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Abstract
In this paper, we present the first comprehensive perfor-
mance characterization and optimization of ARM barriers
on both mobile and server platforms. We draw a set of obser-
vations through several abstracted models and validate them
in scenarios where barriers are intensively used. We find
that (1) order-preserving approaches without involving the
bus significantly outperform other approaches, and (2) the
tremendous overhead mostly comes from barriers strictly
following remote memory references. Usually, such barriers
are inserted when threads are exchanging data, and they are
used to ensure the relative order between storing the data to
a shared buffer and setting a flag to inform the receiver. Based
on the observations, we propose a new mechanism, Pilot, to
remove such barriers by leveraging the single-copy atomicity
to piggyback the flag with the data. Applying Pilot only re-
quires minor changes to applications and provides 10%-360%
performance improvements in multiple benchmarks, which
are close to the ideal performance without barriers.

CCS Concepts • Software and its engineering → Soft-
ware performance; Mutual exclusion; Synchroniza-
tion; Process synchronization.

Keywords barrier, synchronization, concurrency, lock

1 Introduction
ARM processors have been widely used in embedded and
mobile devices due to their lower price and higher energy-
efficiency compared to x86 processors. Moreover, with the
rapid increase of its computing power, ARM has become a
competitive alternative to x86 in data centers [4, 17, 37, 38, 46,
47] and has already been deployed in Internet companies [22,
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40]. One of the most significant differences between ARM
and x86 is that ARM uses a weakly-ordered memory model
(WMM) [2, 8], rather than total store order (TSO) [20, 34, 45]
in many x86 processors. WMM does not guarantee the order
between any pairs of non-dependent memory accesses. As
a result, hardware barriers (also known as memory fences)
should be carefully inserted to preserve the order between
two non-dependent memory accesses. However, it is well-
known that barriers may tremendously hurt the performance
if it frequently appears on the critical path.
ARM provides various kinds of hardware barriers [2],

but their performance characteristics have not been well-
explored yet as the performance impacts of barriers are
difficult to reason about due to the complexity of applica-
tions [41]. Besides, since the overhead and the performance
differences among barriers are less evident in ARM mobile
processors and those processors are not designed to handle
heavy workloads [39, 44], the performance characteristics
of barriers have been largely overlooked.
However, with the widespread use and promising future

of ARM processors in server scenarios, we cannot let barri-
ers become a barrier in the road of unleashing all potential
performance. In this paper, we propose several abstracted
models to eliminate irrelevant variables and study the per-
formance characteristics of barriers. Two different kinds of
ARM processors are considered in our study, including server
processors and mobile processors, with threads placed either
in different or the same NUMA node. Based on the study, we
draw a set of observations and highlight some as follows.

With the increasing complexity of the bus archi-
tecture, the performance impact of barriers becomes
more significant and dramatically varies. Since most
ARM barriers are likely to be implemented with the bus
involved, the increasing complexity of the bus architecture
significantly enlarges the overhead of barriers and the per-
formance variations among barriers. Therefore, in ARM
servers, both the overhead of barriers and the choices of
order-preserving approaches should be taken into serious
consideration.

A determining factor in a barrier’s overhead is the
location where the barrier is inserted. Barriers strictly
following remote memory references1 (RMR) significantly
1An access to a shared object is a remote memory reference if the object is
not cached or its cached copy is invalid [14].
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reduce the benefits of load or store buffers and cause con-
siderable overhead, even though some of them do not drain
those buffers and do not block any following non-memory
operations. However, the overhead is much smaller when
barriers are away from the RMR.

Order-preserving approaches without involving the
bus significantly outperform other approaches. Most
ARM barriers are implemented to send ACE (AXI Coherency
Extensions) barrier transactions to the bus and wait for the
responses, and thus their overhead highly depends on the
bus 2. However, processors are able to maintain the order
between load operations and program-order later memory
accesses without involving the bus, given that they can rec-
ognize whether the load operations have finished. Hence,
leveraging dependencies, as well as weak barriers, including
DMB (Data Memory Barrier) ld and LDAR (Load-Acquire),
provides significantly better performance.

While mostly a weaker barrier leads to a lighter
overhead, sometimes store-release barrier (STLR) has
a more substantial performance impact. According to
our study, it mostly obeys the intuition that a weaker barrier
does introduce a lighter overhead. The overhead caused by
barriers can be concluded into the following list3.

DSB > DMB full > DMB st > DMB ld ≈ LDAR ≥ Dep

The performance impact of STLR (Store-Release), however, is
not stable. Sometimes, it introduces a more significant over-
head compared with a stronger barrier (DMB full). According
to our study, its overhead lies between DSB and DMB st.
We validate those observations in two different scenar-

ios where barriers are intensively used [1, 29], including
memory-based communications and synchronization primi-
tives, and find that the substantial overhead caused by bar-
riers mostly comes from those strictly following the RMR.
Usually, such situations happen when threads are exchang-
ing data, and a barrier is inserted to ensure the relative order
between storing the data to a shared buffer and setting a
flag to inform the receiver. To eliminate the overhead, we
propose a new mechanism, Pilot, which targets at remov-
ing those performance-critical barriers by leveraging the
single-copy atomicity to piggyback the flag with the data
and broadcast both of them at once. We apply Pilot to both
scenarios coved in the paper, and it provides 20%-360% per-
formance improvements in multiple micro-benchmarks and
10%-60% improvements in PARSEC dedup benchmark [3]
and various data structure benchmarks.

2In recent ACE5, processors are recommended to terminate barriers inter-
nally if the system is multi-copy atomic (MCA) for a similar reason [36].
3Dep in the list stands for dependencies; different options of DSB (Data
Synchronization Barrier) such as DSB full, DSB st and DSB ld have a similar
performance.

Thread 1 Thread 2
data = 23;
flag = DONE;

while (flag != DONE);
local = data;

Initial State flag = BUSY data = 0
TSO Forbidden local != 23
WMM Allowed local != 23
Table 1. Different behaviors in TSO and WMM.

