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Abstract
State-of-the-art encrypted databases (EDBs) can be divided

into two types: one that protects the whole DBMS engine in
a trusted domain, and one that protects only operators that
support queries over encrypted data. Both types have limita-
tions when dealing with malicious database administrators
(DBAs). The first type either exposes the data to DBAs or
makes maintenance operations difficult if the DBA role is
eliminated. The second type is vulnerable to abuse of the
operator interfaces; in particular, we devise a smuggle attack
that enables DBAs to secretly and effectively access data.

We introduce HEDB, which prevents smuggle attacks and
preserves database maintainability. HEDB uses a dual-mode
EDB design based on our analysis of DBA maintenance tasks.
Execution Mode handles user queries by isolating DBAs
from operators to prevent smuggle attacks, while Mainte-
nance Mode enables DBMS maintenance and operator trou-
bleshooting through authenticated replay and anonymized
replay, respectively. Our evaluation shows that HEDB blocks
smuggle attacks and supports common maintenance tasks
with 5.88% runtime cost and 9.26% storage cost.

1 Introduction
With approximately 60 ZB of data stored in database sys-
tems [6], much of which is sensitive, data breaches pose
one of the most serious security threats today, causing an
average loss of $4.35 million per incident [4]. To protect
against external attacks, database security features such as
role-based access control and encryption at rest have become
de facto standards. However, these features are not effective
at preventing attacks from malicious insiders, who create
new internal threats. This is especially true for Database as a
Service (DBaaS) scenarios, where cloud platform operators
and database administrators (DBA) have full access to the
database engine and customer data. To address this threat, sev-
eral encrypted database (EDB) systems have been proposed
by academia [15, 17, 26, 42, 44, 48] and industry [14, 30, 50].

Despite a broad spectrum of prior efforts [14, 15, 17, 26,
30, 42, 44, 48, 50], EDB systems with (i) full-SQL functional-
ity, (ii) maintainability and (iii) strong security have remained
an unsolved problem for the past decade. State-of-the-art
EDB systems can be largely categorized into two types: (1)
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Figure 1: Existing EDB systems can be categorized into two types:
Type-I lacks maintenance and Type-II lacks interface security. HEDB

leverages a dual-mode design to support both.

a monolithic EDB design that isolates the whole database
engine in a trusted domain, and (2) a plug-and-play EDB de-
sign that leverages protected operators to process user secrets.
We name them Type-I and Type-II for brief, as depicted in
Figure 1. Both types reuse existing database engines, inher-
iting (almost) all features of modern databases such as SQL
execution and ACID transactions.

For Type-I EDBs [17, 44, 45], a system operator or DBA
can only monitor an end-to-end secure channel between an
isolated database engine and a remote user. However, the
conventional role of DBAs conflicts with customer privacy.
Consider a maintenance task that DBAs help to diagnose a
database misconfiguration bug [40]. After curious DBAs log
into the database server, they can read whatever user data of
interest because of their high privilege. Notably, eliminating
the role of DBAs from the database engine requires non-trivial
engineering efforts. Furthermore, excluding DBAs will give
up the benefits of their expertise in managing, optimizing and
diagnosing the outsourced databases.

Type-II EDBs [14, 15, 30, 42, 43, 48, 50] typically use
database extensions to enable various primitive operators over
encrypted data. Operators include arithmetics, comparisons,
string searching, etc. The primary advantage of Type-II is
that operators have a small trusted computing base (TCB)
compared to Type-I. Furthermore, the low complexity of the
operator’s codebase also makes it easy to develop and simple
to vet. Most importantly, Type-II surpasses Type-I in terms of
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maintainability, as DBAs can connect to the database server,
examine query plans, attach powerful profilers and debuggers,
and collect crash dumps without concerns of data breaches,
since user data is always encrypted. Type-II EDBs are there-
fore well adopted by cloud database vendors [14, 30, 50].
Regarding data privacy, Type-II leaks information such as
ordering and frequency, which may compromise sensitive
columns with the aid of sophisticated background knowl-
edge [27–29, 32, 39].

Even worse, under existing database access control, an ad-
versarial DBA can arbitrarily invoke Type-II EDB’s operator
interfaces. As Type-II exposes various operators, DBAs can
exploit a sequence of carefully constructed invocations to
recover the victim’s sensitive data [16]. We devise an efficient
and stealthy attack, named smuggle attacks, which applies
to all basic encrypted types (i.e., numerics, time, text) and
can recover 100% data items of 35,243 health records within
2 minutes with no prior knowledge. Conceptually, smuggle
attacks is similar to Iago attack [21], as both abuse interfaces.
But unlike Iago, defending smuggle attacks is more chal-
lenging because it does not tamper with the correctness of
invocation results. Hence, we opt for a new approach to de-
feating smuggle attacks, while retaining Type-II’s advantages
of DBA maintainability.

Our proposal: HEDB1. HEDB is a new EDB design that can
provide interface security (namely, smuggle attacks-resilient)
and maintainability. HEDB’s design is based on two insights:
(a) without authenticated access, interface security cannot
be achieved, and (b) in most cases, accessing plaintext se-
cret data is not essential to EDB maintenance. Hence HEDB
introduces two modes: Execution Mode where operators au-
thenticate valid requests for user queries (defending against
smuggle attacks), and Maintenance Mode where mock data
is used during DBA maintenance (minimizing privacy leak-
ages). In Execution Mode, HEDB adopts Type-II’s design by
decoupling the DBMS and operators, and protects them using
two trusted domains with an authenticated channel. When
switching to Maintenance Mode, HEDB forks a new DBMS
instance from the protected DBMS to an unprotected domain,
and feeds operators (also in the unprotected domain) with
mock data. Figure 1 overviews this process.

This dual-mode EDB design is non-trivial and has several
technical challenges. First, switching EDB components be-
tween modes requires execution environment reconstruction
for maintenance purposes. Second, too accurate maintenance
may help DBAs infer secret data easily, while simply us-
ing fake data hinders maintenance. Third, after maintenance,
there should be a secure way to apply hotfixes to the protected
DBMS instance, without invoking any new attack surfaces.

To overcome the above challenges, HEDB introduces sev-
eral key techniques. To allow DBAs to inspect the stateful
DBMS, HEDB employs DBMS-located VM fork across two

1HEDB is named after He (Helium), the 2nd element, implying its two modes.

hypervisors using existing hardware (i.e., ARMv8.4 S-EL2).
For execution environment reconstruction, HEDB relies on
record-and-replay. HEDB records the operator invocation
trace in Execution Mode, and proposes authenticated replay
to reproduce DBMS issues in Maintenance Mode. To preserve
buggy control flows and protect user data privacy at the same
time, HEDB proposes anonymized replay, which employs
concolic execution to capture path constraints, translates data
masking rules also into constraints, and exploits constraint
solving for operator troubleshooting in Maintenance Mode.
Finally, HEDB uses maintenance templates to securely ap-
ply hotfixes in Execution Mode. HEDB accomplishes these
features with low implementation complexity (~2K lines of
C and Python code). HEDB’s record incurs 5.88% runtime
overhead; replay supports fixing configuration bugs, repro-
ducing functional bugs, and debugging most performance
bugs. Our optimizations speed up HEDB’s TPC-H execution
by 2.49×, and improve HEDB’s constraint solving-based log
anonymization by up to two orders of magnitude.

Contributions. We highlight the following contributions:
• A study of existing EDB systems and the introduction of

smuggle attacks for Type-II EDBs.
• A dual-mode EDB design, based on empirical studies of

typical maintenance issues and DBA operation tasks.
• A new system called HEDB, which prevents smuggle at-

tacks while allowing DBAs to maintain EDB with reason-
able overhead.

While HEDB provides, for the first time, interface security
and maintainability for existing Type-II EDB systems, it does
have some limitations. HEDB’s current implementation does
not support non-deterministic bug reproduction (e.g., concur-
rent transactional writes such as in TPC-C, though TPC-C is
not vulnerable to smuggle attacks). In addition, HEDB does
not cover all DBA tasks (e.g., arbitrary query rewriting) and
may not reproduce all bugs (when using strict masking rules).
Nonetheless, HEDB fills a critical gap in encrypted databases.

