
VPRI: Efficient I/O Page Fault Handling via
Software-Hardware Co-Design for IaaS Clouds

Kaijie Guo1∗, Dingji Li2,3∗, Ben Luo1, Yibin Shen1, Kaihuan Peng1, Ning Luo1, Shengdong Dai1, Chen
Liang1, Jianming Song1, Hang Yang1, Xiantao Zhang1, Zeyu Mi2,3

1Alibaba Group
2Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
Device pass-through has been widely adopted by cloud ser-
vice providers to achieve near bare-metal I/O performance
in virtual machines (VMs). However, this approach requires
static pinning of VM memory, making on-demand paging
unavailable. The hardware device I/O page fault (IOPF) ca-
pability offers an optimal solution to this limitation. Current
IOPF approaches, using either standard IOMMU capabili-
ties (ATS+PRI) or devices with independent IOMMU imple-
mentations, have not gained widespread adoption in pub-
lic Infrastructure-as-a-Service clouds. This is due to high
costs, platform dependency, and significant impacts on per-
formance and service level objectives (SLOs). We present
the Virtualized Page Request Interface (VPRI), a novel IOPF
system developed through software-hardware collaboration.
VPRI is not only platform-independent, free from address
translation complexities, but also cost-effective, and designed
to minimize SLO impact. Our work enables large-scale de-
ployment of IOPF capability in Alibaba Cloud with negligible
impact on SLOs. When integrated with memory manage-
ment software, it significantly enhances memory utilization
in public IaaS clouds, effectively overcoming the static mem-
ory pinning restriction associated with pass-through devices.

CCS Concepts: • Information systems → Storage virtual-
ization; • Networks → Cloud computing; • Software and
its engineering→Memory management.

Keywords: I/O Page Fault, Virtualization, Cloud Computing,
Service Level Objective

SOSP ’24, November 4–6, 2024, Austin, TX, USA

ACM ISBN 979-8-4007-1251-7/24/11. . . $15.00
https://doi.org/10.1145/3694715.3695957

1 Introduction
Device pass-through is universally deployed in modern
Infrastructure-as-a-Service (IaaS) cloud data centers to de-
liver peak I/O performance for high-density virtual machines
(VMs). To enforce inter-VM isolation, hypervisors must set
up appropriate I/O page tables (IOPTs) for pass-through
devices, restricting their direct memory access (DMA). How-
ever, unlike CPUs, most devices lack the capability to handle
page faults. Consequently, current hypervisors statically pin
and map all VM pages to prevent I/O page faults (IOPFs),
leading to poor DRAM utilization. To quantify this issue, we
conducted a comprehensive study in our production envi-
ronment (Alibaba Cloud) as one of the largest cloud service
providers (CSPs). Our data centers have demonstrated that
the absence of IOPF support in existing I/O pass-through can
result in up to 50% wasted DRAM. The study encompassed
1,000 servers, each equipped with 200GB to 1TB of physical
memory and hosting over 20,000 VMs. We performed sta-
tistics based on 2MB granularity extended page table (EPT)
scans over a week. The results revealed that the average
percentages of cold pages not accessed within intervals of 2,
5, and 7 minutes were 45%, 42%, and 39%, respectively. No-
tably, 30% of the servers had an average daily cold page rate
exceeding 50%. Worse, the static memory pinning constraint
hinders the application of advanced memory management
techniques such asmemory overcommitment [50], lazymem-
ory allocation [10], copy-on-write [51], and page migration
[34].
The Address Translation Service (ATS) in conjunction

with the Page Request Interface (PRI), as defined by the PCI-
SIG standard [35], is currently the only publicly available
method for enabling IOPF1. To detect an IOPF, a device re-
quires an address translation (AT) result obtained through an
IOPT walk performed by the I/O memory management unit
(IOMMU). To deliver an IOPF to its handler, the device issues
a page request to the IOMMU’s PRI, triggering an interrupt
that prompts the host to process the request. Although sup-
porting IOPF can effectively mitigate the above DRAM cost

∗Co-first authors.
1This paper focuses on IOPFs when accessing host memory. Supporting
page faults for vendor-specific on-device memory [33] is beyond our scope.

541

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed

https://doi.org/10.1145/3694715.3695957
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695957&domain=pdf&date_stamp=2024-11-15

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

problem, today’s IaaS data centers rarely enable IOPF due to
two major issues:
Compatibility issue: ATS+PRI necessitates AT capabil-

ities on both CPU and device sides, which in turn require
specific IOMMU features and on-device support. Currently,
these IOMMU features are unsupported by over 90% of the
CPUs within our global server fleet. Moreover, they typically
require device-side translation look-aside buffers (DevTLBs)
for AT performance, posing significant challenges in terms
of both design complexity and hardware costs [26, 47]. Con-
sequently, CSPs face a financial dilemma: either upgrade all
existing CPUs and devices to support ATS+PRI, or continue
tolerating low DRAM utilization without enabling IOPF.
Performance issue: To ensure the quality of cloud ser-

vices, CSPs have established various service level objectives
(SLOs) for I/O performance. These include thresholds such as
maximum tail latency and minimum instantaneous through-
put, setting baseline performance benchmarks over specified
periods. Violations of these I/O SLOs can detrimentally af-
fect the reputation and revenue of CSPs. Unfortunately, on
hardware platforms equipped with ATS+PRI, the impact of
IOPFs on I/O SLOs is significant. We have observed a sub-
stantial number of I/O SLO violations in our data centers
due to uncontrolled IOPF rates and latency. Our experiments
demonstrate that a VM enabled with IOPF can experience
up to a 70% instantaneous reduction in I/O throughput when
the IOPF rate surges in bursts to 10 per second.
Unlike CPU page faults, IOPFs are asynchronously de-

livered to their host handlers via interrupts. Our analysis
reveals that this delivery latency can be up to three orders
of magnitude longer than that of a CPU page fault. It can
further lead to blocking within I/O queues and even result in
network packet drops for milliseconds, potentially causing
costly retransmissions and flow control issues that signifi-
cantly degrade performance. The latency includes the time
taken by the top-half interrupt service routine (ISR) and the
subsequent scheduling of the bottom-half kernel thread for
IOPF handling, which becomes the primary performance
bottleneck. Consequently, merely enabling ATS+PRI is insuf-
ficient to fulfill SLO requirements due to the inherent IOPF
processing latency.
To address static page pinning, prior efforts have at-

tempted to decouple IOPF from IOMMU and minimize the
performance impact of IOPF latency through either soft-
ware or hardware approaches. However, implementing these
solutions for CSPs operating under strict cost and SLO con-
straints presents significant challenges. The software ap-
proach utilizes the hypervisor as a software IOPT walker to
respond to AT queries from devices [40]. While this method
can handle IOPF without relying on IOMMU features, it in-
troduces an unacceptable AT latency of approximately 10
µs for every DMA operation. Alternatively, the hardware
approach offloads the IOPT to the device, similar to methods

used in GPUs [2, 17, 38]. However, this approach requires a
complex on-device MMU in addition to the DevTLB, which
significantly increases both design complexity and hardware
costs [26, 47]. Moreover, both approaches are hampered by
significant latency during IOPF delivery, similar to that ob-
served in hardware IOPF systems.

In this paper, we propose Virtualized Page Request Inter-
face (VPRI), a platform-independent IOPF solution that offers
both low cost and high performance for CSPs. We identify
that the tight coupling between address translation and IOPF
detection is the fundamental obstacle to compatibility. Our
key observation is that determining page presence requires
only two attribute bits from an IOPT entry, rather than the
entire translation. VPRI enables the hypervisor to maintain
an on-device bitmap that simply caches attribute bits from
IOPTs. By querying this bitmap, a device can independently
detect IOPFs, enabling both low latency and low cost.

To address the performance issue, given the inherent high
latency of IOPF delivery, VPRI aims to minimize its impact by
reducing IOPF frequency through adaptive memory pinning.
Specifically, we propose a fine-grained, hardware-assisted
I/O page access logging mechanism, facilitating the develop-
ment of pinning strategies that leverage DMA locality. While
a simple strategy might involve using a basic least-recently
used (LRU) policy to pin hot DMA pages, this approach could
lead to excessive memory pinning, hindering overall mem-
ory utilization. Instead, we create a heuristic-based dual-LRU
policy that reduces the amount of memory pinned by up to
81% and significantly diminishes IOPF frequency.
We have successfully implemented VPRI within Alibaba

Cloud’s data processing units (DPUs) without incurring any
additional hardware costs. This innovation facilitates hard-
ware IOPF support across all existing and future platforms
and reduces the frequency of IOPF by up to 99% by pinning
only 5.2% of memory, therebymeeting I/O SLO. None of these
benefits can be provided by the state-of-the-art ATS+PRI sys-
tems. As a new building block in our cloud infrastructure,
VPRI enabled memory overcommitment that saved up to 15%
in DRAM costs across several production clusters within the
server fleets.

In summary, in this paper we:
• share our lessons in evaluating standard IOPF in a hy-

perscale IaaS, and design considerations to walk away from
the standard solution (§2 and §3).
• analyze the core components of a more efficient IOPF

system including simplified hardware, IOPF frequency re-
duction through fine-grained I/O footprint tracing (§4).
• disclose VPRI based on a hardware-software co-design

that enables IOPF for all existing platforms at a low cost
while ensuring high performance (§5 and §6).

• evaluate and demonstrate that VPRI can effectively di-
minish SLO impact on real-world workloads, maintaining
high memory utilization (§7).

542

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

To the best of our knowledge, this work is the first to
enable hardware IOPFs in public IaaS hosting for generic
network and storage workloads on a massive production
scale at one of the world’s largest CSPs. It demonstrates
compelling advantages over the existing standard solution
in terms of complexity, compatibility, and performance.

2 Background
2.1 IOPF Workflow in the PCIe Standard
The PCIe 4.0 standards provide ATS and PRI features to
support IOPF. ATS is utilized to detect IOPFs during DMAs.
When an IOPF occurs, PRI is used to generate an asynchro-
nous page request to the CPU. Using the Intel IOMMU as an
example, Fig 1 depicts the standard two-stage process of the
IOPF workflow.
Pre-DMA lookup stage: ① Before a DMA operation, the
I/O engine performs a DevTLB lookup; a miss occurs if the
hypervisor has unmapped the relevant page or if the transla-
tion is not cached in the DevTLB. ② The device sends an ATS
request to the IOMMU over PCIe. ③ The IOMMU performs
IOPT walk and finds the page is not mapped, which takes
microseconds. ④ The IOMMU responds to the device with
the ATS result. Note that ② and ④ together cost ∼1 µs in
PCIe transmissions.
Page requesting stage can be divided into three sub-stages:
1. Pre-fault sub-stage: ⑤ The device sends a page request
message to the IOMMU over PCIe. ⑥ The IOMMU writes a
descriptor to the page request queue, and then triggers a host
interrupt to execute the IOPF ISR. ⑦ A bottom-half thread
(either a threaded IRQ handler or a user-defined workqueue)
is scheduled asynchronously to handle the fault. Note that
the software fault handler could incur blocking operations
and cannot be executed in an ISR.
2. Fault handling sub-stage: The memory subsystemmanages
the page fault, allocating a physical page, populating its
contents, and configuring the page tables, akin to a CPU
page fault.
3. Post-fault sub-stage: ⑧ and ⑨ involve sending a page
response to the device through the IOMMU’s invalidation
queue. Afterwards, the DMA operation can resume.

