two more detailed invariants in Section 4.2. Sec-
tion 4.3 elaborates two attacks that break the two invari-
ants respectively. Section 4.4 explains two techniques that
CloudVisor-D uses to enforce the two invariants and further
achieve the complete mediation property. Finally, we briefly
discuss the jump table mechanism in CloudVisor-D.

4.1 Isolating Environment for Guardian-VM

To support the tamperproof property, each Guardian-VM
runs in an execution environment isolated from its corre-
sponding VM and the SubVisor. Because the RootVisor en-
sures that the Guest-EPT and the SubVisor-EPT do not con-
tain any memory mappings belonging to the Guardian-VM,
neither the guest VM nor the SubVisor is able to access the
physical address space of the Guardian-VM. Furthermore,
each Guardian-VM also owns a separate stack, which will
be installed when a VM or the SubVisor switches into the
Guardian-VM. This stack is inaccessible to the guest VM
and SubVisor, which ensures that data stored in the separate
stack cannot be modified, especially for the runtime states
and function arguments. To protect the data in registers, the
Guardian-VM clears most general registers to avoid privacy
leakage and retains necessary register values (e.g., general
registers containing SubVisor function arguments) before
switching between a guest VM and the SubVisor.

4.2 Deconstructing the Complete Mediation

Property

A guest VM communicates with the SubVisor through two
paths. The first one starts with a VM exit and traps to the
RootVisor, which then forwards the control flow to the Sub-
Visor. The other path is forwarded by a Guardian-VM to
the SubVisor in non-root mode. The complete mediation

property requires that CloudVisor-D interposes both of the
two communications paths. The path in root mode is medi-
ated by the RootVisor, which is enforced by existing tech-
niques [20, 72]. For the communication path in non-root
mode, we propose the following invariants which can help
achieve the complete mediation property.

• Invariant 1. A guest VM must switch to its Guardian-
VM before switching to the SubVisor, and vice versa.

• Invariant 2. A guest VM (or the SubVisor) enters the
Guardian-VM only through the predefined entry points
(gates).

Invariant 1 requires that a Guardian-VM intercepts all the
communications in non-root mode. Invariant 2 further speci-
fies that a guest VM or SubVisor enter the Guardian-VM only
through legal gates, which means they cannot directly jump
into other code pages of the Guardian-VM.

4.3 New Attacks to Bypass or Compromise

Guardian-VMs

However, it is difficult to enforce these invariants. A
straightforward design of the Guardian-VM would enable
two types of attacks that break these two invariants respec-
tively. The first attack allows a malicious VM to bypass
the Guardian-VM in non-root mode and execute any instruc-
tions in the SubVisor, which breaks the Invariant 1 property.
This attack also allows a malicious SubVisor to bypass the
Guardian-VM and attack VMs. Specifically, the attacker in-
vokes a self-prepared VMFUNC instruction to maliciously
bypass the Guardian-VM by directly switching from one
physical space to the target physical space and execute sensi-
tive instructions in the target space. The second attack breaks
Invariant 2 and is simpler than the first one. This attack tar-
gets the Guardian-VM and uses techniques similar to the first
attack, which bypasses the Guardian-VM’s predefined gates
and compromises the Guardian-VM.

We first use an example to illustrate the basic procedure of
the first attack. We suppose that the guest OS is an attacker,
and its purpose is to bypass the Guardian-VM and directly
execute any instructions in the SubVisor-EPT (victim). If the
attacking direction is reversed, that is, the attacker is the Sub-
Visor and the victim is a guest VM, the attacking procedure is
similar. Figure 5 shows an example of the first attack, which
consists of the following four steps.
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Figure 5: An example of the first attack. All addresses in this
figure are used for illustration and do not have any practical
meaning.

• Step 1: Guessing the SubVisor’s page table base ad-

dress. The attacker guesses the SubVisor’s page table
base address. The page table controls the mapping from
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GVA to GPA, which is managed by the SubVisor. Since
the SubVisor usually uses a statically allocated page ta-
ble which is initialized during system booting, the base
address of the page table is easy to guess if the attacker
is familiar with the source code of the SubVisor. In Fig-
ure 5, the base address of the SubVisor page table is
0x55000.

• Step 2: Creating a malicious page table. In the VM’s
physical address space, the attacker then creates a ma-
licious page table whose base address value (GPA) is
equal to that of the SubVisor’s page table 4. Hence, the
base address of the malicious page table is 0x55000 in
Figure 5. This base address is translated to the mali-
cious page table in the Guest-EPT and to the SubVisor
page table in the SubVisor-EPT. The malicious page
table consists of four-level page table pages, but each
level has only one page. These page table pages trans-
late the GVA of a code page (0x80000 in this example),
which contains a self-prepared VMFUNC instruction.
The VMFUNC instruction’s virtual address is deliber-
ately set to the value just before the GVA of the target
instructions in the SubVisor’s space, which is 0x80237
in Figure 5.

• Step 3: Switching EPTs. The attacker writes the base
address of the malicious page table into the CR3 reg-
ister in non-root mode and executes the self-prepared
VMFUNC instruction to bypass the Guardian-VM and
switch to the SubVisor-EPT. Here we understand why
the attacker needs to guess the SubVisor’s page table
base address at Step 1. After switching to the SubVisor-
EPT, an incorrect value in the CR3 register will be trans-
lated to an illegal page table. The illegal page table may
contain meaningless GPAs that cause numerous EPT vi-
olations, which wake up the RootVisor.

• Step 4: Executing target instructions. In the
SubVisor-EPT, the GPA in the CR3 register is translated
to the HPA of the SubVisor’s page table (0x2B000 in
this example). Thus, all the GVA of the subsequent in-
structions will be translated by the SubVisor’s page ta-
ble. Finally, the target instructions are executed.

The second attack is similar to the first one since the at-
tacker also uses the above four steps. The only difference is
that the attacking target is Guardian-VM. The attacker simi-
larly crafts a malicious page table and puts the self-prepared
VMFUNC instruction just before the GVA of the target in-
structions in the Guardian-VM. Therefore, the attacker can
bypass the predefined gates of the Guardian-VM and breaks
Invariant 2.