2 Background and Motivation
2.1 Database as a Service (DBaaS)

In “Database as a Service” (DBaaS) [31], service providers
take care of the installation, update, backup, and maintenance
of databases. DBaaS provides managed databases with a trans-
parent software stack and infrastructure. This design releases
users from the duty of database administration, which is com-
plex, time-consuming, and requires deep expertise. In DBaaS,
these maintenance tasks are delegated to database adminis-
trators (DBAs). In brief, DBaaS empowers users to focus on
their core business.

2.2 Encrypted Database (EDB)

Data privacy is a major concern of adopting DBaaS. Service
providers might not be fully trustworthy [4]; even if they
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Type EDB System Approach F S M

Type-I
(TEE-based)

TrustedDB [17] database on a secure coprocessor
EnclaveDB [44] database in Intel SGX

DBStore [45] database in ARM TrustZone

Type-II
(Crypto-based)

CryptDB [43] operators using crypto schemes
Arx [42] operators using crypto schemes

Monomi [47] server crypto + client computation

Type-II
(TEE-based)

Cipherbase [15] operators in FPGA
StealthDB [48] operators in Intel SGX

Type-II
(TEE-based

from industry)

Always Encrypted [14] operators in Intel SGX
FE-in-GaussDB [30] operators in ARM TrustZone, Intel SGX

Operon [50] operators in Intel SGX, FPGA

Type-II HEDB (this work) dual-mode security architecture

Table 1: Survey of existing EDB systems. F: Functionality; S: Secu-
rity; M: Maintainability.

are, curious staff may leak private information. For instance,
Swiss bank DBAs were reported to have sold customer infor-
mation [12]. This is why an encrypted database (EDB) comes
into place; an EDB executes queries over fully encrypted data.

Ideally, an EDB system should provide a compatible set
of traditional DBMS features (e.g., transactions, recovery)
and most importantly, support all common SQL queries on
the encrypted data. For example, users can perform equality
checks to the highly sensitive personally identifiable informa-
tion (PII) such as names and credit card numbers. As another
example, users should be able to apply arithmetic operations
and range predicates on the encrypted financial data (e.g.,
billings) and healthcare records (e.g., heart rates) to calculate
the maximum expense or to compute the average heart rates.

Both academia [15, 17, 26, 42–44, 48] and industry [14, 30,
50] have shown great interest in EDB systems. We surveyed
state-of-the-art EDBs as listed in Table 1, and classified them
into two categories: (1) a monolithic EDB design, and (2)
a plug-and-play EDB design. For simplicity, we name them
Type-I and Type-II, respectively.

2.3 Type-I EDB: Putting a Database in TEE

Overview. Trusted execution environments (TEE) are a
hardware-assisted approach that offers the essential abilities
of secure isolation, memory encryption and remote attesta-
tion. They are widely available on commercialized processors
(e.g., AMD SEV [13], Intel SGX [11] and TDX [9], ARM
S-EL2 [35] and CCA [36]) or implemented using a secure
co-processor or FPGA. The monolithic EDB design places
an existing DBMS engine into TEE to protect user data and
queries. User secrets are encrypted outside TEE and remain
plaintext inside the trusted database. This design brings a
large trusted computing base (TCB); an operating system or
library OS must be ported into the TEE [17, 44, 45].

Workflow. A user queries the Type-I EDB as follows: 1
The client-side user or the DB-backed application issues a
SQL query to DBMS through a secure channel. 2 DBMS
parses the query, generates a plan, optimizes it and executes
the plan, by reading the encrypted tables from the untrusted
storage, and writing the updated tables after encryption. 3

DBMS returns the query result through the secure channel.

Implications. In Type-I EDB systems, the data privacy and
database implementations are tightly coupled, which raises
several issues. First, simply putting a database into TEE does
not make the database immune to rogue DBAs. For today’s
DBMSes, DBAs have unlimited access to users’ data, includ-
ing secret data in the TEE. To ensure privacy, Type-I EDBs
must either modify DBMS engines or disable the role of
DBAs. However, refactoring the DBMS codebase to preclude
the existence of DBAs and their privileges may require signif-
icant engineering efforts. Even if a DBMS eliminates DBAs,
it would give up maintainability—this DBMS loses the major
benefit of DBaaS that experts (i.e., DBAs) manage, optimize,
and diagnose users’ outsourced databases. People might not
use DBaaS in the first place.

2.4 Type-II EDB: Putting an Operator in TEE

Overview. The plug-and-play EDBs are another type of EDB.
They leverage customizable extensions of modern database
systems (e.g., PostgreSQL, MySQL) to encrypt data on-the-
fly. The extension is written as a database plugin (normally in
the form of a user-defined function or UDF). To implement
Type-II EDBs, developers typically create and register new
data types—encrypted data types—into the database. When
the database execution engine processes encrypted data types,
it invokes the UDF-based operators that are responsible for
handling encrypted data operations.

There are two ways to implement Type-II EDBs. For one,
developers implement different cryptographic schemes in op-
erators to compute directly on the encrypted data [42, 43, 47].
We call them crypto-based Type-II EDBs. For the other, devel-
opers implement operators in TEEs. We call these TEE-based
Type-II EDBs [14, 15, 30, 48, 50]. TEE-based EDBs rely
on hardware modules to provide integrity and confidential-
ity, and data are decrypted only when they are within TEEs.
Crypto-based Type-II EDBs fall short in functionalities (e.g.,
floating-point arithmetics and text concatenation); they must
either rely on a trusted proxy [42, 43] or move the unsup-
ported computation to the client [47]. In this paper, we focus
on the TEE-based Type-II EDBs that have full-SQL supports
and are preferred in production [14, 30, 50].

Workflow. A user queries the Type-II EDB as follows: 1
The client-side user or the DB-backed application sends
a SQL query whose sensitive constants are encrypted. 2
DBMS parses the query, and reads the encrypted data from
storage. The DBMS engine generates, optimizes, and exe-
cutes an execution plan. Upon each computation of the en-
crypted data type, DBMS prepares a tuple, ⟨ciphertext1,
ciphertext2, ...⟩, and feeds it to the operator. 3 The
operator receives the tuple, decrypts the ciphertexts, performs
the operation, encrypts the result (except when returning plain-
text boolean values, e.g., comparisons), sends the result to
DBMS, and waits for the next invocation. 4 The DBMS
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engine finishes the entire query execution by returning the
(encrypted) result to the client.

Advantages. In comparison with Type-I EDBs, the Type-II
EDBs have the following advantages.
• Small TCB: Compared with putting a full-fledged DBMS

in TEE, Type-II EDBs run only operators in TEE which is
a tiny fraction of the entire DBMS.

• Development friendly: The Type-II EDBs leverage DBMS
extension systems and require no modifications to DBMS
engines. The low complexity of operators also makes up-
grades simple and easy.

• Maintenance friendly: The DBMS engine does not touch
plaintext data, so it is accessible to DBAs. DBAs can per-
form maintenance operations such as examining query
plans for performance, collecting crash core dumps for
troubleshooting, or even attaching a debugger to inspect
the execution of a SQL query.

These advantages make Type-II EDB preferable to cloud
vendors such as Azure [14], Huawei [30] and Alibaba [50].

Implications. Compared to Type-I, Type-II EDBs however
expose a larger attack surface. First, unlike Type-I, Type-II
does not protect the integrity of query execution as it relies
on an unprotected DBMS engine. Second, the data-level com-
putation allows an honest-but-curious DBA to learn the data
volume, distribution, frequency, ordering, and correlations
between columns. With prior knowledge, an adversary may
be able to infer secret data [27–29, 32, 39]. Finally, if a mali-
cious DBA can issue arbitrary operator invocations, they can
conduct a full database breach. We call it smuggle attack.

2.5 Smuggle Attack

This section describes how a DBA can mount a smuggle
attack to recover encrypted data types and real-world datasets.
We emphasize that the smuggle attack requires no background
knowledge, and its recovery is deterministic.