PCI DeviceIOMMU Hardware

IO
Engine

DMA
Remap

IOTLB

IOPT
Walk

IOPT 2

3a

3b

4

Page Request
Engine

ISR of
IOMMU
Driver

Bottom-
half

 Handler

Host OS

5
6

7

8 9

ATS

PRI

1

Dev
TLB

Figure 1. Standard IOPF flow.

In summary, the IOPF detection and delivery workflow
requires both the platform and the device to have hardware
support for ATS and PRI features. Additionally, IOPF process-
ing experiences increased latency due to its interrupt-based
model and the long distances involved.

2.2 CSP Efforts in I/O SLOs
At our data centers, Quality of Service (QoS) measures re-
lated to consistency and stability take precedence over av-
erage performance metrics. For real-time online services
such as gaming, financial transactions, and video live stream-
ing, even a brief and intermittent interruption of just 100
milliseconds can adversely affect the business of customers,
ultimately impacting the reputation and revenue of CSPs.

Therefore, for I/O performance, CSPs have defined various
I/O SLO metrics [12, 43, 53], such as tolerable tail latency
thresholds (e.g., P99.9th), maximum tail latency, minimum in-
stantaneous throughput or I/O operations per second (IOPS),
and packet loss rates. In the production environment, each
server deployed in the fleet is monitored for tail I/O occur-
rences across different time windows (minute, hour, day,
etc.). Violations of I/O SLOs trigger alerts, with stricter SLOs
associated with higher-end products.
To meet I/O SLOs, we have designed and deployed our

own DPUs [55] that maxmize I/O performance by offloading
I/O virtualization from CPU-side software. A DPU is a PCIe
device capable of hardware emulation for potentially thou-
sands of virtual functions (VFs) (such as virtio, NVMe[37],
RDMA [39], etc.). These VFs can be passed through to VMs,
delivering extremely high packets per second (PPS) and IOPS
withminimal latency, while ensuring safety and performance
isolation. Since being deployed, our DPUs have served mil-
lions of customers daily and have become a crucial compo-
nent in the infrastructure of the hyperscale server fleet.

3 Lessons Learned from Supporting IOPF
Under the premise of ensuring QoS, CSPs aim to minimize
costs as much as possible. To control DRAM costs and im-
prove memory utilization, we need to enable IOPF on our
DPUs. This will allow us to overcome the limitations of tradi-
tional device pass-through methods, which require memory
pinning and thus prevent memory overcommitment.
Initially, we explored supporting IOPF through ATS+PRI

in PCIe 4.0 standard. However, due to compatibility and per-
formance issues, we moved away from this conventional
route to develop a novel IOPF framework tailored for IaaS
CSPs. This section presents the challenges CSPs face in mak-
ing hardware compatible with ATS+PRI and the significant
performance impact of IOPF with ATS+PRI enabled.

3.1 Difficulties in Hardware Compatibility
Scarce platform support: Only a small fraction of com-
modity platforms in data centers have IOMMUs that support

543

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

ATS+PRI. We discovered that fewer than 10% of servers in
our fleet support the standard IOPF interface, indicating a
transition to full hardware compatibility will take 5 to 10
years.
High device costs: Our experience indicates that, in the
long term, even after all platforms are upgraded to support
ATS+PRI in the IOMMU, enabling ATS on the device side
in the public cloud still incurs significant costs due to hard-
ware and design complexity. We estimate that achieving an
optimal ATS implementation would increase DPU hardware
costs by at least 20% due to upgrades in hardware circuits.
This would also result in a 15% increase in energy consump-
tion and CO2 emissions, exceeding budget constraints for
DPU deployment. Additionally, the complexity of the design
means that development could take years and face challenges
related to compatibility and debugging across different plat-
forms.
The increased costs and complexity primarily stem from

the demand of DevTLB, which caches AT results to im-
prove the performance of pre-DMA lookups. Specifically,
ATS-enabled devices lacking DevTLB require each pre-DMA
lookup to initiate an ATS request to the IOMMU (② and ④
in Fig 1). This process incurs a penalty of a round-trip PCIe
message at the microsecond level [25, 40] for every DMA.
As a result, DevTLB is necessary to mitigate this issue.

Nevertheless, DevTLB requires expensive SRAM and
power-intensive set-associative lookup, making it difficult to
scale up. This challenge is especially pronounced in public
cloud environments, where large DRAM capacities result in
poor TLB reach and higher TLB miss rates [13]. Worse, as
tenant density [1, 19] and CPU cores increase, DPUs now sup-
port thousands of VFs, each contending for TLB resources.
This heightens the risk of denial-of-service attacks and neces-
sitates complex designs [18, 24, 26, 47] for VF-level isolation,
dynamic TLB provisioning, and multi-level TLBs [6, 27, 54],
significantly increasing device hardware costs.

3.2 Performance Issues of IOPF
Even with ATS+PRI supported, existing IOPF handling pro-
cedure can lead to various performance issues.
High IOPF handling latency: The pre-fault stage of IOPF
incurs significant latency, ranging from tens to hundreds
of microseconds, which is up to three orders of magnitude
greater than that of a CPU page fault. This latency is pri-
marily due to PCIe delays and the asynchronous scheduling
latencies of both the ISR and the bottom half fault handler,
as shown in Fig 2.
Firstly, ISR can be blocked by critical sections (e.g., by

spin_lock_irqsave) or other ISRs, possibly extending the delay
to hundreds of microseconds [20, 42] if the CPU is under
heavy load. Secondly, the scheduling of the bottom-half (such
as workqueues) can further increase the latency by tens to
even hundreds of microseconds. This becomes evident when

~1-30us~2us

PCI

~1us~5-500us

Bottom-halfISR

Fault
Handling

<1us <1us
CPU

Device PCI
Pre-fault Post-fault

#PF exception / VM Exit iret / VM Resume

Figure 2. Breakdown of fault handling for CPU and device.

the host or hypervisor has intensive non-preemptive kernel
workloads, such as page table scanning, page migration, and
swap-out.

P50 P80 P99

102

103

L
a
te

n
c
y
 (

u
s
)

16
23

37

67

223

427idle host workloads

heavy host workloads

Figure 3. Round trip time of IOPF.

To demonstrate IOPF latency in real world, we injected
1,000 sequential IOPFs and measured the round-trip latency
of each IOPF on the device side, under varying host workload
intensities. On the host side, the IOPF ISR schedules a bottom-
half worker. This worker transmits the page fault response
over PCIe without performing additional operations, such
as modifying the page table. Consequently, the round-trip
latency closely matches the cumulative latency of both the
pre-fault and post-fault operations.
Figure 3 illustrates that under minimal host kernel work

intensity, the round-trip latency ranged from 10 to 40 µs
consistently. This latency level, which represents the baseline
latency of the interrupt-based IOPF model, is substantially
longer than that of CPU faults, irrespective of the vendor
or hardware implementation. Furthermore, when the host
was running high-intensity kernel tasks in the background,
such as compression, encryption, and page table scanning,
the 99th percentile latency of IOPF spiked to 427 µs.
This latency is non-negligible, particularly when the la-

tency of the actual fault handler is exceptionally low. This
is evident in scenarios involving minor page faults or pro-
cess swapping that employ high-speed technologies such as
RDMA [14] or CXL [31], which exhibit latencies in the order
of microseconds. For instance, even a few minor faults can
cause a substantial performance slowdown of 2× or more on
Intel IAA accelerators [19].
Queue being blocked during IOPF handling: When a
device encounters an IOPF in a specific I/O queue, it must
pause the processing of that queue until the IOPF is resolved
to ensure the correct ordering of the queue. This can cause
the queue to become blocked and lead to service interrup-
tions for a duration determined by combined fault latency of

544

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

hardware and software. The software latency of a major fault
in our data center varies from 20 to 6,000 µs, depending on
the size of the mapping and which tier of swap media backs
the faulted page. Furthermore, it is common for multiple
CPU threads to share a single device or queue, leading to a
one-to-many blocking scenario.

Fig 4 examines the throughput drop of realistic workloads
in one minute under varying IOPF rates and latencies that
might occur at CSPs. We observed that the impact of queue
blocking on storage workloads is fundamentally different
from that on network workloads.
For block devices, queue blocking causes a linear slow-

down in average throughput that is proportional to the fault
rate and latency. It also causes the unprocessed I/O requests
in the queue to become long-tail requests. For NIC devices,
queue blocking prevents the device from consuming the re-
ceive (RX) buffers posted by the driver for incoming packets.
If the device stores these packets in its limited RX cache,
which is shared among all queues, it can lead to RX cache
overflow, impacting all other RX queues. A straightforward
yet detrimental approach involves dropping packets that ar-
rive at the faulted queue. This method relies on the sender’s
protocol, such as TCP, to retransmit the dropped packets
after a timeout period. Previous solutions, such as backup
rings [22], require modifications to the NIC driver, making
them unsuitable for public IaaS environments.
Therefore, TCP-based workloads in IaaS clouds are par-

ticularly sensitive to IOPF, as frequent packet drops activate
flow control on the sender’s side [22], leading to a reduced
transfer rate or even throttled for hundreds of milliseconds.
We observed that the reduction in throughput or IOPS is in-
fluenced far more by the fault rate than by fault latency. For
example, both multi-threaded Redis and Memcached experi-
enced around a 15% drop in throughput when the IOPF rate
reached two per second. In contrast, when these workloads
encounter CPU faults in one of the working threads under
the same fault conditions, there is no throughput degradation
because the remaining threads collectively saturate the band-
width of the VF. Additionally, we observed that regardless of
the software latency, the end-to-end tail latency consistently
hovered around the magic number of 200 ms. We speculate
that this latency corresponds to the CentOS TCP stack’s de-
fault retransmission timeout. The throughput degradation
in iperf-UDP follows a similar pattern to that observed with
block devices, as the UDP protocol is not sensitive to packet
loss.