4The attacker just puts the page table at a specific GPA. She cannot mod-
ify the Guest-EPT.

Previous works have proposed many solutions to defend
against these attacks. SeCage [44] and EPTI [27] set the code
pages belonging to the attacker EPT to non-executable in the
victim EPT. SeCage further puts a security checker at the
beginning of each sensitive function page. SkyBridge [49]
takes another defense solution that first replaces all illegal
VMFUNC instructions and then makes code pages non-
writable so that the attacker cannot insert self-prepared VM-
FUNC instructions.

Nevertheless, none of these defenses works in the
CloudVisor-D scenario. All of these methods depend on one
assumption which is not held in CloudVisor-D: the attacker
runs in Ring 3 which means she cannot modify the page table
or the CR3 register value. In CloudVisor-D, both of the guest
OS and the SubVisor can freely modify their page tables and
even CR3 register values. Therefore, previous defenses are
unable to defeat this new variant of the attack in CloudVisor-
D. Furthermore, CloudVisor-D has one stricter requirement
that the guest VM (or the SubVisor) should switch to the
Guardian-EPT before the SubVisor-EPT (Guest-EPT).

4.4 Enforcing the Complete Mediation Prop-

erty

To defeat these attacks and enforce the complete media-

tion property, we propose two techniques that satisfy the two
invariants respectively. To enforce Invariant 1, we propose
a technique called dynamic EPTP list manipulation, which
guarantees that both the guest VM and the SubVisor have to
enter the Guardian-VM before switching to the target EPT.
Another technique to satisfy Invariant 2 is called isolated

Guardian-VM page table. By using this technique, the ma-
licious guest VM or the SubVisor cannot directly jump into
the middle code pages of the Guardian-VM since the base
address of the Guardian-VM page table exceeds the GPA
ranges of the guest VM and SubVisor.

4.4.1 Dynamic EPTP List Manipulation

A strawman design. One straightforward solution to en-
force Invariant 1 is to control the executable bits dynam-
ically in the Guest-EPT and the SubVisor-EPT. Since the
Guardian-VM has access to the SubVisor-EPT and corre-
sponding Guest-EPT, it can initialize all code pages in the
SubVisor-EPT to non-executable. Hence, the guest OS has
to switch to the Guardian-VM and enable the SubVisor’s
execution privilege before switching to the SubVisor. That
gives the Guardian-VM a chance to do the security check.
This solution supports fine-grained privilege control, which
means it can create multiple SubVisor-EPTs and Guest-
EPTs for different vCPUs and enable the executable bits in
one SubVisor-EPT/Guest-EPT for one vCPU while keeping
other vCPUs’ SubVisor-EPTs/Guest-EPTs non-executable.
Furthermore, the privilege control can be accelerated by just
modifying the L4/L3 EPT entries. However, this solution is
infeasible even if it looks reasonable because it requires fre-
quent EPT synchronizations among vCPUs and thus brings
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about a large number of costly TLB shootings [12] for one
multi-vCPU VM.

Exit
Page

Main 
Page

Entry
Page

Enter_GUARDIAN-VM(func_index, arguments) 

          VMFUNC(0x0, 0x1) // install Guardian-EPT

          Guardian_CR3 = Guardian_Info_Page[0]

          Install Guardian_CR3 to CR3 register

          Install Guardian-VM stack

          Push registers

          DISPATCH_REQUESTS(func_index, arguments)

          Pop  registers

          Restore guest stack

          Restore guest page table

          VMFUNC(0x0, 0x0) // install Guest-EPT

DISPATCH_REQUESTS(func_index, arguments)

         type = VERIFY_REQUESTS (func_index, arguments) 

         if (is_remote_call == type) then

                HANDLE_REMOTE_CALL (func_index, arguments) 

                CHECK_UPDATES

         else if (is_local_call == type) 

                HANDLE_LOCAL_CALL (func_index, arguments)

         else reject the request 

HANDLE_REMOTE_CALL(func_index, arguments) 

         EPTP_LIST = Guardian_Info_Page[1]

         EPTP_LIST[0] = 0

         EPTP_LIST[2] = SubVisor-EPT

         func_pointer = jump_table[func_index]

         CALL_HYPER_FUNC(func_pointer, arguments)

         EPTP_LIST[2] = 0

         EPTP_LIST[0] = Guest-EPT

HANDLE_LOCAL_CALL(func_index, arguments) 

         func_pointer = jump_table[func_index]

         func_pointer(arguments) 

CALL_HYPER_FUNC(func_pointer, arguments)

         Install SubVisor page table

         Install SubVisor stack

         VMFUNC(0x0, 0x2) // install SubVisor-EPT

         func_pointer(arguments)

         VMFUNC(0x0, 0x1) // install Guardian-EPT

         Guardian_CR3 = Guardian_Info_Page[0]

         Install Guardian_CR3 to CR3 register

         Restore Guardian-VM stack
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Figure 6: The pseudo code of the Guardian-VM.

CloudVisor-D design. Fortunately, we observe that the
VMFUNC instruction causes a VM exit if the target EPTP
entry in the EPTP list points to an invalid EPT. Therefore,
by controlling the EPTP entry in the EPTP list, we propose
a new technique called the dynamic EPTP list manipulation

to ensure that both the guest VM and the SubVisor switch to
the Guardian-VM before switching to the other EPT, which
thus enforces Invariant 1. The intuition behind this tech-
nique is that the Guardian-VM dynamically puts and clears
the base address of the SubVisor-EPT (or the Guest-EPT) in
the EPTP list before entering and after leaving the SubVisor
(or the guest VM).