Attack overview. We use a minimal working example that
recovers encrypted integers in a Type-II EDB.
• Constructing basic ciphers: By division (÷), a DBA can

obtain the ciphertext of ‘1’ (dividing a number by itself).
With the basic ciphers of ‘1’, in principle, the DBA can
construct all encrypted integers by iteratively asking oper-
ators to add (+) the cipher ‘1’ to a counter.

• Recovering user secrets: With the equality operator (=),
the DBA can recover the victim’s encrypted values by
observing the plaintext boolean values by comparing them
with known ciphertexts. To recover an encrypted integer x,
the DBA can use a binary search to compare x with some
candidate known ciphertexts (using <, >, and =).

Other encrypted types (e.g., decimal, text, and time) can also
be attacked (see § A.1). Extending their data domain to a
larger range (e.g., 64-bit) does not prevent the attack because
binary search is efficient to search on even a 64-bit range.

System Example API numbers Interface attack

Kernel Linux 200+ POSIX APIs Iago attack
DBMS PostgreSQL 79 operator APIs Smuggle attack

Table 2: The analogy between Iago [21] and smuggle attacks.

Removing operators used by smuggle attacks will disable
OLAP workloads because these workloads (e.g., TPC-H)
require all the mentioned operations (e.g., ÷, +, >, =).

Attacking real-world datasets. We illustrate smuggle at-
tacks against a real-world dataset, SPARCS2, with 2.54
million records [8]. We use an open-source Type-II EDB,
StealthDB [48] (commit 1ca645a), which exposes operators
such as arithmetics, comparisons, mathematics, aggregations
(+, −, ∗, /, %, <, =, power(), MAX, AVG, SUM). Only com-
parison operators return boolean values in plaintext; others
return the computation results in ciphertext.

We first select 6 columns of SPARCS patients’ sensitive
information from 239 hospitals in 9 areas, and protect these
columns using StealthDB with the AES-128-GCM encryption.
We then log into StealthDB using a DBA account and can call
operators with crafted parameters, but cannot see the internals
of operators (i.e., cannot see decrypted user data). Lastly, we
issue binary-search SQL queries to conduct smuggle attacks;
these queries do not return to users nor impact their queries’
results. In the end, smuggle attacks recover 100% ciphertexts
in 92 seconds without any prior knowledge.

Defending smuggle attacks is challenging. We argue that
smuggle attacks are hard to defend by today’s EDB designs.
This is because smuggle attacks are an interface attack that
targets the exposed operator interfaces, rather than any partic-
ular implementations. We have seen interface attacks before,
for example, Iago attack [21] that targets OS interfaces (i.e.,
system calls). We summarize the two attacks in Table 2.

In fact, defending smuggle attacks is even harder than
preventing Iago attack because Iago attack can be identified
by checking if a syscall follows its specification. For example,
the return value of sbrk() must not fall into any range of the
allocated memory areas; otherwise, there is a data corruption
(and this is likely an Iago attack). Unlike Iago attack that is
conducted by few syscalls (usually just one syscall), smuggle
attacks require a series of invocations. Neither operators nor
users can resist smuggle attacks because (1) operators within
TEEs cannot distinguish user’s invocations from others (e.g.,
malicious DBAs); (2) invocations issued by smuggle attacks
do not alter the correctness of user queries, and hence users
cannot realize that a smuggle attacks is happening.

Attack summary. The core principle behind smuggle at-
tacks is not new, as it has been established that any column
that enables both computation and comparison operations
could be vulnerable (as noted on page 6, “Write query ex-

2The dataset we use does not contain protected health information (PHI)
under Health Insurance Portability and Accountability Act (HIPAA); all
data elements considered individually identifiable have been redacted.
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ecution” in [43]). However, we are the first to successfully
apply this principle to a real-world EDB system. Prior EDB at-
tacks have identified several types of leakage attacks, such as
Count Attack [19], Non-Crossing Attack [29], Access Pattern
Attack [32], and Frequency Analysis [39], which are also ap-
plicable to both Type-I and Type-II EDBs. What sets smuggle
attacks apart is that it requires zero prior knowledge, making it
even more potent than previous leakage attacks. Additionally,
smuggle attacks are not exclusive to DBAs, as anyone who
can access operator interfaces can carry out smuggle attacks.
For instance, an attacker who knows a victim’s password but
not the encryption key could not decrypt the victim’s data,
but they could bypass access control with the password and
then use smuggle attacks to breach the data.

We have studied Type-I and Type-II EDB system designs,
where there is tension between (a) database maintenance and
(b) interface security. In short, Type-I is immune to (b) but
lacks (a), while Type-II provides (a) but suffers from (b).
However, both (a) and (b) are essential for EDBs; we need
both. This motivates our system, HEDB.

3 HEDB Design
We first introduce our design goals and present a new EDB
architecture that HEDB uses. We then describe our threat
model and how HEDB works.

Design Goals. HEDB has three goals.
• G1: smuggle attack resilience. HEDB must protect user’s

sensitive data from smuggle attacks (§ 2.5) which Type-II
EDBs [14, 30, 50] suffer from.

• G2: database maintainability. A DBA should be able to
configure, manage, diagnose, and troubleshoot the HEDB
as a traditional DBMS.

• G3: backward compatibility. HEDB aims to be compatible
with the existing database ecosystems. We do not expect
to reimplement HEDB in new frameworks (e.g., verifiable
computation [51] or secure multi-party computation [41])
which invalidates existing DBMS tools.

HEDB architecture. HEDB uses a new three-zone architec-
ture (depicted in Figure 2) because we observe that different
roles—DBAs, DBaaS providers, and database users—have
different duties and requirements. (1) DBAs are responsible
for managing resources and performing maintenance tasks,
and they want to do these jobs in a low-drama way. (2) DBaaS
providers are supposed to deploy DBMS as services, and they
want their services running correctly. (3) Users are the data
owners whose secret data is stored in the database. They want
the database to be easy to use (e.g., maintained by DBAs),
and meanwhile, users need their data stored securely (i.e.,
having data integrity and confidentiality).

These observations inspire HEDB’s architecture: unlike
prior EDBs [17, 44], HEDB decouples integrity from privacy.
In particular, HEDB’s architecture detangles DBAs’ mainte-
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Figure 2: HEDB’s high-level architecture.

nance jobs from users’ data confidentiality requirements by
using three zones: integrity zone, privacy zone, and manage-
ment zone. The integrity zone provides execution integrity
but not confidentiality; it runs the DBMS engine. The privacy
zone guarantees data confidentiality; it runs operators and is
the only place containing users’ plaintext data. The manage-
ment zone allows DBAs to troubleshoot both DBMS engine
and operators. This design brings the opportunity to serve
both interface security (G1) and maintainability (G2).

Threat model and security guarantees. HEDB assumes
TEE hardware works as expected; that is, hardware isolation
and security guarantees are reliable and trustworthy. Further,
HEDB assumes remote attestation for authentication. HEDB
uses remote attestation to confirm the integrity of the EDB
executables. We also assume that database users and DBaaS
providers agree on the EDB code and configurations.

In HEDB’s threat model, DBaaS providers are not trusted,
as they could access server-side states over the network, on
disk, or in memory that are not protected by TEE. They may
also tamper with the database logs and data, and drop net-
work connections to the EDB systems. These attacks can be
detected by HEDB. Likewise, cloud administrators (who man-
age the cloud’s physical resources) and database administra-
tors (DBAs) are not trusted either and can behave arbitrarily,
including conducting smuggle attacks. Conversely, HEDB as-
sumes that users will not intentionally attack themselves or
leak their own data. However, co-tenant users may pose po-
tential threats and they can be blocked using the DB’s access
control. Finally, the developers of HEDB are trusted, but the
source code must be verified. Thanks to the small pieces of
code in Type-II operators, HEDB is made easy to verify.