2 Background
In this section, we provide a brief background on ARM’s
WMM and order-preserving approaches under such model.

2.1 Weakly-ordered Memory Model
In TSO, only loads may be reordered with earlier stores to
different locations [21]. However, in WMM, reordering of
any non-dependent memory operations is permitted [2].

Table 1 is an instance where TSO andWMM behave differ-
ently. Thread 1 is supposed to transfer the value 23 to thread
2. It stores the value into a shared variable data and sets a
flag to indicate that the data is ready. Thread 2 will spin on
the flag until it is set to DONE and read the data. Since the
orders between stores and between loads are preserved in
TSO, thread 2 is guaranteed to observe the value 23 set by
thread 1. However, in WMM, the flag may become observ-
able before the data does, and thread 2 may load the data
before ensuring the flag has been set to DONE. Therefore
thread 2 is allowed to see a different value other than the
value 23 wrote by thread 1, which is not the programmers’
intention.

2.2 Order-preserving Options
ARM provides several ways to preserve the order between
two memory operations under WMM as below [2, 28, 43].
DataMemory Barrier (DMB) prevents reordering of mem-
ory accesses across the barrier. Instead of waiting for previ-
ous accesses to become observable in the specified domain,
DMB only maintains the relative order between memory
accesses. Meanwhile, DMB does not block any non-memory
access operations. DMB takes a parameter which specifies a
domain it applies and the types of access, including any to
any (DMB full4), store to store (DMB st), load to load/store
(DMB ld), to which the barrier operates.
Data Synchronization Barrier (DSB) prevents reordering
of any instructions across the barrier. DSB will make sure
that all masters5 in the specified domain can observe the pre-
vious operations before issuing any subsequent instructions.

4In previousworks, DMB sy is used to represent the samemeaning. However,
DMB sy also implies the shareability domain of DMB. We use DMB full to
describe only the types of access which it operates.
5A component that initiates transactions [1], which can be regarded as
cores in this paper.
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Figure 1. Boundaries in an ARM example system [1].

Since it blocks all the following instructions, DSB always in-
troduces themost significant overhead among all approaches.
DSB also takes the same parameters as DMB.
Load-Acquire (LDAR)/Store-Release (STLR) are a pair
of one-way barriers introduced in ARMv8. LDAR blocks
all following memory accesses until LDAR finishes; STLR
ensures all loads and stores are observable before STLR.
Besides barrier instructions, dependencies also can pre-

serve the order between memory operations.
Data Dependency (DATA Dep) exists when the value to
be stored depends on the value loaded previously. By estab-
lishing a bogus data dependency (e.g., xor the loaded value
with itself and add it to the value which will be stored), it
can preserve the order between any load-store pairs.
Address Dependency (ADDRDep) exists when the target
addresses of the following memory operations depend on
the value loaded previously. By constructing bogus address
dependencies (e.g., xor the loaded value with itself and add
it to the target addresses of following memory operations),
it can preserve the order between any load-load/store pairs.
Control Dependency (CTRL) can preserve the order be-
tween a load to program-order-later store operations in the
conditional branch when the loaded value is used to com-
pute the condition [28]. However, when preserving the order
between load operations, an Instruction Synchronization
Barrier should be inserted along with the control depen-
dency (CTRL+ISB) to flush the pipeline and ensure that the
following loads are executed after the condition is satisfied.
Constructing bogus control dependencies can preserve the
order between any load-load/store pairs.

2.3 Barriers from a Hardware Perspective
There are four different domains in an ARM system, includ-
ing non-shareable, inner shareable, outer shareable, and sys-
tem domains. For each domain, there are two different bound-
aries: bi-section boundary and domain boundary. Bi-section
boundary is downstream of a subset of master components,
and domain boundary is downstream of all master compo-
nents. Figure 1 shows both boundaries in an ARM example
system. We only focus on the inner shareable domain (ish)
in this paper, which contains all cores in the system.

Since ARM only defines the behavior, any implementa-
tions followed the specification are allowed. We provide one
typical implementation as below. When a barrier instruc-
tion reaches the issue queue of the ARM processor, it blocks
different types of subsequent instructions according to the
type of the barrier. Then the barrier instruction is sent to the
load-store unit. Barriers that require the assistance from the
bus issue an ACE barrier transaction. There are two different
barrier transactions. DMB and DSBwould normally translate
to memory barrier transaction and synchronization barrier
transaction, respectively. Before receiving the response for
the barrier transaction from the bus, the barrier instruction
cannot retire, and the subsequent instructions cannot be
issued. However, weaker barriers like DMB ld and LDAR
are likely to be implemented without sending anything to
the bus as the processors can identify whether loads have
finished without involving the bus [36].

2.4 Usages of Barriers
There are three primary uses of the barriers as below [1, 29].

Memory-based communication is achieved by first
writing the data and then setting a flag to indicate that the
data is available. A barrier should be added to ensure that all
receivers are able to observe the data before or at the same
time when the flag is observable. Memory-based commu-
nication can be used to implement the producer-consumer
model and the lock-free data structures. This part will be
discussed in Section 4.

Synchronization primitives (e.g., mutex locks) are
widely utilized in applications as they provide more trans-
parent and straightforward semantics. Unlike the locks’ im-
plementations in x86, barriers should be carefully inserted
in both lock and unlock procedures to guarantee the cor-
rectness. Those barriers are likely to introduce a substantial
overhead. This part will be discussed in Section 5.

Device drivers also require barriers to preserve the order.
The host communicates with peripheral devices through
sideband signaling communication by generating a signal to
indicate that the data is available. DSB is inserted to ensure
that the data is observable before the signal arrives. Since
such situations are difficult to optimize and highly depend
on the devices, we will not discuss it in this paper.

3 Performance Characteristics of Barriers
It is difficult to study the performance characteristics of
barriers directly from real-world applications due to its com-
plexity. Barriers may affect applications indirectly (e.g., the
contentions to shared objects). To eliminate irrelevant vari-
ables, we introduce several abstracted models in this section.

