
Accelerating Extra Dimensional Page Walks for Confidential
Computing

Dong Du
Institute of Parallel and Distributed Systems, Shanghai

Jiao Tong University
Engineering Research Center for Domain-specific

Operating Systems (MoE)
Shanghai, China

dd_nirvana@sjtu.edu.cn

Bicheng Yang
Institute of Parallel and Distributed Systems, Shanghai

Jiao Tong University
Engineering Research Center for Domain-specific

Operating Systems (MoE)
Shanghai, China

bichengyang@sjtu.edu.cn

Yubin Xia
Institute of Parallel and Distributed Systems, Shanghai

Jiao Tong University
Shanghai AI Laboratory

Engineering Research Center for Domain-specific
Operating Systems (MoE)

Shanghai, China
xiayubin@sjtu.edu.cn

Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai

Jiao Tong University
Engineering Research Center for Domain-specific

Operating Systems (MoE)
Shanghai, China

haibochen@sjtu.edu.cn

ABSTRACT
To support highly scalable and fine-grained computing paradigms
such as microservices and serverless computing better, modern
hardware-assisted confidential computing systems, such as Intel
TDX and ARM CCA, introduce permission table to achieve fine-
grained and scalable memory isolation among different domains.
However, it also adds an extra dimension to page walks besides
page tables, leading to significantly more memory references (e.g.,
4�12 for RISC-V Sv39)1. We observe that most costs (about 75%)
caused by the extra dimension of page walks are used to validate
page table pages. Based on this observation, this paper proposes
HPMP (Hybrid Physical Memory Protection), a hardware-software
co-design (on RISC-V) that protects page table pages using segment
registers and normal pages using permission tables to balance scal-
ability and performance. We have implemented HPMP and Penglai-
HPMP (a TEE system based on HPMP) on FPGA with two RISC-V
cores (both in-order and out-of-order). Evaluation results show
that HPMP can reduce costs by 23.1%–73.1% on BOOM and signifi-
cantly improve performance on real-world applications, including
serverless computing (FunctionBench) and Redis.

1All memory reference numbers presented in this paper adhere to the RISC-V ISA
specification [105] and do not take into account PWC or other micro-architecture
optimizations that could potentially bypass page table pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614293

ACM Reference Format:
Dong Du, Bicheng Yang, Yubin Xia, and Haibo Chen. 2023. Accelerating
Extra Dimensional Page Walks for Confidential Computing. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), Octo-
ber 28-November 1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3613424.3614293

1 INTRODUCTION
There are two trends in cloud computing. First, there has been a
surge of interest in using confidential computing [1, 2, 9, 53, 61,
70, 80] to host security-sensitive applications in the cloud without
trusting the cloud providers [20, 27, 34, 41, 43, 48, 62, 88, 93, 98].
Second, microservices [40] and serverless computing [60, 67, 104]
have emerged as new paradigms in the cloud. These paradigms use
single-purpose services or functions as the basic computation unit
and can achieve more than 100 instances per node [50, 51].

However, traditional confidential computing solutions like Intel
SGX [80] and ARM Trustzone [61] are not well-suited to support
such highly scalable and fine-grained computing paradigms because
of their segment-based physical memory isolation [47, 53, 70, 105].
Segment-based isolation [47, 53, 70, 105] uses registers in the CPU
to manage memory regions and their permissions. Although the
checking is efficient, this approach has scalability and granularity
issues as the CPU can only support a limited number of segment
registers due to constrained hardware resources. For example, Intel
SGX relies on Processor Reserved Memory (PRM)[47] (one region)
to isolate enclave’s data and code from untrusted software. However,
it leads to orders of magnitude slowdown when the fixed-size PRM
is insufficient[93]. RISC-V TEE (Trusted Execution Environment)
systems like Keystone [70] use RISC-V PMP [105] for physical
memory isolation, which can only support <16 domains.

To overcome these limitations, hardware vendors nowadays
tend to use a dedicated table, called permission table in this paper,
to manage the permissions of physical memory in a fine-grained
manner, usually at the page level. A permission table is similar

https://doi.org/10.1145/3613424.3614293
https://doi.org/10.1145/3613424.3614293

to a page table. However, instead of translating a virtual address
to a physical address, the table receives a physical address and
returns a permission (e.g., read/write/execute) to assist the CPU in
determining whether an access is valid. For example, ARM proposes
CCA [9] as its next-generation confidential computing system. The
key difference between Trustzone and CCA is theGranule Protection
Table (GPT)[7], a permission table for fine-grained and configurable
granularity. Similarly, Intel proposes TDX that utilizes a Physical
Address Metadata Table (PAMT)[13] to record permissions of all
secure memory. AMD SEV-SNP [1] leverages a Reverse Map Table
(RMP) [8] to record secure page metadata. By using permission
tables, hardware vendors can achieve fine-grained and scalable
memory isolation, which is suitable for highly scalable and fine-
grained computing paradigms such as serverless computing.

However, the use of permission tables can add an additional
dimension of page walks (hardware or software), besides page table
and nested page table, which can negatively impact memory access
performance. For example, a 2-level permission table leads to eight
more memory references (total: 12 references) for RISC-V Sv39
(3-level page table). This issue is even more serious for 4-level or
5-level page table architectures, such as RISC-V Sv48 and Sv57 [105],
Intel 5-level paging and EPT [12]. This trend, from segment-based to
table-based isolation, raises an important question for architecture
and system designers: How can we achieve fine-grained physical
memory isolation without sacrificing performance?

The costs caused by permission tables come from two sources:
(1) validating the physical address of page table (PT) pages dur-
ing page table walks, and (2) validating the physical address of
data/instructions. However, we observe that most memory refer-
ences and costs are from the first source. For example, 75% (6 out
of 8) of introduced memory references are for checking the per-
missions of three page table pages in RISC-V Sv39. Based on this
observation, this paper proposesHPMP (Hybrid Physical Memory
Protection), a hardware-software co-design (on RISC-V) that harmo-
nizes the benefits of segment and table-based isolation. Specifically,
HPMP protects page table pages (managed by the OS kernel) using
segments for fast checking and data pages using permission tables
to support highly scalable and fine-grained computing paradigms
like serverless computing.

To achieve this goal, HPMP includes two key technical contri-
butions. First, we propose a new ISA extension called PMP Table.
PMP Table is a new RISC-V physical memory isolation design that
harmonizes the benefits of both segment and permission tables.
Unlike prior systems that use a hybrid design of segment and table
for address translation, such as direct segment [33, 55, 59, 68] and
RMM [64], PMP Table is designed to support both segment and
table-based isolation without duplicating hardware structures. To
this end, we borrow the idea of huge page and think of a segment
as the huge page of a permission table. Specifically, PMP Table
can use a permission table’s registers to save the whole region’s
permission, which is the same as segment registers. This enables
significant flexibility for both hardware and software. In hardware,
our prototype introduces zero new registers and instructions and
simply reuses the reserved bits in existing RISC-V PMP registers.
In software, HPMP can dynamically switch between segment and
table-based isolation or even use them simultaneously, achieving
high flexibility.

Host OS

HostApp

S H

H H

D1 H

H H

H

H H

D2

…

Domain-1

H

(shared)

D1

rw rw rw rw ro

M
e

m
o

ry

Secure monitor

page

Host domain

page

Domain-1

pageS H D1

Domain-2

Domain-2

pageD2

D1 D1H

Secure Monitor

D2D1 D2

M

S

U

…

Figure 1: Confidential systems with memory isolation.Most
RISC-V TEEs [11, 52, 53, 70] utilize a secure monitor running
on machine mode (denoted as M) to isolate domains using a
physical memory isolation mechanism (e.g., PMP).

Second, we propose Penglai-HPMP, a new confidential system
based on Penglai Enclave [15, 53], which includes a secure monitor
(software TCB in TEE) and OS kernel. A key design in Penglai-
HPMP is the general memory segment (GMS) abstraction, which
represents a continuous memory region with the same permission
and a label (“fast” or “slow”). The OS kernel is extended to organize
PT pages in GMSs with “fast” labels. Penglai-HPMP then isolates
“fast” GMSs using segments while using permission tables for others.
As a result, Penglai-HPMP can reduce the memory references from
12 to 6 for RISC-V Sv39. This reduction in memory references can
significantly improve the performance of highly scalable and fine-
grained computing paradigms.

We have implemented HPMP and Penglai-HPMP on an FPGA us-
ing two open-source RISC-V cores, BOOM (out-of-order core) [114]
and RocketCore (in-order core) [28]. Our evaluation results show
that HPMP can effectively mitigate the costs of extra-dimensional
walks, reducing costs by 23.1%–73.1% on BOOM. For real-world
applications, Penglai with permission table incurs a performance
slowdown of 5.5%–20.3% and 10.8%–31.8% for serverless applica-
tions (FunctionBench) and Redis, respectively, compared with PMP-
based isolation, while Penglai-HPMP can reduce the costs to 3.5%
and 4.5% on average on BOOM. We also explore a similar idea in a
virtualized environment and analyze how HPMP works in a frag-
mented environment and how optimizations like PWC [36] can
further improve performance.

2 MOTIVATION
2.1 Confidential Systems
Figure 1 shows the architecture of confidential systems on RISC-
V, which is also representative of other ISAs. Typically, the only
software trusted computing base (TCB) in confidential systems
is the secure monitor, a small software component running in the
most privileged mode (e.g., machine mode in RISC-V) [53, 70]. The
secure monitor is responsible for isolating physical memory among
different domains by utilizing specific hardware mechanisms.

The secure monitor can partition the system into isolated do-
mains. Each domain has its private physical memory regions and

2

VA

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

1GiB

2MiB

4KiB

x

x

x

x

satp

L2

L1

L0

PA
Sv39

VA

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

1GiB

2MiB

4KiB

x

x

x

x

satp

L2

L1

L0

PA

PMP
checking

PMP
checking

PMP
checking

VA

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

1GiB

2MiB

4KiB

x

x

x

x

satp

L2
3

L1
6

L0
9

PL1

1

PL0

2

PL1

4

PL0

5

PL1

7

PL0

8

(a) 1D: Page table (b) 1D: Page table + Segment (c) 2D: Page table + Permission table

data data
PA PMP

checking
PA data

12
PA PL1

10

PL0

11

Mitigated with contiguous PT pages
 + Segment (HPMP)

Figure 2: Physical memory isolation schemes based on RISC-V. (a) Memory access in a traditional way. (b) Memory access with
segment-based isolation. (c) Memory access with table-based isolation. We use RISC-V PMP as the segment-based isolation, and
a generic permission table (similar to ARM GPT) as the table-based isolation. Squares and circles represent memory references.
L2, L1, L0 represent page tables from root to leaf, and PL1, PL0 represent permission tables from root to leaf. RISC-V Sv39 (3-level
page table) here. All memory reference numbers presented in this paper adhere to the RISC-V ISA specification [105] and do not
take into account PWC or other micro-architecture optimizations that could potentially bypass page table pages.

can have its own OS kernel and applications. For example, Domain-
1 and Domain-2 in the figure have their own data pages labeled
with D1 and D2. A domain’s private memory cannot be accessed by
other domains, guaranteed by physical memory isolation hardware.
The Host is the default domain when the system is booted. The
secure monitor usually provides interfaces for the Host to manage
the life-cycle of other domains, such as creation and destruction.
The Host cannot access others’ private memory either.