As security guarantees, HEDB ensures no plaintext data
outside TEEs, the same as Type-I and Type-II EDBs. In addi-
tion, HEDB is smuggle attacks resilient. In terms of metadata
privacy (e.g., frequency, ordering), HEDB provides the same
security guarantees as Type-II EDBs. Both HEDB and Type-II
EDBs may leak metadata [27]. Nonetheless, this is a funda-
mental trade-off between functionality and privacy because
revealing these metadata is sometimes necessary for core
database functionalities, for example, database indexing. Pro-
duction systems have made the trade-off by choosing Type-II
EDBs as the de facto method [14, 30, 50]. Finally, similar to
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both Type-I and Type-II EDBs, HEDB does not prevent ex-
ploitations of DBMS bugs or vulnerabilities (e.g., code-reuse
attacks), which is an orthogonal line of security problems.

3.1 HEDB Workflow

HEDB provides two modes: Execution Mode and Mainte-
nance Mode. Execution Mode is when HEDB normally runs.
HEDB serves user queries by running the DBMS engine in
the integrity zone and executing operators in the privacy zone.
When performing maintenance, DBAs switch HEDB to Main-
tenance Mode, in which operators stop responding to new
requests and DBMS is forked to the management zone. Man-
agement zone enables DBAs to inspect the internal states
of the DBMS engine. After locating issues and suggesting
solutions, DBAs switch HEDB back to Execution Mode and
resume the service.

Normal execution. To launch a HEDB instance, a hypervisor
starts a virtual machine (VM) in the integrity zone, and runs
a DBMS instance in the VM. The hypervisor calculates the
digest of the VM and ensures its integrity. Meanwhile, the
hypervisor initializes operators that run in the privacy zone.

After HEDB’s initialization, a user can remotely attest both
HEDB’s VMs (containing DBMS and operators). Then, the
user establishes a secure channel with the DBMS instance and
starts sending queries. Note that the query constants are en-
crypted. For example, in a query SELECT ... WHERE year
< 2022, the number 2022 will be encrypted. This is a must
because the integrity zone does not provide confidentiality.

In Execution Mode, DBAs are isolated from the HEDB.
DBAs cannot log into the database VM or access operator
interfaces hence cannot start attacks. HEDB achieves this by
disabling the logins for VM superusers and DBA accounts
when booting. Users can verify this by checking the booting
script and attesting that the script is the one that runs.

To monitor resources while HEDB is running in Execution
Mode, VM resources can be externally monitored by the
cloud hypervisor, and DBMS resources can be queried using
statistics SQLs via a normal user (i.e., non-DBA) account.

Database maintenance. When users encounter problems,
they seek DBAs for assistance. DBAs can request HEDB to
switch to Maintenance Mode. HEDB does this by forking the
current DBMS engine and dumps two logs, authenticated
log (§4.2) and anonymized log (§4.3). In Maintenance Mode,
HEDB uses record-and-replay [24] to help DBAs run user
queries. The record-and-replay enables DBAs to profile, di-
agnose, and troubleshoot EDB in the management zone. We
elaborate on how HEDB supports maintainability in section 4.

After troubleshooting, DBAs submit a fix and request
HEDB to switch back to Execution Mode. During switching,
HEDB in the integrity zone examines the fix (§4.2). HEDB
will reject if the fix does not pass the check or DBAs tamper
with the code or the (encrypted) data of the database.

Mapping HEDB architecture to real hardware. HEDB

makes some security assumptions about the hardware. For
example, HEDB requires the privacy zone to provide either
memory encryption or dedicated on-chip memory. In fact,
HEDB’s architecture can be achieved by using today’s hard-
ware. The current HEDB prototype relies on commercial-off-
the-shelf ARMv8.4 S-EL2 using a Normal World VM as
the management zone, a Secure World VM as the integrity
zone, and another Secure World VM with on-chip memory
as the privacy zone. Both management zone and integrity
zone support virtual machines (VMs) atop hypervisors [35].
It can be further extended to the next-generation confidential
computing platforms such as Intel TDX [9] (using a Normal
VM as management zone, a TD VM as integrity zone, and
an SGX enclave as privacy zone) and ARMv9 CCA [36] (us-
ing a Normal VM as management zone, a TrustZone VM
as integrity zone, and a Realm VM as privacy zone). While
HEDB is designed for virtualized environments, its solution
does not intrinsically rely on the VM. For bare-metal systems,
self-migration [34] can be used as an alternative.

3.2 Defending Smuggle Attack

Existing commercialized Type-II EDB products [14, 30] de-
fend smuggle attacks by sacrificing functionalities. For exam-
ple, Azure AEv2 [14] does not provide arithmetic operations,
and Huawei FE-in-GaussDB Production [30] does not pro-
vide comparison operations. Neither of them can support
analytical queries such as TPC-H. Alibaba Operon [50] is the
first system that supports full-SQL operations but restricts the
callee by specifying which operators can be invoked. Nonethe-
less, when users need to execute TPC-H, Operon then fails to
stop smuggle attacks because TPC-H contains both arithmetic
and comparison operators, and attackers can use them too.
Instead, HEDB chooses to restrict the caller by authenticating
the invoker (described below); HEDB prevents DBAs from in-
voking any operators. Such a design enables diverse operators
without any concerns regarding interface attacks.

Defending smuggle attacks by mode switch. HEDB pre-
vents smuggle attacks by switching the DBMS engine from
Execution Mode to Maintenance Mode; a DBA cannot ac-
cess the DBMS engine in Execution Mode and cannot invoke
the operators in Maintenance Mode. Regarding mode switch,
HEDB chooses to fork VMs rather than processes, and further-
more, many DBMS engines use multiple processes. Forking
a group of processes requires forking their OS kernel states in
addition to careful synchronization (to avoid deadlocks). Be-
sides, trouble may arise from the kernel, such as insufficient
buffer cache and limited process number (see Table 4). As a
result, we choose to fork the DBMS-located VMs instead of
the DB processes, since both management zone and integrity
zone support hardware virtualization. Our design choice is
simple and practical, and meets our goals (G1, G2, and G3).

Defending confused deputy by authenticated channel. In
modern databases, a database user can use the SQL command

122    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Intention Operation

monitor waiting sessions rank running sessions from pg_stat_activity
monitor waiting threads rank running threads from pg_thread_wait_status
monitor database locks analyze lock situations from pg_locks
identify slow queries analyze SQL statements from pg_stat_statements
explain database plan issue EXPLAIN [SQL statement]
collect database statistics issue ANALYZE [table]

Example-1:
query waiting events of
the current running sessions

SELECT wait_event, wait_event_type, Count(*)
FROM pg_stat_activity
GROUP BY wait_event, wait_event_type
ORDER BY Count(*) DESC;

Example-2:
query transactions
that start longer than
a specified duration (100s)

SELECT Count(1)
FROM pg_stat_activity
WHERE pid != pg_backend_pid()
AND (Now() - xact_start > interval ’100s’);

Table 3: The intentions and the corresponding DBAs’ operations
for Step-1 inspections (PostgreSQL-based EDB). The observed phe-
nomena and subsequent actions are listed in Table 4.

“SET ROLE” to change the user ID of the current session.
DBAs can thus switch to any user to launch the smuggle
attacks. In HEDB, we adopt a client-side authentication tech-
nique. The client must hold a master key, and the operators in
the privacy zone can remotely attest to the client using stan-
dard signature verification. Because DBAs do not have the
user credential, an operator rejects requests from the DBAs,
even when the session has the user ID. Our survey shows
that existing commercialized EDBs [14, 30, 50] all support
client-side encryption where the client holds a master key.

4 Supporting Maintainability
HEDB is designed to support database maintainability. For
HEDB (or any Type-II EDB), there are two major pieces
that require maintenance and troubleshooting: the DBMS en-
gine and operators. By studying DBA daily tasks (§4.1), we
observe that DBAs operate differently on the two parts and ex-
pect different tools and functionalities. HEDB supports DBMS
engine maintenance through authenticated replay (§4.2) and
operator troubleshooting through anonymized replay (§4.3).

4.1 Understanding DBA tasks

To understand database maintenance, we conduct an empirical
study of existing DBA guidance from Microsoft SQL Server,
MySQL, PostgreSQL, and several cloud databases, including
Amazon Aurora [1], Google Cloud SQL [7], Azure SQL [14],
Huawei GaussDB [30], and Alibaba Operon [50].