3.1 Target Platforms
Since the instruction set only defines the behavior for correct-
ness but not imply any performance characteristics, which
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Name Kirin960 Kirin970 Raspberry Pi 4 Kunpeng916

Architecture Cortex A-73
Cortex A-53

Cortex A-73
Cortex A-53 Cortex A-72 Cortex A-72

Cores 4 + 4 4 + 4 4 2 x 32
Frequency (GHz) 2.1 2.36 1.5 2.4
Interconnect ARM CCI-550 ARM CCI-550 Unknown Hydra Interface
OS Linaro 4.14 Debian 4.9.78 Ubuntu 5.3.0 Debian 4.9.20

Table 2. Target Platforms

can only be explored through specific implementation. To
make the results general enough, we have carefully choose
several platforms, including kirin 960/970, which has been
widely used in successful commercial products (e.g., used in
hundreds of millions smartphones), raspberry pi 4, which is a
popular embedded system, and kunpeng 916, which is one of
the most advanced ARM server available in the market and
has been widely deployed in data centers. The specifications
of the four target platforms are detailed in Table 2.

3.2 Abstracted Models
Programs which use barriers on the critical path can be ab-
stracted into a loop containing barrier instructions along
with other instructions. They vary in three ways: the occur-
rence frequency of barriers, the memory operations around
the barriers and the choice of barriers. The occurrence fre-
quency of barriers decides how barriers influence overall
performance. The type and number of memory operations,
as well as the statuses of the target cache lines, determine
the overhead of barriers. Finally, the different choices of bar-
riers lead to different performance impacts. We study the
performance characteristics of barriers by analyzing several
groups of abstracted models which diverse in these ways.

Algorithm 1: Assembly Code of Abstracted Models
1 Loop:
2 add x0, x0, 64
3 add x1, x1, 64
4 ldr/str x3, [x0]
5 BARRIER_LOC_1
6 NOPs
7 BARRIER_LOC_2
8 ldr/str x4, [x1]
9 add x2, x2, 1

10 cmp x2, BUFSIZE
11 ble Loop

We implement the abstracted models in assembly. As
shown in Algorithm 1, a thread loads or stores values to
different cache lines in line 4 and line 8. Besides choosing dif-
ferent kinds of barriers, we also consider whether the barrier

follows strictly after memory operations. We provide two
alternative locations where barriers can be inserted, marked
as BARRIER_LOC_1 and BARRIER_LOC_2 in line 5 and line
7. Meanwhile, NOPs in line 6 are used to simulate different
occurrence frequencies of barriers. Since barriers are primar-
ily used to achieve synchronization, target cache lines of
memory accesses around barriers are likely to be frequently
transferred among cores. To simulate this, we create two
threads which execute the code one by one exclusively and
bind them to different cores in the system. We also provide
sufficient buffer to restrict the performance bottleneck to the
loop in Algorithm 1.
Firstly, we remove all memory operations to explore the

intrinsic overhead of barriers in Section 3.3. Then we classify
those models into two categories according to whether the
bus is involved in Section 3.4 and Section 3.5.

3.3 Intrinsic Overhead of Barriers
We study the performance impacts from barriers themselves
by removing all memory operations on the critical path.
Figure 2 shows the throughput of the abstracted model with
barriers appearing at different frequencies. Similar properties
are found in kirin960/970, raspberry pi 4 and kunpeng916
and can be concluded into the following observation.
Observation 1: The intrinsic overhead of barriers is stable
and intuitive.
DMB provides the lightest overhead as it does not block

any subsequent non-memory operations. ISB flushes the
pipeline and thus has a larger overhead. DSB causes sub-
stantial overhead as it blocks all the upcoming instructions
before receiving the response from the bus. Since there is no
memory operation around the barrier, DMB and DSB with
different options do not lead to different performance. In
summary, the substantial and diverse performance impacts
of barriers are the outcome along with memory operations
around rather than from barriers themselves.

3.4 Order-preserving with the Bus Involved
Since the store buffers of ARM processors are allowed not
to provide order guarantees, processors cannot identify
whether stores are committing in a FIFO order. Thus, when
the order between stores and following memory accesses
should be preserved, processors are likely to achieve this
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(b) Kirin960
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Figure 2. Throughput of the abstracted model which does
not contain any memory operations. Barriers in the legend
are placed on the critical path.

goal by sending ACE barrier transactions to the bus6. Such a
situation happens when maintaining the order from store to
program-order later memory operations. In this section, a
specific model is discussed to represent this scenario without
loss of generality. Store operations towards different cache
lines are added to the critical path in line 4 and line 8 of
Algorithm 1, and the barrier protects the order among them.

Figure 3 shows the throughput of the model under differ-
ent configurations. In kirin960/970, both threads are bound
to the big cluster, given that the processors’ architectures
of different clusters are not identical. X-1 and X-2 in the
figures represent the cases when barrier X is inserted at
BARRIER_LOC_1 and BARRIER_LOC_2 respectively. The
following observations are derived from the result.
6Other implementations are allowed if they obey the specification, but may
lead to a larger performance penalty.
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(a) Threads are bound to the same NUMA node in kunpeng916.
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(b) Threads are bound to different NUMA nodes in kunpeng916.

 0

 2

 4

 6

 8

 10

10 30 60

T
h

ro
u

g
h

p
u

t 
(1

0
8
 l
o

o
p

s
/s

)

6
.5

5

6
.5

5

5
.4

6

5
.8

0

5
.8

0

5
.2

3

5
.8

0

5
.8

0

5
.2

46
.0

8

6
.0

6

5
.3

8

6
.0

9

6
.0

8

5
.3

8

5
.3

1

4
.0

7

3
.1

3

6
.0

2

5
.0

9

3
.6

7

5
.3

1

4
.0

4

3
.1

3

5
.9

9

5
.0

9

3
.6

6

6
.0

3

5
.9

9

5
.4

6

(c) Threads are bound to the big core cluster in kirin960.
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Figure 3. Throughput of the abstracted model which con-
tains two store operations under different configurations.

