
CPS: A Cooperative Para-virtualized Scheduling Framework for
Manycore Machines

Yuxuan Liu
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Shanghai, China

Tianqiang Xu
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Shanghai, China

Zeyu Mi
∗

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education, China

Shanghai, China

Zhichao Hua
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education, China

Shanghai, China

Binyu Zang
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education, China

Shanghai, China

Haibo Chen
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education, China

Shanghai, China

Abstract

Today’s cloud platforms offer large virtual machine (VM) instances

with multiple virtual CPUs (vCPU) on manycore machines. These

machines typically have a deepmemory hierarchy to enhance com-

munication between cores. Although previous researches have pri-

marily focused on addressing the performance scalability issues

caused by the double scheduling problem in virtualized environ-

ments, they mainly concentrated on solving the preemption prob-

lem of synchronization primitives and the traditional NUMA archi-

tecture. This paper specifically targets a new aspect of scalability

issues caused by the absence of runtime hypervisor-internal states

(RHS). We demonstrate two typical RHS problems, namely the in-

visible pCPU (physical CPU) load and dynamic cache group map-

ping. These RHS problems result in a collapse in VM performance

and low CPU utilization because the guest VM lacks visibility into

the latest runtime internal states maintained by the hypervisor,

such as pCPU load and vCPU-pCPU mappings. Consequently, the

guest VM makes inefficient scheduling decisions.

To address the RHS issue, we argue that the solution lies in

exposing the latest scheduling decisions made by both the guest

∗
Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0394-2/23/03. . . $15.00
https://doi.org/10.1145/3623278.3624762

and host schedulers to each other. Hence, we present a coopera-

tive para-virtualized scheduling framework called CPS, which fa-

cilitates the proactive exchange of timely scheduling information

between the hypervisor and guest VMs. To ensure effective sched-

uling decisions for VMs, a series of techniques are proposed based

on the exchanged information.We have implemented CPS in Linux

KVM and have designed corresponding solutions to tackle the two

RHS problems. Evaluation results demonstrate that CPS signifi-

cantly improves the performance of PARSEC by 81.1% and FxMark

by 1.01x on average for the two identified problems.

CCS Concepts

•Computer systems organization→Multicore architectures;

• Software and its engineering → Virtual machines; Operat-

ing systems.

Keywords

Para-virtualized Scheduling, CacheGroup,ManycoreMachine, Per-

formance Scalability

ACM Reference Format:

Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo

Chen. 2023. CPS: A Cooperative Para-virtualized Scheduling Framework

for Manycore Machines. In 28th ACM International Conference on Architec-

tural Support for Programming Languages and Operating Systems, Volume 4

(ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3623278.3624762

1 Introduction

With thewidespread adoption ofmanycoremachines, modern pub-

lic clouds offer the ability to provision large virtual machine (VM)

43

yzmizeyu@sjtu.edu.cn
https://doi.org/10.1145/3623278.3624762
https://doi.org/10.1145/3623278.3624762
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623278.3624762&domain=pdf&date_stamp=2024-02-07

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

instances with numerous virtual CPUs (vCPU). For instance, Ama-

zon AWS and Alibaba Cloud provide VM instances with 96 vC-

PUs [2] and 128 vCPUs [1], respectively. In virtualized environ-

ments, the notorious double scheduling problem results in poor

scalability of VM performance [45], presenting itself in different

variations. One common issue is lock-holder preemption (LHP) [30],

where the hypervisor preempts the vCPU holding a lock, causing

wasted time slices for other vCPUs waiting for the lock. Other ex-

amples include lock-waiter preemption (LWP) [48], blocked-waiter

wakeup (BWW) [25, 44], and RCU reader preemption (RRP) [42].

These problems arise due to the semantic gap between the hyper-

visor and guest VMs, as the hypervisor remains unaware of the

internal activities within the VMs. Consequently, a VM may expe-

rience preemption during its critical section. Therefore, previous

research efforts have mainly focused on proposing various tech-

niques to overcome the semantic gap of virtualized locks from the

hypervisor’s perspective. These approaches either enhance the hy-

pervisor’s capabilities to infer guest behaviors using hardware fea-

tures (like Pause Loop Exiting in Intel processors) [28], or provide

a para-virtualized (PV) interface allowing a guest VM to explicitly

communicate critical section information to the underlying hyper-

visor [32, 48].

This paper distinguishes itself from previous researches on syn-

chronization primitives by focusing on the scalability issues stem-

ming from the absence of runtime hypervisor-internal states (RHS).

The RHS problem exhibit two distinct characteristics that set it

apart from existing problems. First, the problem is caused by the

guest’s inability to access hypervisor-internal states that are not

specific to any particular guest VM, such as runtime physical CPU

(pCPU) loads. Second, even when the guest VM is capable of ob-

taining hypervisor-internal states, the RHS problem may persist if

the states become outdated.

For example, a guest OS lacks knowledge about the current load

of a physical CPU (pCPU), and it may unintentionally schedule a

task onto a preempted vCPU on a busy pCPU. Consequently, the

task experiences an unpredictable scheduling latency before the

vCPU is rescheduled to run. To address this issue, the hypervisor

has already introduced PV APIs to inform the guest OS whether a

vCPU has been preempted, allowing the guest to migrate tasks to

online vCPUs and avoid scheduling latency. However, the PV API-

based guest scheduler lacks awareness of the latest pCPU loads and

continues to migrate tasks to non-preempted vCPUs, overlooking

the potential benefits of utilizing the rapidly waking preempted

vCPUs on low-load CPUs. Hence, themechanism fails to efficiently

utilize multiple low-load pCPU in scenarios with under-committed

resources, let alone in an over-committed case where there exist

some pCPUs that dynamically enter the low-load state. Therefore,

the mechanism results in low pCPU utilization and has a negative

impact on VM scalability.

The RHS problem becomes even more pronounced with the in-

troduction of new micro-architectural features in manycore ma-

chines. Some commercial manycore machines employ deep mem-

ory hierarchy levels to enhance inter-core communications.Within

this memory hierarchy, a single L3 cache partition/slice (referred

to as a cache group or CG in this paper) is shared by 2 to 6 phys-

ical cores within a NUMA (Non-Uniform Memory Access) node.

Threads running on cores within the CG exhibit higher communi-

cation throughput compared to those outside the CG [23, 35, 57].

This feature, known as NUCA (Non-Uniform Cache Access), is

present in mature x86 servers as well as emerging ARM servers.

For instance, in an x86-based serverwithAMDEPYC processors [3],

a CG consists of 3 cores/6 hyperthreads, while in an ARMv8-based

server with Kunpeng 920 processors [6], a CG is shared by 4 cores.

However, it is challenging to fully leverage the high throughput

within a CG for virtual machines (VMs). Although the hypervisor

can schedule vCPUs to a CG to create a virtual CG (vCG), the guest

scheduler is unable to take advantage of the vCG due to its lack of

knowledge regarding the runtime mappings between vCPUs and

pCPUs. Moreover, making a VM aware of this information is dif-

ficult since the hypervisor constantly migrates vCPUs across pC-

PUs to mitigate CPU load imbalances, causing the information to

quickly become outdated.

In this paper, we argue that it is necessary to expose the run-

time hypervisor-internal information to guest VMs to ad-

dress theRHSproblem. Therefore, we present CPS, a Cooperative

Para-virtualized Scheduling framework that enables a dynamic and

bidirectional way for the hypervisor and its VMs to exchange timely

internal information. In CPS, a shared structure (Refer-Table) is

carefully designed to expose the hypervisor’s information to each

VM. A backend module in the hypervisor dynamically updates the

shared structure upon changes in related information. A frontend

module in each guest VM guides the guest’s scheduler to make ef-

fective decisions based on the Refer-Table. CPS also includes a set

of PVAPIs for the frontend to deliver hints to the hypervisor when

the guest OS needs cooperation from the hypervisor to make guest

scheduling decisions.

User-level thread mechanisms for the non-virtualized environ-

ment have previously explored various cooperative strategies [14,

16, 37]. These mechanisms enable communication between user-

level threads and the OS kernel, with the aim of improving per-

formance and mitigating system integration issues. Although CPS

also adopts a cooperative scheduling framework, it distinguishes it-

self from existing systems through two fundamental aspects. First,

in terms of shared information, CPS offers a novel insight by proac-

tively exposing hypervisor-internal states (such as runtime pCPU

loads and CG topology) to guest VMs. In contrast, previous user-

level threading mechanisms focus solely on userspace-related in-

formation. Second, in terms of hardware considerations, existing

systems have not explored the impact of the deep memory hier-

archy, while CPS provides an efficient frontend that assists guest

VMs in effectively utilizing dynamic hardware information, such

as CGs.

We have implemented CPS within the Linux KVM [22, 34]. By

employing the CPS framework, we can effectively address the RHS

problemsmentioned earlier. To tackle the issue of preempted vCPU,

CPS records the runtime load of each pCPU and communicates

this load degree to the corresponding VM. Using this information,

the frontend can schedule tasks to preempted vCPUs that are run-

ning on low-load pCPUs to harvest the low scheduling latency.

This strategy enhances application performance on a single VM

by an average of 59%. In an over-committed scenario involving

multiple concurrently executing VMs, CPS improves application

performance by 1.03x on average. This improvement is attributed

44

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

to CPS enabling VMs to fully utilize dynamic low-load pCPUs. To

leverage CG and enhance application performance, CPS maintains

real-time mappings from vCPUs to physical CGs. Additionally, we

propose CG-aware scheduling, which guides the guest scheduler

in grouping interactive threads within the same CG to maximize

their communication throughput. For applications that can fit their

interactive threads into a single CG, CPS offers an average per-

formance boost of 1.40x. For applications with a larger number

of threads, CPS achieves an average performance improvement of

62.4% (up to 1.21x) in both under-committed and over-committed

scenarios.

In this paper, we make the following contributions:

• We introduce the RHS problem and analyze its two cases in

large VM instances running on manycore servers. (§ 2.2)

• We present CPS, a para-virtualized scheduling framework

to mitigate the RHS problem in virtualized environments.