We find that the workflow of DBA administrative tasks
typically contains two steps. In Step 1 , DBAs inspect the
states of DBMS engine and OS to identify the issue and
locating the root cause (see Table 3). During inspection, DBAs
may need to install and use profiling tools or issue proper
SQLs to query various database metadata tables (e.g., index,
locks, activity), for example, examining transactions that last
longer than a desired duration, say 100 seconds. In Step
2 , DBA takes actions to fix the issue (see Table 4). These

actions mainly involve updating the configuration parameters
of the DBMS engine or the underlying OS kernel, kill the

deadlocked database processes, or reclaim database storage.

Observations to support maintainability. We have two
observations from the above two-step maintenance process.
The first observation is that inspections (Step 1 ) can be arbi-
trary and complex, while the action-taking (Step 2 ) is rather
regular and structured. We therefore allow DBAs to conduct
any necessary inspections on the forked DBMS engine in
Maintenance Mode (these inspections do make temporary
changes but can be discarded), and provide a maintenance
template which translates maintenance actions into a finite
whitelist of tasks in Execution Mode. Second, we observe
that for operators, DBAs need to reproduce the control flow in
order to trigger bugs, but do not necessarily need the original
inputs (i.e., user secrets). Hence, HEDB provides a set of fake
inputs that preserve operators’ control flows.

4.2 DBMS Maintenance by Authenticated Replay

In this section, we introduce how HEDB supports DBAs
to maintain the DBMS engine. We describe operator trou-
bleshooting in the next section (§4.3).

Overview. When meeting problems, users contact DBAs for
help. DBAs will request HEDB for a mode switch from Exe-
cution Mode to Maintenance Mode. In Maintenance Mode,
DBAs fork the VM without worrying about accidentally dam-
aging the VM snapshot. In the cloned VM, DBAs have the
root privilege and can re-execute the problematic user re-
quests by authenticated replay (described in detail below).
During troubleshooting, DBAs can use arbitrary tools (e.g.,
profilers and debuggers). There are no privacy leaks during
troubleshooting because user data is encrypted in the VM.

After the root cause is identified, HEDB provides a main-
tenance template where DBAs can write the actions to be
applied. Then HEDB is switched to the Execution Mode. The
integrity-zone hypervisor triggers a shim module in the VM.
This shim first performs sanity checks over the submitted fix,
ensuring all parameters in the template are valid, and ulti-
mately takes the maintenance actions on the DBA’s behalf.

Authenticated replay for Step 1 . To provide DBA mainte-
nance without letting DBAs access operator interfaces, HEDB
records the operations’ inputs and outputs in ciphertexts dur-
ing Execution Mode, and replays them to mock operator
executions in Maintenance Mode. On the one hand, authenti-
cated replay rejects any new operator invocations with unseen
parameters, stopping smuggle attacks. On the other hand, au-
thenticated replay ensures that the database follows the same
control flow and data flow as in the history of Execution Mode.
Using authenticated replay, various DBMS bugs (e.g., config-
uration and functional bugs) can be fully reproduced with the
replay log. The log also embeds a timestamp of each operator
invocation, and HEDB provides delay simulation to help de-
bug performance bugs. For example, a DBA can re-execute
the user queries after updating a configuration parameter and
check if this update does improve the query performance.
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Phenomenon Action Maintenance Template Sanity Checks

OS
directory permission denied change directory permission chmod 750 [dir] [dir] must be under “/usr/local/pgsql/data”
coredump makes no space left remove coredump file rm /var/crash/*.core NONE
slow buffer cache enable huge pages for shared_buffers hugepage [on|off] [num] [num] is between 64 and 65536

Connectivity
DB connection failure restart DB engine systemctl restart postgresql NONE
too small MTU reconfigure network card’s MTU ifconfig [eth] mtu [num] [eth] exists and [num] is between 64 and 8192
"sorry, too many clients already" enlarge the process number ulimit -u [value] [value] is between 1 and 8000

Database
“No space left on device” vacuum the database VACUUM FULL; NONE
index contains corrupted page rebuild the index REINDEX TABLE [table]; [table] must be an existing table
too large log files remove unused log files SELECT pg_rotate_logfile(); NONE
a query is hung or blocked cancel the hung query SELECT pg_cancel_backend([pid]); [pid] must be an active database process
low throughput adjust I/O load of background writer processes max_io_capacity = [num] [num] is between 0 and 100000
lock wait timeout enlarge timeout values max_query_retry_times = [num] [num] is between 0 and 3600
insufficient buffer update DB buffer configuration parameters shared_buffers = [num] [num] is between 64 and 2048

Table 4: The typical phenomena and DBAs’ common Step-2 actions. The operations used to observe these phenomena are listed in Table 3.

Maintenance templates for Step 2 . HEDB translates com-
mon actions into templates. For example, to adjust the trans-
action timeout, a template is “max_query_retry_times =
[num]”, where the “[num]” is a parameter that DBAs fill
in and is restricted to a reasonable range (between 0 and
3600 seconds). We summarize common DBA actions and the
corresponding templates in Table 4.

Maintenance templates offer a quick path to implement
DBA hotfixes. Our lessons with template-based maintenance
show that it covers common DBA actions used in practice,
such as updating the configuration parameters, fine-tuning
slow queries, and canceling lengthy transactions. For actions
that require modifying the database code, such as patching
functional bugs or adding new query-rewrite rules to the
DBMS engine for better performance, HEDB requires au-
diting the patch before updating.

4.3 Operator Troubleshooting by Anonymized Replay

As operators are highly extensible and designed to support
various operations, bugs are inevitable. Unlike the DBMS
engine that only handles ciphertexts, operators work in the
privacy zone that contains user secrets in plaintext. Debugging
operators requires avoiding or minimizing data leakage.

Overview. The core idea is to construct "control-flow equiva-
lent" inputs using a concolic executor and a constraint solver.
This process generates multiple sets of inputs, causing the
operator to exercise the same path as the buggy inputs. HEDB
selects a new set of inputs from candidates, replaces the en-
crypted values of the authenticated log (called anonymized
log), and replays the log to reproduce the operator’s bugs.

While [20, 22, 49] have also used similar techniques for
diagnosis under privacy regulation, they suffer from issues
related to path explosion or environment modeling. HEDB
enhances these techniques, improving efficiency and privacy.

Efficient constraint collection via simplified operators.
HEDB overcomes the efficiency challenges in three ways.
First, operators are userspace programs with rare system calls
(mostly memory allocation) and no privileged instructions,

hence eliminating the need for modeling OS kernel environ-
ments. Second, operators are designed to be stateless, which
is common in Type-II EDBs [14, 30, 50]. This means that
an operator’s path conditions rely solely on its inputs, result-
ing in significantly fewer possibilities. Third, when operators
become complex, scalability issues with concolic executors
might limit their practicality. HEDB requires developers to
decompose complex operators into micro-operators, each of
which should undergo the concolic executor within a reason-
able short amount of time.

Privacy-preserving log generation via data masking. To
hide user data, HEDB requires a large number of distinct can-
didates sharing the same control flow as the original user data,
which is computationally expensive. For example, generating
1 million candidates for a single control flow takes 24 min-
utes using a state-of-the-art constraint solver, Z3 [23]. While
increasing the number of candidates enhances privacy, deter-
mining the optimal number of candidates is non-trivial. To
address this, HEDB leverages rules from modern data mask-
ing engines [2, 5]. Common rules include scrambling (1234
→ XXX4), substitution (Boston → USA), variance (0.07 →
1.0), etc. Currently, HEDB employs simple rules translated
into constraints understood by Z3.

By feeding both path constraints and masking constraints
into the constraint solver, HEDB can generate new inputs that
not only reproduce the bug but also protect user privacy. This
generation only needs to occur once per control flow, and the
results can be reused for later debugging.

The input parameters of operators comprise two types: user
data (e.g., from columns) and metadata (e.g., size). Following
the security model of previous work [42, 48], HEDB masks
only user data, while metadata can be hidden using padding.
Users can customize the data masking rules for different
columns based on their knowledge of the data semantics.