This model can represent confidential systems on different ar-
chitectures. For example, ARM CCA [9] utilizes a monitor running
on EL3 to manipulate the hardware GPT for memory isolation and
allows the Host to create new realms (similar to domains) with
private memory. Intel TDX [13] introduces a TDX module that
operates in Secure-Arbitration Mode to manage TD-ownership tags
and Physical-Address-Metadata Table (PAMT). It offers domain ab-
straction known as Trust Domains (TD). RISC-V Keystone [70] and
Penglai [53] utilize a secure monitor running onM-mode to manage
enclaves and rely on RISC-V PMP and other hardware features [22]
for isolation.

2.2 Physical Memory Isolation and Challenges
Physical memory isolation is an important technique to achieve
isolation among domains. We classify the approaches used by ex-
isting confidential systems for physical memory isolation into two
categories.
Segment-based isolation. Segment-based isolation is commonly
realized through segment registers, which record the range and
access permissions for a fixed number of memory regions. For ex-
ample, RISC-V PMP [105] is a segment-based design. We show how
RISC-V PMP changes the behavior of a memory access in Figure 2.
As shown in Figure 2-a, a hardware without confidential computing
support (or not enabled) needs to perform four memory references
for a memory access (3-level page table, TLB miss), including three
references for page table pages and one reference for the data page.

As shown in Figure 2-b, with RISC-V PMP, the hardware will further
check the four memory references using PMP registers. For each
memory reference, the hardware will find a matching PMP entry,
check the permission, and decide whether the access is allowed or
denied. Segment-based isolation is efficient because all the permis-
sions are saved in registers, and the checking is performed in the
CPU.

However, a drawback of segment-based isolation is its scalability
and coarse-grained granularity. For example, RISC-V TEEs based on
PMP [70] can only support a limited number of domains. Although
they can utilize either enclave runtime or hardware extensions [19]
to mitigate the limitation, the issue remains and becomes more
serious for cloud scenarios.
Permission table-based isolation. To achieve fine-grained iso-
lation (e.g., 4KB page), hardware vendors introduce yet another
table [8, 9, 13], the permission table, to maintain the permissions
of each physical page. It has a similar structure as a page table
and will map a physical address to a permission. The permission
table can support (almost) unlimited memory regions using page
granularity. However, a drawback is that the table introduces more
memory references. As shown in Figure 2-c, a 2-level permission
table can incur eight more memory references for RISC-V Sv39
(out of 12 total), forming a two-dimensional (2D) page walk even
for a non-virtualized environment. Even so, due to the importance
of scalable and fine-grained isolation for emerging applications,
hardware vendors are gradually evolving toward table-based iso-
lation, such as Intel TDX [2] and ARM CCA [7, 73]. Overcoming
the performance issue while retaining fine-grained granularity is a
significant challenge.
Implications of permission table-based isolation. To better un-
derstand the implications of the extra dimensional page walks
caused by the permission table, we conducted a set of experiments
based on the RISC-V with FPGA (see §8 for details). We highlight
results that inspired our design.

3

 0

 50

 100

 150

 200

Avg Worst

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
) Segment

Table

(a) ld latency.

 90

 95

 100

 105

 110

 115

 120

Avg Worst

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
) Segment

Table

(b) GAP benchmark.

 90
 95

 100
 105
 110
 115
 120
 125
 130
 135

Avg Worst

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
) Segment

Table

(c) Serverless (FunctionBench).

 60

 70

 80

 90

 100

 110

 120

Avg Worst

N
o
rm

al
iz

ed
 R

P
S

 (
%

) Segment
Table

(d) Redis (higher is better).

Figure 3: Preview of experimental results (BOOM). (a) the
end-to-end latencies of a single ld instruction. (b) the execu-
tion time of the GAP benchmark suite. (c) the execution time
of image processing serverless application. (d) the end-to-end
RPS (request-per-second) of Redis benchmark. All data is nor-
malized using the Segment’s value. “Worst” means the results
of a case that the Table has the worst performance.

First, to understand how the permission table affects memory
access performance, wemeasured the latency of a single ld (memory
load instruction in RISC-V) under different settings. The result
(Figure 3-a) shows that table-based isolation may incur 63.4% higher
latency on average and up to 91.1% for a two-level permission
table. This confirms that the permission table can incur significant
performance slowdown for single memory access (Implication-1).

Second, as modern microarchitecture adopts many optimizations
to reduce TLB miss rates and mitigate the translation costs for ap-
plications with good locality, we wanted to know whether we could
rely on classic optimizations like TLB to mitigate the slowdown for
applications with good locality. As a result, we carefully optimized
our implementation of the permission table and extended TLB en-
tries to cache permissions fetched from the permission table (called
TLB inlining) — the permission table is only required for TLB miss
cases. We measured the latency of the GAP benchmark [35], as
shown in Figure 3-b, and found that classic optimizations like TLB
inlining can effectively mitigate the costs for computation-intensive
workloads (Implication-2), with 5.2% on average and up to 9.6%
higher latency compared with segment.

Third, we further measured the performance of real-world cloud
applications such as serverless functions and Redis to understand
how the optimized table performs with real-world fine-grained and
memory-intensive applications. As shown in Figure 3-c and d, the
permission table incurs non-trivial costs for the two applications,
with up to 20.3% and 31.8% performance slowdown, respectively. As
researchers, we still need to investigate a better way for an efficient
and fine-grained physical memory isolation design (Implication-3).

3 APPROACH OVERVIEW
Observation. We observe that most memory references caused by
the permission table are used to check the validity of page table

VA

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

1GiB

2MiB

4KiB

L2
1

x

x

x

x

satp

L1
2

L0
3

data
6

PL1

4

PL0

5

PA

Seg checking

Seg checking

Seg checking

Figure 4: Hybrid physicalmemory protection.By placing the
page table pages in a contiguous region (isolated using seg-
ment), the total memory references can be reduced from 12 to
6 for RISC-V Sv39.

pages. This observation motivates the key idea of our approach:
use segment registers to manage permission for page table pages (for
efficiency), while using permission table for other pages (for scalability
and fine-grained granularity), as shown in Figure 4.
Design overview. To support the hybrid isolation, we need to an-
swer two questions: (1) how to design the hardware mechanism
that can support both segment and table-based isolation, and (2)
how to design the system software to best utilize the hardware
mechanism to achieve efficient and flexible isolation. This paper
proposes HPMP, a hardware-software co-design with two technical
contributions that address the above questions.

First, we propose PMPTable hardware extension that harmonizes
segment and table-based isolation, without duplicating hardware
structures. The key insight is that we can think of a segment as
the huge page of a permission table — when a table has the same
permission for all its pages, we can directly save the permission
in its registers to avoid extra-dimensional page walks. Specifically,
HPMP includes multiple entries. Each entry manages permissions
of one contiguous physical memory region and can directly record
the permission in the entry’s register (called segment mode) or
utilize permission table for fine-grained permissions (called table
mode). When an entry is enabled, only one mode will be used. The
secure monitor of a confidential system can easily switch between
the two modes to balance performance and flexibility.

Second, we extend Penglai Enclave [53] and the OS for hybrid
isolation (called Penglai-HPMP). Although the OS manages pages
of an isolated domain, we cannot trust the OS for security con-
cerns. Therefore, we decouple the policies and mechanisms of phys-
ical memory isolation and introduce the general memory segment
(GMS) abstraction. One GMS represents a continuous memory re-
gion with the same permission and a label. The OS can add labels
to GMS (e.g., “fast”) but cannot modify the region range and per-
mission, which are enforced by Penglai-HPMP. The Penglai-HPMP
will use the labels from the OS as a hint and try to isolate “fast”
GMSs using segment mode while other GMSs using table mode.

As a result, HPMP can generally reduce the memory references
from 12 to 6 for RISC-V Sv39 with the same granularity as the
permission table. Next, we will explain how HPMP hardware (§4)
and software (§5) are designed.

4

End-to-end example. Let’s consider an end-to-end example with
a secure domain (e.g., an enclave) on RV64 with a three-level page
table (Sv39). Now, suppose the domain executes a memory load
instruction (e.g., ld in RISC-V) using a virtual address. In the tradi-
tional table-based physical memory isolation approach, the hard-
ware first checks if the corresponding physical address is cached in
the TLB. If it is, the hardware only needs to check the validity of the
physical address of the accessed data by traversing the permission
table. Notably, the permission table itself can be cached and does
not require memory fetch from DRAM in all cases.

However, if there is a TLB miss, the hardware (specifically, the
Page Table Walker or PTW) must translate the virtual address to a
physical address using the page table. This process incurs additional
memory references, potentially three in the worst case, for three
page table pages. Each page table page requires traversing the
permission tables to checkwhether it can be accessed by the domain.
Notably, PT page accesses can also be optimized by techniques like
caching (e.g., PWC).

HPMP follows a similar procedure. However, unlike existing
table-based isolation techniques, HPMP utilizes segments to protect
permissions of PT pages. This means that, during a TLBmiss, HPMP
still only needs to check data pages using the (relatively) slow
permission table, while it can use segments (i.e., PMP) to check
permissions for PT pages. This approach effectively mitigates the
overhead caused by table-based isolation while achieving scalability
and fine-grained granularity.

4 HPMP HARDWARE DESIGN
4.1 RISC-V PMP background
RISC-V PMP [105] is a segment-based isolation design that supports
up to 16 entries. Each entry includes two registers: addr and config
register, allowing permissions (read, write, execute) to be specified
for 16 regions. The range of a region can be represented by either
(1) two address registers (current addr as the upper bound and prior
entry’s addr as the lower bound) or (2) one address register with
an embedded size. Each config contains an address field to indicate
how the region range is represented and a permission field (three
bits for read, write, and execute).