(§ 3 and § 4)

• We address two types of RHS problems with CPS by expos-

ing the pCPU load degree and CG-aware scheduling. (§ 5)

• We evaluate CPS through real-world applications and show

that CPS can improve the performance of PARSEC by 81.1%

and FxMark by 1.01x on average for the two problems. (§ 6)

2 Motivation and Background

2.1 Double Scheduling and Prior Efforts

Double scheduling is a classic problem that arises from the se-

mantic gap between guest VMs and the hypervisor [24, 25, 30, 44,

48]. Due to the inability to fully grasp the VM’s behavior seman-

tics, the hypervisor may preempt a vCPU that is executing criti-

cal tasks. Consequently, the inopportune preemption of the vCPU

holding a spinlock forces other vCPUs, which are awaiting the

lock, to spin for an extended period. This then leads to the Lock

Holder Preemption problem (LHP) [30]. Furthermore, if the pre-

empted vCPU is the lock waiter assumed to acquire the lock in

a strict order, other vCPUs still have to wait for its wakeup, re-

sulting in Lock Waiter Preemption (LWP) [48]. Previous efforts,

mainly from the hypervisor’s perspective, offer various solutions

to address the double scheduling problem. One approach involves

leveraging hardware features (such as Pause Loop Exit) [4, 8] to

assist the hypervisor in detecting excessive spinning by a vCPU

and reschedule the vCPU that is the root cause of the problem to

mitigate the excessive spinning [28]. Another direction focuses on

developing a para-virtualized (PV) interface to bridge the semantic

gap between the VM and the hypervisor [32, 41, 48, 49]. The third

option revolves around optimizing the hypervisor’s scheduler by

employing gang scheduling and simultaneously scheduling all vC-

PUs of a VM [21, 33, 38, 45, 46, 50, 53, 55, 58, 60]. But this approach

can lead to significant CPU fragmentation. Although the three cat-

egories of efforts partially address lock-based double scheduling

issues, none of them looks into the discrepancy in scheduler be-

havior between the guest kernels and the hypervisor, especially

the scalability issues caused by the RHS problem.

2.2 Runtime Hypervisor-internal States (RHS)

This paper addresses a distinct scheduling problem that is gain-

ing prominence in manycore machine scenarios. In the existing

 0

 80

 160

 240

 320

 400

 480

 560

 640

 720

 800

 0 20 40 60 80 100 120 140

(a) streamcluster

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#threads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

(b) splash2x.ocean_ncp
#threads

HVM PVM Native

Fig. 1. Negative performance effects of the pvsched optimiza-

tion.

guest kernels, scheduling decisions are primarily based on their

own internal states, such as identifying the vCPU with the lowest

load. However, guest kernels lack visibility into the crucial Run-

time Hypervisor-internal States (RHS) factors, such as the runtime

pCPU load managed by the hypervisor. This absence of informa-

tion can result in suboptimal scheduling decisions made by guest

kernels.

In addition to the two properties discussed in § 1, there are three

more fundamental differences between the RHS problem and lock-

based problems. First, the root cause of lock-based problems is typ-

ically attributed to untimely vCPU preemptions by the hypervisor,

whereas the RHS problem originates from suboptimal scheduling

decisions made by the guest OS. Second, lock-based problems are

typically limited to the preemption of critical sections of the lock

holder or waiter. In contrast, the RHS problem is more general in

nature and encompasses the scheduling of tasks within a vCPU, ir-

respective of whether or not the task is holding a lock. Third, the

solution to a lock-based problem generally involves allocating an

extra time slot to a specific vCPU temporarily. Conversely, the solu-

tion to the RHS problem involves selecting the optimal vCPU from

multiple candidates for a given task. This selection process neces-

sitates considering the conditions of all candidate vCPUs based on

runtime hypervisor states, such as vCG and pCPU load.

In this section, we will examine two common scenarios of the

RHS problem in a manycore machine. The detailed settings of this

machine are outlined in § 6.2.

Invisible pCPU Load. In an over-committed scenario, where

multiple VMs’ vCPUs can potentially be scheduled on a single

pCPU, only one vCPU is able to run at a time on that pCPU. As

a result, the other vCPUs remain in a preempted state, waiting in

the pCPU’s run queue. If the guest scheduler assigns a task to a

preempted vCPU, the task has to wait until the hypervisor resched-

ules that vCPU. Therefore, the scheduling latency for the task on

a preempted vCPU becomes unpredictable.

The widely-deployed Linux KVM hypervisor offers a PVmecha-

nism called pvsched [7], which allows the guest scheduler to deter-

mine if a vCPU has been preempted.With this API, the guest sched-

uler can choose to schedule tasks on online vCPUs rather than pre-

empted ones, avoiding the uncertainty and prolonged latency asso-

ciated with task scheduling on preempted vCPUs. However, in sce-

narios where some pCPUs in the machine are under low stress, our

45

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

NUMA Node

CPU Cluster

CPU Cluster

L3 D$ slice

L3 D$ slice

· · ·

NUMA

Node

DDR I/F

RAM

NUMA

Node

DDR I/F

RAM

CPU

Inter-

connect

CPU Cluster

core

L1 $

L1 $
L2 $

core

L1 $

L1 $
L2 $

core

L1 $

L1 $
L2 $

core

L1 $

L1 $
L2 $

L
3
 T

a
g
s

Fig. 2. A deep memory hierarchy consists of NUMA nodes

and cache slices (groups).

investigation reveals that enabling the PV API can result in perfor-

mance degradation and exhibit even worse performance than VMs

without using the API. As depicted in Fig. 1, when running a VM

with 128 vCPUs on a physical machine with 128 pCPUs, the bench-

marks with pvsched-enabled (referred to as PVM, Para-virtualized

VM) exhibit significantly poorer performance compared to bench-

marks without pvsched (referred to as HVM, Hardware-assisted

VM).

In the PVM case, whenever a new task starts or wakes up from a

wait queue, the guest scheduler, with the assistance of the pvsched

API, avoids assigning the task to any preempted vCPUs. However,

in the under-committed case, where each pCPU only runs one

vCPU, the preempted vCPUs can quickly acquire a time slice for ex-

ecution without further waiting. Hence, the PVM fails to leverage

the low-load pCPUs, which include the preempted vCPUs, result-

ing in low CPU utilization and poor scalability of the VM.

Table 1: Throughput of increment operation of an atomic

variable among 4 threads located at different memory hier-

archy. DS: two cores in different sockets. SS: two cores in dif-

ferent NUMA nodes in the same socket. SN: two cores in the

same NUMA node. SCG: two cores in the same CG. Mops/s:

Million operations per second.

Config DS SS SN SCG

Mops/s 2.97 4.45 4.76 7.08

Dynamic Cache Group Mapping. To facilitate efficient inter-

core communication, modern manycore systems incorporate deep

memory hierarchies within each NUMA node [23, 35, 57]. Fig. 2 il-

lustrates an example of such a deepmemory hierarchy topology. In

this configuration, amanycore server comprises twoNUMAnodes,

each of which can be further divided into multiple cache groups

(CG)
1
, which form a unified last-level cache. The access latency of

physical cores to their local cache group is lower than their access

latency to remote cache groups. Thus, interactive threads within

the same CG experience lower communication latency compared

to those in separate CGs. To demonstrate this, we conducted an ex-

periment whose results are described in Table 1, where 4 threads

increment a single atomic variable using different memory hierar-

chy settings. The results show that threads in the same CG exhibit

1
Cache group is also referred to as a cache slice.

frontend

expose pCPU status

/ CPU Topo info.

vCPU 0

query

vCPU 1 vCPU 2

backend scheduler

Guest

Host

seleted

vCPU

schedule

scheduler

Refer-

Table

task

pass scheduling

info.

CPS

Fig. 3. The architecture of CPS.

higher throughput compared to those in separate CGs. It is impor-

tant to note that the mapping from a physical core to a CG differs

from the mapping of each cache line to a specific CG. The latter

mapping is typically determined using an undocumented hashing

function [35]. In this paper, our focus is on the pCPU-to-CG map-

ping, which can be easily detected by clustering physical cores

based on the time it takes for each core to access individual CGs.

The current OS schedulers lack interactive thread identification

and do not possess knowledge of fine-grained cache groups (CGs).

It should be noted that existing NUMA-related mechanisms can-

not directly address the CG problem due to twomain reasons. First,

while the NUMAmechanism can easily identify interacting threads,

CGs-related approaches struggle with this. The OS kernel dynam-

ically disables the access privilege for page mappings and deter-

mines whether many threads are sharing a NUMA node by manag-

ing page faults. However, as CG behaviors are transparent to soft-

ware, there are no system-level events, like page faults, designed

to identify interactive threads for CGs [29, 47]. Second, virtualiza-

tion further complicates this problem. Even if the guest scheduler

is CG-aware, the hypervisor may frequently migrate vCPUs across

CGs to mitigate CPU load imbalance [13]. This dynamic migration

of vCPUs alters the mapping of vCPUs to physical CGs, which un-

dermines the scheduling decisions made by the guest scheduler.

While various existing works have explored solutions for efficient

virtual NUMA structures [15, 18, 19, 27, 36, 43, 51, 54], it is challeng-

ing to applying them to the fine-grained CGs consisting of only 2-6

physical cores. This is because hypervisors tend to migrate vCPUs

across CGs more frequently compared to NUMA nodes, given that

CGs have significantly fewer cores than NUMA nodes.

3 Overview

To address RHS problem, this paper introduces CPS, a Cooperative

Para-virtualized Scheduling framework that enables runtime col-

laboration between a guest VM and the hypervisor to make opti-

mal scheduling decisions. The core concept behind CPS is to estab-

lish a cooperative and interactive relationship between the guest

VM and the hypervisor, allowing them to proactively exchange

their recent scheduling decisions and internal states in a dynamic

and bidirectional manner. This includes sharing information such

as pCPU load status and mappings from vCPUs to physical cache

groups.