Example. Here is a demonstrative example of how HEDB
generates the anonymized log. As illustrated in Figure 3,
each entry in the authenticated log is iteratively translated
into an anonymized counterpart. First, a line of log entries
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Timestamp: 00:01:28, Operator: “Like”, “MTIx4oCTM”!“ANH5cyU”, True

Timestamp: 00:01:28, Operator: “Like”, “121–067-982”!“121%”, True

Operator Binary

Timestamp: 00:01:28, Operator: “Like”, “xxx–xxx-111”!“xxx%”, True

    
   substring():
     … …
   like():
     … …
   concatenate():
     … …

"#$

Text Operators

%&'#()

!"#$%&'

123-456-789
↓

xxx-xxx-789

Masking Rule

Constraint Solver

xxx–xxx-111

*+),-./0#( 1+&.0*23-./45/678

masking

constraints

path constraints

Concolic Executor

Privacy 

Zone

Figure 3: How HEDB translates an authenticated log entry into an
anonymized log entry for replay-based operator troubleshooting.

is decrypted in the privacy zone, and fed into a concolic
executor that captures the path constraints that lead to the
“like” operator using buggy inputs. Then, an constraint solver
utilizes these constraints, along with those derived from a rule
that scrambles the first 6 digits of a phone number, to generate
a new set of fake inputs, namely, “XXX-XXX-111”.

Design rationale. In principle, HEDB’s troubleshooting is
not limited to stateless operators. However, supporting state-
ful operators requires overcoming additional challenges. First,
crash consistency is a critical issue for Type-II plus stateful
operators, because failures can cause inconsistencies between
the states of the DBMS and the operators, and is inherent
to all Type-II systems regardless of HEDB’s design. Second,
consider HEDB with stateful operators; concolic execution
might experience state explosion, whereas record-and-replay
will need to log every state change, resulting in performance
degradation. Finally, applying HEDB’s data masking rules
to operator states may raise security concerns, since these
states are typically less structured and could potentially reveal
information. Another question to ask is whether the proposed
approaches could be applied to provide maintainability to
Type-I EDBs. This is an open question, as it presents signifi-
cant obstacles, such as (i) the challenge of anonymizing the
DBMS’s intricate internal states, and (ii) the potential inabil-
ity to scale over extensive execution paths, given the current
concolic executors and constraint solvers.

5 Implementation
5.1 Implementation Complexity

DBMS and operators. Similar to prior Type-II EDBs [14,
30, 48, 50], we implemented an ARM version of UDF-based
operators using ~4K lines of C for PostgreSQL v13.8. Our
UDFs define 4 encrypted data types and 79 operators. To
protect the DBMS engine in an integrity zone, we run it in
a secure VM on top of a thin ARMv8.4 S-EL2 hypervisor—
S-visor [35]. We further protect HEDB’s operators in another
secure VM with on-chip memory. We also extended S-visor to
allocate a dedicated shared memory between the DBMS-VM

and operator-VM, accomplishing authenticated channel.

Mode switch. We extended S-visor and KVM using 91 lines
of C and 24 lines of ARM Assembly to implement HEDB’s
mode switch, by means of VM migration between TrustZone
and Normal World. Specifically, HEDB configures the TZASC
control registers to specify whether a VM belongs to Trust-
Zone or Normal World, providing fast VM migration (~68K
cycles) without incurring VM memory copying.

We follow the design principle of S-visor which delegates
most functionality to N-visor (i.e., QEMU/KVM), while S-
visor focuses on simple tasks such as saving and restoring VM
contexts and carrying out necessary security checks. Instead
of implementing fork in S-EL2, we leverage a “switch-and-
fork” approach that reuses QEMU’s mature features such as
VM snapshotting. Specifically, a mode switch is triggered
when DBMS is in Execution Mode, and N-visor signals S-
visor to mark all VM memory as non-secure by updating
TZASC. Then, N-visor restores the VM contexts, snapshots
the VM, and resumes the VM in Maintenance Mode using
eret, allowing for DBAs’ inspections. We also extended
S-visor to perform VM runtime attestation using SHA-256.

Record-and-replay. The record-and-replay is implemented
using ~1.8K lines of C and Python. The authenticated logs
reserve all computation results such as arithmetic operations
to avoid the problem of random encryption (i.e., AES-GCM
with nonce). As HEDB does not modify the DBMS engine,
it cannot enforce execution determinism such as transaction
ordering. Consequently, HEDB’s authenticated replay does
not support concurrent transactional writes (e.g., TPC-C).

For anonymized replay, we use KLEE [18] to collect path
constraints of operators, and manually write data masking
constraints in Python based on four masking rules. Currently,
HEDB’s anonymized replay does not support floating-point
numbers, a limitation of the official KLEE, which can be
mitigated via a variant version, KLEE-Float [37]. Z3 [23] is
used as the constraint solver. To remove KLEE and Z3 from
the online TCB, we run them on a stand-alone server with
privacy zone support.

5.2 Optimization

Optimizing authenticated replay. The log size can become
large due to substantial operations within a single query. We
thus compress these logs with gzip. To ensure optimal spatio-
temporal efficiency, we divide log entries into groups, and
pipeline the log replaying on the current group and the log
decompression in the next group during authenticated replay.

Optimizing anonymized replay. We adopt four optimization
strategies. First, we modify KLEE by adding fork() to reuse
its states, resulting in a warm start for KLEE processes instead
of creation upon every operator invocation. Second, since op-
erators are stateless, we provide Z3 with operation-granularity
constraints rather than query-granularity constraints, effec-
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tively reducing Z3’s exploration costs. Third, we employ a
cache to reuse Z3’s generation efforts for the same constraints.
Last, we exploit precomputation to detach the entire log gen-
eration from interactive troubleshooting, e.g., using gdb.

We explain HEDB’s query execution optimizations in § A.2.

6 Evaluation
We evaluated HEDB to answer three major questions:
• What DBA tasks does HEDB support? (§6.1)
• Can HEDB protect itself from attacks? (§6.2)
• How much overhead does HEDB incur? (§6.3)

Experimental Setup. We use two evaluation platforms:

• ARM Fixed Virtual Platform (FVP). FVP is a cycle-
accurate full-system ARM simulator used for functional
correctness evaluation. We validate the design of HEDB,
particularly, the correctness of mode switch on FVP.

• ARM Kunpeng-920 Platform. The platform is a 96-core
ARMv8.2 CPU (2.86 GHz) server with virtualization host
extension (VHE) support. Like prior work [35], we add
the worst-case latency (8K cycles measured on FVP) to
KVM upon each VM exit and each hypercall to simulate
the overhead caused by S-EL2.

Testbed. The experiments are conducted using 2 KVM-
enabled QEMU virtual machines running Linux 5.4.0. The
integrity-zone VM runs PostgreSQL v13.8 with 32-core
vCPU and 32GB memory, whereas the privacy-zone VM
runs the operators with 8-core vCPU and 8GB memory. The
host machine provides a 96-core ARMv8.2 CPU (2.86 GHz),
256GB memory and 512GB SSD running Ubuntu 20.04 LTS.

Workload. We focus on online analytical processing (OLAP)
workloads because OLAP involves more types of operators
that can lead to smuggle attacks. Previous Type-II EDB sys-
tems [14, 30, 48, 50] are unable to support OLAP securely.
Due to ethical issues, we were unable to obtain real-world
traces for our evaluation. Nevertheless, based on our observa-
tions, TPC-H is representative enough for realistic financial
workloads. We set the TPC-H scale factor to 1 and encrypt all
data types (i.e., numeric, date and text) in the schemas. We
report the median query runtime in 10 runs.

6.1 Functionality Evaluation

Our study was conducted in partnership with Alibaba Cloud,
a top three cloud company providing global database services
in dozens of countries with more than 80 zones, all hosted on
virtual machines. We worked closely with a team of over 50
DBAs who had 3 to 10 years of experience in areas including
database development, database operations, and maintenance
management. Their feedback confirmed our observations,
insights, and taxonomy of DBA maintenance tasks.