Figure 6 is the pseudocode of the Guardian-VM and
Line 24-26 show this technique. The RootVisor shares the
EPTP list page with the Guardian-VM, whose address is
written in a Guardian-VM private data page by the RootVi-
sor (Guardian_Info_Page). By default, most entries in the
EPTP list are zero except Entry 0 and 1, which point to the
Guest-EPT and the Guardian-EPT respectively. Before call-
ing the SubVisor function, the Guardian-VM clears Entry 0
and then writes the base address of the SubVisor-EPT into
Entry 2. When it returns from the SubVisor, the Guardian-
VM reversely clears Entry 2 and writes the base address of

the Guest-EPT into Entry 0. By using this technique, any il-
legal EPT switch bypassing the Guardian-VM encounters an
EPTP entry with the zero value which causes a VM exit and
wakes up the RootVisor to stop the attacker. This technique
requires no EPT modification and thus avoids TLB flushing.
Furthermore, the VMCS is a per-CPU structure which allows
applying the technique to each vCPU independently.

4.4.2 Isolated Guardian-VM Page Table

We do not prevent the attacker from guessing the base ad-
dress of the Guardian-VM page table. Instead, we prevent in-
stalling the Guardian-VM page table. To do that, the RootVi-
sor puts the Guardian-VM page table at a GPA which ex-
ceeds the maximum GPA used by the guest VM and the
SubVisor. Theoretically, an EPT can support 256TB physi-
cal memory that is usually not used up in practice. For ex-
ample, the maximum GPAs for the SubVisor and guest VMs
are smaller than 16GB on our test machine and the RootVi-
sor puts the Guardian-VM page table pages at the GPA larger
than 16GB.

Entry Page Entry Page

Guest-EPT Guardian-EPT SubVisor-EPT

Exit PageExit Page

Main Page
Guest

Page Table
SubVisor 

Page Table

Guardian-VM

Page Table

Figure 7: The memory mappings for code pages and page
tables.

Figure 7 depicts the memory mapping of code pages. The
entry page and the exit page are the two Guardian-VM code
pages shared with the Guest-EPT and the SubVisor-EPT re-
spectively. The main page is a private code page of the
Guardian-VM. The page table pages used to translate the en-
try page are shared by the Guest-EPT and the Guardian-EPT.
However, the guest does not have the permission to modify
these page table pages, which are mapped as read-only in
the Guest-EPT. The page table pages used to translate the
exit page are similarly mapped into the Guardian-EPT and
the SubVisor-EPT. The base address of the Guardian-VM
page table is written into the Guardian_Info_Page and the
Guardian-VM installs this page table in the entry page, as
shown in Figure 6.

This technique effectively prevents the attacker from jump-
ing into the middle of the Guardian-VM. Suppose that there
is a malicious VM and it knows the base address of the
Guardian-VM page table, it has to create one malicious page
table which maps one code page containing at least a VM-
FUNC instruction. However, the VM is unable to configure
the malicious page table whose base address (GPA) is not
mapped in the Guest-EPT. Any access to that GPA wakes
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up the RootVisor. Therefore, a guest VM has to invoke the
Enter_GUARDIAN-VM function to enter its Guardian-VM
and the SubVisor can enter the Guardian-VM only via return-
ing to the CALL_HYPER_FUNC function.

4.5 Jump Table

CloudVisor-D guarantees that a guest VM invokes a lim-
ited range of functions specified in a fixed list, which we call
the jump table. The jump table contains the functions in the
SubVisor (remote calls) and the local helper functions in the
Guardian-VM (local calls). Each entry in the jump table com-
prises a function pointer and information about its arguments,
such as the argument count and their value ranges. The table
is not mapped in the Guest-EPT or the SubVisor-EPT so that
neither the guest nor the SubVisor can modify it. To invoke
a remote call or local call, the guest should provide the in-
dex of the function it is calling and corresponding arguments.
When processing a guest request, the Guardian-VM verifies
the function index and arguments that the guest provides. If
the index is out of jump table’s range or the number and the
value ranges of the arguments do not satisfy those recorded
in the jump table, it will reject this request. Otherwise, the
Guardian-VM calls a local helper function or redirects it to
call a SubVisor function.

5 Memory Virtualization in Non-root Mode

CloudVisor-D handles EPT violation in non-root mode
without triggering any VM exit. To achieve this goal,
CloudVisor-D leverages the virtualization exception (VE)
and converts an EPT violation to a VE in the guest. The guest
then issues a remote call of the Guardian-VM to call the EPT
violation handler in the SubVisor, which also resides in non-
root mode.

When a VE happens, the guest’s VE handler is called. By
reading the VE information page, it gets the violation GPA
and exit qualification. The exit qualification is a technical
term used in the Intel manual [2], which describes informa-
tion about the access causing the exception, such as whether
the violation is caused by a data read or write. Then the han-
dler calls a remote call to invoke the EPT violation handler
of the SubVisor.

We design a secure guest EPT update mechanism to han-
dle the EPT violation securely in non-root mode: (1) The
Guardian-VM grants the write permission of the guest’s
shadow EPT to the SubVisor by modifying the SubVisor-
EPT; (2) The Guardian-VM switches to the SubVisor-EPT
and calls the SubVisor’s EPT violation handler; (3) The Sub-
Visor traverses the shadow EPT to handle this violation and
returns; (4) The Guardian-VM revokes the shadow EPT per-
mission from the SubVisor; (5) The Guardian-VM traverses
the shadow EPT to check the updates made by the SubVisor
and notifies the RootVisor if anything abnormal is detected;
(6) The Guardian-VM applies the updates to the Guest-EPT.
Please note that all the above EPT modifications by the Sub-
Visor are made to the shadow guest EPT, which is not actu-

ally used by the guest VM. Only after being checked by the
Guardian-VM can these updates come into effect.

When checking the updates made by the SubVisor, the
Guardian-VM sees the EPT pages that are associated with
the violated address and omits other pages. This could boost
the checking procedure since there are at most four EPT
pages that are used to translate the violated address. The
Guardian-VM validates the page ownership when checking
the updates. For example, if the SubVisor tries to maps an-
other VM’s page to this VM, the Guardian-VM rejects these
updates and notifies the RootVisor.