4.2 Hybrid Physical Memory Protection
The hardware extension of HPMP is based on RISC-V PMP. Fig-
ure 5 presents the hardware design of HPMP. Same to PMP, HPMP
includes multiple entries, each entry includes two registers: addr
and config register. One entry can behave as a segment to represent
a physical memory region and its permission, e.g., HPMP-0 in Fig-
ure 5; or it can work with the following entry as a permission table
to manage permissions, e.g., HPMP-1 and HPMP-2 in the figure.
Switching between segment and table mode. Each HPMP con-
fig register includes an important bit, the T bit (Table mode bit).
When this bit is cleared, the entry uses the permission recorded in
the config register as the effective permission for the entire physi-
cal memory region, i.e., segment mode. Otherwise, the entry uses
a PMP table (§4.3) to record permissions for each 4KB (or other
granularities like 64KB, etc.) physical page. Hardware will use the
permission fetched from the table to validate physical addresses

… …

Base PA, size

Base PA, size

Root PMP Table addr

Base PA, size

Addr Config

Perm

Perm

Perm

Root

PMP Table

Leaf

PMP table…

HPMP-0

HPMP-1

HPMP-2

HPMP-N

…

HPMP registers PMP Tables (in DRAM)

T
:0

T
:1

T
:0

(Seg mode)

(Table mode)

(Table mode)

(Seg mode)

New extensions

Figure 5: HPMP hardware design. HPMP carefully harmo-
nizes segment-based and table-based physical memory isola-
tion to achieve efficient and fine-grained protection. Our pro-
totype supports 16 entries, i.e., the “N” is 15.

covered by the entry. As a result, HPMP can support multiple en-
tries, each with different isolation modes, and can easily switch any
entry between segment and table modes by changing T bit.
Permission checking and ordering. HPMP’s permission check
applies to all memory accesses from the operating system (RISC-
V Supervisor mode, denoted by S) and applications (RISC-V User
mode, denoted by U), including instruction fetches and page table
walking. HPMP uses the same priority and matching logic as RISC-
V PMP for different entries, i.e., all HPMP entries are statically
prioritized. The lowest-numbered entry covering any byte of an
access determines whether the access succeeds or fails. For example,
if both HPMP-0 and HPMP-1 cover an access, HPMP-0 is used to
validate whether the access is allowed. If the matching entry is
in table mode, i.e., T = 1 in the config register, the hardware will
utilize the PMP Table (§4.3) to retrieve permissions. Otherwise,
the hardware will utilize the permission in the config register to
validate the access. When an access is not covered by any HPMP
entry, the S-mode and U-mode software have no permissions by
default. HPMP entries can only be managed by RISC-V M-mode
software.

4.3 PMP Table
A key contribution of HPMP’s hardware design is the PMP Table,
which can be embedded in the existing segment-based isolation
mechanism, RISC-V PMP. PMP Table is carefully designed to not
introduce any new instructions or registers.
Configuration register. HPMP introduces the T field in the previ-
ously reserved bit-5 of the config register, indicating whether this
HPMP entry is in table mode. Figure 6-a shows the layout of the
HPMP configuration registers. When an entry is in table mode, the
physical memory region managed by the entry is still represented
by the addr register and the address field (A) in the configuration,
which is the same as the existing PMP address matching rules. How-
ever, the permission field in the config register will be ignored. The
hardware will fetch the permission from PMP Table.
PMP Table. A PMP Table is a multi-level radix tree permission
table, similar to the page table. When an HPMP entry is in table
mode, the next entry’s address register records the base address
of PMP Table. If the ith HPMP entry is in table mode, then the

5

L (WARL) Reserved T (WARL) A (WARL) X (WARL) W (WARL) R (WARL)

7 6 5 4 3 2 1 0

(a) HPMP configuration register format

Mode (WARL) Reserved PPN (WARL)

62 61 44 43 0

(b) HPMP address register format
 (when T=1 in the preceding HPMP configuration register), RV64

63

(c) Root PMP Table entry (i.e., root pmpte), RV64

PPN[2]Reserved

49 48 1314 063

PPN[1] PPN[0] X W R V0

23 22 5 1234

(d) Leaf PMP Table entry (i.e., leaf pmpte)!
each 4bits recording R/W/X permissions, RV64

perm15

59 56 48 063 52 51 347

perm14 perm13 perm12 perm1 perm0…

5560

(e) Offset used in PMP Table, RV64

OFF[1]

25 1215 033

Page Index Page Offset

24 16 11

OFF[0]

Figure 6: Hardware structures of HPMP (PMP Table exten-
sion). “WARL” stands for Write-Any-Values and Reads-Legal-
Values in RISC-V ISA specification [105].

i+1th entry records the base address of the ith entry’s HPMP table.
Similar to the RISC-V page table register, the addr register records
the PFN (Physical Frame Number) of the base address of PMP Table
(Figure 6-b). The table can be configured through the Mode field.
In our prototype, the HPMP table is a 2-level table when Mode’s
value is 0, and all other values are reserved for future extensions
that can support different levels by using reserved modes. The last
HPMP entry cannot be in table mode because it has no successor
entry to record the table’s base address.

The first-level table is called the root PMP Table, and the second-
level table is called the leaf PMP Table. Entries of the root table are
called root pmpte, and entries of the leaf table are called leaf pmpte.
The format of the root pmpte is shown in Figure 6-c. The V field
indicates whether the root pmpte is valid. If it is 0, all other bits in
pmpte are ignored, and memory access fails. The R, W, and X fields
represent permissions. When they are all zero, the root pmpte is a
pointer to the next-level table. Otherwise, they constitute the final
permission for a memory access. This is similar to huge pages in
the page table. Notably, in both RV64 and RV32, one root pmpte
manages 32MB of physical memory.

The format of the leaf pmpte is shown in Figure 6-d. Each leaf
pmpte has 64 bits and records the access rights for 16 physical
pages (4KB) for RV64. The permission of each physical page is 4
bits, of which 3 bits correspond to the R,W, and X fields, and one
is reserved for future use.
Permission indexing using PMP Table. To index the permission,
the hardware uses the offset of the target address to the start address
of the memory region managed by the entry. The offset is split into
four parts, containingOFF[1],OFF[0], PageIndex, and PageOffset),
as shown in Figure 6-e. The OFF[1] is used to index the root PMP
Table, and the OFF[0] is used to index the leaf PMP Table. The
PageIndex is used to index the permission in the leaf pmpte.
Why does PMP Table choose a 2-level permission table? It en-
ables better performance with fewer costs for the extra dimension

GMS-based Secure
Memory Management

Inter-enclave
Communication

Enclave
Management

Mountable
Merkle Tree

Cache-line
Locking

PMP+PMP TableHardware

Most

Privileged

Mode

Enclave
Driver

Enclave SDK

OS

Mode

User

Mode

Secure Monitor
Host OS

Host App Enclave
App

(Serverless)Enclave SDK

Host App Enclave
App

(Redis)

Existing components in Penglai New components

PT
manager

Figure 7: Penglai-HPMP architecture.

of page walks. Although a two-level PMP Table can only manage
permissions for a 16GB region (for RV64), PMP Table can protect
larger regions by using multiple tables. For example, 16 HPMP
entries can support 8 PMP Table and therefore support 128GB of
memory. Moreover, future RISC-V processors will support 64 PMP
entries with the ePMP extension [17]. With 64 entries, a CPU can
use 2-level tables to manage 512GB of memory, which is sufficient
in most cases. For scenarios that require a larger region, it is easy
to extend PMP Table to support 3-level or 4-level tables by using
the reserved values in theMode field.

5 PENGLAI-HPMP: SOFTWARE SUPPORT
We propose Penglai-HPMP, a RISC-V confidential system based on
Penglai Enclave [53] that supports HPMP-based isolation, as shown
in Figure 7.
Penglai background. Penglai is an open-sourced TEE system. It
introduces a small software component called the secure monitor
that operates in the most privileged mode (e.g., M-mode in RISC-V)
and utilizes new hardware extensions to establish enclave abstrac-
tions. Each enclave is isolated from the untrusted host and other
enclaves. The secure monitor manages enclaves, providing APIs for
enclave deployment. Resource protection is separated from man-
agement to minimize the size of the secure monitor. During system
boot, the secure monitor is loaded and verified by the boot ROM
(secure boot), taking control of the system and safeguarding itself
with hardware-supported memory isolation (e.g., RISC-V PMP). It
employs encryption and merkle tree to defend against physical
memory attacks.
Generalmemory segment (GMS). Penglai-HPMP uses GMS as the
unified abstraction for memory isolation. Penglai-HPMP abstracts
the HPMP entries into: N fast GMSs and unlimited slow GMSs. The
N is decided by the secure monitor of Penglai-HPMP. For example,
in an RV64 system with 32GB memory and 16 HPMP entries, the
secure monitor can reserve 1 entry for its private memory and 4
entries for two PMP Table (for the “unlimited” but slow GMSs), and
11 fast GMSs. Penglai-HPMP should consider the total memory to
decide the ratio between fast and slow segments, e.g., 2 tables can
cover a 32GB region, which is sufficient.

GMS provides clean and effective abstractions to the OS and
applications. The OS thinks of each contiguous physical memory
region (with the same permission) as one GMS and adds a “fast”
or “slow” label. Penglai-HPMP will take the hints (i.e., “fast” and

6

gVA

gVA[11:0]

gVA[20:12]

gVA[29:21]

gVA[38:30]

1GiB

2MiB

4KiB

x

x

x

x

vsatp

gL2
4

gL1
8

gL0
12

nL2
1

nL1
2

data
16

gL2

gL1

gL0

gPA

GPA nL0
3

nL2
5

nL1
6

nL0
7

nL2
9

nL1
10

nL0
11

nL2
13

nL1
14

nL0
15

G
u

e
s

t P
a

g
e

 T
a

b
le

 (v
s

a
tp

)

Nested Page Table (hgatp)

R L R L R L R L

R L R L R L R L

R L R L R L R L

R L R L R L R L

3D: Page table + Nested PT + Permission table

Mitigated with contiguous
NPT pages + Segment

Figure 8: Memory access (in a guest) with permission table.
“R” and “L” are short for root/leaf PMP Table.

“slow”) from the OS and is responsible for configuring HPMP en-
tries accordingly. As HPMP will cache the permission in TLB, it
requires Penglai-HPMP to flush TLB whenever HPMP entries are
updated. This is supported by existing TEEs like Keystone [14] and
Penglai [16], which will not introduce extra costs for TLB synchro-
nization.
Cache-basedmanagement. Penglai-HPMPuses a cache-like struc-
ture to manage HPMP. Specifically, the segment mode entries will
always have a higher priority than tables by using lower-numbered
entries as HPMP entries are statically prioritized. Then, Penglai-
HPMP will only put fast GMS to segments and include all GMSs
in tables, regardless of whether a GMS is “fast” or “slow”. This is
similar to abstracting the segment entries as a cache of tables. As a
result, when the OS updates the labels, Penglai-HPMP only needs to
modify the HPMP registers, which is faster than modifying tables.
Operating system support. The OS kernel in our prototype is en-
hanced to manage all PT pages in a single GMS. The OS kernel will
assign a “fast” label to this GMS, and then Penglai-HPMP will try to
use a segment entry for the GMS. As a result, this canmitigate all the
6 memory references in Figure 2-c for PT page checking. The mem-
ory references are reduced from 12 to 6, with only 2 extra references
necessary for checking the addresses of the data, which is a signifi-
cant improvement with minor OS modifications and no application
modifications. HPMP is generic for all applications and operating
systems and can significantly improve system performance. The
OS modification is acceptable. Although HPMP is the first to uti-
lize contiguous page table pages to optimize the extra-dimensional
permission table walks, prior systems [53, 77, 79, 85] have already
explored a similar way to organize PTs into a contiguous region
for other benefits. For example, Penglai [53] requires a contiguous
region for PT pages to trap the modifications to page tables, and
ASAP [77] requires contiguous PT pages to enable prefetching.