Resolving the queue blocking issue is challenging because
it requires modifications to both the device interface and its
underlying semantics to enable comprehensive out-of-order
processing.
Scalability and isolation challenges: First, scalability is
an issue as the IOPF handler usually uses a single interrupt
vector. Software latency, defined as the time from when

1 5 10 20 50

fault latency (ms)

0

20

40

B
a
n
d
w

id
th

 (
M

iB
/s

)

FIO random read (1 thread,
mode=sync, depth=1, bs=4KB)

1 5 10 20 50

fault latency (ms)

0

1000

2000

3000

T
h
ro

u
g
h
p
u
t

(M
b
it

s
/s

)

iperf UDP (1 thread,
packet size=1024B)

1 5 10 20 50

fault latency (ms)

0

1000

2000

3000

T
h
ro

u
g
h
p
u
t

(M
b
it

s
/s

) iperf TCP (1 thread, size=1024B)

1 5 10 20 50

fault latency (ms)

0K

100K

200K

R
e
q
u
e
s
ts

/s
e
c

Nginx (2 threads, 200 connections)

1 5 10 20 50

fault latency (ms)

0K

50K

100K

R
P
S
 o

f
G

E
T

Redis (16 threads, GET size=256B)

1 5 10 20 50

fault latency (ms)

0

50

100

150

N
e
t

R
a
te

 (
M

B
/s

)

Memcached (8 threads, keysize=64B)

fault rate:

0 (baseline) 1 2 5 10

Figure 4. Throughput impact under varying IOPF rate and
latency. Hardware configuration is shown in Table 1.

the IOPF’s ISR executes to its complete processing by the
memory subsystem, can significantly increase whenmultiple
devices generate IOPFs simultaneously if processed by a
single worker. Our evaluation shows that with one IOPF
thread, software latency can rise up to 10.4× as the number
of VFs increases to 16.
Second, cross-tenant isolation is critical. Enterprise ten-

ants are allocated dedicated physical CPUs for consistent
performance. A malicious tenant could launch performance
or denial-of-service attacks if their IOPF worker operates on
a CPU assigned to another tenant.

3.3 Impact of IOPF on I/O SLOs
In the production environment, intermittent I/O jitter in
the infrastructure (e.g., network congestion) can cause long-
tail issues and packet loss, which impacts I/O SLO metrics.
CSPs spend significant resources to keep I/O jitter within
a tolerable level. However, with the performance issues of
the current IOPF architecture, IOPFs can worsen I/O jitter,
especially during rapid successive bursts, which can directly
lead to I/O SLO violations.
Fig 5 shows that queue blocking combined with packet

dropping can result in a network interruption of approxi-
mately 300 ms by only a single IOPF in the NIC’s RX queue,
even if the fault latency is 5 ms in software. This occurs
because the sender’s network stack activates flow control
mechanisms that pause transmission. Even a few page faults
on the NIC within a minute can result in a violation of SLO

545

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

metrics concerning minimum throughput and packet drop
rates.

0 1 2 3 4 5

Time (second)

0

5

10

G
b
p
s

baseline Single IOPF, fault latency = 5ms

Figure 5. Interruption of throughput in iperf3 caused by a
single IOPF with a fixed fault latency of 5 ms.

Fig 6 shows the significant changes in 99.9th and 99.99th
pecentile latency of a block device following the injection
of IOPF with a fixed latency of 5ms at various IOPF rates.
We injected burst IOPFs at rates of 1 and 10 per second
to simulate moderate and intensive burst IOPF scenarios,
respectively. Observations:

• P99.9th latency: At the IOPF rate of 1/s, the latency
increase is only noticeable when the block size is 2MB.
This is because larger block requests have lower base-
line IOPS. At the IOPF rate of 10/s, an increase in the
latency is evident across all block sizes by 2-11×.

• P99.99th latency: The impact is evident across all block
sizes at both IOPF rates.

512B 4KB 256KB 2MB

Block Size

103

104

L
a
te

n
c
y
 (

u
s
) P99.9th tail latency

512B 4KB 256KB 2MB

Block Size

103

104

P99.99th tail latency

baseline fault_rate = 1/s fault_rate = 10/s

Figure 6. FIO tail latency affected by burst IOPFs over a
duration of 1 minute. Hardware configuration is as Table 1.

3.4 IOPF Rate in Production
In our early production environment years ago, we had hun-
dreds of servers (each with 200GB to 1TB of physical DRAM)
running with a 10%-15% memory overcommitment for a few
weeks with hardware IOPF. The memory reclaim ratio of
each VM varies from 0% to 50%, balanced by the pressure
stall information (PSI) [50] algorithm in Linux across VMs
on the same server. The number of IOPF for a VM depends
on several factors: 1) the VM’s memory reclaim ratio and 2)
the VM’s I/O load and working set.
We selected 800 random VMs and illustrated the IOPF

counts for both NIC and block devices using a cumulative
distribution function (CDF), as depicted in Fig 7. Some key
observations:

100 101 102 103 104

Daily IOPF

25%

50%

75%

100%

A
c
c
u
m

u
la

te
d
 %

Block devices

NIC devices

Figure 7. CDF of daily IOPF counts per device from 800
randomly selected VMs.

• The daily average and 99th percentile IOPF counts are
38 and 576 for NIC devices, and 66 and 983 for block
devices, respectively.

• Within one day, over 10% of VMs encounter at least
one burst in IOPF (more than 5 IOPF within 1 second).
The peak instantaneous IOPF rate varies between 23
and 40 per second.

This reflects the baseline IOPF rate in production following
the implementation of hardware IOPF and memory overcom-
mitment. Under such an IOPF rate, we received warnings
of SLO violation from both NIC and block devices in pro-
duction, primarily originating from VMs with higher IOPF
(e.g., P99th). The NIC devices were more severely affected by
instantaneous throughput drops due to single IOPFs occur-
ring with higher fault latency resulting from swaps to SSDs.
Issues with block devices primarily arose from long-tail I/O
counts exceeding minute-level P99.9th/P99.99th thresholds
caused by bursts of I/O workload and IOPFs. To address I/O
SLO violations, we had to lower the overcommitment ratio
to below 5%.

3.5 Summary
Our lessons demonstrated that: 1) The tight coupling of AT
capabilities and pre-DMA lookup is the root cause of the
incompatibility on existing CPU platforms and the high De-
vTLB costs on the device side. 2) The frequency of IOPFs
directly determines the severity of SLO violations, given
the high latency inherent in the entrenched interrupt-based
IOPF handling model. We concluded that, over the long term,
the current standard IOPF solution falls significantly short
of meeting our requirements in terms of compatibility, cost,
and performance. To this end, we explored innovative ap-
proaches to redesign an optimized hardware IOPF solution.

4 Exploring More Efficient IOPF
We established two primary objectives for remodeling an op-
timized IOPF. First, we aim to create a platform-independent
IOPF system that can be implemented across all existing plat-
forms at minimal device cost. Second, we seek to minimize
the impact of IOPF on I/O SLOs.

546

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

4.1 Decouple AT from Pre-DMA Lookup
The primary challenge in decoupling address translation
from pre-DMA lookups lies in detecting IOPFs without ob-
taining AT results through IOPT walks. A fact that is often
overlooked is that pre-DMA lookup requires only the page
attributes in the PTE. Page attributes occupy a small fraction
of the IOPT, merely 2 bits per leaf entry, which are present
bit (bit 0 on x86) and R/W permission bit (bit 1 on x86). If
we can extract only the page attributes from the IOPT and
offload them to the device, then it is possible we can employ
a simple and cost-effective mechanism to replace ATS for
pre-DMA lookup.

An I/O address space (IOAS) has arbitrary mapping sizes
(1GB/2MB/4KB). Regardless of the actual mapping size, we
can divide the IOAS into 4KB blocks, which is the smallest
page size on x86. We then compile a static table for this IOAS
where each page attribute entry (PAE) stores the attribute
bits of the corresponding 4KB block, indexed by page number
(VA[12:63]). Each PAE consists of only 2 bits: a presence bit
and a read/write permission bit, encompassing three valid
states: read-write (RW), read-only (RO), and unmapped. We
refer to this data structure as Page Attribute Bitmap (PA-
BITMAP).

As illustrated in Fig 8, a 4KB mapped page has one unique
PAE in the PA-BITMAP. A 2MB mapped page has 512 con-
secutive PAEs associated with it, all of the same value. 1GB
mappings are similar. Assuming the PA-BITMAP within the
device is perfectly synchronized with the IOPT, the device
can efficiently conduct pre-DMA lookups for I/O virtual
addresses (IOVAs) at 4KB granularity using a very simple
semantic:

Read the PAE from the corresponding PA-BITMAP using
the page number of the IOVA as the index. If the PAE is
unmapped then a page fault needs to be triggered. Similarly
if the PAE is RO and the incoming DMA is a write operation,
a page fault also needs to be triggered.

The total bit capacity of a VM’s PA-BITMAP is:

𝑏𝑖𝑡_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑀𝐴𝑋_𝐼𝑂𝑉𝐴

4𝐾 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑃𝐴𝐸) (1)

1GB of IOVA space requires only 64KB of DRAM for stor-
ing the PA-BITMAP. As an example, a system with a total
guest physical address space of 1TB for all VMs only requires
64MB for PA-BITMAPs, which is a small fraction of the total
DRAM.
Due to the straightforward linear data structure of PA-

BITMAP, performing a pre-DMA lookup at a 4KB granularity
requires just a single memory access. Additionally, it allows
the pre-DMA lookup to be 100% performed locally within
the device, without the need to cross the PCIe boundary.
Although the pre-DMA lookup latency is slightly longer than
that of a fully/set-associative DevTLB during a hit, it offers
a good trade-off in terms of hardware complexity, cost, and

 Unmapped

2MB Page

I/O Address Space (GPA) of VM-A0

On-device PA-BITMAP of VM-A

MAX
IOVA

Index with
Page Number

4K
Page

4K
Page 2MB Page

 512 PAEsPAEPAE 512 PAEs

4K
Page

PAE

 RO RW

PAE[0] PAE[max_pfn]

Figure 8. Concept of PA-BITMAP.
compatibility. Furthermore, the DRAM access latency can be
effectively reduced by utilizing the DPU’s processor cache[7].
Our evaluation shows that the impact of pre-DMA lookup
based on PA-BITMAP on base performance is negligible,
because: 1) I/O operations typically have long round-trip
times, ranging from tens to thousands of microseconds and
2) I/O devices leverage pipelining and parallelism in the
backend engine to maximize throughput while minimizing
the effects of minor latency variations.

The second challenge is to remove the dependency on PRI
for reporting faults. Our solution can be straightforward yet
effective: the DPU provides a dedicated PCI function that
supports delivering IOPFs from all its VFs. This approach
eliminates the need for any modifications to the existing VFs
or their device drivers. A driver in the host interfaces with
this PCI function, facilitating page request interactions via
MSI interrupts, thus eliminating the dependency on IOMMU
PRI capability.

4.2 Reducing IOPF Rate for Generic Workloads
Frequent IOPFs pose significant performance impacts on
generic workloads, especially networking, and optimizing
fault latency is less effective (§3.2). The IOMMU typically
uses batching to amortize the overhead among multiple PRI
requests but only has limited effect [24].
We propose that a more efficient approach to mitigate

the impact of IOPFs is to reduce their frequency rather than
their latency. This requires system software to track the
DMA footprint and extract characteristics through software
to find out memory regions or pages with a high tendency for
IOPFs. Subsequently, dynamic pin protection can be applied
to these pages to reduce the probability of IOPFs occurring.
We will describe the analysis process, insights, and influence
on the final design 3.

4.2.1 IO footprint and temporal locality. To optimize
page pinning and minimize page faults, a promising strategy
involves understanding the characteristics of the I/O foot-
print and identifying pages that are more likely to experience
3In this paper, we focus on generic network and storage workloads. Special
workloads such as RDMA and graphics are out of scope.