The architecture overview of CPS is presented in Fig. 3, con-

sisting of three major components. First, each VM possesses an

isolated data structure called the Refer-Table, which is mapped

into the VM address space by the hypervisor. The Refer-Table is

updated by the hypervisor to provide runtime information to the

guest. Second, the hypervisor is extended with a backend module

46

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

pCPU-0

Load

Degree

pCPU-1

Load

Degree

VM-0

Info-Level Separating Row

Separating Row

Separating Row

BLK-0

BLK-1

VM-0

#R1 pCPU Load ptr

#R0 pCPU Load ptr

#R1 (pCPU ID, CG ID)

#R0 (pCPU ID, CG ID)

vCPU1

vCPU0

(B0,R1)

(B0,R0) (B1,R0)

(B1,R1)

Pin

PinvCPU-Level

High

/

Low
#R1

#R1

VM-1

Info-Level

#R0

#R0

BLK-0

BLK-1

High

/

Low

Fig. 4. Refer-Table consists of two levels of blocks, vCPU-

level and Info-level blocks, shared by the guest and the hy-

pervisor to mitigate the RHS problem efficiently.

responsible for gathering information from the host scheduler. It

dynamically measures the runtime load of each physical core and

maintains mappings between vCPUs and physical cache groups

(CGs). Whenever the host scheduler makes a scheduling decision,

the backend module reevaluates the pCPU load in the Refer-Table

following changes in load and updates the exposed vCPU-pCPU

mappings if vCPUmigration occurs. Third, a frontendmodule needs

to be installed on each guest VM that intends to leverage CPS

for improved scalability. The guest scheduler queries the frontend

module to obtain guidance on scheduling decisions based on the

latest information provided by the backend module. For example,

whenever the guest OS schedules a task, it invokes the frontend

module to select a suitable vCPU for the task. The frontend mod-

ule checkswhether the target pCPU is in a low-load state or if other

interacting threads share the same CG. Furthermore, the frontend

module updates the Refer-Table to offer scheduling hints to the

backend module, thus guiding the hypervisor in making effective

scheduling decisions.

We have devised a series of techniques to ensure the security

and general applicability of CPS. Regarding security considerations,

CPS follows the principle of exposing only essential information

to the guest while avoiding the disclosure of concrete and specific

hypervisor details. For instance, the backend module refrains from

providing the frontend module with precise details such as the ex-

act number of co-running vCPUs or the specific pCPU ID associ-

ated with each vCPU. Instead, the backendmodule presents amore

vague pCPU status, indicating whether it is under low or high load

and which vCPUs are sharing the same CG. To enhance the gen-

eral flexibility of CPS, we have designed a two-level hierarchy for

organizing the shared Refer-Table, offering support and accommo-

dation for future extensions. This design enables the incorporation

of future extensions by adding a new second level that can be in-

dexed by the existing first level.

4 Design

This section describes the detailed designs of CPS, including its PV

interface (§ 4.1), the frontend module in each guest (§ 4.2), and the

backend module in the hypervisor (§ 4.3).

4.1 Para-virtualized Interface

CPS provides a PV interface for exchanging runtime information

between the frontend and backend. The frontend module utilizes

this interface to retrieve the hypervisor’s internal states, while the

backend module actively exposes this information to each guest

OS. The interface is implemented using shared memory pages, re-

ferred to as the Refer-Table (shown in Fig. 4), which are shared be-

tween these two modules. Note that each VM has its own isolated

Refer-Table that is separate from those of other VMs.

During the VM startup process, the frontend module allocates a

memory page and invokes a hypercall to provide the page address

to the hypervisor. The shared page is then initialized with default

values by the hypervisor. Following this initialization, the guest

can communicate with the host scheduler simply by accessing the

shared memory, without the need for any additional hypercalls. As

different vCPUs read distinct portions of the shared page, there is

no need to set a lock for multiple vCPUs to access the page con-

currently.

The Refer-Table consists of two levels of blocks: the vCPU-level

and the Info-level, allowing for future extensions to incorporate

additional internal information. Each specific vCPU is represented

by a row in the vCPU-level block, which is organized based on

vCPU IDs in sequential order. The Info-level blocks are indexed by

BLK IDs, with each block containing a specific type of information.

In the current design, the Refer-Table contains two types of Info-

level blocks: pCPU load degrees and pCPU-CG mappings. To effi-

ciently retrieve information related to a particular vCPU, each row

in the vCPU-level block contains multiple (BLK ID, Row ID) pairs,

which point to different rows within the Info-level blocks. For ex-

ample, the (0, 1) pair indicates Row-1 in BLK-0, which contains the

load degree information for the pCPU that the vCPU locates. If

the Refer-Table needs to support a new type of hardware-related

information, a new Info-level block will be allocated to track this

information. Additionally, each vCPU-level row will have an addi-

tional (BLK ID, Row ID) pair to indicate the location of this new

information.

The Refer-Table supports two methods for storing data in Info-

level blocks: the direct and indirect approach. The direct method

involves writing information directly into each row, which is suit-

able for storing vCPU-specific information. An example of this is

illustrated in Fig. 4, where the BLK-0 block records a 16-byte pCPU

topology information for a vCPU (i.e., pCPU ID, CG ID) directly.

The CPU topology information contains virtual values rather than

real ones. For instance, the virtual CG (vCG) ID indicates which pC-

PUs share the same CG. To prevent the exploitation of this value,

different VMs perceive different vCG IDs. This ensures that each

VMoperateswith its own isolated view of the CPU topology.When

the hypervisor needs to modify the CPU topology for a particular

vCPU, it simply adjusts the corresponding BLK-0 row.

However, the direct approach does not alignwell with thepCPU-

specific information, as it can lead to significant performance costs

when updating this type of information. To demonstrate this lim-

itation, let’s consider the example of runtime pCPU load. When

two vCPUs belonging to different VMs share a single pCPU, the di-

rect approach mandates that the corresponding rows in the Refer-

Tables for these VMs both record the same load value. This leads

to a challenge in scenarios where numerous VMs are simultane-

ously running on a single physical server. In such cases, updating

the pCPU’s load degree for every scheduling decision becomes a

bottleneck as the backend module must sequentially traverse all

the Refer-Tables of these VMs.

47

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

Therefore, the Refer-Table implements an indirect method that

improves the updating efficiency of pCPU-specific information. CPS

creates a shared page that is accessible to multiple VMs. Instead of

writing the page data directly into the block rows, the Refer-Table

stores the base address (GVA) of the shared page. Consider an ex-

ample where two VMs share a single pCPU. In this scenario, the

backendmodule allocates a physical page specifically for the pCPU

load degree. This page is then mapped as read-only to the address

spaces of both VMs. Fig. 4 provides a concrete example of this page

mapping, where the first rows of BLK-1 for the two VMs respec-

tively point to the same pCPU-0 load-degree page. Consequently,

the hypervisor can modify only a single page without the need to

traverse all the VM’s Refer-Tables. As a result, all VMs simultane-

ously observe the newly updated value.

The Refer-Table also enables the guest OS to communicate its

scheduling requirements to the hypervisor. For example, in order

to group certain vCPUs with specific pCPUs and CGs, the frontend

module sets a 4-byte "Pin" field in the corresponding rows of the

vCPU-level block. This information assists the hypervisor in mini-

mizing vCPU migration frequency, thereby avoiding unnecessary

changes to vCPU-vCG mappings. However, it’s important to note

that the hypervisor isn’t consistently bound by the reverse infor-

mation provided by the VMs, as this information only serves as a

hint or suggestion.

4.2 Frontend Module

Within the guest kernel, the frontend module incorporates two

mechanisms to assist inmaking optimal scheduling decisions. First,

the frontend provides an interface for applications to deliver their

scheduling requirements to the guest kernel. This is achieved through

the creation of a cps file under the /dev directory. Applications in-

tending to utilize CPS must create this file and send commands to

the frontend using the ioctl system call. One typical command is

(define_interactive_threads), which allows the application to iden-

tify which thread interacts with each other and should be placed

in the same CG.

Furthermore, the frontend module integrates the runtime infor-

mation exposed by the backend and guides the guest scheduler in

utilizing runtime hypervisor-internal information. Suppose a task

is created or a blocked task is awakened, the existing guest sched-

uler selects a vCPU for the task to run. This selection process is

enhanced by invoking the select_vcpu function within the fron-

tend module. In the select_vcpu function, the frontend module

checks the Refer-Table for updates on pCPU information. If the

target vCPU has been preempted by the hypervisor, but its associ-

ated pCPU is currently being underutilized, the frontend module

guides the guest scheduler to run the task on that vCPU (will be

explained in § 5.1).

Regarding the CG scenario, if the CG ID of a vCPU has been

changed to a new value, it means that the task may run in a CG

different from the one where the interactive threads reside. In this

case, the frontend module informs the scheduler to migrate this

task to the CG where the other interactive threads are located (as

described in § 5.2).

4.3 Backend Module

The backend module is responsible for fetching scheduling deci-

sions made by the hypervisor and updating the Refer-Table shared

with the frontendmodule. In addition to recording hardware-related

information, such as the load status of each pCPU, the backend

provides an update_cps_info function for the hypervisor scheduler

to awaken the backend. This function modifies the information

stored by the backend,which subsequently updates the Refer-Table

of VMs affected.

Furthermore, the backendmodule receives scheduling hints from

the frontendmodule. For instance, the frontend delivers hints to in-

dicate which vCPUs contain interactive threads. Each time a VM

exit occurs for a vCPU, the hypervisor invokes the check_hints

function within the backend module. The function checks the Pin

field in the Refer-Table’s vCPU-level. Based on this information,

the backend determines if it should modify the corresponding task

struct to set CPU affinity accordingly.

Nevertheless, the backend module is not obligated to always

follow these hints provided by the frontend module. Instead, the

backend module monitors the load of CGs and makes decisions ac-

cordingly. If there are already multiple vCPUs pinned to a specific

CG, the backend module will avoid pinning the vCPU to that CG,

adhering to load balancing principles.