6 VIRTUALIZED ENVIRONMENT
Things become worse in virtualization as one memory access needs
to go through a three-dimensional (3D) page walk, i.e., guest page

Table 1: Simulation configurations. The LLC and DRAM are
simulated through FireSim’s DRAM model [38, 65].

Parameter Value/Description

Rocket

Processor In-order RISC-V CPU @ 1GHz
L1 Cache 16KiB I/D cache
L2 Cache 512KiB (8-way set-associative)
LLC 4MB
L1 I/D TLB 32 entries each, fully-associative
L2 TLB 1024 entries, direct-mapped
PTECache 8 entries

BOOM

Processor OoO RISC-V CPU @ 3.2GHz
Front-end 8-wide fetch, 32-entry fetch buffer, 4-wide decode,

28KB TAGE branch predictor, 40-entry fetch target
queue, max 20 outstanding branches

Execute 128-entry ROB, 128 int/fp physical registers, 24-entry
dual-issue MEM queue, 40-entry 4-issue INT queue,
32-entry dual-issue FP queue

LSU 32-entry load/store queue
L1 Cache 32KiB 8-way I-cache, 32KiB 8-way D-cache w/

8MSHRs
L2 Cache 512KiB (8-way) w/ 12MSHRs
LLC 4MB (8-way) w/ 8MSHRs
L1 I/D TLB 32 entries each, fully-associative
L2 TLB 1024 entries, direct-mapped
PTECache 8 entries

Memory 16GB DDR3 FR-FCFS quad-rank, 25.6 GB/s maximum bandwidth,
14-14-14 (CAS-RCD-RP) latencies @ 1GHz, 8 queue depth, 32 max
reads/writes

OS Buildroot, Linux 5.10, OpenSBI 1.0

table (GPT), nested page table (NPT), and permission table, as shown
in Figure 8. A 2-level permission table will add 32 more memory
references for a virtualized environment with RISC-V Sv39 GPT
and Sv39x4 NPT.

In a virtualized environment, a similar observation works for
NPT pages — most memory references (24 out of 32) from extra-
dimensional page walks are for NPT checking. Following the design
of HPMP, the hypervisor (e.g., KVM in Linux) can intentionally
allocate NPT pages in a single or a few GMSs and label these GMSs
as “fast”. Therefore, Penglai-HPMP can utilize segment entries to
manage these NPT pages. Although HPMP can mitigate 24 memory
references, there are still 8 extra memory references caused by 3D
pagewalks.We observe that 6 of the remaining 8memory references
are used to check the GPT pages. Taking one step forward, if the
guest kernel adopts the extension of HPMP to manage GPT pages in
a contiguous region and notify the hypervisor of the “fast” GMSs in
the guest, the hypervisor can further use a contiguous region for the
GPT pages. This means we can further reduce 6 memory references,
resulting in only 2 extra memory references (called HPMP-GPT),
which is a significant improvement.

7 IMPLEMENTATION
Hardware. The HPMP prototype is implemented based on two
widely used RISC-V implementations, RocketCore [28] (a 5-stage
in-order scalar processor) and BOOM [114] (a 4-way superscalar
out-of-order core). As shown in Figure 9, we extended the existing
PMPchecker with a new module called PMP Table Checker, which
includes a PMPTW and PMPTW-Cache. The PMPTWfinds a match-
ing HPMP entry for an address and determines its validity using
inline permission if the entry is not in Table mode. Otherwise, it
walks through a 2-level permission table to retrieve the permission.

7

Tile

SonicBOOM
OoO

Superscalar
RISC-V Core

(RV64GC)

32KB L1I$

32KB L1D$

TLBs

PTW

PMP Table Checker

PMPT Walker PMPTW Cache T
ile

lin
k
 c

ro
s
s
b

a
r

(o
r

b
u

s
)

Check permission

Boot
ROM

512KB
L2$

UART

TSI

GPIO

L
L

C

D
R

A
M

 c
h

a
n

n
e

ls

Figure 9: HPMP implementation based on BOOM.

Table 2: Test case configuration for memory access latency.
PWC indicates whether the related PTE is cached.

Cases Cache PWC (L2) PWC (L1) PWC (L0) TLB

TC1 Cold Miss Miss Miss Miss
TC2 Warm Miss Miss Miss Miss
TC3 Warm Hit Hit Miss Miss
TC4 Warm Hit Hit Hit Hit

The PMPTW-Cache is a dedicated cache similar to PWC (page walk
caches), which can improve the PMPTW performance by caching
hot entries. We also modified the TLB and PTW module to utilize
the new PMP Table Checker for permission checking and added
optimization in TLB to inline the physical memory isolation to
avoid permission checking in the case of TLB hit (for both baseline
and our systems). We did not need to modify any lines in the core
pipeline.
Software. We implement Penglai-HPMP based on the Penglai En-
clave [15, 53] (PMP version, v0.2 release), which is the state-of-the-
art RISC-V confidential system, and extend it with HPMP hardware
management and support for GMS abstractions. We do not utilize
the guarded page table and other new hardware features proposed
in Penglai [52]. Additionally, the OS support for HPMP adds about
700 lines of C code to the Linux kernel (v5.10).
Methodology.We use Firesim [65], an FPGA-accelerated and cycle-
accurate simulator, on AWS EC2 F1 for evaluation. The FPGA sim-
ulated a 1GHz SoC for RocketCore and a 3.2GHz SoC for BOOM.
The detailed configuration is shown in Table 1. Additionally, we
use Verilator [101], a cycle-accurate simulator (Verilog simulator),
for microbenchmark and performance analysis. We compare HPMP
with PMP (as the segment-based isolation) and PMP Table (as the
table-based isolation) to illustrate the benefits of performance and
flexibility. For application benchmarks, we compare Penglai-HPMP
(Penglai extended with HPMP) with two systems, Penglai-PMPT
(modified to utilize PMP Table for better scalability) and Penglai
(unmodified version based on PMP). To understand the perfor-
mance impacts, we port LMBench, RV8, GAP benchmark, server-
less applications (including FunctionBench [66] and image process-
ing [23, 113]), and Redis to our confidential systems for evaluation.
We disable PMPTW-Cache by default, and will analyze the benefits
of caching in §8.9. The details will be explained in §8.

 0

 50

 100

 150

 200

 250

TC1 TC2 TC3 TC4

1 (all cases)L
at

en
cy

 (
cy

cl
es

) PMPTable
HPMP

PMP

(a) ld (Rocket).

 0

 50

 100

 150

 200

 250

TC1 TC2 TC3 TC4

1 (all cases)L
at

en
cy

 (
cy

cl
es

) PMPTable
HPMP

PMP

(b) sd (Rocket).

 0
 50

 100
 150
 200
 250
 300
 350

TC1 TC2 TC3 TC4

1 (all cases)L
at

en
cy

 (
cy

cl
es

) PMPTable
HPMP

PMP

(c) ld (BOOM).

 0

 50

 100

 150

 200

 250

 300

TC1 TC2 TC3 TC4

2 (all cases)L
at

en
cy

 (
cy

cl
es

) PMPTable
HPMP

PMP

(d) sd (BOOM).

Figure 10: Memory access latency. The latency is evaluated
using four test cases (Table 2). PMPTW-Cache disabled.

8 EVALUATION
8.1 Memory Access Latency
Methodology. We analyze the performance impact of HPMP on
memory access instructions. Specifically, we evaluate the latency of
a single memory load and store instruction (i.e., RISC-V ld and sd)
under four test cases, as shown in Table 2. TC1 represents the access
latencies when all states are cold, usually the worst-case latency.
In TC2, data and page table pages are cached in the system cache,
but no state is cached in the TLB and PWC (Page table Walker
Cache) [36, 85]. TC2 represents the access latency when the TLB is
flushed (e.g., the OS issues sfence.vma). TC3 represents the access
latency when most states have been warmed up. The corresponding
real case is an application (with good locality) that jumps from one
page to an adjacent page. TC4 represents the best-case latency
where all states are pre-warmed, i.e., the TLB hits, and the data
cache also hits.
Results. The results are shown in Figure 10. We find that PMP Ta-
ble encounters more latency than PMP in all cases, e.g., in BOOM,
38.9%–91.1% more cycles for ld instruction and 77.3%–175.0% for sd
instruction. HPMP can mitigate 23.1%–73.1% costs of extra dimen-
tional page walks on BOOM and 47.7%–72.4% costs on Rocket. Our
experiments also confirm that the optimizations to inline permis-
sions into TLB entries can effectively mitigate extra-dimensional
page walk costs (the same latencies for load and store during TLB
hit).

8.2 OS Operations
Methodology. When confidential computing is enabled, normal
applications and the Host OS are impacted because of the memory
access checking. To understand the impact, we measure the perfor-
mance of core OS operations with physical memory isolation using
LMBench [81]. We compare Penglai-HPMP with Penglai-PMP and
Penglai-PMPT. Penglai-PMP represents the results of both secure
and non-secure baseline.
Results. Table 3 shows themean latencies of system calls on BOOM.
Overall, physical memory isolation incurs non-trivial costs to OS
operations — PMP Table has up to 60.33% higher latency than PMP
(39.03% on average). The null operation incurs the least cost, while

8

Table 3: Costs of OS operations (BOOM). We use LMBench
to evaluate each syscall cost with different isolation methods.
PMP represents the results of both secure and non-secure base-
line. PMPT is short for PMP Table.

Syscall (ms) PMP PMPT HPMP PMPT/HPMP

null 0.12 0.12 0.12 100.00%
read 0.27 0.41 0.41 141.38%
write 0.16 0.21 0.17 123.53%
stat 1.17 1.87 1.31 142.69%
fstat 0.25 0.33 0.27 122.22%
open/close 2.62 4.12 2.94 140.14%
pipe 6.05 8.20 6.40 128.13%
fork+exit 389.85 558.19 432.83 128.96%
fork+exec 407.93 570.69 442.92 128.85%

Avg 128.43%

 0

 2

 4

 6

 8

 10

 12

aes norx primes sha512 qsort dhrystone miniz bigint

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Penglai-PMP
Penglai-PMPT

Penglai-HPMP

(a) RV8 benchmark on RocketCore.

 90

 95

 100

 105

 110

 115

 120

bc-kron bfs-kron cc-kron pr-kron sssp-kron tc-kron

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
)

Penglai-PMP
Penglai-PMPT

Penglai-HPMP

(b) GAP benchmark on RocketCore.

 90
 95

 100
 105
 110
 115
 120
 125

bc-kron bfs-kron cc-kron pr-kron sssp-kron tc-kron

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
)

Penglai-PMP
Penglai-PMPT

Penglai-HPMP

(c) GAP benchmark on BOOM.

Figure 11: Benchmarks. Evaluated using RV8 and GAP
(Graph Algorithm Performance) benchmarks.

stat and open/close incur the most cost. We obtain similar results
on RocketCore: PMP Table has 11.34%–35.38% higher latency than
PMP and 26.46% higher latency on average. HPMP can effectively
mitigate the costs and achieve very close performance to PMP.
Compared with HPMP, PMP Table incurs 28.43% higher latency
(on average). Although it is a great improvement, we believe there
is still room for further optimizations, and future researchers can
explore other strategies for HPMP to achieve better latency.