Observation 2: A determining factor in a barrier’s overhead
is the location where the barrier is inserted.
Barriers which follow strictly after the RMR are likely to

introduce a substantial overhead. When using DMB full, DSB
full and DSB st in kunpeng916, a considerable performance
variation exists between X-1, where barrier follows strictly
after an RMR, and X-2, where numerous of nops are inserted
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Figure 4. Timeline of the tipping point when the execution
of nop instructions entirely hide the barrier’s overhead.

between the RMR and the barrier. The performance differ-
ences are much smaller in kirin960/970 and raspberry pi 4
due to the simpler bus architecture.
An intuitive explanation for this phenomenon is that be-

fore receiving the response from the bus, DMB and DSB
slow down or even block the following instructions. The
response will not be sent until previous snoop transactions
have finished and the corresponding ACE barrier transaction
has reached the specified boundaries [1]. It takes consider-
able time, especially when cross-node snooping is involved,
which will expose on the critical path if the upcoming in-
structions cannot execute concurrently. Previously, store
buffer is introduced to reduce the problem. However, the
barriers which strictly follow the RMR reduce the benefit
of store buffer and expose a massive overhead even though
barriers like DMB do not drain the store buffer.
To validate that barriers do influence the execution of

nops, we consider a tipping point where the performance
of DMB full-2 is the same as No Barrier when the execution
of nop instructions entirely hides the barrier’s overhead as
shown in Figure 4. And DMB full-1 should be exactly one half
the performance of DMB full-2 under such situation. Such a
situation happens when there are 150 nops or 700 nops as
shown in Figure 3(a) and 3(b), the performance ratio of DMB
full-1 to DMB full-2 happens to be 17.90

31.01 ≈
3.38
6.54 ≈

1
2 .

But as specified in ARMv8’s manual [19] and validated
in Section 3.3, DMB does not block any non-memory op-
erations. Since the actual hardware is vendor-defined, one
possible explanation is that DMB may cause some perfor-
mance bottlenecks in the pipeline (e.g., saturating the reorder
buffer) and indirectly influences the execution of nops.
However, DMB st does not have such property. DMB st

provides weaker semantic and cumulative properties, which
may lead to a more radical implementation. It should be
noted that DMB st still introduces tremendous overhead as
it blocks the following store operations, especially when
threads are bound to different NUMA nodes.
Observation 3: Store-release barrier, however, does not al-
ways outperform stronger barriers.

Store-release barrier (STLR) does not perform well in kun-
peng916 and raspberry pi 4, even though it provides a weaker

semantic than DMB full. Such a phenomenon has been ob-
served for a bunch of times in our other experiments. Ac-
cording to the results of our experiments, the overhead of
STLR is not stable and lies between DSB full and DMB st. As
no accurate description about the implementation of STLR is
available, performance comparison with DMB full is needed
before using STLR.
Observation 4: With the increasing complexity of the bus
architecture, the performance impact of barriers becomes more
significant and dramatically varies.

We have to pick a much smaller number of nops in Figure
3(c), 3(d) and 3(e) so that we can distinguish the performance
variations among barriers in kirin960/970 and raspberry pi
4. Moreover, the performance difference between No_barrier
and other cases are less evident, which indicates that the
overhead of barriers is much smaller in mobile processors.
Since barriers in this section require bus involving, the main
reason behind this is that the mobile processors have simpler
bus architecture. Thus in ARM servers, both the overhead
of barriers and the choices of order-preserving approaches
should be taken into serious consideration.
Observation 5: Crossing nodes is a killer.

When two threads are bound to the same NUMA node, a
much smaller number (150) of nop instructions is required
to hide the overhead of DMB full. In such a situation, the
memory barrier transaction only needs to reach the inner
bi-section boundaries, which is the boundary of a part of
the domain, and wait for the snooping transactions to fin-
ish before sending the response [1]. Thus, DMB full has a
much smaller overhead when no cross-node snooping are
involved. However, DSB does not benefit from the locality
as the synchronization barrier transaction has to reach the
inner domain boundary, which is the boundary of the whole
domain, before the response can be sent. Therefore, the per-
formance variation between DSB and DMB dramatically
increases when threads are bound to one NUMA node.
Implications. In conclusion, DMB st is the best choice when
preserving the order between store operations, as it intro-
duces the minimum performance impact. However, when a
stronger semantic is needed, DMB full should be kept away
from the RMR by either avoiding cache misses or separating
them with other operations for better performance. Even
though STLR provides weaker semantic over DMB full, it
may lead to a heavier overhead. Performance comparison
against DMB full is required before using STLR.

3.5 Order-preserving without the Bus Involved
When the order between loads and following memory oper-
ations should be preserved, the processor is able to identify
whether loads have finished without involving the bus. Other
than dependencies, barriers with weaker guarantees (DMB
ld and LDAR) are also likely to be implemented without
sending anything to the bus [36]. In this section, we choose
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Figure 5. Throughput of the abstracted model, which con-
tains a load and a store operation, and threads are bound to
different NUMA nodes in kunpeng916.

To
From Load Loads Store Stores Any

Load A Dep
or LDAR1

A Dep
or DMB ld1 DMB full DMB fullLoads

Store A/D/C Dep
or LDAR1

A/D/C Dep
or DMB ld1

DMB st DMB full2
Stores

DMB full DMB fullAny A Dep
or LDAR1

A Dep
or DMB ld1

1 A/D/C represent address/data/control dependencies, respectively.
Though dependencies provide better performance even when pre-
serving order between multiple memory accesses, LDAR/DMB ld
outperforms other barriers when it is difficult to construct depen-
dencies. ARMv8.3 provides a new Load-Acquire RCpc barrier, which
is not supported by kunpeng916 but may provide better parallelism
than LDAR here.