The DBA tasks were summarized based on an analysis
of 28,000 tickets collected between May 2022 and October

Maintenance Taxonomy HEDB Approach

Control-plane Management

start, stop, backup, replica ✓ maintenance mode
configure access control policy ✓ maintenance mode
resolve failed high-availability ✓ maintenance mode
migration, switchover ✓ fast mode switch
update, upgrade ✓ explicit auditing

Data-plane Troubleshooting

healthcheck DBMS status ✓ maintenance mode
explain plans ✓ maintenance mode
cancel hung queries ✓ maintenance template

Data-plane Tuning

update configuration ✓ maintenance template
reindex encrypted columns ✓ maintenance template
rewrite user queries ⋆ authenticated replay

Data-plane Bug Reporting

core dump DBMS crash ✓ maintenance mode
reproduce DBMS bugs ✓ authenticated replay
reproduce operator bugs ✓ anonymized replay

Table 5: How DBAs maintain HEDB. ⋆ denotes that only rewritten
queries that do not generate new operations can be executed.

2022, each ticket representing a real DB issue assigned by
users. This analysis provides an empirical understanding of
the common daily issues faced by DBAs. We categorized
these tasks into control-plane (i.e., managing DB instances)
and data-plane (i.e., managing data in DB instances).

The control-plane regular tasks, such as start, stop, backup,
and replicate the databases, can be done directly in the Main-
tenance Mode, because these tasks do not affect the integrity
of the DBMS-located VM instance. In particular, HEDB pro-
vides a fast mode switch for switchover upon failures. Other
control-plane diagnosis tasks, such as resolving service un-
availability caused by misconfigured access control policies,
or failed high-availability routines, can also be performed in
Maintenance Mode. By design, HEDB supports all control-
plane maintenance tasks. One exception is that DBAs may
update or upgrade the EDB, which requires an explicit audit3.

For data-plane maintenance, we categorize three classes:
• Troubleshooting: these tasks mainly locate the sources

of service disruption, for example, by performing status
checks, identifying misconfigurations, or explaining slow
queries. DBAs can perform them in Maintenance Mode.

• Tuning: To resolve these identified problems, DBAs need
to perform further tasks to tune the database, e.g., by up-
dating configurations, canceling hung queries, rebuilding
indexes or rewriting queries as a more involved procedure.
Using authenticated replay, HEDB can support most of the
tuning tasks if no extra operations are needed.

3A possible audit workflow is as follows: once HEDB users agree to update
the EDB, the DBaaS provider releases the patch. Next, users or trusted
third parties review the patch, and agree on the binary after a deterministic
compilation. Finally, the patched EDB is launched and attested via TEE.
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• Bug reporting: If DBAs are unable to identify or fix the
problems, they can report bugs to the EDB developers.
HEDB lets developers obtain the DBMS coredump, and
offers replay to reproduce DBMS’s and operator’s bugs.
We systematically summarize DBA tasks as shown in Ta-

ble 5. Next, we highlight some common use cases in detail.

6.1.1 Case Studies of DBMS Maintenance

Fixing configuration bugs. Modern commodity DBMS en-
gines consist of various parameters that result in significantly
large configuration spaces. In this case study, a DB-backed
application developer reports a performance issue to a DBA
seeking assistance. The DBA then switches the database from
Execution Mode to Maintenance Mode and conducts inten-
sive checks on the forked database instance. Eventually, an
insufficient buffer is identified, and the DBA submits an ac-
tion specifying “shared_buffers = 512MB”. After switch-
ing back to Execution Mode, the buffer size is validated and
updated from 128 MB to 512 MB. As a result, the query
throughput is improved by 1.3×.

Rebuilding user indexes. When user indexes are unexpect-
edly corrupted or bloated, DBAs should rebuild them. In the
first case, DBAs wish to reconstruct the index after vacuuming
obsolete or duplicated records to reduce space consumption.
In Maintenance Mode, HEDB leverages the ordering informa-
tion from record-and-replay logs to assist DBAs in rebuilding
the index successfully. In another case, DBAs have changed a
storage parameter (e.g., fillfactor) for an index and want
to ensure that the configuration update has taken full effect.
To this end, DBAs use the maintenance template not only to
alter the storage parameter but also to rebuild the indexes.

Cancelling hung queries. When EDB users experience hung
queries and are unable to cancel them, they also seek help
from DBAs. There are several reasons why queries may hang,
all of which can be diagnosed and remedied using HEDB.
First, if there are too many concurrent connections that ex-
ceed the capacity of the database service, DBAs can utilize
HEDB’s template to adjust the configuration parameter (e.g.
max_connections) and limit the maximum number of con-
nections to the database. Second, if lock contention or dead-
locks exist in the database, DBAs can use an OS command
through the template to send a signal to kill the process, or
update the configuration parameter (e.g. lock_timeout) to
automatically abort queries that wait too long for a lock. In
the last scenario, if the database is in a recovery state, users
must wait until the process is complete. However, DBAs can
use a template to update the configuration parameter (e.g.
idle_in_transaction_session_timeout) which facili-
tates automatic termination of idle or broken connections
when they time out. Such update helps release held locks and
connection slots for reuse. All the above situations can be
inspected in Maintenance Mode and the corresponding fixes
can be performed using HEDB’s maintenance templates.

Tuning slow queries. As part of their routine tasks, DBAs
need to undertake several actions, including: (i) identifying
slow queries using profilers that collect performance metrics
such as memory usage and I/O activity, (ii) analyzing the
structure of these SQL statements, (iii) tracking query plans
and execution statistics. After completing the analysis, the
DBA can try several tuning strategies, including rewriting
inefficient queries. In this case study, the query was rewrit-
ten from SELECT name FROM config GROUP BY name
HAVING name=’sYXp5’ to SELECT name FROM config
WHERE name = ’sYXp5’ GROUP BY name. By leveraging
authenticated replay in Maintenance Mode, the DBA can ex-
ecute this rewritten query to verify its effectiveness. Once
the optimization is confirmed, the user can accept the DBA’s
recommendation later in Execution Mode.

Bug reporting via coredump. For database bugs that lead to
crashes (e.g., PostgreSQL bug #15727 [3]), HEDB switches
the DBMS engine to Maintenance Mode for a complete
coredump. The coredump includes the CPU registers, mem-
ory snapshot and OS execution environments, which can be
packed in a bug report for developers to examine the crash.

6.1.2 Case Studies of Operator Troubleshooting

Reporting functional bugs. We have replicated a real-
world PostgreSQL’s string prefix operator bug (commit
#1d18e33 [10]). This bug causes an incorrect intersection.
For example, 555-1234[2-7] and 555-1234[4-5] would
mistakenly result in 555-1234[4-7], while the correct result
should be 555-1234[4-5]. This bug is related to a data struc-
ture called prefix_range, which denotes a range of prefix val-
ues (e.g., 12[3-5] denotes “123”, “124” and “125”). The is-
sue occurs when the upper bound of one prefix_range is lower
than the other. Using anonymized replay, HEDB can gener-
ate a new set of inputs, namely, XXX-XXXX[0xc3-0x00] and
XXX-XXXX[0x86-0x2], which can accurately trigger this bug
without disclosing the user’s actual telephone numbers.

Debugging memory leaks. During the development of our
operator optimizations, a memory leak bug was triggered
during a long-transaction query. We reproduce this bug in
HEDB’s privacy zone. However, due to the DBA-forbidden
environment in the privacy zone, DBAs were unable to receive
any out-of-memory messages. Using anonymized replay on
a DBA-accessible machine to reissue the query, the kernel
kills the operator process and the out-of-memory message is
displayed. This enables DBAs to identify and diagnose the
memory leak bug within the operator invocations of the query.

6.2 Security Evaluation

Smuggle attack evaluation. We first log into the database
using a DBA account. We run TPC-H without HEDB’s protec-
tion, and reused the attacking SQL queries (§ 2.5) to recover
the secret data. It took 25.2 seconds to breach a TPC-H in-
teger column, i.e., p_partkey, containing 200K encrypted
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integers. We then run the DBMS engine in HEDB’s Execution
Mode. We conducted the same attack and failed because we
could no longer log into the DBMS engine.