8.3 Benchmarks Suites
Methodology. We use RV8 and GAP (Graph Algorithm Perfor-
mance) [35] benchmark suites to evaluate the performance of computation-
intensive workloads with physical memory isolation. RV8 covers
typical scenarios such as encryption (AES), computation-intensive
workload (dhrystone), and hash-checking (sha512). GAP covers a
collection of high-performant implementations for graph process-
ing. We use the firesim ported version of GAP with Kron input
graph, and the graph size is configured as graph500 (220 vertices).
These experiments use three methods: Penglai-PMP, Penglai-PMPT,
and Penglai-HPMP.
Results. The results are shown in Figure 11. As we can see, since
most of the applications in the RV8 and GAP are computation-
intensive and have good locality, even Penglai-PMPT can achieve
great performance with 2-level permission table design and TLB
inlining optimization. Specifically, compared with PMP, Penglai-
PMPT introduces 1.2%–6.7% higher latencies on RocketCore and
1.8%–9.6% on BOOM for GAP, and 0.0%–1.7% on RocketCore for
RV8. For RV8, Norx has the largest performance overhead (1.7%)
and bigint has the smallest (0.0%). Penglai-HPMP can reduce the
costs to 0.0%–0.5%. For GAP, bc-kron has the largest performance
overhead on both RocketCore and BOOM, while pr-kron and tc-kron
have the smallest. Penglai-HPMP can reduce the costs to 0.02%–
1.4% on RocketCore and 0.6%–2.4% on BOOM. The results confirm
that HPMP’s elaborate design performs well for table-based iso-
lation. Moreover, we believe prior efforts [24, 33] on increasing
TLB hit rates will become more important for future systems with
permission tables.

8.4 Case Study: Serverless Computing
Serverless computing is a new trending paradigm in cloud com-
puting and has already been supported by many platforms [3–6].
Serverless applications are fine-grained and short-lived. This sec-
tion shows how physical memory isolation affects the performance
of short-lived functions.
FunctionBench. We evaluate HPMP with applications from Func-
tionBench [66], a widely-used serverless benchmark. To provide a
clear comparison, we normalize the results (the execution latency)
and label the concrete numbers in the figure. As shown in Figure 12-
a and b, when compared with Penglai-PMP, Penglai-PMPT exhibits
a latency increase of 1.0% to 14.3% (with an average of 5.1%) for
RocketCore. For BOOM, it requires a latency increase of 5.5% to
20.3% (with an average of 14.1%). Penglai-HPMP significantly re-
duces the costs to 0.0%–4.3% (2.0% on average) on RocketCore and
0.0%–6.4% (3.5% on average) on BOOM. We also evaluate the non-
secure baseline by running functions on the Host domain using
BOOM, labeled as Host-PMP in the figure. The secure and non-
secure baselines exhibit similar results as they both utilize PMP for
memory protection.
Chained application.We port a multi-function serverless appli-
cation, image processing [23, 113], from AWS Serverless Reposi-
tory [10] to evaluate the end-to-end latency of a function chain.
The application consists of four functions and will accept an image
file from a client, process the image, and return a new image. The
size of processed image is changed from 32x32 to 256x256. The

9

 90

 95

 100

 105

 110

 115

 120

Chameleon

DD GZip
Linpack

Matmul
PyAES

Image

222 619 2,586 1,753 7 397 197

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

(%
)

PL-PMP
PL-PMPT

PL-HPMP

(a) FunctionBench (Rocket).

 90
 95

 100
 105
 110
 115
 120
 125
 130
 135

Chameleon

DD GZip
Linpack

Matmul
PyAES

Image

43 237 517 226 1.1 79 36

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

(%
)

Host-PMP
PL-PMP

PL-PMPT
PL-HPMP

(b) FunctionBench (BOOM).

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 32 64 128 256

5.3 6.9 25.4 99.9

Image size

PL-PMP
PL-PMPT
PL-HPMP

(c) Serverless image processing.

 80

 90

 100

 110

PING

INLINE

PING

BULK

SET GET INCR LPUSH RPUSH LPOP RPOP SADD HSET SPOP LRGE

100

LRGE

300

LRGE

500

LRGE

600

MSET

R
P

S
 (

%
) Penglai-PMP Penglai-PMPTable Penglai-HPMP

(d) Redis benchmark (Rocket).

 60
 70
 80
 90

 100
 110

PING

INLINE

PING

BULK

SET GET INCR LPUSH RPUSH LPOP RPOP SADD HSET SPOP LRGE

100

LRGE

300

LRGE

500

LRGE

600

MSET

R
P

S
 (

%
) Host-PMP Penglai-PMP Penglai-PMPTable Penglai-HPMP

(e) Redis benchmark (BOOM).
Figure 12: Applications. Figure-a/b present the end-to-end latencies of FunctionBench. Figure-c shows the end-to-end latencies of
image processing serverless applications. Figure-d/e present the requests-per-second of Redis’s benchmark. Host-PMP represents
the non-secure baseline without TEE deployed, however, PMP is still implemented by Rocket/BOOM.

results are shown in Figure 12-c. Compared to PMP, Penglai-PMPT
introduces performance overheads of 1.6%–29.7%. As the size of the
processed image increases, the computation costs grow faster than
the memory access costs, so the overall performance gap gradually
decreases (29.7% to 1.6%). Penglai-HPMP introduces only 0.3%–6.7%
performance overhead.

8.5 Case Study: In-Memory Data Store
Redis [18] is a widely-used in-memory data store for many scenar-
ios, e.g., data caching, database, message bus, etc. In this section, we
use Redis as an example to demonstrate how physical memory iso-
lation impacts the performance of long-running memory-intensive
applications like Redis.
Methodology.We use Redis’s benchmark tool, redis-benchmark, for
evaluation. The tool simultaneously simulates an arbitrary number
of clients connecting to the Redis server. These clients perform
actions and measure the latency for each request. The output results
provide the average number of requests per second. We maintain
the default settings for the number of clients (i.e., 50) and data sizes
in bytes (i.e., 3).
Results. The results are shown in Figure 12-d and e. When com-
pared with Penglai-PMP, Penglai-PMPT exhibits lower throughput,
ranging from 5.9% (MSET) to 18.0% (LRANGE_100) with an average
of 10.5% on RocketCore. On BOOM, the performance gap is more
significant, ranging from 10.8% (MSET) to 31.8% (LRANGE_100)
with an average of 16.0%. These results confirm that the permission
table incurs non-trivial costs for memory-intensive applications
like Redis. However, with Penglai-HPMP, we observe a significant

 0

 100

 200

 300

 400

 500

TC1 After
hfence.v

After
hfence.g

TC3 TC4

6L
at

en
cy

 (
cy

cl
es

)

PMPT
HPMP

HPMP-GPT
PMP

Figure 13: Memory access lantecy for virtualized environ-
ment. “hfence.v” and “hfence.g” represent an access after
hfence.vvma and hfence.gvma.

reduction in costs, with only 3.3% (on average) on RocketCore and
4.5% (on average) on BOOM. As a result, Penglai-HPMP effectively
mitigates the costs associated with the extra-dimensional page walk,
even for memory-intensive applications.

8.6 Virtualization
We follow the methodology in §8.1 to evaluate the memory access
latency in a virtualized environment on RocketCore.
Methodology. The virtualized environment has Sv39x4 nested PT
and Sv39 guest PT. We use RISC-V’s hlv.d instruction to access
a guest VA in the host environment to avoid interferences from
guest system software. We compare four methods, PMP, PMP Ta-
ble, HPMP, and HPMP-GPT. HPMP means NPT pages are isolated
using segment mode, while data pages are managed by table mode.
HPMP-GPT further utilizes segment mode to isolate the GPT pages.
We consider five cases: three of them are similar to TC1 (cold),

10

 0

 200

 400

 600

 800

 1000

 1200

2-domains 12-domains 101-domains
N

o
 a

v
ai

la
b

le
 P

M
P

L
at

en
cy

 (
cy

cl
es

) Penglai-PMP
Penglai-HPMP

(a) Domain switch.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

L
at

en
cy

 (
cy

cl
es

)

Allocated regions

Penglai-HPMP
Penglai-PMP

(b) PM region allocation.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

L
at

en
cy

 (
cy

cl
es

)

Freed regions

Penglai-HPMP
Penglai-PMP

(c) PM region release.

256

512

1K

2K

4K

8K

 1 2 4 8 16 32 64

L
at

en
cy

 (
cy

cl
es

)

Region size (MB)

Penglai-HPMP

(d) Allocation with different sizes.

Figure 14: TEE performance.

TC3 (access neighbor page), and TC4 (TLB hit) in Table 2. In “Af-
ter hfence.v” and “After hfence.g”, we access an address and then
perform hfence.vvma or hfence.gvma, and then access the address
again and measure the second access’s latency. These five cases
show the access latencies with different system states.
Results. As shown in Figure 13, compared with a non-virtualized
environment, PMP Table incurs higher costs for all cases, 89.9%–
155.0% higher latencies compared with PMP. HPMP achieve lower
latency than PMP Table, reducing the costs to 29.7%–75.6%. If the
guest could notify the hypervisor to allocate GPT pages in a con-
tiguous region, i.e., HPMP-GPT, we could further reduce the costs
to 16.3%–26.8%. As a result, HPMP can also significantly benefit the
virtualized environment.

8.7 Performance of TEE Operations
We evaluate the costs of basic operations of a RISC-V TEE using
Penglai-HPMP and Penglai-PMP.
Domain switching. We evaluate the switching costs between
two domains when multiple domains are concurrently running,
as shown in Figure 14-a. The results demonstrate that Penglai-
HPMP incurs negligible additional costs (less than 1%) compared to
Penglai-PMP. This is because HPMP leverages the existing PMP en-
tries for permission tables, allowing the secure monitor to employ
a similar routine as Penglai-PMP to switch between domains by
updating the HPMP registers. Moreover, the switching costs remain
stable even with numerous concurrently running instances, as the
secure monitor only needs to update HPMP registers to switch
tables and segments. Notably, Penglai-HPMP can support over 100
domains with HPMP.
Memory region allocation and release.We continuously allocate
and release physical memory regions (64KB) for a domain and
evaluate the latency, as shown in Figure 14-b and c. The results
indicate that Penglai-PMP can support fewer regions for a domain
due to the limited number of PMP entries, while Penglai-HPMP
can support more than 100 regions using the permission table. In
both allocation and release processes, Penglai-HPMP incurs slightly
higher latency because it needs tomodify both the permission tables
and registers. However, it’s important to note that dynamic memory
allocation is infrequent in real-world scenarios.

 800
 1000
 1200
 1400
 1600
 1800

Contiguous-VA Fragmented-VA

L
at

en
cy

 (
cy

cl
es

)

PMP
PMPT

HPMP

(a) Contiguous physical pages.

 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200

Contiguous-VA Fragmented-VA

L
at

en
cy

 (
cy

cl
es

)

PMP
PMPT

HPMP

(b) Fragmented physical pages.