2 STLR can be used here. Performance comparison against DMB full is
needed before using STLR.

Table 3. Suggestions for selecting different order-preserving
approaches under different scenarios.

a specific model to represent such scenario without loss of
generality. A load in line 3 and a store towards a different
cache line in line 8 of Algorithm 1 are added.
Figure 5 shows the throughput when two threads are

bound to different NUMA nodes of kunpeng916. Results
from other configurations are consistent with our observa-
tions and omitted due to the space limit. As shown in the
figure, DMB full/ld and DSB full/ld strictly following after
the RMR (X-1) introduce larger overhead than those do not
(X-2), which supports observation 2. Moreover, STLR does
not outperform stronger DMB full as we revealed in obser-
vation 3. Since the order can be preserved without involving
the bus, we obtain a new observation below.
Observation 6: Order-preserving approaches without involv-
ing the bus significantly outperform other approaches.
Constructing bogus data/address/control dependencies

provide fine-grained protection and bring no harm to the
parallelism. Meanwhile, nothing will be sent to the bus.
Thus, they introduce almost no overhead. However, since ISB
flushes the pipeline, CTRL+ISB introduces some overhead

when preserving the order between loads. Besides those de-
pendencies, barriers which have similar semantic, such as
DMB ld and LDAR, provide similar performances as they are
also likely to be implemented without involving the bus.
Implications. When preserving the order from loads to
program-order later memory operations, constructing bogus
dependencies provides the lowest overhead and bring no
harm to the parallelism. When it is difficult to do so, LDAR
and DMB ld outperforms other barriers and can be used here.

We conclude the implications in Table 3.

4 Characterizing and Optimizing Barriers
in Memory-based Communications

We validate our observations in two different scenarios
where barriers are intensively used. Firstly, we focus on
the barriers used in memory-based communications.

4.1 Barriers in Producer-consumer Model
Producer-consumer model is one of the most typical use
cases of memory-based communications and is essential in
the performance of pipeline parallelism [3, 15]. Algorithm
2 shows the implementation of the producer in a single-
producer single-consumer model. Locks are required when
multiple producers or consumers using the same circular
buffer, which will be further discussed in Section 5.

Algorithm 2: Producer Implementation
Data: Shared: prodCnt = 0, consCnt = 0, buffer;

1 while prodCnt - consCnt = BUFF_SIZE do
2 nop;
3 Barrier;
4 buffer[prodCnt % BUFF_SIZE]← produceMsg();
5 Barrier;
6 prodCnt ← prodCnt + 1;

The producer waits until there are some available buffers
in line 1 & 2. Barrier in line 3 guarantees that all following
loads and stores happen after ensuring the buffer is available.
It should be a full barrier if any store is supposed to happen
before (e.g., messages are passing by reference). Otherwise, a
weaker load barrier is enough when directly passing a value.
The producer then fills the buffer in line 4. Since the buffer
is shared with the consumer, this operation is likely to be an
RMR. Another barrier is added in line 5 to preserve the order
between filling the buffer and informing the consumer.
The implementation of the consumer is similar and thus

omitted. The consumer loads the counter, reads the mes-
sage after ensuring the message is available, and updates its
counter. Since light-weighted load barriers or dependencies
can preserve the order between those accesses in the con-
sumer, we focus on the performance impact of barriers in
the producer by placing enough nops in produceMsg and
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(a) Normalized throughput of producer-consumer model under different con-
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a wrong result but can serve as a reference.

 0

 40

 80

Kunpeng916
Same Node

Kunpeng916
Cross Nodes

Kirin960 Kirin970 Raspberry Pi 4

T
h

ro
u

g
h

p
u

t 
(n

 *
 1

0
6
 p

e
r 

S
e

c
o

n
d

)

 

DMB ld - DMB st

1
7

.8
4

4
.4

0

2
9

.7
4

2
9

.8
5

1
2

.3
6

Theoretical

2
8

.7
3

1
7

.1
0

4
7

.0
4

4
7

.0
5

1
5

.8
8

Ideal

3
3

.4
4

2
2

.0
4

4
9

.2
4

4
9

.2
6

1
5

.7
7

Pilot

2
8

.9
4

2
0

.3
5

5
1

.9
6

5
1

.9
7

1
5

.2
7

(b) Throughput of producer-consumer model after applying Pilot under dif-
ferent configurations.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32

P
e

rf
o

rm
a

n
c
e

 S
p

e
e

d
u

p

Batched Message Size (n*8 Bytes)

Kunpeng916 CN
Kunpeng916 SN

Kirin960
Kirin970

Raspberry Pi 4

(c) Performance speedup when
batching more messages.

 0.9

 1

 1.1

 1.2

Small
672MB

Middle
1.1GB

Large
3.5GB

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

 

Q

1
.0

0

1
.0

0

1
.0

0

RB

0
.9

6

0
.9

8

1
.0

5

RB-P

1
.0

2

1
.0

4

1
.1

0

(d) Normalized compress speed of PAR-
SEC dedup under different workloads.

Figure 6. Barriers in producer-consumer model.

providing sufficient buffers to ensure that consumers have
enough time dealing the messages. Thus, we only change
the barriers in the producer in the following experiments.

4.2 Performance Impacts of Barriers in
Producer-consumer Model

The producer and the consumer are bound to different cores
in the same or different NUMA nodes in kunpeng916, the big
core cluster in kirin960/970 and cores in raspberry pi 4. Re-
sults shown in Figure 6(a) support our previous observations.
Firstly, the combination DMB ld - DMB st or LDAR - DMB
st has the best performance, which supports observation
6. And as revealed in observation 3, when binding threads
to different NUMA nodes in kunpeng916, STLR does not
outperform stronger DMB full. Both the overhead and the
performance variations among barriers are much more no-
ticeable in kunpeng916 than in kirin960/970 and raspberry pi
4 as we conclude in observation 4. Finally, as we point out
in observation 2 & 5, the tremendous overhead ismostly

coming from the barrier in line 5 which strictly follows the
RMR in line 4, and directly removing the barrier (DMB ld -
No Barrier) provides significant performance improvements,
which are close to Ideal, in all platforms. Note that even when
using DMB st, which does not influence the non-memory
operations as DMB full does in observation 2, an enormous
performance impact (5x) still exists when crossing NUMA
nodes.