5 Case Study

This section explains how we address the two types of RHS prob-

lems (described in § 2.2) via CPS.

5.1 Pload Scheduling

As explained in § 2.2, the problem of invisible pCPU load results

in low CPU utilization and performance degradation in an under-

committed scenario. One intuitive solution to addressing this prob-

lem is to notify the guest scheduler of information about pCPU

idleness using a boolean value [32]. However, this approach is not

suitable for resolving the RHS problem in CPS since it could lead

to a fairness issue when multiple VMs are running simultaneously.

When a VM detects an idle pCPU and successfully schedules its

tasks on that pCPU, it prevents other VMs from using that pCPU

because it is no longer considered idle.

To mitigate this fairness issue, CPS implements pCPU load (re-

ferred to as Pload) scheduling based on the semantics of runtime

pCPU load degrees instead of boolean idleness. Pload indicates

how busy a pCPU is, categorized as either low or high load. CPS

dynamically calculates the number of runnable vCPUs on each

pCPU and determines its load degree accordingly. Considering that

today’s hypervisors typically enforce fair scheduling constraints,

where multiple vCPUs from one VM are not allowed to co-run on

a single pCPU, the load degree is less influenced by the limited

number of vCPUs from one VM compared to the pCPU idleness.

CPS utilizes a Refer-Table for each VM to share the current run-

time pCPU load degree information. The Refer-Table includes a

block in the Info-level (BLK-1), and an indirect approach is em-

ployed to store the pCPU load degree values for each pCPU on

which the VM is running. To retrieve the pCPU load degree value,

the frontend module needs to dereference the GVA pointers stored

in BLK-1 rows. In situations where the hypervisormigrates a vCPU

48

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

pCPU0 pCPU1 pCPU2 pCPU3

vCPU0 vCPU1 vCPU2 vCPU3

Guest

Host

available unavailable

task

backend updates pCPU Load

Degree

frontend checks pCPU

Load Degree

online vCPU preempted vCPU

low-load pCPU high-load pCPU

running recently ran

pCPU

Load

Degree

0 1 2 3

0 1 2 3vCPU

H H L H

vCPU-Level

Info-Level

Fig. 5. The workflow of CPS-Pload. The backend updates

the pCPU load degree promptly. The frontend checks pCPU

loads and enlarges the available vCPU set with preempted

but low-scheduling latency vCPUs (vCPU-2).

from one pCPU (pCPU-A) to another (pCPU-B), the backend mod-

ule is responsible for unmapping the load page associated with

pCPU-A from the VM’s address space and remapping the GPA to

the HPA of the load page corresponding to pCPU-B.

By utilizing the semantic of pCPU load degree, the schedule la-

tency of low-load pCPUs will be predictable to the guest scheduler.

In an under-committed scenario, the frontendmodule includes pre-

empted vCPUs from low-load pCPUs in the available vCPU set.

This allows the guest scheduler to distribute tasks among more vC-

PUs, reducing the length of each vCPU’s run queue and minimiz-

ing scheduling latency for each task. Even in an over-committed

scenario, where there aremore active vCPUs than available pCPUs,

a preempted vCPU may still have access to a low-load pCPU. This

can be identified using CPS-Pload scheduling, leading to improved

VM performance and enhanced hardware utilization. A working

example of CPS-Pload functionality is illustrated in Fig. 5. When

selecting a vCPU for a task, the frontend module first examines

the pCPU load state (pCPU-3) of vCPU-3 that is the original vCPU

the task ran on. If vCPU-3 has been preempted and the associated

pCPU-3 is heavily loaded, the frontend module chooses the pre-

empted vCPU-2 due to its low-load pCPU (pCPU-2).

In our current implementation, we employ a threshold to clas-

sify the pCPU load degree. The threshold value is calculated as half

of the average vCPU count in the server. For instance, if there are

two 128-vCPU VMs running on a 128-pCPU server, the threshold

would be set to 1 (= 2×128
128

× 0.5). Importantly, the threshold is dy-

namically adjusted in response to the creation or removal of VMs.

This ensures that the threshold remains accurate and aligned with

the current system configuration.

5.2 CG-aware Scheduling

Although the CPS framework facilitates cooperation between the

hypervisor and its VMs, determining the target vCPU for thread

···

T0

T1
#thr in each CG

#vCPU and #thr of all interactive

threads in each CG

1 thread T0 is in CG0

3
Schedule T1 to vCPU5,

colocating T1 and T0

CG-Tree (per VM)
CG0

2/#thr
CG1

0/#thr
CG2

1/#thr
CG3

0/#thr

2 vCPU 5 is in CG0

Refer-Table

0
0
2

vCG

···

5
9

vCPU

···

2

CG0

V2

P0

CG0

V5

P1

CG2

P9

V9

LTM (per thr group)
CG0

1
CG1

0
CG2

0
CG3

0

Fig. 6. The algorithm of CPS-CGsched. T0 and T1 are two in-

teractive threads. The frontend uses LTMandCG-Tree tomi-

grate T1 to vCPU-5, co-locating the two interactive threads.

migration to cluster interactive threads can be challenging, espe-

cially considering potential vCPU migrations triggered by the hy-

pervisor scheduler. To this end, we propose a CG-aware sched-

uling mechanism called CPS-CGsched. The frontend module em-

ploys this mechanism to dynamically group threads into the same

CG and enhance their communication. To accommodate dynamic

changes in the CG topology, we extend CPS by enabling it to ad-

just to the actual CPU topology through the use of a Refer-Table.

Additionally, the frontend module can provide hints to the back-

end module, indicating the need to reduce the frequency of vCPU

migrations if necessary.

The concrete CPS-CGsched algorithm and accompanying data

structures are shown in Fig. 6. Within the VM frontend, two dis-

tinct data structures are maintained. The first is the Local Thread

Map (LTM), an array that represents the local process view of in-

teractive thread distribution amongst vCGs during runtime. Each

entry in the LTM array indicates the number of interactive threads

(ITN) within a particular thread group running in a vCG. The sec-

ond data structure is the CG-Tree, providing a global view of the

VM’s load status for each vCG. This information is leveraged by

the frontend to prevent overloading of vCGs. Each entry in the

CG-Tree contains two variables. The first variable is the total ITN

of the VM’s interactive threads within the corresponding vCG. The

second variable is the runtime vCPU count within this vCG, which

may be dynamically changed by the hypervisor and is calculated

based on the Refer-Table’s BLK-0.

Suppose that there is an application aiming to benefit from CPS.

During the initialization phase of this application, it issues the de-

fine_interactive_threads command to inform the frontend module

about the collection of threads engaged in inter-communication.

Upon receiving this command, the frontend allocates an LTM for

the specified thread group. The pointer to this LTM is stored in the

task structs of these threads. Please note that an application might

consist of multiple thread groups, and each group needs to be de-

fined separately using the appropriate ioctl command, with each

corresponding to their own dedicated LTM.

When scheduling a thread, the objective of the frontend module

is to select a vCG that is not overloaded but contains the largest

count of threads interacting with the thread being scheduled. To

49

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

accomplish this, the frontend first calculates themaximum number

of threads for each vCG (referred to as vCG_Quota). The vCG_Quota

for a specific vCG is defined using the following formula:

E��_&D>C0 = max{#E��_E�%* , ⌈ #�)
#E�%*

× #E��_E�%* ⌉}

#IT is the total number of interactive threads in the VM. #vCPU

and #vCG_vCPU stand for the total vCPU count in the VM and this

vCG, respectively.

Next, the frontend module retrieves the number of interactive

threads (ITN) from the relevant entry in the Local Thread Map

(LTM). It then selects the vCG with the largest ITN, provided it is

below the calculated vCG_Quota. Subsequently, a vCPUwithin this

chosen vCG is selected as the target vCPU. If the original vCPU on

which the thread was running is different from the target vCPU,

the thread is migrated from the original vCG to the target vCG.

Moreover, the frontend module updates the ITN values in the two

LTM entries within the process, as well as the corresponding CG-

Tree entries within the VM.

Fig. 6 illustrates how the guest OS schedules a new interactive

thread (T1) using the frontend module. Consider a scenario with 3

vCPUs and 2 threads within the VM. The frontend calculates the

quota of vCG-0 as (max{2, ⌈ 2
3
× 2⌉} = 2). Since vCG-0 has the

largest ITN that is below this quota, T1 should be scheduled within

vCG-0. The frontend then searches for another vCPU that shares

vCG-0 in the Refer-Table (i.e., vCPU-5). Consequently, T1 is mi-

grated to vCPU-5, allowing it to co-locate with T0 within vCG-0.

Additionally, CPS-CGsched should be combinedwith CPS-Pload.

In the absence of CPS-Pload, if CPS-CGsched selects a vCPU that

has been preempted, the guest scheduler will ignore this vCPU

and selects an online vCPU for this thread. By incorporating CPS-

Pload, which offers a more informed view of runtime pCPU load, a

greater number of available vCPUs can be identified based on their

load conditions. Consequently, the frontend module is more likely

to identify an available vCPU within the target vCG.

The LTM provides a local view of thread distribution for each

process, enabling two thread groups to potentially co-run within

the same vCG. In some cases, the vCG with the largest ITN may

be the same for both thread groups. As a result, the frontend may

schedule both thread groups to the same vCG while leaving other

vCGs under-utilized. To overcome this problem, the frontend uti-

lizes the thread count recorded in each vCG within the CG-Tree.

By examining the number of interactive threads in each vCG, the

frontend can determine if there are other thread groups within the

same vCG. If it finds that the number of interactive threads in a

vCG is larger than in other vCGs, the frontend will identify this

potential conflict and migrate one of the thread groups to another

vCG.

The vCPU within each vCG are dynamically migrated due to

the operations of the hypervisor scheduler, rendering the guest’s

CG-aware scheduling decisions less effective. To address this chal-

lenge and detect possible updates in the vCG topology, the fron-

tend module incorporates additional checks in the guest’s inter-

rupt handling process. This allows it to proactively examine the

Refer-Table and quickly adapt to any changes. If updates are de-

tected, the frontend modifies the #vCG_vCPU value within the

CG-Tree and repeats the aforementioned procedure for subsequent

thread scheduling, ensuring it aligns with the new vCG topology.