Figure 15: Memory fragmentation.

 800

 1000

 1200

 1400

 1600

 1800

Contiguous-VA Fragmented-VA

L
at

en
cy

 (
cy

cl
es

)

PMPT
PMPT-Cache

HPMP
HPMP-Cache

PMP

Figure 16: Caching for permission table.

Allocation with different sizes. We evaluate the latency of mem-
ory region allocationwith varying sizes, ranging from 1MB to 32MB,
as shown in Figure 14-d. The latency increases as the region size
grows because the secure monitor needs to modify the permission
table entries to update the permissions accordingly. Additionally,
Penglai-HPMP incorporates optimizations by utilizing a large per-
mission table page, enabling the modification of a single entry to
update the permission for a 32MB region.

8.8 Memory Fragmentation
Memory fragmentation is normal with on-demand paging, applica-
tion colocation, and virtualization, which has been studied by prior
works like PTEMagnet [79]. We analyze how HPMP behaves in four
possible fragmented cases: (1) an ideal case where continuous vir-
tual pages are mapped to continuous physical pages; (2) a common
case in a non-virtualized environment where continuous virtual
pages are mapped to fragmented physical pages (due to on-demand
paging or other features); (3) a case in a virtualized environment
where fragmented host virtual pages are mapped to continuous
physical pages; and (4) a common case in a virtualized environment
where fragmented host virtual pages are mapped to fragmented
physical pages. The last two cases result in fragmented PTEs [79].

We conduct a microbenchmark (on Rocket) to access the same
number of virtual pages using four settings and compare end-to-
end latencies. Figure 15-a shows the results of cases (1) and (3),
which have contiguous physical pages, while Figure 15-b shows
the results of cases (2) and (4). In “Fragmented-VA”, we access the
next virtual page with an 8GB+4KB offset. The results show that
fragmentation significantly affects the end-to-end latency, e.g., the
case of “Fragmented physical pages” with “Fragmented-VA” has the
worst latency. However, HPMP still outperforms PMP Table in all
cases and can effectively reduce the latency even in a fragmented
environment.

11

 90

 95

 100

 105

 110

 115

 120

 125

Chameleon DD GZip Linpack Matmul PyAES Image

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

(%
)

PMP(8)
PMP(32)

PMPT(8)
PMPT(32)

HPMP(8)
HPMP(32)

Figure 17: FunctionBench with different PWC entries
(Rocket).

Table 4: Hardware resource costs of top module in FPGA.
“+H” means Hypervisor extension enabled.

Resource Baseline HPMP Cost Base+H HPMP+H Cost
LUT 248,292 250,636 0.94% 249,026 251,965 1.18%
LUTRAM 14,290 14,290 0.00% 14,290 14,290 0.00%
FF 258,498 258,909 0.16% 260,073 262,106 0.78%
RAMB36 336 336 0.00% 336 336 0.00%
RAMB18 90 90 0.00% 90 90 0.00%
DSP 18 18 0.00% 18 18 0.00%

8.9 Caching Permission Table
Benefits of caching. To analyze the impact of microarchitecture
optimizations, such as Page Walk Cache [36], on reducing the costs
associated with the permission table, we introduce PMPTW-Cache.
This dedicated cache consists of 8 entries specifically designed for
the permission table (fully-associative, same replacement rule as
PWC). We conduct the same test as described in §8.8 to demonstrate
how caching affects latency. The results are shown in Figure 16.

As we can see, caching proves to be effective in reducing the la-
tency of the permission table. PMPTable-Cache achieves even better
performance for the “Fragmented-VA” scenario compared to HPMP.
This improvement can be attributed to caching’s ability to miti-
gate accesses to data pages that are not handled by HPMP, thereby
boosting performance in fragmented cases. However, HPMP has
the advantage of theoretically eliminating accesses to page table
pages during permission table walking, which cannot be achieved
by caching. Therefore, the combination of HPMP and cache, re-
ferred to as HPMP-Cache, can achieve the best performance in all
cases.
Cache entries. Next, we investigate the impact of different entries
in the Page Walk Cache (PWC) on performance. Specifically, we
extend the Rocket implementation to utilize a 32-entry PWC and
evaluate the FunctionBench using PMP, PMP Table, and HPMP. The
results, as shown in Figure 17, demonstrate that a larger PWC can
reduce page-table walks in some cases, thereby mitigating overall
costs. However, PMP Table still incurs costs due to permission table
overhead during memory access. On the other hand, HPMP consis-
tently outperforms the naive PMP Table design due to its ability to
mitigate permission table checks. We observe that a larger PWC
does not significantly improve the performance of FunctionBench.
This could be attributed to the fact that the costs primarily stem
from the dynamic and short-running nature of serverless functions
rather than insufficient caching size. Given that HPMP eliminates
all permission table checks caused by PT pages by design, it proves
to be more effective and efficient for serverless computing and other
dynamic and short-lived scenarios.

8.10 Hardware Costs
The resource utilization report in the FPGA was generated from
Vivado [21], as shown in Table 4. The overall hardware costs were
small (0.94%/1.18% in LUT, 0.16%/0.78% in FF, and 0 for others for
the top module).

9 DISCUSSION AND FUTUREWORK
Generality. Although this paper only implements HPMP on RISC-
V, the design is general in architecture (especially ISA-level) and
could be utilized to optimize the permission table walking in other
ISAs. For example, ARM CCA’s GPT [9] has a similar structure
as HPMP’s permission table, which is shown to have significant
management and runtime costs by a recent work [72, 73]. CCA
could be optimized by introducing multiple GPTs and allowing
each GPT to be turned into a segment, which could be used to
protect frequently accessed physical memory regions like page
table pages.
I/O protection using table-based physical memory isolation.
HPMP offers the ability to isolate MMIO regions for different do-
mains. This approach surpasses segment-based isolation by pro-
viding support for a wider range of I/O devices and their distinct
regions. Additionally, HPMP (or PMP) can be employed for DMA
protections, such as IOPMP [22], effectively safeguarding against
malicious I/O devices.
Efficient isolation through new abstractions. Introducing new
interfaces for applications to specify hot and cold regions can
further improve performance. In our prototype, we have devel-
oped three new ioctls within the TEE driver, enabling user applica-
tions to create, delete, and query memory range hints using virtual
addresses. These hints are then conveyed to the secure monitor
through labels. By leveraging these abstractions, we can further
minimize the overhead of permission checking for data pages, in
addition to the already optimized page table pages.
Limitations and future work. This paper presents a novel design
that successfully addresses the costs associated with permission
tables by leveraging application behavior. However, there are still
limitations and potential areas for future investigation. While our
analysis and optimization efforts concentrate on the RISC-V archi-
tecture, it is essential to account for variations in results on other
architectures such as Intel/ARM due to distinct microarchitectural
designs and optimizations. Additionally, while providing new inter-
faces for applications to indicate hot and cold regions can enhance
performance, it may also impose a higher burden on application de-
velopers. Further research is needed to explore these limitations and
strike a balance between performance improvements and developer
convenience.

10 RELATEDWORK
Hardware-assisted confidential systems. Some prior work uses
a secure processor to implement confidential computing systems [1,
39, 42, 44, 46, 54, 74, 75, 89, 97, 110]. These systems utilize encryp-
tion and integrity engines to support compartments that are im-
mune to both modification and observation. However, using encryp-
tion to isolate memory space brings non-negligible overhead, and
the key management and traditional integrity scheme may restrict

12

the enclave size and number. As a result, emerging solutions like
Intel TDX and ARM CCA prefer to utilize permission tables for
isolation and can benefit from the design of HPMP.
Physicalmemory isolation designs. Systems like CHERI [90, 106,
107], CODOMs [103], PUMP [49], and others [45, 91, 92, 99] utilize
hardware capability or tagged memory for fine-grained isolation.
Unlike HPMP, which is proposed for system-wide physical memory
isolation, these systems are mostly used for intra-address space iso-
lations for lightweight domains, such as libraries in an application
or drivers in kernel space. We believe the hybrid design can also
help systems like PUMP to manage tags more efficiently.

MMP [108, 109] proposes a highly compressed table structure to
reduce space and two levels of caching to reduce runtime overheads.
Compressed permission structure and caching are both valuable
techniques: compressed permission is already used in two RISC-
V extensions, ePMP and sPMP, and HPMP will follow the way to
introduce more fine-grained and compressed permissions. However,
MMP does not allow the software to change the method (segment or
table) used for isolation, which is the major contribution of HPMP
to enable flexible design.
Direct segment. Direct segment [33, 55, 59, 68] utilizes segment
registers to skip translation for a hot primary region — forming a
hybrid design of paging-based and segmentation-based translation.
HPMP is the first to utilize the hybrid design in physical memory
isolation and has twomajor contributions. First, PMP Table achieves
better flexibility because each hardware entry can be configured as
a segment or permission table during runtime. Second, we observe
that most memory references caused by the permission table are
for checking PT pages and proposing the Penglai-HPMP system.
Address translation.Althoughworks on optimizing address trans-
lation [24, 30, 32, 56–58, 63, 69, 76–79, 82–87, 94–96, 100, 102, 112]
do not directly address our problem, their efforts on prefetching [77,
78], new PT structures [85, 94], caching [31, 79], lowering TLB miss
rates [24, 32, 56, 86, 87, 100, 102] and huge pages [58, 63, 69, 76, 82–
84] can effectively reducememory references and thereforemitigate
costs of extra page walks. The implementation of PMP Table also
takes these optimizations into account.

PTEMagnet [79] observes the issue of fragmented hPTEs in
a virtualized environment and proposes an allocator to reserve
pages to best utilize the PTE locality. HPMP leverages a similar
observation on PTE locality to mitigate the costs of permission
table and can be used together with PTEMagnet. Other virtual
memory optimizations [25, 26, 29, 37, 64, 71, 87, 111] can effectively
reduce the TLB miss rates, but can not avoid permission table walks
in case of TLB misses. HPMP is still necessary even after these
optimizations are deployed.

Flattend page table [85] technique reduces the depth and number
of page table traversals by merging two levels of 4KB page tables
into a single 2MB page table. This approach reduces the overhead
associated with permission tables, as there are fewer page table
pages to validate. Besides, HPMP adopts a similar concept of a
flattened structure, utilizing a single 64-bit entry for 16 4KB pages.

11 CONCLUSION
This paper proposes HPMP, a new memory isolation design that
provides great flexibility to software by harmonizing segment and

table-based isolation in a single hardware structure. HPMP isolates
page table pages with its segment modewhile data pages are in table
mode, which effectively mitigates the costs of extra-dimensional
page walks and improves performance for real-world confidential
applications.

ACKNOWLEDGMENTS
We sincerely thank the anonymousMICRO’23 reviewers for their in-
sightful suggestions. We would also like to extend our thanks to the
members of the RISC-V International Community, particularly the
Security HC, including Zeyu, Dingji, Jiahao, Nick, Allen, Ravi, Andy,
Siqi, Robin, Mark, Sandro, and others, for their early feedback. This
work was supported in part by National Key Research and Develop-
ment Program of China (No. 2020AAA0108500), National Natural
Science Foundation of China (No. 62302300, 61972244, U19A2060),
Startup Fund for Young Faculty at SJTU (SFYF at SJTU), and CCF-
Huawei Populus Grove Fund. Corresponding author: Yubin Xia
(xiayubin@sjtu.edu.cn).