We do not invoke INVEPT here to flush the corresponding
TLB entries after handling the EPT violation. This is reason-
able because we only consider the EPT violation situation,
where all TLB mappings that would be used to translate the
violated address are invalidated by the hardware before the
VE handler is called [2]. For instance, one read-only TLB
entry exists for one page and any write operation to the page
triggers one VE which flushes the stale read-only TLB entry
before invoking the VE handler.

CloudVisor-D focuses on the EPT violation scenario
which increases privileges (e.g., change non-present to
present or read-only to writable). It does not shoot down
other TLB entries in a multi-core VM to boost the VE han-
dling procedure. The stale TLB entries on other cores only
cause extra VEs if accessed by other cores. Furthermore, the
Guardian-VM optimizes the VE handling of the stale TLB
entries by directly returning to the guest VM without for-
warding the VE to the SubVisor.
Other EPT management operations: The SubVisor may
modify guest VM’s EPT for other management purposes,
such as memory deduplication and NUMA page migration.
These management operations are handled like CloudVisor,
which still trigger EPT violations and trap into the RootVisor.
Faking VE Attack: One guest VM may issue a fake VE by
intentionally making a remote call to invoke the SubVisor
EPT handling procedure. The fake VE lures the Guardian-
VM to map other VMs’ or the SubVisor’s pages into the at-
tacker’s EPT and make these pages accessible to the guest.
However, the Guardian-VM disallows such modifications to
the attacker’s EPT since it checks page ownership before
modifying any page mapping and will not grant one page to
the attacker if it belongs to other VMs or the SubVisor.

6 I/O Protection

It is critically important to protect the privacy and integrity
of the virtual disk of a guest virtual machine. The most
straightforward strategy is to encrypt the whole disk in the
guest kernel level, like LUKS [25]. However, the malicious
SubVisor can steal the encryption key, peek into or tamper
with the plaintext in memory. Further, it also mandates the
guest VM with the support of LUKS, which is not always
available. Therefore, CloudVisor-D provides the full virtual
disk encryption support efficiently and mostly-transparently
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Figure 8: The PV disk I/O request handling process in
CloudVisor-D.

at the cloud level. To support para-virtualization I/O model
which is widely used in today’s cloud environment, we insert
two lines of code into the PV front-end driver in the guest
OS that call helper functions in Guardian-VM. These helper
functions encrypt (or decrypt) I/O data of the guest and up-
date (or verify) the hash values of the disk. CloudVisor-D
uses the AES-XTS algorithm in Intel AES-NI to encrypt
and decrypt disk data with a 128-bit AES key. The key is
generated by the tenant and encrypted by a platform pub-
lic key provided by CloudVisor-D. Then the user passes the
encrypted key to CloudVisor-D through the network. After-
wards, the key cipher-text is decrypted and maintained inside
the CloudVisor-D memory.
Overall Control Flow: Figure 8 is our solution for PV
I/O protection. When the front-end driver is initializing,
CloudVisor-D creates a SubVisor I/O ring for the back-end
driver in the SubVisor. The SubVisor I/O ring is editable
by the SubVisor, while the original one is inaccessible to
it. Suppose the front-end I/O driver is ready to issue an I/O
write request. Before it pushes the request into I/O ring, it
invokes the Guardian-VM’s sending helper function via a lo-
cal call, which allocates a new buffer and copies the data of
the request into the buffer (This copy is omitted for the read
request). Then the Guardian-VM encrypts all pages in the
copied buffer and updates corresponding hash values of re-
lated sectors. Finally, it writes the new buffer into the SubVi-
sor I/O ring and modifies the SubVisor-EPT to change these
new buffer pages’ permission to writable. Next, the front-end
driver pushes the request to the ring and invokes a remote
call to send an event to the back-end driver under the help
of the Guardian-VM. When the front-end driver receives a
virtual completion interrupt from the back-end driver, it in-
vokes the receiving helper function via the other local call to
process the response and revoke the buffer permission from
the SubVisor-EPT. If it is a read request, the Guardian-VM
also copies data from the buffer into the guest OS request
pages, and decrypts the data in these pages.
Data Integrity: We compute a 256-bit SHA-256 hash value
for each disk sector and use the Merkle tree [48] to organize
the hash values of all disk sectors. This hash tree is stored in
a hash file and loaded into a shared memory of CloudVisor-

D by Xen management tool (xl) when we boot a guest VM.
Even though a compromised xl program may modify the
hash value of storage, CloudVisor-D can detect that situation
since the hash values are generated based on the decrypted
sector data which xl is unable to access without the AES key
passed by the user.
DMA Attack: An attacker may access sensitive memory or
even inject code into CloudVisor-D memory by leveraging
DMA operations. To defend against this attack, CloudVisor-
D controls IOMMU and makes protected memory regions
inaccessible to the SubVisor by manipulating the mapping
from device address to HPA. The IOMMU page table for
the storage device controlled by the SubVisor only contains
physical addresses that do not belong to any VMs. Each time
a new VM is booted, the RootVisor removes mappings re-
lated with this new VM from the IOMMU page table for
the device. Therefore, when the malicious SubVisor issues
a DMA request to write or read VM memories, an IOMMU
page fault triggers, which notifies the RootVisor.

7 Security Analysis

7.1 CloudVisor-D as a Reference Monitor

CloudVisor-D is actually a reference monitor which me-
diates all communications between guest VMs and the Sub-
Visor. There are two necessary and sufficient requirements
for a secure reference monitor, which are tamperproof and
complete mediation. In this section, we first explain how
CloudVisor-D satisfies these two requirements.

Property 1 (tamperproof): The RootVisor is trusted

during its lifetime. The integrity of the RootVisor is guaran-
teed by the authenticated boot of TPM, by which users can at-
test whether the RootVisor is trusted. After booted, potential
attackers cannot modify the RootVisor’s code or data since
it has an isolated address space, which is inaccessible to the
SubVisor and VMs. The RootVisor also has the full privilege
of the hardware and prevents attackers from disabling key
hardware features like the virtualization feature.