547

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

page faults. While from the CPU’s perspective, this task is
complicated by variable and vast workload patterns, I/O de-
vices behave more predictably. Previous work [45] indicates
that most devices demonstrate strong temporal locality in
I/O access in current operating systems with proper driver
support. Typically, DMA accesses are confined to a small,
consistent portion of VM memory (e.g., under 5%) over an
hour, with deviations mainly occurring during significant
VM memory contention.

This supports our design direction. If this rule applies to
both NIC and block devices in production, we can track I/O
footprints and manage recently accessed DMA buffers in an
LRU set with pinning, potentially preventing most IOPFs. We
conducted a study in our production server fleets, selecting
2000 VMs and implementing DMA tracking software in the
DPUs to log detailed DMA access data, including timestamps,
BDF, DMA addresses, sizes, and device types. Logs were
collected for 30 minutes, and we calculated the percentage of
2MB pages accessed by theNIC and block devices. The results
are shown in Fig 9, revealing distinct differences between
the two.

P50 P90 P95 P98
0%

20%

40%

60%

80%

100%

D
M

A
 a

c
c
e
s
s
e
d
 m

e
m

o
ry

2.36% 3.63% 3.86%
12.39%

24.76%

43.68%

54.81%

68.89%

NIC

Block

(a) Percentile footprint of NIC
and block devices on 2000 VMs

0.0% 20.0% 40.0%
DMA accessed memory

0

250

500

750

1000

Av
er

ag
e

PP
S

/ I
OP

S NIC
Block

(b) Devices of 20 VMs from a
server. Each marker is a device

Figure 9. I/O footprints from NIC and block devices in 30
minutes.

O1: The I/O footprint of most NIC devices is quite small, with
the DMA buffer being less than 4% at the 95th percentile
over a 30-minute window, and it is independent of workload
intensity. A larger footprint (12.39%) is observed only at the
98th percentile, but it is still much smaller compared to block
devices.
O2: Block devices produce large footprints, which we specu-
late is caused by the page cache. In Linux, new page caches
are allocated in the kernel for newly accessed blocks dur-
ing file read and write operations, and DMA is performed
directly on these page caches to reduce buffer copying.

Moreover, over the course of weeks, the average footprint
grows to 17% for NICs and 53% for block devices, respec-
tively, indicating a gradual shift in the footprints. It can be
speculated that if DMA buffers were to be pinned equally,
the majority of the system memory would become pinned
over time, an outcome that is unacceptable. A straightfor-
ward solution can employ a simple LRU set of bounded size
(e.g., 5% of VM memory) for each VM, to track and pin the

most recently used DMA - but it lacks isolation. For example,
block devices have large footprints, causing the DMA buffers
of NIC devices to be frequently evicted from the same LRU
set. This leads to suboptimal IOPF protection for NIC devices,
even though they have a small footprint.

Existing CPUs failed to meet the demand for optimal I/O
footprint tracking. The latest Intel IOMMU (Sapphire Rapids)
introduces the second-level access and dirty (SLAD) feature
[16], which is akin to the CPU’s approach of managing A/D
bits in page tables. However, it is not without its shortcom-
ings: 1) The IOPT is shared by all devices within the same
VM, and the set of A/D bits in the IOPT entry does not in-
dicate which specific device accessed the page and 2) the
periodic scanning of IOPT in the software is inaccurate, po-
tentially leading to the loss of details regarding temporal
locality and 3) scanning page tables, particularly with large
physical memory, incurs significant overhead and can im-
pact I/O performance due to IOTLB shootdowns. Modern
CPUs provide event-basedmechanisms such as precise event-
based sampling (PEBS) and page modification logging (PML)
for software [21, 31] to optimize memory access tracking.
However, they cannot be used for tracking DMA accesses.

Thus, our first key insight is: tracking I/O footprints needs
to differentiate between devices and implement protection
strategies on a per-device basis with low overhead. To this
end, we developed a fine-grained I/O Page Access Logging
(IO-PAL) engine (§5.3) within a DPU.

4.2.2 Simulated IOPF. This section conducts an in-depth
analysis of the differences between NIC and block devices
to evaluate the efficiency of using per-device LRU sets in
reducing IOPF.

To quantitively study the effectiveness of a pinning strat-
egy, we define IOPFReduction to Pin proportionRatio (RPR)–
A metric to reflect the efficiency of the protection policy, the
higher the better.

𝑅𝑃𝑅 =
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑜 𝑓 _𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑖𝑜𝑝 𝑓
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑜 𝑓 _𝑝𝑖𝑛𝑛𝑒𝑑_𝑝𝑎𝑔𝑒𝑠 (2)

For example, achieving a 50% IOPF reduction by pinning
10% of a VM’s memory results in an RPR of 5. Achieving
a 30% IOPF reduction by pinning 30% of a VM’s memory
results in a worse RPR of 1.
We extract temporal locality-related characteristics for

each 2MB page, including interval of consecutive accesses,
and access count, from the data collected in §4.2.1. We use
the access interval of each page to form a distribution of
simulated IOPFs. The method to simulate IOPF is as follows:
if two consecutive accesses of a page exceed a certain thresh-
old, it is considered that an IOPF has likely occurred. This
threshold depends on the reclamation policy and the swap-
out ratio in the memory subsystem. In this simulation, we
set the threshold at 300 seconds. Despite imprecision, due to
the exclusion of other factors such as CPU access, memory

548

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

0 600 1200
Time (second)

0x00000

0xF8000

GF
N

(a) Raw footprints

0 600 1200
Time (second)

0.0%

25.0%

50.0%

75.0%

100.0%

Pe
rc

en
ta

ge

(b) Percentage of 2M pages ac-
cessed by IO

0 100 200
Access count in 30 minutes

100

101

102

103

Nu
m

be
r o

f s
im

-IO
PF

0.0

0.5

1.0

CD
F

CDF

(c) Histogram of simulated IOPF
bucketed by access count

0 100 200
Access count in 30 minutes

100

101

102

103

Nu
m

be
r o

f p
ag

es

0.0

0.5

1.0

CD
F

CDF

(d) Number of pages bucketed by
access count

Figure 10. I/O locality analysis for a typical block device over 30 minutes. The memory accessed by DMA increases gradually
without bounds to approximately 28% of the VM’s memory. 87.3% of pages are accessed fewer than 10 times, contributing to
approximately 94.3% of simulated IOPFs. Meanwhile, 70.3% of the pages are accessed more than twice.

0 600 1200
Time (second)

0x00000

0xF8000

GF
N

(a) Raw footprints

0 600 1200
Time (second)

0.0%

25.0%

50.0%

75.0%

100.0%

Pe
rc

en
ta

ge

(b) Percentage of 2M pages ac-
cessed by IO

0 200 400 600 800
Access count in 30 minutes

100

101

102

103

Nu
m

be
r o

f s
im

-IO
PF

0.0

0.5

1.0

CD
F

CDF

(c) Histogram of simulated IOPF
bucketed by access count

0 200 400 600 800
Access count in 30 minutes

100

101

102

103

Nu
m

be
r o

f p
ag

es

0.0

0.5

1.0

CD
F

CDF

(d) Number of pages bucketed by
access count

Figure 11. I/O locality analysis for a typical NIC device over 30 minutes. The memory accessed by DMA is within a clearly
bounded range (3% of VM’s memory). The number of simulated IOPFs is significantly lower than that of the block device.

manager’s LRU policy/ordering, and the actual reclaim ratio,
the simulated count of IOPFs is still a good indicator of the
likelihood of IOPFs occurring.

Fig 10 is from a typical block device. Observations:
O3: For block devices, most pages accessed by DMA exhibit
weak temporal locality, with more than 83% of pages ac-
cessed fewer than 10 times in 30 minutes (Fig 10d). Once
a page is accessed by a block device, there’s a high proba-
bility (>70%) it will be accessed again by the same device
in the next 30 minutes. Simulated IOPFs mostly occur on
the pages (Fig 10c) of low access count, with pages accessed
fewer than 50 times contribute to nearly all of the simulated
IOPFs. Since a block device has an unbounded and growing
DMA footprint (Fig 10b), frequent eviction occurs at the tail
of the LRU set. Nevertheless, the evicted pages, with longer
recency, are more prone to page faults than the pages at the
head of the LRU set. This necessitates an expansion of the
LRU capacity (along with the number of pinned pages) to
achieve a meaningful reduction in IOPFs, which may impact
the memory utilization rate and result in a low RPR score.
§7.3 demonstrates that the RPR of simple LRU set on block
devices falls within a range of 1.2 to 1.5.

By comparison, Fig 11 is from a typical NIC device:
O4: For most NIC devices, DMA pages are bound to 2%-5%
of VM memory (Fig 11b). By pinning these pages with an
LRU strategy, we can achieve an IOPF reduction ratio close
to 100%, with the exception of IOPFs that occur upon the
first access to a page. Consequently, the estimated RPR could
be roughly between 20 and 50.

Our second insight from further analysing the temporal
locality is: simple LRU works poorly for block devices as
protection policy, but can serve NIC devices well. Whether
for NICs or block devices, a better policy is needed (§6.2) to
minimize the IOPF rate while reducing pinned memory.
5 VPRI Hardware Design
Based on our analysis and insights, we developed a novel
IOPF system on the DPU, termed VPRI, as illustrated in Fig 12.
VPRI is a physical function on the DPU, offering multiple vir-
tio rings that are managed by drivers in the hypervisor/host
environment. The key features of VPRI include:
1. PA-BITMAP offloading: The DPU stores page attributes
for all IOVAs in its DRAM, synchronized with the host IOPT
via an event message queue (EMQ). This facilitates pre-DMA
lookups, removing the reliance on the IOMMU ATS.
2. Sideband IOPF interface: The DPU transmits IOPF mes-
sages via a shared page fault queue (PFQ) for all VFs within
the same DPU, removing the reliance on the IOMMU PRI.
3. I/O Page Access Logging (IO-PAL): Offers the hypervi-
sor fine-grained tracking capabilities and minimal overhead
for the I/O footprint of all VFs within the DPU.

5.1 PA-BITMAP Synchronization
In DPU design, equipping DRAM to expand storage and
compensate for limited BRAM/SRAM resources is com-
mon [49]. DDR DRAM has higher latency (∼50-100ns) than
BRAM/SRAM but offers much larger space in GBs.We placed
the PA-BITMAP in the DPU’s DRAM because its simple data
structure (§4.1) allows for a single DRAM access per 4K DMA

549

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

range during pre-DMA lookups. The evaluation shows that
such bitmap lookup latency has a negligible impact on base
performance across all configurations of our DPU models,
which operate at a maximum line rate of 50-200 Gbps.

To fully synchronize the IOPTs with PA-BITMAPs, the
following requirements need to be satisfied:
R1: The creation/destruction of a PA-BITMAP within the
device should be synchronized with the creation/destruction
of the VM and the corresponding IOPT.
R2: When the IOPT mapping changes, the corresponding
PAEs in the device’s PA-BITMAPmust be updated coherently
and atomically.
R3: Before a DMA, the IO engine atomically looks up in
the PA-BITMAP to determine the presence of the memory
region to be accessed.