However, frequent vCPU migrations can still disrupt cache lo-

cality, particularly for correlated vCPUs that hold these interac-

tive threads. To alleviate this issue, cooperation between the fron-

tend and backend modules is necessary to reduce the frequency

of vCPU migrations. To achieve this, the frontend pins the vCPUs

in a vCG for which its ITN matches its calculated vCG_Quota by

setting the Pin field in the corresponding rows of the vCPU-level

block. Subsequently, the backend checks the Pin field to bind the

correlated vCPUs to their respective CGs over the lifetime of the

interactive threads. Once these threads terminate, the frontend un-

sets the Pin field, and the backend unbinds these vCPUs from their

CGs.

6 Evaluation

6.1 Implementation Complexity

CPS has been implemented in Linux KVM 5.10, and the total code

size amounts to 424 Lines of Code (LoCs). The frontend module,

including the Refer-Table, has a code size of 310 LoCs, while the

backend module in the hypervisor totals 114 LoCs. Based on CPS,

we introduce another 201 and 558 LoCs to implement CPS-Pload

and CPS-CGsched, respectively.

The Refer-Table design in CPS not only addresses the RHS prob-

lem but also exhibits extensibility. To evaluate its flexibility, we in-

tegrated two other systems, namely eCS [32] and XPV [19], into

CPS. In the eCS integration, the guest critical section is transmitted

to the hypervisor to resolve lock-based issues. On the other hand,

by integrating XPV into CPS, dynamic vCPU-NUMAmappings are

exposed from the hypervisor to the guest.

In the eCS integration, the “kvm_steal_time” shared memory

struct of the PV mechanism was adjusted to use the Refer-Table,

which was straightforward due to the similar interface provided.

The porting of existing eCS code, annotation of the guest’s critical

sections, and modification of the hypervisor scheduler required a

total of three person-days. In terms of code size, the implementa-

tion consisted of approximately 1000 lines of code (LoCs), which

is comparable to the original eCS implementation.

For the integration of XPV, the “shared_info” shared memory

struct from Xen was adapted to work with the Ref-Table. Build-

ing upon the existing XPV code, six person-days were allocated

to modify the guests’ memory allocator, scheduler, and automatic

NUMAbalancing components. The implementation comprised around

900 LoCs, which is on par with the original XPV implementation.

It should be noted that the implementation of system runtime li-

braries was omitted.

6.2 Evaluation Settings

CPS was evaluated on a Huawei Taishan200 manycore server [6]

equipped with 128 physical cores (Kunpeng 920-7260 processor,

ARMv8.2, 2.6 GHz), 256GB of memory, and 1.9TB of storage capac-

ity. These physical cores are equally distributed across 2 sockets

and 4 NUMA nodes. Each core consists of a 64KB L1 instruction

cache, a 64KB L1 data cache, and a 512KB L2 cache. Additionally,

there are two L3 caches in the server, one per socket, each with

a size of 64MB (1MB per core). Furthermore, one L3 cache has 16

50

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

cache groups, with 4 physical cores assigned to each group. This

configuration results in a total of 32 cache groups for the server.

To demonstrate the performance results for different VM sizes,

two types of VMs were used: a small VM with 32 vCPUs, 60GB

of memory, and 112GB of storage, and a big VM with 128 vCPUs,

60GB of memory, and 112GB of storage. Both the guest and host

kernels are openEuler with Linux 5.10 [11].

Benchmarks. To demonstrate the benefits of CPS on the scala-

bility of varied workloads, we choose four benchmarks that make

extensive use of multi-threading and synchronization primitives.

1) PARSEC 3.0 [17] is a collection of parallel programs that are

used for scalability studies of multiprocessor machines. We evalu-

ate the performance of 10 representative programs that frequently

trigger scheduling events due to different locks and barriers. 2)

lbzip2 [9] is amulti-threaded compression and decompression util-

ity. We show the time cost of compressing and decompressing the

Linux kernel v5.16 source code in parallel via lbzip2. 3) FxMark [40]

benchmark suite is used to analyze the manycore scalability of

file systems. We measure the performance of six typical FxMarks

benchmarks that include a large number of parallel operations on a

shared file system. 4)DBx1000 [56] is an in-memory transactional

database that is scalable on a manycore machine. We evaluate the

performance of running the TPCC workload using two types of

two-phase lock(2PL) implementations (WAIT_DIE andNO_WAIT).

6.3 Microbenchmark

Table 2: Average vCPU selection time (unit: ns).

Config HVM CPS-Pload PVM CPS-CGsched

Time (ns) 103.29 706.60 1835.45 1090.84

In this section, we evaluate the guest scheduling latency of CPS

by comparing the average vCPU selection time of CPS-Pload, CPS-

CGsched, HVM, and PVM. As shown in Table 2, HVM exhibits the

lowest vCPU selection time since it blindly chooses a vCPU with-

out checking if it is preempted by the hypervisor. In the case of

CPS-Pload, an additional 603.31 ns is incurred compared to HVM.

This is because the guest kernel needs to traverse the vCPU list

until it identifies an online vCPU or a preempted one on a lightly

loaded pCPU. Similarly, PVM also traverses the vCPU list, but it se-

lects an online vCPU without considering a preempted vCPU on

a lightly loaded pCPU. Hence, the guest kernel takes longer to se-

lect an idle vCPU, resulting in an additional overhead of 1,128.85

ns compared to CPS-Pload. The additional overhead of 987.55 ns

introduced by CPS-CGsched compared to HVM results from oper-

ations such as accessing LTM and CG-Tree, as well as calculating

the runtime vCG_Quota.

Apart from performance overhead, we measure the additional

memory consumption caused by CPS. The memory consumption

is classified into three categories, 1) per host’s 512KB memory con-

sumption (load-degree pages), 2) per VM’s (12KB + 512B) mem-

ory consumption (Refer-Table and CG-Tree), and 3) per threads

group’s 128B memory consumption (LTM).

6.4 Application Performance of CPS-Pload

In this section, we evaluate and analyze the performance of CPS-

Pload with PARSEC 3.0 and lbzip2. We begin by evaluating the

benchmarks’ performance under varying numbers of threads and

observe that optimal performance is generally achieved when the

working thread count is close to 32. Consequently, we use a small

32-vCPU VM to evaluate CPS-Pload’s performance. Our evalua-

tion consists of running one small VM in the under-committed sce-

nario and five small VMs in the over-committed scenario. All these

benchmarks are configuredwith the thread numbers to make them

achieve optimal performance.

Under-commi�edPARSEC3.0. Fig. 7 shows the under-committed

performance of CPS-Pload. The overhead of most PARSEC appli-

cations in a PVM is dominated by the data barrier, in which all

other threads are put to sleep after reaching the data barrier un-

til the last working thread finishes. These sleeping threads cause

their corresponding vCPUs to be preempted. When the last thread

wakes all the sleeping threads, the waked threads are scheduled

to the non-preempted vCPUs. But the non-preempted vCPU num-

ber is limited. Therefore, the waked threads are scheduled to a

small number of online vCPUs, even when the pCPU utilization

is low, resulting in a negative impact on the performance. For ex-

ample, in the PVM, the performance overhead caused by data bar-

riers in splash2x.ocean_ncb and fluidanimate is 1.27x and 1.89x,

respectively. CPS-Pload provides an effective way to allow these

sleeping threads to be scheduled on preempted vCPUs that can

be quickly rescheduled to run on low-load pCPUs. Hence, CPS-

Pload shows 1.17x improvement on average compared with PVM.

Note that there is no performance improvement in the blacksc-

holes benchmark. The reason is that blackscholes benchmark has

no data barrier operation. The performance of CPS-Pload in the

under-committed scenario is comparable to that of HVM in most

benchmarks and slightly outperforms HVM in streamcluster.

Table 3: Breakdown of splash2x.ocean_ncp with PVM and

CPS-Pload in the under-committed 32-vCPU VM (unit: s).

“Real time” stands for the total elapsed time of the appli-

cation. “Running” represents how long the application was

actually running and “Idle” is the CPU time the application

is waiting for available cores. Both “Running” and “Idle” are

the averages among 32 vCPU.

Config PVM CPS-Pload

Real time (s) 47.62 20.74

Running (s) 11.75 17.56

Idle (s) 35.87 3.18

To figure out how CPS-Pload improves the virtualization per-

formance, we break down the time cost of splash2x.ocean_ncp. Ta-

ble 3 shows that the idle time with CPS-Pload is 3.18s while the

time with PVM is 35.87s. This is because CPS-Pload effectively al-

lows the guest scheduler to run application threads to preempted

vCPUs in low-load pCPUs, leading to better CPU utilization and

resulting in 1.27x performance improvement.

To compare the thread scalability, we select another representa-

tive benchmark from PARSEC 3.0 (splash2x.ocean_cp) and use the

51

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

 3
 4
 5

HVM-u PVM-u HVM-o PVM-o

 0

 0.3

 0.6

 0.9

 1.2

 1.5

dedup
bodytrack

blackscholes

fluidanimate
vips

streamcluster

splash2x.barnes

splash2x.ocean_ncp

splash2x.ocean_cp

splash2x.radix

1.89

6.51

Im
p
ro

v
e
m

e
n
t

Fig. 7. Performance improvement of CPS-Pload over HVM and PVM in PARSEC 3.0 in the 32-vCPU VM. -u stands for under-

committed one VM scenario and -o stands for over-committed five VMs scenario. Higher is better.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

(a) under-committed

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#threads

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

(b) over-committed
#threads

HVM PVM CPS-Pload

Fig. 8. The thread scalability of CPS-Pload, HVM, and PVM

for splash2x.ocean_cp benchmark in the 128-vCPU VM.

Lower is better.

big 128-vCPU VM to evaluate its scalability by gradually increas-

ing its thread number up to 128, whose result is shown in Fig. 8(a).