Property 2 (tamperproof): Guardian-VMs are tamper-

proof during its lifetime. Based on Property 1, the trusted
RootVisor can securely load a trusted Guardian-VM when
booting a guest VM. The RootVisor also checks its integrity
when finishing the booting process. During run time, the
guest VM and the SubVisor do not have the privilege to
modify the memory and EPT of the Guardian-VM. There-
fore, a malicious VM or SubVisor is unable to touch any
sensitive memory states of a Guardian-VM directly. How-
ever, since Guardian-VMs accept inputs from untrusted VMs
and SubVisor, the Guardian-VM and the RootVisor must pro-
tect themselves from malicious inputs, which may exploit a
stack overflow vulnerability and then mount a ROP attack.
Memory bugs are unavoidable for software written in C/C++
languages. However, due to the small TCB of Guardian-
VM, it is relatively easy to verify that Guardian-VMs are
free of these memory vulnerabilities. Furthermore, we have
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used three static analysis tools (Facebook infer v0.15.0 [10],
CBMC v5.3 [36] and Cppcheck v1.72 [23]) to check the cur-
rent implementation of CloudVisor-D. Both Facebook infer
and Cppcheck found some instances of three types of bugs
(uninitialized variables, possibly null pointer dereferences,
and dead stores) while CBMC did not report any bugs. We
have fixed all the reported bugs. However, none of these tools
could prove that the implementation of CloudVisor-D is bug-
free. We plan to use formal verification methods to verify
CloudVisor-D or completely rewrite it by using high-level
and secure languages like Rust [46] in the future.

Property 3 (complete mediation): CloudVisor-D inter-

cepts all communications There are two types of paths that
a VM or the SubVisor can communicate with each other.
The first is via the VM exits which are then forwarded by
the RootVisor, which is the traditional and slow path. The
other one is through the Guardian-VM. An attacker may try
to bypass Guardian-VMs by directly switching from a VM
to the SubVisor. This attack is prevented by controlling the
EPTP list entries and the isolated Guardian-VM page table.
Thus, the only way to enter the SubVisor in non-root mode
is through the Guardian-VM, which accepts a limited range
of functions recorded in the jump table. A VM may refuse to
call the interface provided by Guardian-VM. But it is in an
isolated EPT environment, which means this behavior only
results in its own execution failure, not affecting other VMs
or the SubVisor.

7.2 Defend VMs against an Untrsuted Hyper-

visor

Due to the tamperproof and complete mediation proper-
ties of CloudVisor-D, we ensure that a guest VM (or the Sub-
Visor) cannot tamper with CloudVisor-D nor bypass it, and
any communication path between VMs and the SubVisor is
mediated by CloudVisor-D. In this section, we explain how
CloudVisor-D protects guest VMs based on the secure refer-
ence monitor concepts.

Protecting CPU states for guest VMs The CPU regis-
ters of one VM can only be modified by the RootVisor or its
Guardian-VM. CloudVisor-D will clear unnecessary register
values when switching between VMs and the SubVisor. The
SubVisor cannot compromise the normal execution of guest
VMs since it is forbidden from directly changing the CR3,
RIP and RSP registers.

Protecting Memory states for guest VMs CloudVisor-
D prevents a malicious SubVisor (or a malicious guest VM)
from accessing the memory of any VMs by controlling the
EPTs to enforce the memory isolation. The SubVisor may try
to modify the guest’s EPT and maps the guest’s memory into
the SubVisor’s EPT when it handles EPT violations. This
can also be defeated since any modification to the shadow
guest EPT made by the SubVisor is checked by the Guardian-
VM which prevents such dangerous mappings. The SubVisor
could attempt to leverage a DMA capable device to access

the VM memory and even compromise CloudVisor-D. This
is prevented by controlling IOMMU to make the protected
memory regions inaccessible for the SubVisor.

Protecting Disk I/O states for guest VMs CloudVisor-D
also guarantees the privacy and integrity of guest VMs’ disk
I/O data. The SubVisor is able to access the disk image file di-
rectly. But the image contains encrypted data, which is mean-
ingless if not decrypted. Furthermore, CloudVisor-D protects
the encryption key in its memory and registers, and the at-
tacker cannot steal the key to decrypt the I/O data. The Sub-
Visor may also modify the encrypted disk file, which could
be detected by CloudVisor-D by comparing the hash values.

8 Evaluation

This section evaluates CloudVisor-D’s overall perfor-
mance and scalability by answering the following questions:

Q1: What is the implementation complexity of
CloudVisor-D?

Q2: Does CloudVisor-D improve the performance of the
micro-architectural operations (e.g., hypercalls)?

Q3: How do real-world applications perform under
CloudVisor-D?

Q4: Does CloudVisor-D achieve good I/O performance?
Q5: How does CloudVisor-D perform when running mul-

tiple instances of guest VMs?
Q6: Can CloudVisor-D defend against malicious VMs or

SubVisor?

8.1 Methodology

Name Description

apache

Apache v2.4.7 Web server running ApacheBench v2.3 with
the default configuration, which measures the number of han-
dled requests per second serving the index page using 100
concurrent clients to send 10,000 requests totally

mysql

MySQL v14.14 (distrib 5.5.57) running the sysbench oltp
benchmark using 6 threads concurrently to measure the time
cost by an oltp test, the size of oltp table is 1000000 and the
oltp test mode is complex mode

memcached

memcached v1.4.14 using the memcslap benchmark on the
same VM, with a concurrency parameter of 100 to test the
time it takes to load data

kernel

compile

(kbuild)

kernel compilation time by compiling the Linux 4.7.0 from
scratch with the default configuration using GCC 4.8.4-2

untar

untar extracting the 4.7.0 Linux kernel tarball compressed
with gzip compression using the standard tar utility, measur-
ing the time cost

hackbench

hackbench v0.39-1 using unix domain sockets and 100 pro-
cess groups running with 500 loops, measuring the time spent
by each sender sending 500 messages of 100 bytes

dbench

dbench v4.0 using different numbers of clients to run I/O
Read/Write tests under empty directories with default client
configuration repeatedly

Table 3: Description of real applications.