IOPT
of VM-n

PA-BITMAPs
in DRAM

VPRI Function

Memory Manager

VFIO/IOMMU
Driver

VPRI Driver

Domains
(VM/App)

VFs
(NIC/Storage)

PA manager IO Engine

Device Emulation

Hardware Blocks

DPU

Pass
ThroughIOPF

Service
Layer

Page
Attributes

Coherent
Offloading

Server

Update

Lookup

map/unmap

Delegate
IOPF

: PAE synchronization path : IOPF path

IOPTs in
host’s DRAM

data path

Guest

Host

IO-PAL
Events

map
unmap

Page Fault

IOVA
translation

Update

Figure 12. VPRI system overview.

We use QEMU-KVM as an example for synchronization.
In virtualization, a VM involves four sets of page tables that
need to be synchronized:

• The host page table of the QEMU process, responsible
for HVA to HPA translation.

• The EPT, which is responsible for GPA to HPA trans-
lation in non-root mode.

• The IOPT of the IOMMU, responsible for the IOVA
(GPA) to HPA translation of I/O operations.

• Device specific attributes, which in the case of ATS
would be the DevTLB, and in the case of VPRI, would
be the PA-BITMAP.

To properly manage race conditions during a page unmap
operation involving inflight I/O, the hypervisor must invali-
date the page table entries in a specific sequence before safely

reclaiming the memory. Specifically, the VPRI driver must
invalidate the corresponding bit in the PA-BITMAP before
it proceeds to unmap the IOPT. This is done by issuing a syn-
chronized bitmap invalidation command to the DPU through
the EMQ of the VPRI function. This command will invalidate
the corresponding PAEs (1 for a 4KB page and 512 for a 2MB
page), ensuring that the device cannot access the memory
that is in the process of being reclaimed. Before the device
can respond, the PA manager in the DPU must atomically
set the corresponding PAEs to the unmapped state, and any
(including inflight) I/O requests associated with this page
will trigger an IOPF, thereby being synchronized by the host
software. Then the hypervisor can safely unmap IOPT and
reclaim the physical page.
5.2 IOPF Interface
When the backend I/O engine needs to report a page fault
from a queue, it generates a page request message. This mes-
sage contains metadata related to the identification of the
faulted queue/device and the fault address. The message is
placed in the PFQ of the VPRI device, prompting an interrupt
to the virtual machine monitor (VMM) via the VPRI device.
The I/O queue that encountered the fault is paused to avoid
out-of-order I/O processing, until the I/O engine gets a page
response from the driver. The interface and semantics of VFs
do not need to be changed, ensuring that IOPF remains trans-
parent to VMs and device drivers. The way VPRI completes
an IOPF is similar to the standard PRI of IOMMU, but it is
more efficient and most importantly, no longer depends on
the platform IOMMU.

5.3 IO-PAL
IO-PAL operates through a dedicated virtio-ring on the
VPRI device. Only when the hypervisor needs to receive
PAL events does it batch and submit a set of descriptors
to the available ring. The device reduces CPU utilization
through batch processing and interrupt aggregation. Specifi-
cally, the device asynchronously fills these descriptors with
PAL events and moves them to the used ring. When the avail-
able descriptors in the ring are nearly exhausted, an interrupt
is triggered, prompting the driver to process the PAL events
in bulk and refill the descriptors. Since IO-PAL can tolerate
event loss in most cases (only affecting the accuracy of I/O
footprint tracking), the driver can regulate the rate at which
descriptors are added to the available ring to manage CPU
consumption. If the available ring’s descriptors are empty,
the DPU discards the IO-PAL events.

6 VPRI Software Design
To ensure that the IOPF core processing functions in the
software can be compatible with different IOPF hardware
simultaneously, we have abstracted the software portion of
the IOPF process into a kernel module called IOPF service

550

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

layer to specifically handle scheduling and DMA protection,
independent of any IOPF hardware. Fig 13 shows the design.

Memory Subsystem

- Device list
- vCPU list
- cgroup
- Post IRQ affinity

Domain(VM) meta

Adaptive
DMA

Protector

VFIO + KVM

vCPU-affined
IOPF Scheduler

VPRI IOMMU
PRI

Virtualization Stack Page Request Hardwares

LookupUpdate IOPFs

Dynamic DMA Protection

IOPF
Service
Layer

IO-PAL
Events

IOPF thread 1
IOPF thread 2

...

per-CPU
IOPF workers

Schedule

Handle page fault

Figure 13. Virtualization IOPF software overview.

6.1 vCPU-affined IOPF Scheduling
The vCPU-affined scheduler in the IOPF service layer miti-
gates scalability and isolation issue of IOPF by taking advan-
tage of parallelism and out-of-order processing for IOPFs. It
supports both VPRI-based VFs and devices that utilize the
standard IOMMU PRI. When a hardware IOPF request (ei-
ther from VPRI or IOMMU) is dispatched to the IOPF service
layer, the vCPU-affined scheduler picks the most suitable
physical core to schedule the bottom-half IOPF thread.
Firstly, it identifies the set of physical cores owned by

the tenant that triggered the IOPF, ensuring that this IOPF
does not interrupt the vCPUs of other tenants. Secondly, it
attempts to identify the physical CPU on which the faulted
device registers its MSI interrupt using the IOMMU post-
interrupt (PI) descriptor [8]. For polling mode devices that
do not register interrupts, the scheduler selects a physical
core from the set based on the current CPU load or employs a
round-robin mechanism when the CPU loads are evenly dis-
tributed. Finally, once a physical core is chosen, the scheduler
initiates a VM-Exit by sending an inter-processor interrupt
to this core, prompting it to execute the bottom half of the
IOPF handling.

6.2 Adaptive DMA Protector
To effectively reduce the IOPF rate while minimizing pinned
memory overhead (§4.2), we designed a heuristic LRU policy
called the adaptive DMA protector (ADP).
The concept behind ADP is to exploit temporal locality

and to more rigorously reduce the duration for which a page

is pinned, rather than pinning each page equally within the
LRU set. With simple LRU, when a memory page is accessed,
its page metadata moves to the most recently used position
in the LRU set and is pinned immediately. However, it should
not be immediately pinned, because the memory subsystem
will also be aware of this access (by CPU) during the page
table (EPT in virtualization) scan and will treat it as a hot
page. Only if this page is not accessed again by DMA after a
prolonged interval will the memory subsystem be likely to
reclaim it. Thus, we only pin the page if the interval since
its last access surpasses a specific threshold. This filters out
pages that do not need to be pinned at the moment, thereby
reducing the number of pinned pages.
Based on this heuristic policy, we designed a filtering-

based dual LRU policy that adapts to both NIC and block
devices. The design of ADP is two-fold, as shown by Fig 14:
1. Each device has its own protection domain. When IO

access logs are received, the software directs them to the
corresponding protection domain of the device, using the
device’s BDF as the routing indicator.

2. Each protection domain has two doubly-linked LRU lists,
the active block and inactive block, to store pages with short
recency (or access interval) and long recency respectively.
Only pages in the inactive block are pinned to reduce the
number of pinned pages.

Active Block

P P

Inactive Block

Promote (pin)
upon evict/scan

evict: drop

DMA access
logs from
IO-PAL

P P

Per-device Protection Domains

Demote (unpin)
upon access

Device X

Figure 14. Adaptive DMA Protector.

When a device accesses a (2MB) page for the first time,
ADP creates metadata for it and stores it in the active block of
the corresponding device’s protection domain. This metadata
records the last access timestamp and the IOVA page number.
The active block can hold up to 30% of the VM’s total memory,
while the inactive block allows up to 5% of pages to be pinned
per device. Metadata in each block is sorted by the last access
interval from shortest to longest.

A page can be promoted from active block to inactive block
in two ways: 1) when the active block evicts a page from the
tail when it overflows or 2) when the interval since the last
access to the page exceeds the threshold determined by the
promotion daemon thread. To reduce scanning overhead, the
promotion thread scans in reverse every 20 seconds within

551

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

each protection domain, starting from the tail, and stops
when it encounters a page metadata entry with a last access
interval shorter than the threshold. The threshold reflects
the reclaim policy in the memory subsystem; we set it to 180
seconds empirically. Furthermore, if an IO-PAL event occurs
for a page whose metadata is stored in the inactive block,
it indicates that the page is transitioning from a cold state
to a hot state. The memory subsystem will recognize this
change and will no longer require protective measures for
that page. Consequently, the corresponding metadata will
be demoted to the active block after a delay of 30 seconds
to compensate for the delay of the page table scan in the
memory subsystem.

ADP is orthogonal to the LRU/MGLRU in the memory sub-
system, yet highly efficient in guiding the memory subsys-
tem’s swap policy to avoid reclaiming pages with high risk
of causing IOPF. Additionally, this isolation helps to prevent
the memory subsystem from becoming overly complicated,
and maintains its agnosticism towards I/O semantics.

7 Evaluation
In this section, we will demonstrate that VPRI effectively
addresses the aforementioned challenges of IOPF by quanti-
tatively answering the following questions.
Q1: Does the low-cost PA-BITMAP mechanism pose any
negative performance impact on the critical data path? (§7.1)
Q2: How critical is the scalability issue of IOPF? Does vCPU-
affined scheduling effectively address the scaling challenges
associated with concurrent IOPFs? (§7.2)
Q3: Is ADP able to significantly reduce IOPFs to alleviate
performance issues with a negligible pinning tax? (§7.3)
Q4. In production environments, does VPRI effectively mini-
mize the impact on SLOs within an acceptable range? (§7.4)
The hardware configurations are shown in Table 1. All

VFs are on the same DPU and operate in pass-through mode.
Type Hardware Configuration
Host Intel(R) Xeon(R) CPU Platinum 8269CY

CPU: 52 cores/104 threads@2.50GHz in 2 sockets
512GB DRAM, 1TB SSD

DPU Connection: PCIe GEN3, 8 lanes
Device emulation: up to 2300 virtio-net, virtio-blk VFs

Max physical network bandwidth: 200 Gb/s
VM 4 vCPUs, 8GB RAM

CentOS Linux release 7.9.2009
NIC device: dual queue virtio-net x1

10Gb/s max throughput, 190,000 max PPS
Block device: virtio-blk x1

400MB/s max throughput, 26800 max IOPS
Table 1. Evaluation configuration.

7.1 PA-BITMAP Micro-benchmark
Table 2 shows the lookup and update performance of PA-
BITMAP. The bitmap lookup in the DPU resides on the criti-
cal path and can potentially impact baseline I/O performance.

In this experiment, we disabled the DPU’s caching during
pre-DMA lookup operations to assess the worst-case impact
on baseline I/O performance. Measurements indicate that
the lookup time ranges between 50-100 ns. We tested I/O-
intensive benchmarks listed in Fig 4 on 50-200 Gbps DPU
models with varying packet sizes, thread counts, and I/O
depths and found no differences in maximum throughput,
PPS, or IOPS metrics after introducing bitmap lookup. Only a
negligible difference of less than 0.1% was casually observed
with smaller packet size.