Both CPS-Pload and HVM perform better than PVM because both

of them can utilize low-load pCPUs. In contrast, PVM puts tasks

to a small number of non-preempted vCPUs despite that other pre-

empted vCPUs can be quickly resumed in low-load pCPUs.

Over-commi�ed PARSEC 3.0. In the over-committed scenario,

we use 5 small 32-vCPU VMs: one VM runs PARSEC benchmarks

while the other four VMs are configured to generate random CPU

load with stress-ng [5]. As shown in Fig. 7, HVM is worse than

PVM in some cases. In HVM, one thread can be scheduled to a

preempted vCPU. Unfortunately, when the pCPU load is high, the

preempted vCPU suffers from high latency to be wakened and

scheduled to pCPU, causing performance degradation of the thread

running on it. PVM, on the other hand, schedules threads to non-

preempted vCPUs. The threads can immediately run on vCPUs

that are already scheduled on pCPUs. However, the number of

non-preempted vCPUs is very limited. Therefore, PVM still can-

not fully utilize pCPU resources. CPS-Pload schedules threads to

vCPU running on low-load pCPUs. Compared with HVM, CPS-

Pload keeps preempted vCPU on high-load pCPU sleeping to re-

duce contention. Comparedwith PVM, CPS-Pload utilizes preempted

vCPU on low-load pCPU. That explains why CPS-Pload outper-

forms HVM by 3.31x and PVM by 1.06x in bodytrack.

To analyze this result, we break down splash2x.ocean_ncp and

compare its idle time and running time of CPS-Pload, HVM, and

PVM (Table 4). During the data barrier in HVM, all other threads

have to wait for the slowest thread, which may be scheduled to

preempted vCPU. Therefore, HVM has the longest Running time.

Despite the high CPU load, due to the runtime complexity of sched-

uling, there still exist low-load pCPUs occasionally in the over-

committed case. CPS-Pload can squeeze the performance potential

of these low-load pCPUs. Hence, the idle time of CPS-Pload is the

shortest, which confirms that the CPS-Pload scheduling strategy

harvests the low-load pCPU resources to shorten the scheduling

latency of tasks.

Table 4: Breakdown of splash2x.ocean_ncpwith PVM,HVM,

and CPS-Pload in the over-committed 32-vCPU VM.

Config PVM HVM CPS-Pload

Real time (s) 50.96 49.23 29.92

Running (s) 12.09 17.22 14.57

Idle (s) 38.87 32.01 15.35

Fig. 8(b) shows the thread scalability analysis of a big VM’s

splash2x.ocean_cp in the over-committed case. When the thread

number is small, HVM performs slightly better than CPS-Pload

because blindly waking preempted vCPUs in HVM has a smaller

penalty. As the thread number further grows, CPS-Pload performs

better than HVM and PVM. PVM has a similar trend as in the

under-committed scenario, suffering from poor scalability due to

the small number of available vCPUs. However, HVM shows se-

vere performance degradation as the thread number increases, be-

cause HVM may blindly schedule a task to a vCPU running on a

high-load pCPU.

lbzip2. We also evaluate CPS-Pload with a real-world applica-

tion, lbzip2. In lbzip2, the input file is subdivided into even chunks,

and the working threads process their smaller chunks in parallel.

Each thread has to select tasks in a task queue protected by amutex

lock, which leads to mutex lock contentions. When the lock holder

releases the lock and the guest scheduler selects vCPUs for lock

waiters to run, the RHS problem comes into play. We use lbzip2 to

compress and decompress the Linux kernel v5.16 source code, and

the performance of lbzip2 is shown in Fig. 9. By eliminating the

RHS problem, CPS-Pload outperforms HVM by up to 28.7% on av-

erage in the over-committed scenario. In the under-committed sec-

nario, CPS-Pload, HVM, and PVM have similar results, because the

lock contention of 32 working threads is not severe. To showcase

the performance in high contention, we further test lbzip2 with

52

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

128 threads in a 128-vCPU VM in the under-committed scenario,

in which the CPS-Pload is comparable to HVM and outperforms

PVM by 45.2% on average for compression and decompression.

 0

 1

 2

 3

 4

comp. decomp.

E
x
e

c
u

ti
o

n
 t

im
e

(s
)

 0

 1

 2

 3

 4

comp. decomp.

(a) lbzip2-undercommitted (b) lbzip2-overcommitted

HVM PVM CPS-Pload

Fig. 9. TheCPS-Pload improvement of lbzip2 in the 32-vCPU

VM. Lower is better.

6.5 Application Performance of CPS-CGsched

To show how CPS-CGsched helps the guest OS to adapt to dy-

namic vCPU-vCG mappings in a manycore machine, this section

evaluates the performance of two VM applications (FxMarks and

DBx1000). Since the two applications can scale to 128 vCPUs, we

use the big 128-vCPU VM to evaluate their performance. We run

oneVM in the under-committed and twoVMs in the over-committed

scenario.

FxMark. We first leverage FxMark to show the performance

improvement of CPS-CGsched compared with Baseline, which

means the vCPUs are not bound to pCPUs and the threads are

not bound to vCGs. In the under-committed scenario as shown in

Fig. 10, CPS-CGsched enables guests to enjoy the benefits from the

deep memory hierarchy in a manycore server. When the number

of interactive threads is small, there always exist idle CGs, in which

CPS-CGsched successfully co-locates the interactive threads, pro-

viding performance improvement. For example, in theMRDLwork-

load that reads entries of its private directory
2
, CPS-CGsched out-

performs the baseline by up to 1.61x with four running worker

threads. When the number of threads scales to 128, all the CGs

have been filled with threads to keep load balanced. It takes more

time for CPS-CGsched to find available CGs to co-locate interac-

tive threads. Therefore, CPS-CGsched outperforms the baseline by

76.7% on average with 128 running worker threads.

The improvement of CPS-CGsched for a FxMark benchmark

is decided by the benchmark’s parallelism degree. For example,

MRDM benchmark, which reads entries of its shared directory,

can be optimized by 2.35x. The reason for the improvement is that

MRDMperformsmassive parallel reads to the same directory.Mean-

while, DWOM and DWOL benchmarks can only be optimized by

71.4% and 63.5%, because their threads hold a write lock to perform

exclusive writes, showing less parallelism. However, they can still

benefit from CPS-CGsched because of parallel access to the shared

file system metadata and the shared synchronization primitives.

2
To better showcase the performance benefits using CPS-CGsched, we modify some
benchmarks that originally create private files exclusively for each thread, changing
them to their counterparts where "private" file can be shared among a small number
of threads (4 threads to match the CG core number).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

DWOM
DWOL

MRDM
MRDL

MRDM_bg

MRDL_bg

Im
p

ro
v
e

m
e

n
t

4 threads 128 threads

Fig. 10. The improvement of FxMark brought by CPS-

CGsched in the under-committed 128-vCPU VM. Higher is

better.

 0

 2.5

 5

 7.5

 10

 12.5

 15

 17.5

 20

diff-socket

same-socket

same-numa
same-cg

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

lock&unlock inode
journal

write data
other

Fig. 11. The impact of memory hierarchy on the perfor-

mance of DWOM in FxMark with four configurations: 1)

diff-socket: 4 vCPUs are distributed in different sockets. 2)

same-socket: 4 vCPUs are pinned in the same socket. 3)

same-NUMA: 4 vCPUs are pinned in the same NUMA node.

4) same-CG: 4 vCPUs are pinned in the same cache group (a

CG contains 4 pCPUs).

We further analyze FxMark DWOM performance to find out

how shared file system data structures affect performance by run-

ning it under different memory hierarchy configurations. The re-

sults are shown in Fig. 11. We can see that the less memory hierar-

chy the interactive threads share, the worse their performance is.

As the performance breakdown further illustrates, the main over-

head is that the threads need to excessively access the shared file

systemmetadata, such as inodes and page references, and synchro-

nization primitives. For the diff-socket configuration, the inode

lock acquisition operation takes about 15s, while in the same-CG

configuration, this operation only takes 8s. When threads reside

in different NUMA nodes or CGs, memory consistency, and cache

coherency protocols cause data to bounce between NUMA nodes

and cache lines, resulting in high performance costs.

The FxMark performance with CPS-CGsched in 2 VMs is shown

in Fig. 12. CPS-CGsched brings an average improvement of 1.35x

and 48.0%with 4 threads and 128 threads, respectively. CPS-CGsched

shows the best improvements of 1.99x inMRDM_bgworkloadwith

four threads and 60.0% in MRDM workload with 128 threads. Still,

the benchmarks with more parallelism have better improvement

as in the under-committed scenario. For example,MRDM improves

53

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

DWOM
DWOL

MRDM
MRDL

MRDM_bg

MRDL_bg

Im
p

ro
v
e

m
e

n
t

4 threads 128 threads

Fig. 12. The improvements of FxMark brought by CPS-

CGsched in over-committed 128-vCPUVM.Higher is better.

by 1.63x while DWOM improves by 60.3% with four threads. The

improvement of 128 threads also has less performance gain than 4

threads due tomore time to find available CGs. For example, MRDL

improves by 1.82x with 4 threads but by 48.4% with 128 threads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

WAIT_DIE
NO_WAIT

Im
p

ro
v
e

m
e

n
t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

WAIT_DIE
NO_WAIT

(a) DBx1000-1-vm (b) DBx1000-2-vm

4 threads 128 threads

Fig. 13. The improvement of DBx1000 brought by CPS-

CGsched in the 128-vCPU VM. Higher is better.

DBx1000. We evaluate CPS-CGsched using a real-world appli-

cation, DBx1000, which utilizes 2PL for serializable concurrency

control. In 2PL, a row lock is acquired for every record access, caus-

ing multiple threads to compete for the same lock during transac-

tion conflict, resulting in cache bouncing that can be optimized by

CPS-CGsched. To demonstrate CPS-CGsched’s efficacy, we ampli-

fied the conflict rate of database queries and altered DBx1000 to

spawn 128 threads divided into 32 interactive thread groups. As

shown in Fig. 13, CPS-CGsched improved DBx1000 by as much

as 73.7% in the under-committed scenario and 31.0% in the over-

committed scenario. The improvement in the over-committed sce-

nario is lower than that in the under-committed scenario because

of cache pollution from the other co-running VM.