In this section, we demonstrate the efficiency of
CloudVisor-D by comparing it with the vanilla Xen hyper-
visor (v4.5.0). Our test machine is equipped with an Intel
Skylake Core i7-6700K processor, which has 4 cores and 8
hardware threads with the hyper-threading enabled. The stor-
age device is a 1TB Samsung 860 EVO SATA3 SSD.
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All the benchmarks we used and their setup details are de-
scribed in Table 3. The Dom0 is Debian 8.9 and the kernel
is Linux 4.4.80. We used Ubuntu 16.04 for the guest virtual
machine and Linux 4.7.0 as its kernel. The guest has 1 (a
UP VM) or 2 (an SMP VM) vCPUs, 2GB virtual memory
and 30GB virtual disk. All multicore evaluations were done
using two vCPUs bound to two physical CPUs. To ensure
the evaluation results measured at the same CPU clock, we
disabled the CPU frequency scaling.

8.2 Status Quo and Complexity

To answer the first question (Q1), we have built a
prototype of CloudVisor-D on an Intel Skylake machine.
CloudVisor-D uses the Intel AES-NI [2] for encryption and
leverages IOMMU to defend against DMA attacks (Sec-
tion 6). Table 4 shows the breakdown of CloudVisor-D TCB,
which is measured by the sloccount tool [6]. The code sizes
of the RootVisor and Guardian-VM are 4,174 and 1,656 re-
spectively. The sum is roughly equal to that of CloudVisor,
which means CloudVisor-D does not increase the TCB size.

Functionality LOC

RootVisor

VMCS Manipulation 1,742
Memory Management 1,397
Exit Handlers 583
Other 452

Guardian-VM
Reference Monitor 429
Encryption 574
Hash Integrity 653

CloudVisor-D Total 5,830

Table 4: The breakdown of CloudVisor-D TCB.

8.3 Micro-architectural Operations

Operation Xen CloudVisor CloudVisor-D Speedup

Hypercall 1758 4681 1810 61.3%
EPT violation handling 5374 66301 9929 85.0%
Virtual IPI 11214 21344 13331 37.5%

Table 5: Micro-architectural operation overhead measured
in cycles.

To answer the second question (Q2), we quantified the per-
formance loss of micro-architectural operations of the hy-
pervisor on an SMP virtual machine. Table 5 presents the
costs of various micro-architectural operations in an SMP
VM. The results are measured in cycles.

Hypercall is an operation commonly used by the guest
kernel to interact with the hypervisor. To measure its perfor-
mance, we call a do_vcpu_op hypercall to check whether a
vCPU is running or not. In the Xen hypervisor, this hyper-
call causes two VM ring crossings: a VM exit and a VM en-
try. Even if CloudVisor-D causes more EPT switches, it can
achieve similar performance via the efficient remote calls. A
hypercall in CloudVisor incurs almost 3 times as many cycles
due to a large number of ring crossings as we have analyzed
in Section 2.

EPT violation handling is the total cost of switching to the
SubVisor, handling the EPT violation and returning to the

guest. We invalidated one GPA in the guest EPT and mea-
sured the procedure of reading a value in the address, which
involves an EPT violation handling. The result is an average
of 5,000 tests. The cost of this operation in CloudVisor-D
is larger than that in Xen due to the manipulation of EPT
in Guardian-VM introduced in Section 5. In CloudVisor, the
SubVisor causes two VM ring crossing each time it modi-
fies the guest EPT, which introduces multiple VM ring cross-
ings when handling EPT violations. Therefore, it performs
the worst, which is nearly 10 times worse than Xen and
CloudVisor-D.

Virtual IPI is the cost of issuing an IPI to another vCPU.
We pinned two vCPUs to different physical CPUs. Virtual IPI
is an important operation intensively used in the multi-core
machines. The measured time starts from sending an IPI in
one vCPU until the other vCPU responds. In Xen hypervi-
sor, a virtual IPI is implemented by sending an event using
the event channel to the SubVisor, which then injects a vir-
tual interrupt to the target vCPU. CloudVisor-D replaces the
do_event_channel_op hypercall with a remote call to allow
one vCPU to send an event without any VM exit. Yet, we did
not optimize the virtual interrupt sending procedure which is
our future work. Even if CloudVisor-D is slower than Xen,
it is significantly faster than CloudVisor due to the efficient
remote calls.

8.4 Applications Performance

To answer Q3, we measured CloudVisor-D with real-
world applications which have various execution character-
istics. Since CloudVisor only supports emulated I/O devices,
it is unfair to directly compare it with CloudVisor-D, which
supports a PV I/O device model. Moreover, the vanilla Xen
has been shown to outperform CloudVisor. Therefore, we di-
rectly compared CloudVisor-D with the vanilla Xen, which
is sufficient to demonstrate CloudVisor-D performance.

Figure 11(a) shows the result of the performance compar-
ison of CloudVisor-D on real applications with the vanilla
Xen hypervisor in a uniprocessor VM. CloudVisor-D per-
forms similarly to the vanilla Xen hypervisor across all work-
loads. The maximum overhead is not larger than 5%. We also
evaluated these applications in an SMP VM. Figure 11(b)
shows the normalized performance of real applications in an
SMP VM. For these real-world applications, CloudVisor-D
still incurs negligible overhead. It even performs better than
the vanilla hypervisor, especially for the memcached bench-
mark. Benchmarks such as memcached incur many event
channel communications in an SMP setting which is opti-
mized by CloudVisor-D by using the efficient remote calls.
To check the impact of this optimization, we ran a guest
VM with and without using the do_event_channel_op re-
mote call and compared their performance. As shown in Ta-
ble 6, a guest without do_event_channel_op remote call suf-
fers from severe performance degradation, which means the
do_event_channel_op remote call improves performance
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Figure 9: Throughput for dbench in UP (left) and SMP (right) VMs using from 10 to 60
concurrent clients. The numbers above each bar are the CloudVisor-D overhead compared
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Figure 10: Performance overhead
for kernel building in CloudVisor-
D compared to the vanilla Xen for
different number of concorrent VMs.
(Lower is better)
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Figure 11: Performance overhead for real applications in
UP (left) and SMP (right) VMs. The data on the left bar
shows the relative overhead compared to a vanilla Xen hy-
pervisor (Lower is better). In the right figure, the bar below
the line (with zero overhead) represents that CloudVisor-D
outperforms the vanilla hypervisor while the bar above the
line means that CloudVisor-D is slower than the vanilla.

a lot for the memcached benchmark. Specifically, it im-
proves the performance of CloudVisor-D for about 78.32%
(27.05%+51.27%).