Metric On-device lookup (ns) Host update (ns)
Average 69 1,742
P99th 92 2,341
Table 2. Latency of PA-BITMAP operations.

The results remained consistent even after we manually
injected an additional 100 ns latency into the PA-BITMAP
lookup engine. This demonstrates that the pre-DMA lookup
based on PA-BITMAP has a negligible impact on the I/O
pipeline, primarily due to the longer I/O round-trip times
and the parallelism inherent in the device (§4.1).

The end-to-end bitmap update from the host takes approx-
imately 2 µs, primarily due to PCIe latency. This latency is
factored into the unmap/invalidation phase of the reclaim
procedure, which is not on the critical path. Similarly, the
standard ATS+PRI also incurs PCIe overhead for DevTLB
invalidation. In the IOPF path, the device updates the bitmap
automatically upon receiving a page fault response from the
software, eliminating the need for the software to explicitly
update it.

7.2 vCPU-affined Scheduling

1 2 4 8 16
Number of VMs

102

103

104

105

A
v
g
 L

a
te

n
c
y
 (

u
s
)

5028 5031 5736 6015
7287

5031 5137 6037 6606

26687

5034 5315 6229
7723

540481 iopf/s 5 iopf/s 10 iopf/s

(a) Serialized IOPF scheduling

1 2 4 8 16
Number of VMs

4900

5000

5100

A
v
g
 L

a
te

n
c
y
 (

u
s
)

1 iopf/s 5 iopf/s 10 iopf/s

(b) vCPU-affined IOPF scheduling

Figure 15. Concurrent IOPF service latency.

552

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

To demonstrate IOPF’s scaling issue, we launched varying
numbers of VMs coexisting on the compute node. Each VM
was injected with page faults by the hypervisor in parallel at
different rates, causing the I/O engine to generate concurrent
IOPFs via the VPRI-PCI device. We set the page fault latency
to 5,000 µs on the software side to match the tail case swap
latency in our production environment. Fig 15a illustrates
the average latency when all IOPFs are queued in a single-
threaded IOPF worker, showing a significant 10.4× increase
in latency as the fault rate reaches 10 per second with 16
VMs. Conversely, Fig 15b demonstrates that when vCPU-
affined IOPF scheduling (§6.1) is enabled, latency remains
consistently stable across all fault rates. Moreover, it ensures
that the IOPF thread is isolated within the tenant’s CPU set.

7.3 IOPF Reduction and Pinned Memory
We create a synthetic environment with a mixture of I/O-
intensive workloads to evaluate the effect of ADP on both
IOPF reduction and the percentage of pinned memory in this
experiment. We also test a simple per-device LRU strategy
with a static pin ratio of 10% to compare with ADP. The
synthetic environment is as follows:

• 14 VMs, each with memory sizes randomly ranging
from 8 to 64 GB and assigned to a specific workload.

• We selected a diverse range of in-house workloads
encompassing data analytics, caching, serving, graph
analytics, media processing, streaming, web search,
and web serving. Of the 14 VMs, 4 are assigned to
networking-intensive workloads and 10 are assigned
to storage-intensive workloads.

• We test three overall memory overcommit ratios: 10%,
20%, and 30%. The reclaim ratio for each VM is dynam-
ically adjusted from 0% to 50% to match the production
environment.

• All VMs run concurrently for one hour as a round of
reproducible testing.

• After each round, all VMs are recreated to clear any
residual state.

This evaluation uses the total IOPF numbers from all NICs
and block devices under varying overcommit ratios without
any pinning as baseline. The workload intensity is set to
80%, higher than typical production environments, to en-
sures each testing round generates significant number of
IOPFs. Although the IOPF distribution and workloads may
not perfectly mirror real-world conditions, this setup pro-
vides valuable insights into IOPF reduction and pin ratios.

Fig 16 shows the IOPF reduction and pinned footprint of
NIC and block devices, respectively. Overall, ADP reduced
IOPFs by 95-97% on NIC devices and by 36-49% on block
devices, with an average pinned memory per VM of approx-
imately 4.3%. Conversely, the simple LRU strategy achieved
similar IOPF reduction on NIC devices but only reduced

10% 20% 30%

Memory overcommit ratio

0

200

400

N
u
m

.
IO

P
F

NIC Devices

10% 20% 30%

Memory overcommit ratio

0

2000

4000

N
u
m

.
IO

P
F

Block Devices

0%

2%

4%

P
in

n
e
d
 %

0%

5%

10%

15%

P
in

n
e
d
 %

IOPF (base) IOPF (LRU) IOPF (ADP) Pin % (LRU) Pin % (ADP)

Figure 16. Number of IOPFs and pinned footprints. The left
Y-axis represents the total IOPFs of all devices in a single test
round, while the right Y-axis indicates the average proportion
of pinned memory in each device.

IOPFs by 12-15% on block devices, with an average pinned
memory per VM reaching around 12%. Regarding the RPR
metric, which reflects pinning efficiency, ADP outperformed
simple LRU by 6.28× on NIC devices and 10.56× on block
devices.

0 10 20 30 40 50 60

Time (minute)

0%

1%

2%

3%

4%

5%

P
ro

p
o
rt

io
n
 o

f
m

e
m

o
ry Active Block (not pinned) Inactive Block (pinned) Pages accessed by DMA

Figure 17. Utilization capacity over 60 minutes for a typical
NIC device in an ADP domain.

Fig 17 is an example of a typical NIC device that show-
cases the changes in capacity for active and inactive blocks
inside an ADP domain over 60 minutes. The fluctuations
in the inactive block reflect the dynamic pin ratio of ADP.
Conversely, with simple LRU, The pin ratio corresponds to
the growth trajectory of the I/O footprints.

7.4 VPRI in Production

NIC avg NIC P99 Block avg Block P99
100

101

102

103

D
a
il
y
 I
O

P
F
 c

o
u
n
t

38

576

66

983

0.28

2.59

32.0

189.0

Baseline

w/ I/O-PAL

Figure 18. Daily IOPF per device of 5000 VMs from produc-
tion with VPRI.

With VPRI’s I/O-PAL feature and ADP in the hypervisor,
we were able to maintain the memory overcommit ratio at
10-15% in our data centers. We collected IOPF data from 5,000
VMs in the production environment and compared it with

553

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

earlier data without I/O-PAL under the same overcommit-
ment ratio, as shown by Fig 18. Notably, the average IOPF
reduction was over 99% on NIC devices and 51% on block
devices, while maintaining an average pinned memory per
VM at 5.2%. After a thorough observation in the production
environment over the course of a year, we have concluded
that the near-elimination of IOPFs on NIC devices and the
significant reduction of IOPFs on block devices, particularly
at the 99th percentile, has resulted in only a minimal increase
in I/O jitters caused by IOPFs. As a result, their impact on I/O
SLO metrics has been reduced to an acceptable level. This
allows the hardware IOPF system to coexist with memory
overcommitment at a profitable ratio without any customer
complaints about I/O issues caused by IOPFs in our data
centers, unlocking even greater potential.

8 Related and Future Work
Tackling static memory pinning. Apart from ATS+PRI,
there has been considerable research focused on avoiding
static memory pinning. Previous studies [23, 39, 52] have
provided IOPF for RDMA NICs using interrupt-based model.
Ivan Tanasic et al. [44] propose an efficient IOPF mechanism
for GPUs that allows code to preempt and restart execution.
IOGuard [9] dedicates a host CPU to enable software-based
IOPFs. Other research, like coIOMMU [28, 46], leverages
cooperative DMA memory tracking for dynamic memory
pinning.
However, IOPF designs specific to RDMA NICs [23, 39],

disaggregated memory systems [15], and GPUs [44] do not
apply to generic block and network devices. The pitfalls
of RDMA-specific IOPF can degrade performance in ex-
isting software systems [11]. GPU-specific IOPF relies on
costly on-device MMUs and TLBs. IOGuard [9] uses valuable
CPU resources to handle periodic IOPFs. Software-based
dynamic memory pinning [28, 46, 48] is not transparent to
VMs. In contrast, VPRI enables platform-independent, high-
performance, and cost-effective IOPFs for public clouds.
Avoiding packet drops for NIC during IOPFs. One po-
tential solution for eliminating packet drops during IOPFs
without driver modification is to leverage out-of-order RX
buffer/descriptor consumption on the device side. This ap-
proach would allow efficient processing of incoming packets
without modifying the NIC driver, thus remaining agnostic
to the specific driver being used.
Optimization for block devices. ADP reduces IOPF rates
on block devices by half on average but is still suboptimal
compared to NIC devices. Furthermore, it lacks efficiency for
different workload characteristics. We propose that future
optimization can be achieved by allowing ADP to dynami-
cally adjust its parameters based on online profiling to better
suit varying workloads. Additionally, we suggest exploring
approaches that leverage spatial locality on top of I/O-PAL
and applying prefetching techniques.

Platform compatibility. We currently only offer support
for VPRI on x86 platforms, but extending this support to
other platforms, such as ARM, would require minimal effort.
More types of devices and workloads. This paper targets
IOPF for virtio-based devices. We have also fully supported
IOPF for RDMA and NVMe over fabrics [5, 32, 37] on the
VPRI interface in our next product using the same method-
ology. Supporting IOPF for AI workloads on GPU also needs
to be explored.
Cacheability of PA-BITMAP. For future low-latency de-
vice interfaces like CXL [41], the PA-BITMAP lookup latency
in DRAM may become non-trivial. Modern DPUs’ proces-
sors (e.g., ARM, RISC-V, Intel Atom) have dedicated caches
that can help reduce this latency. While the PA-BITMAP
may reach hundreds of MB in high-density cloud environ-
ments, the active section usually represents under 5% within
a minute, similar to the I/O footprint. This active portion
easily fits into the DPU’s cache, leading to a high cache hit
rate and minimizing I/O latency impact.
Nested IOPF. The modern IOMMU facilitates nested IOPF
through the transmission of IOPF interrupts from the host to
the guest via a para-virtualized IOMMU [4]. However, this
approach results in a significantly complex vIOMMU emula-
tion [3, 27, 29, 30, 36] in the hypervisor, making it difficult
for CSPs to support a variety of CPU vendors. Additionally, it
introduces latency overhead due to VM-Exits and hypervisor
overhead for IOPF interrupt injection. Potentially, the VPRI
interface can be modified and passed through to VMs, allow-
ing for nested page fault support in VMs without requiring
hypervisor modifications or vIOMMU support.
9 Conclusion
This paper presents VPRI as a compelling alternative for
CSPs and device vendors to support IOPF in a manner that
is more cost-effective, compatible, and performant. We im-
plemented VPRI in our existing DPUs in under six months
without requiring additional hardware upgrades, effectively
addressing the cost concerns of CSPs. Additionally, it enabled
hardware IOPF capability on previously released x86 systems
from Intel and AMD that lacked ATS and PRI capabilities,
effectively resolving compatibility issues. Meanwhile, VPRI
effectively mitigated the impact of hardware IOPFs on SLOs,
ensuring they remained within an acceptable range when
memory commitment was enabled in our data centers.
Acknowledgments
We sincerely thank our shepherd Andrew Baumann and
anonymous reviewers for their insightful suggestions. We
would also like to acknowledge the contributions of Dao
Ren, Zelong Wang, Jie Ji, Dongdong Huang and numerous
other engineers from the Alibaba X-Dragon team who di-
rectly worked on VPRI. This work was partially supported
by NSFC (No. 62372287) and Alibaba AIR project. Zeyu Mi
(yzmizeyu@sjtu.edu.cn) is the corresponding author.