7 Limitations and Security Discussion

7.1 Limitations

The current prototype of CPS has three limitations and none of

them are fundamental. First, CPS needs to modify the guest OS

and only works for PV guest VMs, so it cannot improve the scalabil-

ity of non-PV VMs that use commercial off-the-shelf OSes, which

is still an open research problem. Second, CPS assumes that the

application programmers can identify the interactive threads, so

that they can slightly modify applications to pass the interaction

information to CPS-CGsched. However, CPS cannot support appli-

cations that are distributed via pre-built binary format. Third, even

though CPS should automatically detect the parameters of hard-

ware CG (e.g., CPU-CGmappings, the number of CG, and CG size)

during system startup, these parameters are hardcoded in our cur-

rent implementation. We plan to extend CPS to support such CG

parameters probing in the future.

7.2 Security Implications of Refer-Table

Even though a Refer-Table in CPS is a private data structure vis-

ible only to the VM that owns it, it provides hypervisor-internal

states to the guest, potentially posing security threats. Therefore,

we discuss possible threats and their implications in this section.

Shared Load-Degree Page. The load-degree page,which ismapped

in each VM’s Refer-Table, is shared by multiple VMs, potentially

posing potential security threats. To this end, this page is mapped

as read-only, preventing any VM from modifying its contents. Fur-

thermore, the information available to a VM from the page is im-

precise, providing only an approximation of the pCPU load with-

out specific knowledge of the vCPUs running on the pCPU. No-

tably, such information has already been exposed by the existing

PVmechanism. For instance, a vCPU can estimate the approximate

pCPU load using PV steal time [10].

Side-Channel Threats. Exposing hypervisor-internal states to a

VM can potentially facilitate cross-VM side-channel attacks, es-

pecially those relying on cache-based attacks [35, 59]. To launch

a cache-based attack, an attacker needs to prime the cache set

that the victim VM is utilizing. By combining the load degrees of

each pCPU and vCG topology it retrieves from the Refer-Table,

it may be easier for the attacker to pinpoint the pCPUs that the

target VM is executing on, assuming that no other VMs are shar-

ing these pCPUs. Subsequently, the attacker can use their vCPU,

which co-resides with the target VM, to quickly prime the cache

set. Nonetheless, this assumption is usually not realistic since more

VMs (more than 2) typically share the same pCPUs, thus rendering

the attack more challenging to execute. Additionally, countermea-

sures such as allocating sensitive VMs to isolated pCPUs or utiliz-

ing existing techniques [20, 35, 39] can be employed to prevent this

type of attack, which is outside the scope of this paper.

8 Related Work

8.1 Synchronization in VM

As we have mentioned in § 2.1, synchronization latency caused by

the vCPU preemption increases significantly, and this problem has

different variants [24, 25, 30, 42, 44, 48]. A long line of methods has

been proposed to address these synchronization issues, which can

be classified into three categories.

Hardware Approaches. A hypervisor can utilize hardware fea-

tures [4, 8, 52] to detect vCPUs that keep busy waiting so that the

hypervisor has the chance to schedule them out to other vCPUs.

For instance, Intel’s Pause Loop Exiting (PLE) allows the hypervi-

sor to set a maximum number that a vCPU is able to successively

execute the PAUSE instruction. When the upper bound is hit, the

hardware considers that this vCPU is contending on a spinlock and

triggers a VM exit towake up the hypervisor, which then schedules

a new vCPU or directly boosts the vCPU that is possibly holding

the lock. Equipped with such hardware features, the hypervisor

54

CPS: A Cooperative Para-virtualized Scheduling Framework for Manycore Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

effectively reduces the wasted CPU cycles in LHP and LWP. How-

ever, it is difficult to precisely pinpoint the lock holder due to the

notorious semantic gap in the virtualized environment [28]

Para-virtualizedApproaches.To break the semantic gap, the PV

approaches modify the guest kernel to pass guest’s hints to the un-

derlying hypervisor [41, 49]. Specifically, paravirtual spinlock [26]

alleviates LHP bymodifying the guest kernel’s spinlock implemen-

tation to proactively give up the pCPU if the guest’s waiting time

exceeds a threshold. Oticket [30, 31] improves paravirtual spinlock

through dynamically scaling the waiter’s spinning time according

to the waiters’ distance. Preemptable ticket spinlocks [41] resolve

the LWP problem by relaxing the ordering guarantees of ticket

spinlocks. It allows an out-of-order waiter to acquire a lock when

the earlier waiters are unresponsive. There also exist general so-

lutions to a wider range of synchronization problems [12, 32, 48].

I-Spinlock [48] is a new PV spinlock that only allows lock acqui-

sition when the vCPU’s remaining time slice is sufficient, which

effectively avoids being preempted when holding a lock. Similarly,

eCS [32] proposes PV interface to address all preemption problems,

and it lets the guest to annotate critical sections in which the hyper-

visor will not schedule out the vCPU. These PV approaches only

resolve the locking-related issues, not applicable to the RHS prob-

lems that are caused by the asymmetric visibility on hypervisor-

internal states dynamic (like pCPU load and CG topology).

Scheduler-based Approaches. The third direction is to optimize

the hypervisor’s scheduler without modifying the guest OS, in-

cluding the gang-scheduling we have mentioned in § 2.1. Another

example is the demand-based coordinate scheduler [33] that co-

schedules workloads to reduce communication latency. Song et

al. [21, 45] further proposes vCPU ballooning to adjust the number

of vCPU according to available pCPU resources. Although these

systems resolve the double scheduling related to synchronization

to some extent, their methods either lead to serious CPU fragmen-

tation or cannot tackle the RHS problem CPS faces.

8.2 NUMA Virtualization

The double scheduling and semantic gap can further negatively

affect VM performance through inefficient NUMA virtualization

since the hypervisor may blindly change the NUMA topology of

VMs. Therefore, prior efforts aim to designing various solutions to

address this issue. Most solutions take a blackbox way [15, 18, 27,

36, 43, 54] in which the actual NUMA topology is hidden to the

VM. Different from them, Voron et al. [51] implement four NUMA

policies and allow the guest OS to explicitly choose one of them at

runtime, but this approach still cannot support topology changes.

To this end, XPV [19] exposes a dynamic virtual NUMA topology

and provides PV interface to help the guest OS to adapt its NUMA

policies. Even though NUMA virtualization looks similar to vCG

in CPS, they have fundamental differences (as we have discussed

in § 2.2) and CPS needs a mechanism to expose ever-changing vCG

topology.

9 Conclusion

To address the lack of runtime hypervisor-internal states (RHS) in

large VMs, this paper proposes CPS, a cooperative para-virtualized

scheduling framework, which proactively allows both guest and

host to share dynamic scheduling information made by each other.

We have implemented CPS into KVM, and it can improve the per-

formance of PARSEC by 81.1% and FxMark by 1.01x on average for

the two RHS problems.

10 Acknowledgments

We express our sincere gratitude to the anonymous ASPLOS re-

viewers for their insightful suggestions. We are equally grateful to

Zhi Guo for performance evaluation, Dingji Li and Tianhong Ding

for their help in discussing the initial idea. This work was partially

supported by the National Natural Science Foundation of China

(No.62132014, 61925206, 62232012, 62002218) and Huawei Innova-

tion Research Plan.

References

[1] Alibaba Cloud: Elastic Compute Service. https://www.alibabacloud.com/
product/ecs. Referenced September 2023.

[2] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/. Ref-
erenced September 2023.

[3] AMD. 2021. The 2nd Gen AMD EPYC 7002 Series Processors. www.amd.com/
en/processors/epyc-7002-series. Referenced September 2023.

[4] AMD64 Architecture Programmer’s Manual, Volume 2: System Programming.
https://www.amd.com/system/files/TechDocs/24593.pdf. Referenced Septem-
ber 2023.

[5] Github: stress-ng (stress next generation). https://github.com/ColinIanKing/
stress-ng. Referenced September 2023.

[6] Huawei TaiShan Server Data Sheet. https://e.huawei.com/en/material/
datacenter/server/7a0b8b0f056f479f909220ac21915999. Referenced September
2023.

[7] implement vcpu preempted check. https://lwn.net/Articles/704904/. Referenced
September 2023.

[8] Intel® 64 and IA-32 Architectures Software Developer’s Manual. https://
www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf. Refer-
enced September 2023.

[9] lbzip2: parallel bzip2 compression utility. https://github.com/kjn/lbzip2. Refer-
enced September 2023.

[10] LWN.net: Steal time for KVM. https://lwn.net/Articles/449657/. Referenced Sep-
tember 2023.

[11] OpenEuler. https://github.com/openeuler-mirror. Referenced September 2023.
[12] Paravirtualized ticket spinlocks. https://lwn.net/Articles/552696/. Referenced

September 2023.
[13] The CPU Scheduler in VMware vSphere® 5.1. https://www.

vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
vmware-vsphere-cpu-sched-performance-white-paper.pdf. Referenced
September 2023.

[14] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.
Levy. Scheduler Activations: Effective Kernel Support for the User-Level Man-
agement of Parallelism. SIGOPS Oper. Syst. Rev., 25(5):95–109, sep 1991.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtual-
ization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[16] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The Multikernel: A New OS Architecture for Scalable Multicore Systems.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09, page 29–44, New York, NY, USA, 2009. Association for Computing
Machinery.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. In Proceed-
ings of the 17th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’08, page 72–81, New York, NY, USA, 2008. Association
for Computing Machinery.

[18] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running Com-
modity Operating Systems on Scalable Multiprocessors. SIGOPS Oper. Syst. Rev.,
31(5):143–156, oct 1997.