Experiment Vanilla Xen CloudVisor-D− CloudVisor-D

Time (seconds) 7.613 11.516 5.554
Speedup 0 -51.27% 27.05%
VM exits 1,691,758 4,572,269 63,909

Table 6: The performance impact of remote calls on
memcached. CloudVisor-D− means the guest does not in-
voke do_event_channel_op remote call while CloudVisor-D
means the guest uses this remote call.

The reason for this speedup is as follows: memcached is
a multi-threaded application and has no problem saturating
many cores. In an SMP VM, one vCPU frequently sends
virtual IPIs to another vCPU, which is implemented by the
event channel mechanism. With the help of the remote calls,
CloudVisor-D reduces numerous VM exits caused by invok-
ing do_event_channel_op hypercall, resulting in much less
unnecessary scheduling. Moreover, a vCPU will not send any
virtual IPI if it detects the target vCPU is not idle, which

further avoids VM exits caused by virtual IPIs. We found
that CloudVisor-D decreases the number of VM exits from
1,882,098 to 60,921 compared to the vanilla Xen hypervisor,
as shown in Table 6. Therefore, memcached in CloudVisor-D
achieves better performance than that in the vanilla Xen.

Overheads of a Guardian-VM. Each tenant VM only re-
quires one Guardian-VM, which is not a complete VM but
only a few service handlers. A Guardian-VM is invoked on
demand. It introduces only 108KB memory for one vCPU
(116KB for two vCPUs), costs at most 3.39% CPU cycles
when running real-world apps used in our paper.

8.5 I/O Performance

To answer Q4, we studied how CloudVisor-D behaved in
the worst-case I/O scenario by using dbench v4.0 [1]. dbench
is a widely-used I/O-intensive benchmark. In our evaluation,
the sysstat [11] tool reveals that I/O activities (including file
system time and waiting for the block device) account for
87.99% of the total workload time. Figure 9(a) demonstrates
the result of I/O performance overhead on dbench in a UP
VM by changing the number of concurrent clients. When the
number of concurrent clients is smaller than 20, the through-
put does not reach its limit which is approximately 710 MB/s.
The overhead for storage I/O is smaller than 5% for all cases.
Since dbench is a worst-case I/O scenario benchmark, the
result demonstrates that even in the worst case, CloudVisor-
D can provide acceptable I/O performance. The I/O perfor-
mance in an SMP VM is similar to that in a UP VM, as shown
in Figure 9(b). CloudVisor-D achieves negligible overhead
across different concurrency levels.

8.6 Performance of Multiple VMs

Finally, to answer the scalability question (Q5), we demon-
strated how CloudVisor-D performs by running kbuild un-
der the different numbers of VMs. Figure 10 shows the per-
formance overhead of concurrently running kbuild on the
different number of VMs. All these VMs are protected by
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CloudVisor-D. The result is an average value of 10 runs.
Each VM has one vCPU, 512MB memory and one 15GB
virtual disk. In CloudVisor-D, most VM operations are del-
egated to the Guardian-VMs and each guest VM has its
own Guardian-VM, which is not shared by others. Therefore,
CloudVisor-D incurs negligible overhead on multiple VMs.
Considering the small overhead of this experiment, the worse
performance in the case of 2 VMs could be attributed to run-
time variation.

8.7 Security Evaluation

According to the CVE analysis for the Xen hypervisor
in Nexen [54], the consequences of different attacks can
be classified into DoS (we do not consider this), privileged
code execution, information leakage, and memory corrup-
tion. CloudVisor-D can be used as a last line of defense such
that it does not directly fix security vulnerabilities but instead
prevents exploitation of them from having harmful effects.

We conducted two experiments to show that CloudVisor-
D can protect guest VMs against memory writes (or reads)
from the malicious SubVisor, which is usually the ultimate
goal of many attack means. In the first experiment, the mali-
cious SubVisor tries to read or write one VM’s memory page.
The guest reserves one page and then the malicious SubVisor
modifies the page. This attack succeeds in the vanilla Xen
but fails in CloudVisor-D in which any access to the VM’s
memory triggers one EPT violation caught by the RootVisor.
In the second experiment, the malicious SubVisor modifies
the VM’s EPT, maps one code page into the VM’s physical
memory space and maps the page into the VM’s virtual space.
Similar to the previous attack, this one succeeds in the vanilla
Xen but fails in CloudVisor-D.

We also conducted two more experiments to show that
the Guardian-VM can defeat the malicious EPT switching
attack. First, we simulated a malicious VM that bypasses
the Guardian-VM and executes code in the SubVisor. The
VM installs a malicious page table whose base address value
identical to that used in the SubVisor and then invokes a
VMFUNC to switch to the SubVisor-EPT directly. However,
since the target EPTP entry is 0 in the EPTP list, this attack
fails when the VM invokes the VMFUNC instruction that
triggers one VM exit. In the second attack, the malicious VM
leverages the four steps (Section 4.3) to jump to the middle
of the Guardian-VM. But the attack fails when it tries to con-
figure the malicious page table which triggers one VE. The
Guardian-VM then notifies the RootVisor to terminate the
VM.