554

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, Ranjita
Bhagwan and George Porter (Eds.). USENIX Association, 419–434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[2] Tyler N. Allen and Rong Ge. 2021. In-depth analyses of unified vir-
tual memory system for GPU accelerated computing. In International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021, Bro-
nis R. de Supinski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 64.
https://doi.org/10.1145/3458817.3480855

[3] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU:
Strategies for Mitigating the IOTLB Bottleneck. In Computer Architec-
ture - ISCA 2010 International Workshops A4MMC, AMAS-BT, EAMA,
WEED, WIOSCA, Saint-Malo, France, June 19-23, 2010, Revised Se-
lected Papers (Lecture Notes in Computer Science, Vol. 6161), Ana Lucia
Varbanescu, Anca Mariana Molnos, and Rob van Nieuwpoort (Eds.).
Springer, 256–274. https://doi.org/10.1007/978-3-642-24322-6_22

[4] Lu Baolu. 2024. IOMMUFD: Deliver IO page faults to user space.
https://lwn.net/Articles/971820/ https://lwn.net/Articles/971820/.

[5] Shoaib Basu and Deepak Nadig. 2024. Offloading NVMe over Fabrics
(NVMe-oF) to SmartNICs on an at-scale Distributed Testbed. In 10th
IEEE International Conference on Network Softwarization, NetSoft 2024,
Saint Louis, MO, USA, June 24-28, 2024. IEEE, 316–318. https://doi.org/
10.1109/NETSOFT60951.2024.10588915

[6] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011.
Shared last-level TLBs for chip multiprocessors. In 17th International
Conference on High-Performance Computer Architecture (HPCA-17 2011),
February 12-16 2011, San Antonio, Texas, USA. IEEE Computer Society,
62–63. https://doi.org/10.1109/HPCA.2011.5749717

[7] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian,
Lingjun Zhu, Chao Shi, Yin Zhang, Ming Liu, and Zeke Wang. 2024.
Demystifying Datapath Accelerator Enhanced Off-path SmartNIC.
CoRR abs/2402.03041 (2024). https://doi.org/10.48550/ARXIV.2402.
03041 arXiv:2402.03041

[8] Intel Corporation. 2022. Intel® Virtualization Technology for Directed
I/O. https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf
https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf.

[9] Yiyuan Dong and Zeyu Mi. 2024. IOGuard: Software-Based I/O Page
Fault Handling with One CPU Core. In Proceedings of the 15th Asia-
Pacific Symposium on Internetware (Macau, China) (Internetware ’24).
Association for Computing Machinery, New York, NY, USA, 337–346.
https://doi.org/10.1145/3671016.3671394

[10] Takuya Fukuoka, Shigeyuki Sato, and Kenjiro Taura. 2021. Pitfalls of
InfiniBand with On-Demand Paging. In IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2021, Stony
Brook, NY, USA, March 28-30, 2021. IEEE, 265–275. https://doi.org/10.
1109/ISPASS51385.2021.00049

[11] Takuya Fukuoka, Shigeyuki Sato, and Kenjiro Taura. 2021. Pitfalls
of InfiniBand with On-Demand Paging. In 2021 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
265–275. https://doi.org/10.1109/ISPASS51385.2021.00049

[12] Google. [n. d.]. Google SRE Book. https://sre.google/sre-book/service-
level-objectives/.

[13] Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N.
Mubarek, Nirjhar Mukherjee, Karthik Sriram, Guido Tagliavini, Evan
West, Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Mar-
tin Farach-Colton, Jayneel Gandhi, Rob Johnson, Sudarsun Kannan,
and Donald E. Porter. 2023. Mosaic Pages: Big TLB Reach with Small

Pages. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023,
Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift (Eds.).
ACM, 433–448. https://doi.org/10.1145/3582016.3582021

[14] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
Infiniswap. In 14th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, Aditya Akella and Jon Howell (Eds.). USENIX Association, 649–
667. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/gu

[15] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: a hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association
for Computing Machinery, New York, NY, USA, 417–433. https:
//doi.org/10.1145/3503222.3507762

[16] https://lore.kernel.org/. [n. d.]. Access/Dirty bit support for SL do-
mains. https://lore.kernel.org/all/20220428210933.3583-19-joao.m.
martins@oracle.com/.

[17] Aamer Jaleel, Eiman Ebrahimi, and Sam Duncan. 2019. DUCATI:
High-performance Address Translation by Extending TLB Reach of
GPU-accelerated Systems. ACM Trans. Archit. Code Optim. 16, 1 (2019),
6:1–6:24. https://doi.org/10.1145/3309710

[18] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on FPGAs?. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020. USENIX Association, 991–1010. https://www.
usenix.org/conference/osdi20/presentation/roscoe

[19] Nikita Lazarev, Varun Gohil, James Tsai, Andy Anderson, Bhushan
Chitlur, Zhiru Zhang, and Christina Delimitrou. 2024. Sabre: Hardware-
Accelerated Snapshot Compression for Serverless MicroVMs. In 18th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, Ada Gavrilovska
and Douglas B. Terry (Eds.). USENIX Association, 1–18. https://www.
usenix.org/conference/osdi24/presentation/lazarev

[20] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee,
and Jinkyu Jeong. 2019. Asynchronous I/O Stack: A Low-latency
Kernel I/O Stack for Ultra-Low Latency SSDs. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-
12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association,
603–616. https://www.usenix.org/conference/atc19/presentation/lee-
gyusun

[21] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. 2023. MEMTIS: Efficient Memory Tiering with Dynamic Page
Classification and Page Size Determination. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP 2023, Koblenz, Ger-
many, October 23-26, 2023, Jason Flinn, Margo I. Seltzer, Peter Dr-
uschel, Antoine Kaufmann, and Jonathan Mace (Eds.). ACM, 17–34.
https://doi.org/10.1145/3600006.3613167

[22] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017.
Page Fault Support for Network Controllers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, Yunji Chen, Olivier Temam, and John Carter
(Eds.). ACM, 449–466. https://doi.org/10.1145/3037697.3037710

[23] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017.
Page Fault Support for Network Controllers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for

555

https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3458817.3480855
https://doi.org/10.1007/978-3-642-24322-6_22
https://lwn.net/Articles/971820/
https://lwn.net/Articles/971820/
https://doi.org/10.1109/NETSOFT60951.2024.10588915
https://doi.org/10.1109/NETSOFT60951.2024.10588915
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.48550/ARXIV.2402.03041
https://doi.org/10.48550/ARXIV.2402.03041
https://arxiv.org/abs/2402.03041
https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf
https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf
https://doi.org/10.1145/3671016.3671394
https://doi.org/10.1109/ISPASS51385.2021.00049
https://doi.org/10.1109/ISPASS51385.2021.00049
https://doi.org/10.1109/ISPASS51385.2021.00049
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://doi.org/10.1145/3582016.3582021
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3503222.3507762
https://lore.kernel.org/all/20220428210933.3583-19-joao.m.martins@oracle.com/
https://lore.kernel.org/all/20220428210933.3583-19-joao.m.martins@oracle.com/
https://doi.org/10.1145/3309710
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi24/presentation/lazarev
https://www.usenix.org/conference/osdi24/presentation/lazarev
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://doi.org/10.1145/3600006.3613167
https://doi.org/10.1145/3037697.3037710

SOSP ’24, November 4–6, 2024, Austin, TX, USA Kaijie Guo et al.

Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA,
449–466. https://doi.org/10.1145/3037697.3037710

[24] Bingyao Li, Jieming Yin, Youtao Zhang, and Xulong Tang. 2021. Im-
proving Address Translation in Multi-GPUs via Sharing and Spilling
aware TLB Design. InMICRO ’21: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, Virtual Event, Greece, October 18-22,
2021. ACM, 1154–1168. https://doi.org/10.1145/3466752.3480083

[25] Yang Lin, Dunbo Zhang, Chaoyang Jia, QiongWang, and Li Shen. 2021.
Reducing TLB Miss Penalty on GPUs via Unified Multi-level PWB
and PWC. In 12th International Symposium on Parallel Architectures,
Algorithms and Programming, PAAP 2021, Xi’an, China, December 10-12,
2021. IEEE, 1–8. https://doi.org/10.1109/PAAP54281.2021.9720477

[26] Yanqiang Liu, Jiacheng Ma, Zhengjun Zhang, Linsheng Li, Zhengwei
Qi, and Haibing Guan. 2021. MEGATRON: Software-Managed De-
vice TLB for Shared-Memory FPGA Virtualization. In 58th ACM/IEEE
Design Automation Conference, DAC 2021, San Francisco, CA, USA, De-
cember 5-9, 2021. IEEE, 1213–1218. https://doi.org/10.1109/DAC18074.
2021.9586197

[27] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013.
TLB Improvements for Chip Multiprocessors: Inter-Core Cooperative
Prefetchers and Shared Last-Level TLBs. ACM Trans. Archit. Code
Optim. 10, 1 (2013), 2:1–2:38. https://doi.org/10.1145/2445572.2445574

[28] Chen Lv, Fuxin Zhang, Xiang Gao, and Chen Zhu. 2022. LA-
vIOMMU: An Efficient Hardware-Software Co-design of IOMMU
Virtualization. In 2022 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). 246–253. https://doi.org/10.
1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00038

[29] Alex Markuze, Adam Morrison, and Dan Tsafrir. 2016. True IOMMU
Protection fromDMAAttacks:When Copy is Faster than Zero Copy. In
Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2016, Atlanta, GA, USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou
(Eds.). ACM, 249–262. https://doi.org/10.1145/2872362.2872379

[30] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. 2018.
DAMN: Overhead-Free IOMMU Protection for Networking. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James
Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 301–315.
https://doi.org/10.1145/3173162.3173175

[31] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit O. Kanaujia, and Prakash Chauhan. 2023. TPP: Transpar-
ent Page Placement for CXL-Enabled Tiered-Memory. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Na-
talie D. Enright Jerger, and Michael M. Swift (Eds.). ACM, 742–755.
https://doi.org/10.1145/3582016.3582063

[32] Darren Ng, Andrew Lin, Arjun Kashyap, Guanpeng Li, and Xiaoyi Lu.
2024. NVMe-oPF: Designing Efficient Priority Schemes for NVMe-over-
Fabrics with Multi-Tenancy Support. In IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2024, San Francisco, CA, USA,
May 27-31, 2024. IEEE, 519–531. https://doi.org/10.1109/IPDPS57955.
2024.00052

[33] Nvidia. [n. d.]. InfiniBand Networking Solutions. https://www.nvidia.
com/en-us/networking/products/infiniband/ https://www.nvidia.com/
en-us/networking/products/infiniband/.