[19] Bao Bui, Djob Mvondo, Boris Teabe, Kevin Jiokeng, Lavoisier Wapet, Alain
Tchana, Gaël Thomas, Daniel Hagimont, GillesMuller, andNoel DePalma. When
EXtended Para - Virtualization (XPV) Meets NUMA. In Proceedings of the Four-
teenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

[20] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B. Lee, Haibo Chen,
and XiaoFeng Wang. Leveraging Hardware Transactional Memory for Cache

55

https://www.alibabacloud.com/product/ecs
https://www.alibabacloud.com/product/ecs
https://aws.amazon.com/ec2/instance-types/
www.amd.com/en/processors/epyc-7002-series
www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/system/files/TechDocs/24593.pdf
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://e.huawei.com/en/material/datacenter/server/7a0b8b0f056f479f909220ac21915999
https://e.huawei.com/en/material/datacenter/server/7a0b8b0f056f479f909220ac21915999
https://lwn.net/Articles/704904/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://github.com/kjn/lbzip2
https://lwn.net/Articles/449657/
https://github.com/openeuler-mirror
https://lwn.net/Articles/552696/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and Haibo Chen

Side-Channel Defenses. In Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security, ASIACCS ’18, page 601–608, New York, NY,
USA, 2018. Association for Computing Machinery.

[21] Luwei Cheng, Jia Rao, and Francis C. M. Lau. VScale: Automatic and Efficient
Processor Scaling for SMP Virtual Machines. In Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems, EuroSys ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[22] Christoffer Dall and Jason Nieh. KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS ’14, page 333–348, New York, NY, USA, 2014. Association for Computing
Machinery.

[23] Rafael Lourenco de Lima Chehab, Antonio Paolillo, Diogo Behrens, Ming Fu,
Hermann Härtig, and Haibo Chen. CLoF: A Compositional Lock Framework for
Multi-Level NUMA Systems. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 851–865, New York, NY, USA,
2021. Association for Computing Machinery.

[24] Xiaoning Ding, Phillip B. Gibbons, and Michael A. Kozuch. A Hidden Cost of
VirtualizationWhen ScalingMulticoreApplications. In 5th USENIXWorkshop on
Hot Topics in Cloud Computing (HotCloud 13), San Jose, CA, June 2013. USENIX
Association.

[25] Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch, and Jianchen Shan.
Gleaner: Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Mul-
ticore Applications. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, page 73–84, USA, 2014. USENIX
Association.

[26] Thomas Friebel and Sebastian Biemueller. How to Deal with Lock Holder Pre-
emption. 2008.

[27] Jaeung Han, Jeongseob Ahn, Changdae Kim, Youngjin Kwon, Young-Ri Choi,
and Jaehyuk Huh. The Effect of Multi-Core on HPC Applications in Virtualized
Systems. In Proceedings of the 2010 Conference on Parallel Processing, Euro-Par
2010, page 615–623, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] Kenta Ishiguro, Naoki Yasuno, Pierre-Louis Aublin, and Kenji Kono. Mitigat-
ing Excessive VCPU Spinning in VM-Agnostic KVM. In Proceedings of the 17th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE 2021, page 139–152, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[29] Ali Kamali. Sharing aware scheduling on multicore systems. PhD thesis, Applied
Science: School of Computing Science, 2010.

[30] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scalability in the Clouds!
A Myth or Reality? In Proceedings of the 6th Asia-Pacific Workshop on Systems,
APSys ’15, New York, NY, USA, 2015. Association for Computing Machinery.

[31] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Opportunistic Spinlocks:
Achieving Virtual Machine Scalability in the Clouds. SIGOPS Oper. Syst. Rev.,
50(1):9–16, mar 2016.

[32] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scaling Guest OS Critical
Sections with eCS. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 159–172, Boston, MA, July 2018. USENIX Association.

[33] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and Seungryoul
Maeng. Demand-Based Coordinated Scheduling for SMP VMs. SIGARCH Com-
put. Archit. News, 41(1):369–380, mar 2013.

[34] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: the
Linux virtual machinemonitor. In Proceedings of the Linux symposium, volume 1,
pages 225–230. Dttawa, Dntorio, Canada, 2007.

[35] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on Security
and Privacy, pages 605–622, 2015.

[36] Ming Liu and Tao Li. Optimizing virtual machine consolidation performance on
NUMA server architecture for cloud workloads. In 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA), pages 325–336, 2014.

[37] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P. Markatos.
First-Class User-Level Threads. SIGOPS Oper. Syst. Rev., 25(5):110–121, sep 1991.

[38] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. Diagnosing Performance Overheads in the Xen Virtual Ma-
chine Environment. In Proceedings of the 1st ACM/USENIX International Con-
ference on Virtual Execution Environments, VEE ’05, page 13–23, New York, NY,
USA, 2005. Association for Computing Machinery.

[39] Zeyu Mi, Haibo Chen, Yinqian Zhang, Shuanghe Peng, Xiaofeng Wang, and
Michael K. Reiter. CPU Elasticity to Mitigate Cross-VM Runtime Monitoring.
IEEE Transactions on Dependable and Secure Computing, 17(5):1094–1108, 2020.

[40] ChangwooMin, Sanidhya Kashyap, SteffenMaass, and Taesoo Kim. Understand-
ing manycore scalability of file systems. In 2016 USENIX Annual Technical Con-
ference (USENIX ATC 16), pages 71–85, 2016.

[41] Jiannan Ouyang and John R. Lange. Preemptable Ticket Spinlocks: Improving
Consolidated Performance in the Cloud. In Proceedings of the 9th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’13, page 191–200, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

[42] Aravinda Prasad, K Gopinath, and Paul E. McKenney. The RCU-Reader Preemp-
tion Problem in VMs. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 265–270, Santa Clara, CA, July 2017. USENIX Association.

[43] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng-Zhong Xu. Optimizing virtual
machine scheduling in NUMAmulticore systems. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pages 306–317,
2013.

[44] Xiang Song, Haibo Chen, Binyu Zang, X Song, H Chen, and B Zang. Character-
izing the performance and scalability of many-core applications on virtualized
platforms. Parallel Processing Institute Technical Report Number: FDUPPITR-2010,
2, 2010.

[45] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. Schedule Processes, Not
VCPUs. In Proceedings of the 4th Asia-Pacific Workshop on Systems, APSys ’13,
New York, NY, USA, 2013. Association for Computing Machinery.

[46] Orathai Sukwong and Hyong S. Kim. Is Co-Scheduling Too Expensive for SMP
VMs? In Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11,
page 257–272, New York, NY, USA, 2011. Association for Computing Machinery.

[47] David Tam, Reza Azimi, and Michael Stumm. Thread Clustering: Sharing-
Aware Scheduling on SMP-CMP-SMT Multiprocessors. SIGOPS Oper. Syst. Rev.,
41(3):47–58, mar 2007.

[48] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. The lock holder
and the lock waiter pre-emption problems: Nip them in the bud using informed
spinlocks (i-spinlock). In Proceedings of the Twelfth European Conference on Com-
puter Systems, pages 286–297, 2017.

[49] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. To-
wards ScalableMultiprocessor VirtualMachines. In Proceedings of the 3rd Confer-
ence on Virtual Machine Research And Technology Symposium - Volume 3, VM’04,
page 4, USA, 2004. USENIX Association.

[50] VMware. The CPU Scheduler in VMware ESX 4.1. Technical Report, 2010.
[51] Gauthier Voron, Gaël Thomas, Vivien Quéma, and Pierre Sens. An Interface to

Implement NUMA Policies in the Xen Hypervisor. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, page 453–467, New York,
NY, USA, 2017. Association for Computing Machinery.

[52] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Hardware support
for spin management in overcommitted virtual machines. In 2006 International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages
124–133, 2006.

[53] ChuliangWeng, Qian Liu, Lei Yu, and Minglu Li. Dynamic Adaptive Scheduling
for Virtual Machines. In Proceedings of the 20th International Symposium on
High Performance Distributed Computing, HPDC ’11, page 239–250, New York,
NY, USA, 2011. Association for Computing Machinery.

[54] Song Wu, Huahua Sun, Like Zhou, Qingtian Gan, and Hai Jin. vProbe: Schedul-
ing Virtual Machines on NUMA Systems. In 2016 IEEE International Conference
on Cluster Computing (CLUSTER), pages 70–79, 2016.

[55] Song Wu, Zhenjiang Xie, Haibao Chen, Sheng Di, Xinyu Zhao, and Hai Jin.
Dynamic Acceleration of Parallel Applications in Cloud Platforms by Adaptive
Time-Slice Control. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 343–352, 2016.

[56] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proc. VLDB Endow., 8(3):209–220, nov 2014.

[57] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin, Charlie
Tai, and Nam Sung Kim. Don’t Forget the I/O When Allocating Your LLC. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 112–125, 2021.

[58] Lei Zhang, Yu Chen, Yaozu Dong, and Chao Liu. Lock-Visor: An Efficient Tran-
sitory Co-scheduling for MP Guest. In 2012 41st International Conference on
Parallel Processing, pages 88–97, 2012.

[59] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS ’12, page
305–316, New York, NY, USA, 2012. Association for Computing Machinery.

[60] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova,
and Manuel Prieto. Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors. ACM Comput. Surv., 45(1), dec 2012.

Received 2022-10-22; accepted 2023-04-28

56

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Double Scheduling and Prior Efforts
	2.2 Runtime Hypervisor-internal States (RHS)

	3 Overview
	4 Design
	4.1 Para-virtualized Interface
	4.2 Frontend Module
	4.3 Backend Module

	5 Case Study
	5.1 Pload Scheduling
	5.2 CG-aware Scheduling

	6 Evaluation
	6.1 Implementation Complexity
	6.2 Evaluation Settings
	6.3 Microbenchmark
	6.4 Application Performance of CPS-Pload
	6.5 Application Performance of CPS-CGsched

	7 Limitations and Security Discussion
	7.1 Limitations
	7.2 Security Implications of Refer-Table

	8 Related Work
	8.1 Synchronization in VM
	8.2 NUMA Virtualization

	9 Conclusion
	10 Acknowledgments
	References