9 Discussion

VMFUNC and Virtualization Exception in Modern

Hypervisors. Modern hypervisors (e.g., Xen and KVM)
have already used the VMFUNC instructions and virtualiza-
tion exception (VE) in various use cases. The first typical
use case for using VMFUNC and VE is to monitor VM be-
haviors [9] (Virtual Machine Introspection, VMI) and track

memory accesses by restricting the type of access the VM
can perform on memory pages. Once the monitored VM vio-
lates the memory permission configured in its EPT, one VE
triggers a handler which then uses a VMFUNC instruction to
switch to a monitoring application’s EPT. Another use case
of VMFUNC and VE is to boosting network function virtu-
alization (NFV) [3]. In NFV, each network function resides
in a different VM. NFV heavily depends on inter-VM com-
munications. To boost the NFV communication, one network
function uses the VMFUNC instruction to switch to an alter-
nate EPT and directly copy network data to another VM’s
memory. These use cases do not conflict with CloudVisor-
D because CloudVisor-D only occupies 3 EPTP entries in
the EPTP list, leaving 509 free entries for other usages, like
boosting VMI and NFV.

Directly Assigned PCIe Devices. The current version of
CloudVisor-D provides no support for SR-IOV devices. For-
tunately, many cloud providers disabled SR-IOV devices due
to the incompatibility with live VM migration. However, the
design of CloudVisor-D can be extended to protect VMs
if using directly assigned PCIe devices and SR-IOV. First,
the RootVisor leverages the IOMMMU to limit the physical
space each assigned device can access. The physical func-
tion of the SubVisor is limited by the IOMMU page table as
well, which means it cannot freely access other VMs’ spaces.
Second, before writing data into the assigned device, a guest
OS should invoke a helper function in its Guardian-VM to
encrypt the data. For reading data, the guest OS first issues
a DMA request to move encrypted data from the device to a
private memory buffer, and then invokes a helper function in
the Guardian-VM to decrypt the data.

10 Related Work

Hardware-based Secure Computation: Secure archi-
tectures have been extensively studied during the last
decades [21, 37, 38, 40, 41, 43, 45, 51, 55, 59, 59, 60, 67–71].
Besides, different mainstream processor manufacturers re-
cently presented their products that support memory encryp-
tion. AMD (SEV [32]) and Intel (SGX [13, 47]) have pre-
sented their memory encryption products to the market re-
spectively. Researches proposed to leverage Intel SGX to
shield software [15, 19, 24, 28, 52, 57] or harden the SGX
itself [53, 56]. Haven [19] and SCONE [15] use SGX to
defend applications and weakly isolated container processes
from software and hardware attacks. Ryoan [28] provides an
SGX-based distributed sandbox to protect their sensitive data
in data-processing services. M2R [24] and VC3 [52] allow
users to run distributed MapReduce in the cloud while keep-
ing their data and code secret.
Defending against Untrusted Hypervisor: Many studies
have considered how to defend guest VMs against possibly
untrusted hypervisor. One prominent solution is to leverage
architectural support to remove the hypervisor out of TCB.
For example, H-SVM [31] modifies hardware to intercept
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each Nested Page Table (NPT) update from the hypervisor
to guarantee the confidentiality and integrity of the guest
VM. HyperWall [60] forbids the hypervisor from accessing
the guest’s memory by modifying the processor and MMU.
Another approach is to decompose the hypervisor and move
most of its part to the non-privileged level. NOVA [58] pro-
poses a microkernel-like hypervisor. Xoar [22] decomposes
the Dom0 into nine different service VMs to achieve stronger
isolation and smaller attack surface. Similarly, Nexen [54] de-
constructs Xen hypervisor into a shared privileged security
monitor and several non-privileged service slices to thwart
vulnerabilities in Xen. HyperLock [64] and DeHype [66] iso-
late the hypervisor from the host OSs. HypSec [38] leverages
the ARM virtualization extension and TrustZone technique
to decompose a monolithic hypervisor into a small trusted
corevisor and a big untrusted hypervisor, which effectively
reduces the TCB.

Even though we also propose a disaggregated design,
CloudVisor-D is different from the previous solutions in
three ways. First, CloudVisor-D separates the tiny nested hy-
pervisor, not the commodity hypervisor which has been to-
tally excluded out of the TCB. Second, while previous solu-
tions require intensive modifications to the commodity hyper-
visor, CloudVisor-D makes much fewer modifications (less
than 100 LOC) to the commercial hypervisor and is com-
pletely compatible with it. Finally, CloudVisor-D utilizes
new x86 hardware features to efficiently and securely con-
nect the isolated parts, which boosts the nested virtualization
in the x86 architecture.

Researchers also proposed to leverage the same privilege
protection for untrusted hypervisor, to harden the hypervisor
itself by measuring integrity [17] or enforcing control-flow
integrity [63] of the hypervisor. However, these approaches
are best effort ones and do not exclude the commodity hyper-
visor out of the TCB.
Nested Virtualization: Traditional nested virtualization [20]
uses “trap and emulate” model to capture any trap of
the guest and forward it to the hypervisor for processing.
CloudVisor-D puts frequent normal VM operations to an
agent in non-root mode to replace the heavy “trap and emu-
late”. Different from turtles project [20], CloudVisor [72] dis-
trusts the hypervisor and prohibits it from accessing security-
sensitive data of guest VMs. Since nested virtualization
technology incurs unacceptable overheads, Dichotomy [65]
presents the ephemeral virtualization to reduce this overhead,
but it does not intend to defend against the malicious hyper-
visor.
VMFUNC-based Systems: Even though there are some pre-
vious researches that leverage VMFUNC to implement user-
level memory isolation [27, 35, 44] or efficient communica-
tion facilities [26, 39, 49], all these systems assume that a
malicious VMFUNC user cannot modify the CR3 register,
which is not the case in CloudVisor-D. We propose a new
variant of the malicious EPT switching attack and a series

of techniques to defeat it. Furthermore, CloudVisor-D is the
first design to utilize this hardware feature to build a disaggre-
gated nested hypervisor to defend VMs against an untrusted
hypervisor efficiently.

11 Conclusions

CloudVisor-D is a disaggregated system that protects vir-
tual machines from a malicious hypervisor. It leverages
nested virtualization to deprivilege the Xen hypervisor and
offloads most VM operations to secure Guardian-VMs with-
out the intervention of the tiny nested hypervisor (RootVisor).
CloudVisor-D has been implemented for Xen-based systems
and introduces negligible overhead.
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