REFERENCES
[1] 2019. AMD Secure Encrypted Virtualization (SEV) - AMD. https://developer.

amd.com/sev/.
[2] 2020. Intle TDX. https://software.intel.com/content/www/us/en/develop/

articles/intel-trust-domain-extensions.html. Referenced Apr 2022.
[3] 2021. Apache OpenWhisk is a serverless, open source cloud platform. http:

//openwhisk.apache.org/. Referenced 2021.
[4] 2021. AWS Lambda - Serverless Compute. https://aws.amazon.com/lambda/.

Referenced Jan. 2021.
[5] 2021. Azure Functions Serverless Architecture. https://azure.microsoft.com/en-

us/services/functions/. Referenced Jan. 2021.
[6] 2021. Google Cloud Function. https://cloud.google.com/functions/. Referenced

Jan. 2021.
[7] 2021. HASP: Arm Confidential Compute Architecture. https://haspworkshop.

org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf.
[8] 2022. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[9] 2022. Arm Confidential Compute Architecture. https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture. Refer-
enced Apr 2022.

[10] 2022. AWS Serverless Application Repository. https://serverlessrepo.aws.
amazon.com/applications. Referenced Apr 2022.

[11] 2022. Hex Five Security: The quick and safe way to add security and separation
to embedded systems. https://hex-five.com/.

[12] 2022. Intel 5-Level Paging and 5-Level EPT white paper. https:
//www.intel.com/content/www/us/en/develop/download/5-level-paging-and-
5-level-ept-white-paper.html. Referenced Apr 2022.

[13] 2022. Intel Trust Domain Extensions White Paper. https://cdrdv2.intel.com/v1/
dl/getContent/690419. Referenced Apr 2022.

[14] 2022. Keystone-sm. https://github.com/keystone-enclave/sm/blob/
8b8e6141256da97e005bc1d34a0bd1bf79210e34/src/pmp.h#L48. Referenced Jun
2022.

[15] 2022. Penglai-Enclave-sPMP. https://github.com/Penglai-Enclave/Penglai-
Enclave-sPMP. Referenced Apr 2022.

[16] 2022. Penglai-sPMP Secure Monitor. https://github.com/Penglai-Enclave/
Penglai-Enclave-sPMP/blob/767be067e8cd190f2a8ab1c7c7d9bb05a7be926a/
opensbi-0.9/include/sm/pmp.h#L30. Referenced Jun 2022.

[17] 2022. PMP Enhancements for memory access and execution prevention on Ma-
chine mode (Smepmp). https://github.com/riscv/riscv-tee/blob/main/Smepmp/
Smepmp.pdf.

[18] 2022. Redis. https://redis.io/. Referenced Apr 2022.
[19] 2022. RISC-V S-Mode Physical Memory Protection Unit (SPMP) Task Group.

https://github.com/riscv-admin/spmp. Referenced Apr 2022.
[20] 2022. TEE-based confidential computing | Alibaba Cloud Documen-

tation. https://www.alibabacloud.com/help/en/container-service-for-
kubernetes/latest/tee-based-confidential-computing-tee-based-confidential-
computing. Referenced Apr 2022.

[21] 2022. Vivado Design Suite. https://www.xilinx.com/products/design-tools/
vivado.html. Referenced Apr 2022.

13

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://haspworkshop.org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf
https://haspworkshop.org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://serverlessrepo.aws.amazon.com/applications
https://serverlessrepo.aws.amazon.com/applications
https://hex-five.com/
https://www.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://github.com/keystone-enclave/sm/blob/8b8e6141256da97e005bc1d34a0bd1bf79210e34/src/pmp.h#L48
https://github.com/keystone-enclave/sm/blob/8b8e6141256da97e005bc1d34a0bd1bf79210e34/src/pmp.h#L48
https://github.com/Penglai-Enclave/Penglai-Enclave-sPMP
https://github.com/Penglai-Enclave/Penglai-Enclave-sPMP
https://github.com/Penglai-Enclave/Penglai-Enclave-sPMP/blob/767be067e8cd190f2a8ab1c7c7d9bb05a7be926a/opensbi-0.9/include/sm/pmp.h#L30
https://github.com/Penglai-Enclave/Penglai-Enclave-sPMP/blob/767be067e8cd190f2a8ab1c7c7d9bb05a7be926a/opensbi-0.9/include/sm/pmp.h#L30
https://github.com/Penglai-Enclave/Penglai-Enclave-sPMP/blob/767be067e8cd190f2a8ab1c7c7d9bb05a7be926a/opensbi-0.9/include/sm/pmp.h#L30
https://github.com/riscv/riscv-tee/blob/main/Smepmp/Smepmp.pdf
https://github.com/riscv/riscv-tee/blob/main/Smepmp/Smepmp.pdf
https://redis.io/
https://github.com/riscv-admin/spmp
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

[22] 2023. RISC-V IOPMP Specification. https://github.com/riscv-non-isa/iopmp-
spec. Referenced Sep 2023.

[23] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND : Towards High-
Performance Serverless Computing. In 2018U SEN IX Annual Technical Con-
ference (U SEN IX ATC 18). 923–935.

[24] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. 2020. Enhancing
and exploiting contiguity for fast memory virtualization. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
515–528.

[25] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t Shoot down TLB Shoot-
downs!. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 35, 14 pages. https://doi.org/10.1145/3342195.3387518

[26] Nadav Amit, Dan Tsafrir, and Assaf Schuster. 2014. VSwapper: A Memory
Swapper for Virtualized Environments. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing
Machinery, New York, NY, USA, 349–366. https://doi.org/10.1145/2541940.
2541969

[27] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. 2016. SCONE: Secure linux containers with intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
689–703.

[28] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. 2016. The rocket chip generator. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[29] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose,
Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu. 2018. Mosaic: En-
abling Application-Transparent Support for Multiple Page Sizes in Through-
put Processors. SIGOPS Oper. Syst. Rev. 52, 1 (aug 2018), 27–44. https:
//doi.org/10.1145/3273982.3273986

[30] Rachata Ausavarungnirun, Timothy Merrifield, Jayneel Gandhi, and Christo-
pher J. Rossbach. 2020. PRISM: Architectural Support for Variable-Granularity
Memory Metadata. In Proceedings of the ACM International Conference on Paral-
lel Architectures and Compilation Techniques (Virtual Event, GA, USA) (PACT
’20). Association for Computing Machinery, New York, NY, USA, 441–454.
https://doi.org/10.1145/3410463.3414630

[31] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’T Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (Saint-Malo, France) (ISCA ’10). ACM,
New York, NY, USA, 48–59. https://doi.org/10.1145/1815961.1815970

[32] Thomas W Barr, Alan L Cox, and Scott Rixner. 2011. SpecTLB: A mechanism
for speculative address translation. ACM SIGARCH Computer Architecture News
39, 3 (2011), 307–318.

[33] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (Tel-Aviv,
Israel) (ISCA ’13). ACM, New York, NY, USA, 237–248. https://doi.org/10.1145/
2485922.2485943

[34] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Appli-
cations from an Untrusted Cloud with Haven. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 267–283. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/baumann

[35] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Bench-
mark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/
1508.03619

[36] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne.
2008. Accelerating Two-Dimensional Page Walks for Virtualized Systems. In
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (Seattle, WA, USA) (ASPLOS
XIII). Association for Computing Machinery, New York, NY, USA, 26–35. https:
//doi.org/10.1145/1346281.1346286

[37] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Pro-
ceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA, 63–76.
https://doi.org/10.1145/3037697.3037705

[38] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanovic. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 330–339.
https://doi.org/10.1145/3289602.3293894

[39] Risk Boivie and Perter Williams. 2012. SecureBlue++: CPU support for secure
execution. IBM, IBM Research Division, 1–9.

[40] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2018.
Putting the "Micro" Back in Microservice. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 645–650. https:
//www.usenix.org/conference/atc18/presentation/boucher

[41] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. Securekeeper: con-
fidential zookeeper using intel sgx. In Proceedings of the 17th International
Middleware Conference. 1–13.

[42] David Champagne and Ruby B Lee. 2010. Scalable architectural support for
trusted software. In HPCA-16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE, 1–12.

[43] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Prac-
tical Library OS for Unmodified Applications on SGX. In 2017 USENIX An-
nual Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 645–658. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/tsai

[44] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrahmanyam, Carl A
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan RK Ports. 2008. Overshadow:
a virtualization-based approach to retrofitting protection in commodity operat-
ing systems. ACM SIGOPS Operating Systems Review 42, 2 (2008), 2–13.

[45] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu.
2016. Shreds: Fine-Grained Execution Units with Private Memory. In 2016 IEEE
Symposium on Security and Privacy (SP). 56–71. https://doi.org/10.1109/SP.2016.
12

[46] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic. 2011.
SecureME: a hardware-software approach to full system security. In Proceedings
of the international conference on Supercomputing. 108–119.

[47] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[48] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
2020. Oblivious Coopetitive Analytics Using Hardware Enclaves. In Proceedings
of the Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for ComputingMachinery, New York, NY, USA, Article
39, 17 pages. https://doi.org/10.1145/3342195.3387552

[49] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight, Benjamin C. Pierce, and Andre DeHon.
2015. Architectural Support for Software-Defined Metadata Processing. In
Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (Istanbul, Turkey) (ASPLOS ’15).
Association for Computing Machinery, New York, NY, USA, 487–502. https:
//doi.org/10.1145/2694344.2694383

[50] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. 2022. Serverless Computing on Heterogeneous Computers. In Proceed-
ings of the 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 797–813.
https://doi.org/10.1145/3503222.3507732

[51] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA, 467–481.
https://doi.org/10.1145/3373376.3378512

[52] Erhu Feng, Dong Du, Yubin Xia, and Haibo Chen. 2023. Efficient Distributed
Secure Memory with Migratable Merkle Tree. In 2023 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). 347–360. https:
//doi.org/10.1109/HPCA56546.2023.10071130

[53] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, 275–294. https://www.usenix.org/
conference/osdi21/presentation/feng

[54] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A secure
processor architecture for encrypted computation on untrusted programs. In
Proceedings of the seventh ACM workshop on Scalable trusted computing. 3–8.

[55] Jayneel Gandhi, Arkaprava Basu, Mark D Hill, and Michael M Swift. 2014.
Efficient memory virtualization: Reducing dimensionality of nested page walks.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 178–189.

[56] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrián Cristal, Mark D
Hill, Kathryn S McKinley, Mario Nemirovsky, Michael M Swift, and Osman S
Ünsal. 2016. Range translations for fast virtual memory. IEEE Micro 36, 3 (2016),
118–126.