4.3 Using Pilot to Remove the Fatal Barrier
Since the substantial overhead is caused by the barrier strictly
following after an RMR, we propose a new mechanism, Pilot,
to remove the barrier as it does in the train.
Pilot leverage the 64-bit single-copy atomicity provided

by ARM aarch64 to piggyback the flag with the message
and broadcast them in a single atomic store. Theoretically, it
causes a loss of information since at least one value should
be used to represent the flag. This problem can be solved
by adding a fallback mechanism. Algorithm 3 & 4 show the
implementations of sender and receiver after applying Pilot.

Algorithm 3: Pilot Sender Side Implementation
Data: Shared: f laд = 0, data = 0;

Local : newData, oldData = 0, cnt = 0;
Const : hashPool ;

1 newData← newData ^ hashPool[cnt ++ % SIZE];
2 if newData = oldData then
3 f laд← f laд ^ 1;
4 else
5 data← newData;
6 oldData← newData;

In line 1 of Algorithm 3, the sender shuffles the newly
produced data by doing an XOR with a prepared seed in
hashPool to reduce the possibility of collision with previous
data. Line 2 and line 3 are a fallback mechanism to deal with
the corner case when data is still the same as the prior data
even after shuffling. But typically, the newly produced data
is different from old data so that we can directly inform the
receiver by setting the shared data into the newly produced
one in line 5. The sender then stores the current data into a
local buffer which will be used in the next round in line 6.
In Algorithm 4, the receiver spins in line 1-4 and keeps

checking the value of the shared data and the shared f laд.
When data has been set to different values in line 1, it means
that a new data has been received. When f laд has been set
to different values in line 2, it means that the newly produced
data has the same value as the prior data even after shuffling.
The receiver then stores the new f laд in line 3. In both
cases, the newly produced data has been stored in data. The
receiver returns the transferred data by doing XOR with the
same prepared seeds with the sender in line 6.
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Algorithm 4: Pilot Receiver Side Implementation
Data: Shared: f laд = 0, data = 0;

Local : oldFlaд = 0, oldData = 0, cnt = 0;
Const : hashPool ;

1 while data = oldData do
2 if f laд , oldFlaд then
3 oldFlaд← f laд;
4 break;
5 oldData← data;
6 return oldData ^ hashPool[cnt ++ % SIZE]

The correctness of Pilot is guaranteed by the single-copy-
atomicity. The system exists two correct state according to
whether the newly-produced data is globally visible. The
sender can make the data globally visible through one single
store operation. When the newly-produced data is not the
same as the old one, the store operation is towards the shared
data. Otherwise, it is towards the shared flag. The single-
copy-atomicity guarantees that the value can be visible all-
together. Thus the system will fall into one of two correct
state at any time.

4.4 Applying Pilot to Producer-consumer
Applying Pilot to both producer and consumer can remove
the barrier which causes the substantial overhead in line 5
of Algorithm 2, and the corresponding load barrier in the
consumer. Since the amount of the buffers is limited, we still
need a shared counter and the barrier in line 3 of Algorithm
2 to ensure the correctness. However, the overhead of this
barrier is less crucial as shown in Figure 6(a).

4.5 Evaluation of Pilot in Producer-consumer
Although Pilot is relatively straightforward, it brings a con-
siderable performance improvement, which comes from two
aspects. Firstly, the barrier which follows strictly after the
RMR and causes a tremendous overhead is removed. Sec-
ondly, Pilot reduces the number of touched cache lines. Both
of them contribute to the overall performance improvement.

In Figure 6(b), we compare the throughput after applying
Pilot with the original implementation which has the best
performance (DMB ld - DMB st). Moreover, we also include
the Theoretical performance after applying Pilot by removing
the corresponding barriers which Pilot avoids and the Ideal
performance by directly removing all barriers.
Comparing with the original implementation, applying

Pilot introduces 62%, 363%, 75%, 74% and 24% performance im-
provements under different environments. The performance
improvements from Theoretical to Pilot are owing to the
reduction of the touched cache lines, which is more notice-
able when transferring data across NUMA nodes. Moreover,
since the overhead of other barriers is less significant, Pilot
achieves similar performance with Ideal.

When transferring more than 64-bit data, Pilot can be ap-
plied to every 64-bit-long slice of data. Figure 6(c) shows
the performance improvements when more messages are
batched. The improvement declines with the increasing
length of the data array since barriers appear less frequently
and multiple slices of data share the overhead from one
barrier. Even so, the performance improvement is still sig-
nificant when crossing NUMA nodes. Since the additional
procedures in Pilot are all local operations, it does not intro-
duce a noticeable overhead even in the worst case (< 5%).
Finally, we apply Pilot to PARSEC dedup [3] benchmark,

which uses pipeline parallelism to compress files. The orig-
inal lock-based queue, which serves as a communication
buffer among different stages in dedup, is replaced with a
lock-free ring buffer in our experiments. Applying Pilot to
the ring buffer provides 1.8x and 2.2x speedups in micro-
benchmark when threads are bound to the same or different
NUMA nodes of kunpeng916, respectively. Since file I/O is
dedup’s performance bottleneck [7, 23], we remove the file
operations and gather the output in memory to focus on the
improvements in communications among stages. As shown
in Figure 6(d), the native ring buffer (RB) sometimes has
worse performance as it increases the contention over the
communication buffer. But after applying Pilot (RB-P), a 10%
speedup is achieved compared with the original lock-based
queue (Q).
However, Pilot cannot be applied to lock-free data struc-

tures. Flags in those cases always have more complex mean-
ings (e.g., a pointer which points to a new object) and cannot
be easily combined with the transferred data.