[34] Jihun Park, Donghun Jeong, and Jungrae Kim. 2023. UVMMU:
Hardware-Offloaded Page Migration for Heterogeneous Computing.

In Design, Automation & Test in Europe Conference & Exhibition,
DATE 2023, Antwerp, Belgium, April 17-19, 2023. IEEE, 1–6. https:
//doi.org/10.23919/DATE56975.2023.10137307

[35] PCI-SIG. 2009. Address Translation Services Revision 1.1. https:
//pcisig.com/specifications/iov/ats/ https://pcisig.com/specifications/
iov/ats/.

[36] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir.
2015. Utilizing the IOMMU Scalably. In 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA, Shan Lu
and Erik Riedel (Eds.). USENIX Association, 549–562. https://www.
usenix.org/conference/atc15/technical-session/presentation/peleg

[37] Bo Peng, Cheng Guo, Jianguo Yao, and Haibing Guan. 2023. LPNS:
Scalable and Latency-Predictable Local Storage Virtualization for Un-
predictable NVMe SSDs in Clouds. In 2023 USENIX Annual Technical
Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, Ju-
lia Lawall and Dan Williams (Eds.). USENIX Association, 785–800.
https://www.usenix.org/conference/atc23/presentation/peng

[38] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Archi-
tectural support for address translation on GPUs: designing memory
management units for CPU/GPUs with unified address spaces. In Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS 2014, Salt Lake City, UT, USA, March 1-5, 2014, Rajeev Bal-
asubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM, 743–758.
https://doi.org/10.1145/2541940.2541942

[39] Antonis Psistakis, Nikos Chrysos, Fabien Chaix, Marios Asiminakis,
Michalis Gianioudis, Pantelis Xirouchakis, Vassilis Papaefstathiou,
and Manolis Katevenis. 2022. Optimized Page Fault Handling During
RDMA. IEEE Trans. Parallel Distributed Syst. 33, 10 (2022), 3990–4005.
https://doi.org/10.1109/TPDS.2022.3175666

[40] Edward Richter and Deming Chen. 2022. Qilin: Enabling Perfor-
mance Analysis and Optimization of Shared-Virtual Memory Sys-
tems with FPGA Accelerators. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2022, San
Diego, California, USA, 30 October 2022 - 3 November 2022, Tulika Mi-
tra, Evangeline F. Y. Young, and Jinjun Xiong (Eds.). ACM, 23:1–23:9.
https://doi.org/10.1145/3508352.3549431

[41] Henry N. Schuh, Arvind Krishnamurthy, David E. Culler, Henry M.
Levy, Luigi Rizzo, Samira Manabi Khan, and Brent E. Stephens. 2024.
CC-NIC: a Cache-Coherent Interface to the NIC. In Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, ASPLOS
2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024, Rajiv Gupta, Nael B.
Abu-Ghazaleh, Madan Musuvathi, and Dan Tsafrir (Eds.). ACM, 52–68.
https://doi.org/10.1145/3617232.3624868

[42] Woong Shin, Qichen Chen, Myoungwon Oh, Hyeonsang Eom, and
Heon Y. Yeom. 2014. OS I/O Path Optimizations for Flash Solid-state
Drives. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai
Zeldovich (Eds.). USENIX Association, 483–488. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/shin

[43] Junyi Shu, Kun Qian, Ennan Zhai, Xuanzhe Liu, and Xin Jin. 2024.
Burstable Cloud Block Storage with Data Processing Units. In 18th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, Ada Gavrilovska
and Douglas B. Terry (Eds.). USENIX Association, 783–799. https:
//www.usenix.org/conference/osdi24/presentation/shu

[44] Ivan Tanasic, Isaac Gelado, Marc Jorda, Eduard Ayguade, and Nacho
Navarro. 2017. Efficient Exception Handling Support for GPUs. In 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 109–122.

[45] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Track-
ing for Efficient Memory Management in Direct I/O. In 2020 USENIX

556

https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3466752.3480083
https://doi.org/10.1109/PAAP54281.2021.9720477
https://doi.org/10.1109/DAC18074.2021.9586197
https://doi.org/10.1109/DAC18074.2021.9586197
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00038
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00038
https://doi.org/10.1145/2872362.2872379
https://doi.org/10.1145/3173162.3173175
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1109/IPDPS57955.2024.00052
https://doi.org/10.1109/IPDPS57955.2024.00052
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://doi.org/10.23919/DATE56975.2023.10137307
https://doi.org/10.23919/DATE56975.2023.10137307
https://pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications/iov/ats/
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc23/presentation/peng
https://doi.org/10.1145/2541940.2541942
https://doi.org/10.1109/TPDS.2022.3175666
https://doi.org/10.1145/3508352.3549431
https://doi.org/10.1145/3617232.3624868
https://www.usenix.org/conference/atc14/technical-sessions/presentation/shin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/shin
https://www.usenix.org/conference/osdi24/presentation/shu
https://www.usenix.org/conference/osdi24/presentation/shu

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for IaaS Clouds SOSP ’24, November 4–6, 2024, Austin, TX, USA

Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, Ada
Gavrilovska and Erez Zadok (Eds.). USENIX Association, 479–492.
https://www.usenix.org/conference/atc20/presentation/tian

[46] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Track-
ing for Efficient Memory Management in Direct I/O. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, Ada
Gavrilovska and Erez Zadok (Eds.). USENIX Association, 479–492.
https://www.usenix.org/conference/atc20/presentation/tian

[47] Pirmin Vogel, Andrea Marongiu, and Luca Benini. 2019. Exploring
Shared Virtual Memory for FPGA Accelerators with a Configurable
IOMMU. IEEE Trans. Computers 68, 4 (2019), 510–525. https://doi.org/
10.1109/TC.2018.2879080

[48] Yaohui Wang, Ben Luo, and Yibin Shen. 2023. Efficient Memory Over-
commitment for I/O Passthrough Enabled VMs via Fine-grained Page
Meta-data Management. In Proceedings of the 2023 USENIX Annual
Technical Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12,
2023, Julia Lawall and Dan Williams (Eds.). USENIX Association, 769–
783. https://www.usenix.org/conference/atc23/presentation/wang-
yaohui

[49] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso.
2020. Benchmarking High Bandwidth Memory on FPGAs. CoRR
abs/2005.04324 (2020). arXiv:2005.04324 https://arxiv.org/abs/2005.
04324

[50] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: transparent
memory offloading in datacenters. In ASPLOS ’22: 27th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, Babak Falsafi, Michael Ferdman, Shan Lu, and
Thomas F. Wenisch (Eds.). ACM, 609–621. https://doi.org/10.1145/
3503222.3507731

[51] Johannes Wünsche, Sajad Karim, Michael Kuhn, David Broneske, and
Gunter Saake. 2023. Intelligent Data Migration Policies in a Write-
Optimized Copy-on-Write Tiered Storage Stack. In Proceedings of the
3rd Workshop on Challenges and Opportunities of Efficient and Perfor-
mant Storage Systems, CHEOPS 2023, Rome, Italy, 8 May 2023, Jean-
Thomas Acquaviva, Shadi Ibrahim, and Suren Byna (Eds.). ACM, 17–26.
https://doi.org/10.1145/3578353.3589543

[52] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR:
Rethinking RDMANetworking for Scalable Persistent Memory. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 111–125. https:
//www.usenix.org/conference/nsdi20/presentation/yang

[53] Weidong Zhang, Erci Xu, Qiuping Wang, Xiaolu Zhang, Yuesheng
Gu, Zhenwei Lu, Tao Ouyang, Guanqun Dai, Wenwen Peng, Zhe Xu,
Shuo Zhang, Dong Wu, Yilei Peng, Tianyun Wang, Haoran Zhang,
JiashengWang, Wenyuan Yan, Yuanyuan Dong, Wenhui Yao, Zhongjie
Wu, Lingjun Zhu, Chao Shi, Yinhu Wang, Rong Liu, Junping Wu,
Jiaji Zhu, and Jiesheng Wu. 2024. What’s the Story in EBS Glory:
Evolutions and Lessons in Building Cloud Block Store. In 22nd USENIX
Conference on File and Storage Technologies, FAST 2024, Santa Clara,
CA, USA, February 27-29, 2024, Xiaosong Ma and Youjip Won (Eds.).
USENIX Association, 277–291. https://www.usenix.org/conference/
fast24/presentation/zhang-weidong

[54] Xiaohui Zhang, Ming Cong, and Guangqiang Chen. 2011. Software
and Hardware Co-designed Multi-level TLBs for Chip Multiprocessors.
In 11th IEEE International Conference on Computer and Information
Technology, CIT 2011, Pafos, Cyprus, 31 August-2 September 2011. IEEE
Computer Society, 609–614. https://doi.org/10.1109/CIT.2011.17

[55] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and
Xin Long. 2020. High-density Multi-tenant Bare-metal Cloud. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 483–495. https://doi.org/10.1145/3373376.3378507

557

https://www.usenix.org/conference/atc20/presentation/tian
https://www.usenix.org/conference/atc20/presentation/tian
https://doi.org/10.1109/TC.2018.2879080
https://doi.org/10.1109/TC.2018.2879080
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://arxiv.org/abs/2005.04324
https://arxiv.org/abs/2005.04324
https://arxiv.org/abs/2005.04324
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3578353.3589543
https://www.usenix.org/conference/nsdi20/presentation/yang
https://www.usenix.org/conference/nsdi20/presentation/yang
https://www.usenix.org/conference/fast24/presentation/zhang-weidong
https://www.usenix.org/conference/fast24/presentation/zhang-weidong
https://doi.org/10.1109/CIT.2011.17
https://doi.org/10.1145/3373376.3378507

	Abstract
	1 Introduction
	2 Background
	2.1 IOPF Workflow in the PCIe Standard
	2.2 CSP Efforts in I/O SLOs

	3 Lessons Learned from Supporting IOPF
	3.1 Difficulties in Hardware Compatibility
	3.2 Performance Issues of IOPF
	3.3 Impact of IOPF on I/O SLOs
	3.4 IOPF Rate in Production
	3.5 Summary

	4 Exploring More Efficient IOPF
	4.1 Decouple AT from Pre-DMA Lookup
	4.2 Reducing IOPF Rate for Generic Workloads

	5 VPRI Hardware Design
	5.1 PA-BITMAP Synchronization
	5.2 IOPF Interface
	5.3 IO-PAL

	6 VPRI Software Design
	6.1 vCPU-affined IOPF Scheduling
	6.2 Adaptive DMA Protector

	7 Evaluation
	7.1 PA-BITMAP Micro-benchmark
	7.2 vCPU-affined Scheduling
	7.3 IOPF Reduction and Pinned Memory
	7.4 VPRI in Production

	8 Related and Future Work
	9 Conclusion
	Acknowledgments
	References