[57] Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Abhishek Bhattacharjee, Babak
Falsafi, and Mathias Payer. 2021. Rebooting virtual memory with midgard. In

14

https://github.com/riscv-non-isa/iopmp-spec
https://github.com/riscv-non-isa/iopmp-spec
https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/3273982.3273986
https://doi.org/10.1145/3273982.3273986
https://doi.org/10.1145/3410463.3414630
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1145/3289602.3293894
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1145/3342195.3387552
https://doi.org/10.1145/2694344.2694383
https://doi.org/10.1145/2694344.2694383
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/HPCA56546.2023.10071130
https://doi.org/10.1109/HPCA56546.2023.10071130
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 512–525.

[58] Faruk Guvenilir and Yale N Patt. 2020. Tailored page sizes. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
900–912.

[59] Swapnil Haria, Mark D Hill, and Michael M Swift. 2018. Devirtualizing Memory
in Heterogeneous Systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 637–650.

[60] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless
Computing: One Step Forward, Two Steps Back. arXiv preprint arXiv:1812.03651
(2018).

[61] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. vTZ: Virtualizing ARM TrustZone. In 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 541–556.

[62] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
2018. Ryoan: A distributed sandbox for untrusted computation on secret data.
ACM Transactions on Computer Systems (TOCS) 35, 4 (2018), 1–32.

[63] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley, and
Parthasarathy Ranganathan. 2021. Beyond malloc efficiency to fleet efficiency:
a hugepage-aware memory allocator. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 257–273.
https://www.usenix.org/conference/osdi21/presentation/hunter

[64] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D.
Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman
Ünsal. 2015. Redundant Memory Mappings for Fast Access to Large Memo-
ries. In Proceedings of the 42Nd Annual International Symposium on Computer
Architecture (Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA, 66–78.
https://doi.org/10.1145/2749469.2749471

[65] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan
Bachrach, and Krste Asanović. 2018. Firesim: FPGA-Accelerated Cycle-Exact
Scale-out System Simulation in the Public Cloud. In Proceedings of the 45th An-
nual International Symposium on Computer Architecture (Los Angeles, California)
(ISCA ’18). IEEE Press, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[66] Jeongchul Kim and Kyungyong Lee. 2019. Practical cloud workloads for server-
less faas. In Proceedings of the ACM Symposium on Cloud Computing. 477–477.

[67] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for
Serverless Analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444.
https://www.usenix.org/conference/osdi18/presentation/klimovic

[68] Nikhita Kunati and Michael M Swift. 2018. Implementation of Direct Seg-
ments on a RISC-V Processor. In Proceedings of Second Workshop on Computer
Architecture Research with RISC-V.

[69] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett
Witchel. 2016. Coordinated and efficient huge page management with ingens.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 705–721.

[70] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machin-
ery, New York, NY, USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.
3387532

[71] Gyusun Lee, Wenjing Jin, Wonsuk Song, Jeonghun Gong, Jonghyun Bae, Tae Jun
Ham, Jae W. Lee, and Jinkyu Jeong. 2020. A Case for Hardware-Based Demand
Paging. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1103–1116. https://doi.org/10.1109/ISCA45697.2020.00093

[72] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and Haibing Guan.
2021. TwinVisor: Hardware-Isolated Confidential Virtual Machines for ARM. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery,
New York, NY, USA, 638–654. https://doi.org/10.1145/3477132.3483554

[73] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22).

[74] David Lie, Chandramohan Thekkath, MarkMitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. Acm Sigplan Notices 35, 11 (2000), 168–177.

[75] David Lie, Chandramohan A Thekkath, andMark Horowitz. 2003. Implementing
an untrusted operating system on trusted hardware. In SOSP.

[76] Martin Maas, David G Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S McKinley, and Colin Raffel. 2020. Learning-based memory alloca-
tion for C++ server workloads. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operating
Systems. 541–556.

[77] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO
’52). Association for Computing Machinery, New York, NY, USA, 1023–1036.
https://doi.org/10.1145/3352460.3358294

[78] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched address translation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 1023–1036.

[79] Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot. 2021.
Ptemagnet: Fine-grained physical memory reservation for faster page walks
in public clouds. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 211–
223.

[80] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instruc-
tions and software model for isolated execution. Hasp@ isca 10, 1 (2013).

[81] Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Perfor-
mance Analysis.. In USENIX annual technical conference. San Diego, CA, USA,
279–294.

[82] Ashish Panwar, Sorav Bansal, and K Gopinath. 2019. Hawkeye: Efficient fine-
grained os support for huge pages. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 347–360.

[83] Ashish Panwar, Aravinda Prasad, and K Gopinath. 2018. Making huge pages
actually useful. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. 679–
692.

[84] Chang Hyun Park, Sanghoon Cha, Bokyeong Kim, Youngjin Kwon, David Black-
Schaffer, and Jaehyuk Huh. 2020. Perforated page: Supporting fragmented
memory allocation for large pages. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 913–925.

[85] Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-
Schaffer. 2022. Every Walk’s a Hit: Making Page Walks Single-Access Cache
Hits. Association for Computing Machinery, New York, NY, USA, 128–141.
https://doi.org/10.1145/3503222.3507718

[86] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 558–567.

[87] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhat-
tacharjee. 2012. Colt: Coalesced large-reach tlbs. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 258–269.

[88] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. Enclavedb: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278.

[89] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Using
address independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). IEEE, 183–196.

[90] Vasily A. Sartakov, Lluís Vilanova, David Eyers, Takahiro Shinagawa, and Peter
Pietzuch. 2022. CAP-VMs: Capability-Based Isolation and Sharing in the Cloud.
In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22). USENIX Association, Carlsbad, CA, 597–612. https://www.usenix.
org/conference/osdi22/presentation/sartakov

[91] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS: A
Library OS with Software Componentisation for Practical Isolation. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS
2021). Association for Computing Machinery, New York, NY, USA, 546–558.
https://doi.org/10.1145/3445814.3446731

[92] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys –
Efficient In-Process Isolation for RISC-V and x86. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 1677–1694. https:
//www.usenix.org/conference/usenixsecurity20/presentation/schrammel

[93] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 38–54.

[94] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic cuckoo page tables: Rethinking virtual memory translation for paral-
lelism. In Proceedings of the Twenty-Fifth International Conference onArchitectural
Support for Programming Languages and Operating Systems. 1093–1108.

[95] Jovan Stojkovic, Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep
Torrellas. 2022. Parallel Virtualized Memory Translation with Nested Elastic

15

https://www.usenix.org/conference/osdi21/presentation/hunter
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/ISCA.2018.00014
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/ISCA45697.2020.00093
https://doi.org/10.1145/3477132.3483554
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/3503222.3507718
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://doi.org/10.1145/3445814.3446731
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel

Cuckoo Page Tables. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery,
New York, NY, USA, 84–97. https://doi.org/10.1145/3503222.3507720

[96] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda. 2020.
CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based
Address Translation. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 329–345. https:
//doi.org/10.1145/3385412.3385987

[97] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. 2003. AEGIS: architecture for tamper-evident and tamper-resistant
processing. InACM International Conference on Supercomputing 25th Anniversary
Volume. 357–368.

[98] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa,
and Donald E Porter. 2020. Civet: An Efficient Java Partitioning Framework for
Hardware Enclaves. In 29th USENIX Security Symposium (USENIX Security 20).

[99] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1221–1238. https://www.
usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner

[100] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A Jiménez, andMarc Casas. 2021. Exploiting page table
locality for agile TLB prefetching. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 85–98.

[101] Veripool. [n. d.]. Verilator.
https://www.veripool.org/verilator/.

[102] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B Gibbons, and Onur
Mutlu. 2018. A case for richer cross-layer abstractions: Bridging the seman-
tic gap with expressive memory. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 207–220.

[103] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, andMateo Valero.
2014. CODOMs: Protecting software with code-centric memory domains. In
ACM SIGARCH Computer Architecture News, Vol. 42. IEEE Press, 469–480.

[104] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the curtains of serverless platforms. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18). 133–146.

[105] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and
Krste Asanović. 2016. The RISC-V Instruction Set Manual Volume II: Privileged

Architecture Version 1.9. Technical Report UCB/EECS-2016-129. EECS Depart-
ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-129.html

[106] Robert NMWatson, Ben Laurie, Steven J Murdoch, Robert Norton, Michael Roe,
Stacey Son, Munraj Vadera, Jonathan Woodruff, Peter G Neumann, Simon W
Moore, et al. 2015. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In 2015 IEEE Symposium on Security and Privacy
(SP). IEEE, 20–37.

[107] Robert NM Watson, Robert M Norton, Jonathan Woodruff, Simon W Moore,
Peter G Neumann, Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, et al. 2016. Fast protection-domain crossing in the cheri
capability-system architecture. IEEE Micro 36, 5 (2016), 38–49.

[108] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian Memory
Protection. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California)
(ASPLOS X). ACM, New York, NY, USA, 304–316. https://doi.org/10.1145/605397.
605429

[109] Emmett Witchel, Junghwan Rhee, and Krste Asanović. 2005. Mondrix: Memory
Isolation for Linux Using Mondriaan Memory Protection. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles (Brighton, United
Kingdom) (SOSP ’05). ACM, New York, NY, USA, 31–44. https://doi.org/10.
1145/1095810.1095814

[110] Yubin Xia, Yutao Liu, and Haibo Chen. 2013. Architecture support for guest-
transparent VM protection from untrusted hypervisor and physical attacks.. In
HPCA. 246–257.

[111] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Trans-
lation Ranger: Operating System Support for Contiguity-Aware TLBs. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (Phoenix,
Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA,
698–710. https://doi.org/10.1145/3307650.3322223

[112] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’t Cache (the Page Table). In Pro-
ceedings of the 2016 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science (Antibes Juan-les-Pins, France) (SIGMET-
RICS ’16). Association for Computing Machinery, New York, NY, USA, 337–350.
https://doi.org/10.1145/2896377.2901456

[113] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless
Platforms with ServerlessBench. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC ’20). Association for Computing Machinery. https:
//doi.org/10.1145/3419111.3421280

[114] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

16

https://doi.org/10.1145/3503222.3507720
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3385412.3385987
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.veripool.org/verilator/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://doi.org/10.1145/605397.605429
https://doi.org/10.1145/605397.605429
https://doi.org/10.1145/1095810.1095814
https://doi.org/10.1145/1095810.1095814
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280

	Abstract
	1 Introduction
	2 Motivation
	2.1 Confidential Systems
	2.2 Physical Memory Isolation and Challenges

	3 Approach Overview
	4 HPMP Hardware Design
	4.1 RISC-V PMP background
	4.2 Hybrid Physical Memory Protection
	4.3 PMP Table

	5 Penglai-HPMP: Software Support
	6 Virtualized Environment
	7 Implementation
	8 Evaluation
	8.1 Memory Access Latency
	8.2 OS Operations
	8.3 Benchmarks Suites
	8.4 Case Study: Serverless Computing
	8.5 Case Study: In-Memory Data Store
	8.6 Virtualization
	8.7 Performance of TEE Operations
	8.8 Memory Fragmentation
	8.9 Caching Permission Table
	8.10 Hardware Costs

	9 Discussion and Future Work
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