5 Characterizing and Optimizing Barriers
in Synchronization Primitives

Another scenario where barriers are intensively used is to
implement synchronization primitives. In this section, we
focus on the mutex lock, which is one of the most typical
synchronization primitives.

5.1 Barriers in Mutex Locks
Mutex locks can be divided into in-place locks and delegation
locks according to where the critical section executes [48]. In-
place locks are implemented by waiting on shared variables
before entering the critical section, such as ticket lock and
MCS lock [30, 30]. It has been widely used in the existing
systems, including the Linux kernel [9], as it is simple but
efficient in most cases, especially at low contention levels.
Barriers are needed in both lock and unlock procedure of in-
place lock to ensure that all memory accesses in the critical
section do not reorder with lock and unlock operations.
Delegation lock, however, is aimed at improving cache

locality and eliminating lock acquisitions and releases from
the critical path [32] by choosing a lock server that handles
all the critical sections. Previous works [13, 14, 18, 25, 26, 35,
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42, 48] have proposed various delegation locks which can be
classified into two different types. The first kind uses a dedi-
cated core to serve as a lock server, including RCL [25, 26]
and FFWD [42]. The second kind picks one lock competitor
and upgrades it to the lock server at run time. SAML [48],
flat-combining lock [18] and CC/DSMSynch [14] are locks of
this kind. Dedicated lock servers can provide better perfor-
mance at high contention levels while migratory sever locks
are more flexible and can be deployed in more scenarios.

Algorithm 5: Delegation Lock Server
Data: Shared: reqPool , respPool ;

Local : core , req, resp, oldFlaдPool = 0;
1 req← reqPool[core];
2 if req -> f laд , oldFlaдPool[core] then
3 oldFlaдPool[core]← req -> f laд;
4 Barrier;
5 resp← respPool[core];
6 resp -> ret ← req -> criticalSection(req -> arд);
7 Barrier;
8 resp -> f laд← resp -> f laд ^ 1;

Algorithm 5 is the pseudo-code of delegation lock server.
The server reads the request in line 1, executes the critical
section for the client in line 6, and writes the response in
line 8. Barriers used to maintain the order between the mod-
ifications to the shared variables are no longer needed in
delegation lock, as all critical sections execute in one lock
server and thus the order is guaranteed by hardware. How-
ever, barriers are still needed in delegation locks (line 4 and
line 7) to ensure the correctness.
We implement the ticket lock by referring to the Linux

kernel’s implementation and implement FFWD [42] in li-
block [25]. We design a micro-benchmark which creates
various threads competing for the same lock. In the criti-
cal section, threads read and modify a specified number of
shared cache lines and increment a counter. For ticket lock,
those counters are all local variables and will be collected
at the end to calculate average throughput. And for FFWD,
there is only one global counter as all critical sections are
executed in the lock server. After releasing the lock, different
amount of nops are inserted to simulate different contention
levels.

5.2 Performance Impacts of Barriers in
Mutex Locks

We create 63 threads and bind them to individual physical
cores in kunpeng916, 4 threads in the big core cluster in
kirin960/970 and 4 threads in raspberry pi 4. The results of
delegation locks in mobile processors are omitted as it is
hard to saturate the lock server due to its limited number of
cores.
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Figure 7. Barriers in mutex locks.

Again, the micro-benchmark results in Figure 7(a) & 7(b)
validate our observations. Firstly, as revealed in observation
6, DMB ld/LDAR or dependencies have better performance
in delegation lock. And as we conclude in observation 4, the
overhead of barriers is more noticeable in kunpeng916 than
in mobile processors. Finally, when visiting several global
cache lines in the critical section, the barrier in the unlock
procedure of in-place lock follows strictly after an RMR, and
thus its overhead becomes evident (23%) as we point out in
observation 2. Such tremendous overhead also exists in del-
egation lock as the barrier in line 7 follows strictly after the
RMR in line 6 of Algorithm 5. Directly removing the barrier
(LDAR-No Barrier) provides a significant improvement (22%),
which is close to Ideal.

5.3 Applying Pilot to Delegation Locks
It is difficult to remove the barriers in in-place locks as the
lock is unaware of the memory operations in critical sections
and barriers are irreplaceable to achieve the strong semantic
that mutex lock provides. However, barriers’ overhead can
be reduced by limiting the contention to one NUMA node for
a period which diminishes the appearances of cross-NUMA
node accesses [5, 6, 10, 11, 27].
Different with in-place lock, we can easily apply Pilot to

delegation lock and eliminate the significant overhead caused
by barriers (line7) strictly following after an RMR (line 6),
as both of them are a part of lock algorithm. Algorithm 6
shows the implementation of the delegation lock server after
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Figure 8. Data Structure and BOTS Benchmarks

applying Pilot. The modification towards the delegation lock
client is similar and thus omitted.

Algorithm 6: Delegation Lock Server with Pilot

Data: Shared: reqPool , respPool ;
Local : core , req, resp, ret , oldRetPool = 0,

oldFlaдPool = 0, cntPool = 0, hash;
Const : hashPool ;

1 req← reqPool[core];
2 if req -> f laд , oldFlaдPool[core] then
3 oldFlaдPool[core]← req -> f laд;
4 Barrier;
5 resp← respPool[core];
6 hash← getHash(hashPool , cntPool[core] ++);
7 ret ← req -> criticalSection(req -> arд) ^ hash;
8 Barrier;
9 if ret , oldRetPool[core] then
10 resp -> ret ← ret ;
11 oldRetPool[core]← ret ;
12 else
13 resp -> f laд← resp -> f laд ^ 1;

The lock server has the same procedure as the original
implementation, such as reading and handling the request in
line 1-5 of Algorithm 6. But rather than directly storing the
return value to the response buffer and then setting a flag,
lock server uses Pilot to inform the client. A barrier is still
needed (line 8) to ensure that the possible existing modifica-
tions to more client-local variables in the critical section are
observable before the response is observable. However, this
barrier does not introduce substantial overhead since almost
no RMR takes place before the barrier for the following two
reasons. Firstly, since all critical sections execute in one
lock server, the modifications towards shared variables have
become local operations.Meanwhile, irrelevant modifica-
tions to local variables are not supposed to appear in the
critical section for optimal performance, and thus the 64-bit
return value is enough in most scenarios. Even in the worst
cases that applications modify more local variables in the

critical section, it only causes the performance to downgrade
to a similar level as the original implementation.

5.4 Evaluation of Pilot in Delegation Locks
We apply Pilot to two different delegation locks, including a
dedicated server lock, FFWD, and a migratory server lock,
DSMSynch. We compare with the original implementation
which uses appropriate barriers and achieves the best per-
formance among different combinations.

Figure 7(c) shows the performance improvement in micro-
benchmark after applying Pilot. To simulate different con-
tention levels, we vary the number of nops between two
acquisition in the x-axis. Comparing with the original im-
plementation, 56% and 32% performance improvements are
achieved at high contention levels after applying Pilot to
DSMSynch (DSynch-P) and FFWD (FFWD-P) respectively.
The performance only downgrades to a similar level as the
original implementation at a lower contention level. The
improvement is more significant in DSMSynch than FFWD
as FFWD is designed to batch several requests, and thus the
overhead caused by barriers are shared among them. This
mechanism is aiming at being store buffer-friendly by re-
ducing the number of touched cache lines. However, it also
partially hides the barriers’ overhead.

We also include several data structure benchmarks. Firstly,
we evaluate the performance improvement in Queue and
Stack. In our experiments, both data structures are protected
by a global lock and threads insert and then remove amember
from them. Pilot provides stable benefit as the critical sections
of those operations are simple, short, and irrelevant to their
size. From Figure 8(a), applying Pilot to DSMsynch (DSynch-
P) and FFWD (FFWD-P) provides 20% and 26% improvements
in Queue, 30% and 16% improvements in Stack.

Then, we implement a sorted linked list by referring [16].
Threads insert 1 member then remove 1 member from the
list after every 10 queries. Since the length of the critical
section increases along with the list, we vary the preloaded
members in the list. As shown in Figure 8(b), a maximum
of 55% and 25% improvements for DSMSynch and FFWD
appear when there are 50 preloaded members. Again, Pilot
introduces no extra overhead, even in the worst cases.
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Finally, we implement a hash table based on the linked list.
Each bucket of the table is attached with a linked list and a
lock. As the number of cores is limited, lock servers of FFWD
are bound to an already used core after using 16 dedicated
cores. 512 members are preloaded into the hash table and
placed in different buckets uniformly. In our experiments,
threads insert 1 member then remove 1 member from the
list after every 10 queries. We vary the number of buckets
in the x-axis of Figure 8(b). A maximum 61% improvement
appears when there are 32 buckets after applying Pilot to
DSMSynch. However, the improvement reduces with the
increasing number of buckets as fewer threads acquire the
same lock, and thus Pilot is barely used under such situation.
Even so, we can still observe a 10% performance improve-
ment. As for FFWD, a maximum of 24% improvement takes
place when there are 16 buckets in the hash table.
Besides data structure benchmarks, we also evaluate the

performance of delegation lock with Pilot applied in the
BOTS [12] floorplan benchmark, which computes the opti-
mal floorplan distribution of a number of cells. As the BOTS
benchmark uses OpenMP, only the migratory server lock,
DSMSynch (Dsynch), can be seamlessly integrated. Applying
Pilot (Dsynch-P) can reduce up to 4% execution time under
different input sizes. The improvement is less significant due
to that the lock is not its performance bottleneck.

6 Discussion and Related Work
There are many trade-offs in the design of the memorymodel
in the processor. For example, in the x86 processor, the store
operations in the store buffer have to wait for previous store
operations to be globally visible before commit, and the load
buffer should be able to be snooped by coherency traffic,
which leads to more complex hardware design. However, the
ARM processor allows store operations to be reordered in
the store buffer. Therefore the store buffer is less likely to
be full, and the implementation of load/store buffer in the
ARM processor could be much simpler and thus much power-
efficient compared to the x86 processor. But as we observed
in this work, the WMM has to take more effort when the
orders between memory operations should be preserved,
which influence the performance of applications significantly.
None is a silver bullet.

There is not much work evaluating, reasoning, and charac-
terizing the performance impact of ARM barriers. Ritson et
al. propose an approach to profile the performance impact of
different barriers under different applications [41]. However,
they do not explore the characteristic of different barriers
and fail to provide any advice to cut the overhead down.
Ou et al. evaluate the overhead of forbidding reordering of
loads and stores to explore the cost of avoiding out-of-thin-
air results [33]. Yet, they fail to consider enough factors as
we do. To our knowledge, we are the first to analyze the

performance characteristics of ARM barriers in ARM server
processors.
Prior work reduces ARM Barriers’ overhead by eliminat-

ing redundant barriers at compile-time [31] or proposing new
hardware primitives [24]. Different from those works, Pilot
leverages the single-copy atomicity to remove the barrier,
which causes the major overhead based on our observations,
and thus provides noticeable performance improvements.
ARM also has noticed the potential performance bot-

tleneck of their previous design and moves to MCA re-
cently [36]. We confirm their worries in off-the-shelf systems
and address the importance of barriers in the performance of
ARM server processors. Characterizing the performance im-
pacts of order-preserving approaches in the next-generation
ARM processors remains an interesting future work.

7 Conclusion
This paper presents a comprehensive performance character-
ization and optimization of ARM barriers. We draw a set of
observations from our experiments and provide a list of sug-
gestions for developers to help them getminimal influence by
WMMwhen porting existing applications to ARM platforms.
Furthermore, we propose Pilot, which uses the knowledge
from our observations to eliminate the tremendous overhead
caused by performance-critical barriers efficiently. Applying
Pilot provides considerable performance improvements in
multiple benchmarks.
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