Operator leakage attack evaluation. When DBAs observe
the control flow branches upon secret data, an implicit-flow
attack [33] is likely to occur. Defending against implicit flow
attacks is a well-known challenge. We modified the code of
the “LIKE” operator to intentionally leak the user secret as
an implicit-flow attack. As shown in Figure 4, the DBA can
learn that the user’s secret is “OSDI-2023”. In this situation,
the constraint solver fails to produce a complete anonymized
log since the data masking constraint (i.e., the first 4 bytes
must be scrambled) cannot be satisfied. As a result, HEDB
rejects DBAs from debugging the operator.

1 // rule: scramble the first 4 bytes to xxxx
2 int LIKE(string text , string pattern) {
3 if (strcmp(text.data(), "OSDI -2023") == 0)
4 return LIKE_TRUE;
5 }

Figure 4: The operator code contains an intentional leakage attack.

Leakage profile analysis. Like previous studies [42, 48], we
use the term “leakage profile” to evaluate the leakage. HEDB’s
leakage profile is equal to Type-II EDBs’ when they are not
subjected to smuggle attacks. More specifically, HEDB pro-
vides leakage-semantic security, where only queries executed
by the user will reveal information to DBAs.

To quantify leakage (L), we use a security definition intro-
duced in [42]. An EDB system is considered L-semantically
secure if an adversary A’s entire view of execution traces
can be simulated using only L. A can observe all states in
the server (trusted domains excluded) and communication be-
tween the server and the client. A’s task is to distinguish real-
world traces (Real) from ideal-world traces (Ideal), which
are restricted by a leakage function L.

Let L be a leakage function. We define a system as L-
semantically secure if, for all adversaries A and all sequences
of operator invocations I (containing operations O and pa-
rameters P), there exists a negligible ϵ such that:∣∣Pr[Real(I) = 1]− Pr[Ideal(I) = 1]

∣∣ ≤ ϵ

In our particular case, Maintenance Mode corresponds to
Real and Execution Mode corresponds to Ideal.

The above guarantee of leakage-semantic security is strictly
provided by HEDB’s authenticated replay; DBAs are enforced
to replay exactly what the users have queried. Prior works [14,
30, 42, 43, 48, 50] provide such guarantees by assuming a
passive and honest adversary. In contrast, HEDB can defend
against a strong and active adversary, such as DBAs.

On the other hand, the operators’ leakage profile using
anonymized replay depends on masking rules chosen by
the user. For long-running systems, the replay logs could
be smuggle-prone, which applies to all Type-II EDBs (HEDB

included). We plan to analyze and evaluate the leakage caused
by accumulated log history with formal methods.

Other aspects of security analysis. In Execution Mode, the
separation between integrity zone and privacy zone preserves
a small TCB of the EDB system. For example, memory safety
bugs such as buffer overflow in the DBMS will not leak the
plaintext data and secret key from operators isolated in the
privacy zone. On the other hand, HEDB inherently supports
multiple users. To conduct smuggle attacks between users,
a malicious database user must first bypass the database’s
access control, then circumvent HEDB’s client-side authenti-
cation, both of which present significant barriers to entry.

6.3 Performance Evaluation

6.3.1 Boot-time and Mode Switch Cost

HEDB measures an SHA-256 hash of the VM image upon
boot. The cost of remote attestation for a 9GB PostgreSQL im-
age is 23.96ms. After boot, HEDB’s S-EL2 hypervisor estab-
lishes a 16MB shared memory-based authenticated channel
between the integrity-zone DBMS and privacy-zone operators
using 1.65ms. Upon a mode switch, HEDB issues VM switch
by updating TZASC registers, costing 68K cycles ≈ 0.022ms,
plus 27.65ms measurement for runtime attestation later on.

6.3.2 Runtime Cost

TPC-H. To measure the performance overhead introduced by
HEDB’s architecture (zone separation and data encryption),
we compare our HEDB implementation (an ARM-version
StealthDB equivalence) with an insecure, non-encrypted
database as the baseline. As shown in Figure 5, Q1 incurs
79.5× overhead, while Q8’s slowdown factor is 1.33×. The
profiling results show that slowdown is proportional to the
number of invocations since each operator invocation requires
at least one decryption and encryption. We then apply HEDB’s
optimizations (detailed in § A.2) to improve the performance.

Optimizations. Parallel decryption can improve all queries
by reducing 15.12% end-to-end query execution time on av-
erage. With maximal concurrency of 11 threads, it can even
reduce up to 32.57% when running Q19. With order-revealing
encryption, Q1’s overhead is decreased by 52.40%, because
almost all comparisons are avoided. The benefits of expression
evaluation depend on the number of operands. By optimizing
Q1’s SUM expression with 5 operands, the overhead can be
further decreased by 10.58%. Overall, HEDB’s optimizations
achieve 2.49× speedup on average.

6.3.3 Record-based Execution Overhead

Runtime overhead. The runtime overhead of recording in-
curs 5.88% on average, as shown in Figure 6a. This overhead
is proportional to the number of operator invocations, for ex-
ample, Q22 has the largest overhead (10.44%), while Q18 has
minor overhead (1.07%). In particular, we focus on the slow
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Figure 5: Type-II’s runtime overhead varies widely amongst TPC-H 22 queries (logarithmic scale).HEDB achieves 2.49× speedup on average.
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Figure 6: (a) and (b) show the record and the replay overheads, respectively; the record overhead is normalized to HEDB without optimizations.
(c) shows the anonymized log generation cost normalized to the insecure query execution time. Y-axes of (b) and (c) use a logarithmic scale.

secure queries (10× slower than insecure baselines), whose
average overhead is 7.49%.

Storage overhead. HEDB’s logs introduce moderate storage
overhead. The corresponding logs for TPC-H (scale factor =
1.0), which occupies 5,523 MB of encrypted data, results in
log files of 20,004 MB (3.62×) in size. After compression
with gzip, the total size is reduced to 1,853 MB (9.26%
fraction). The compression is very effective because many
log entries appear multiple times. Should storage quota be a
concern, logs can be periodically truncated.

6.3.4 Replay-based Maintenance Overhead

Query re-execution overhead. DBAs often need to re-
execute user queries to understand their behavior and check if
proposed fixes take effect. HEDB’s logs allow for faster query
debugging, as they preserve the input-output relationship,
eliminating all de/encryptions in re-execution for configura-
tion and functional bugs. Figure 6b demonstrates the TPC-H
query replaying overhead, showing that HEDB’s log-based
replay is 3.96× faster than Ops-based replay (by honestly
calling operators), saving the DBAs time and effort. Never-
theless, replay still incurs 5.11× slowdown compared with
the insecure baselines. To debug performance bugs, DBAs
can enable HEDB’s delay simulation feature, which maintains
the same query performance as the real queries.

Anonymized log generation overhead. We evaluate HEDB’s
log anonymization, which transforms an authenticated log
into an anonymized log. We measure the anonymized log
generation time and present the results in Figure 6c. HEDB’s
optimizations, such as warm start for KLEE and constraint
cache for Z3 (see § 5.2), result in a significant speedup of 12×
to 216× on an 8-core VM. Specifically, HEDB’s techniques

Type Operation Proportion KLEE
(w/o fork)

KLEE
(w/ fork) Z3

Integer
comparison 47% 0.71 0.06 0.12
computation 40% 0.70 0.05 0.12
aggregation 13% 2.81 2.15 0.13

String

comparison 70% 0.77 0.12 0.12
substring 10% 0.71 0.06 0.12

concatenation 10% 0.72 0.07 0.12
search (LIKE) 10% 1.25 0.61 0.14

Time comparison 87% 0.74 0.10 0.12
extraction 12% 2.08 1.41 0.19

Table 6: Log anonymization cost (in seconds) using KLEE and Z3.

improve KLEE constraint collection efficiency from 5 days to
2.7 hours, and reduced Z3 log generation time from 2 hours
to 25 seconds. It is worth noting that Q18 is not supported be-
cause it processes floating-point numbers only, which HEDB
currently does not support.

To assess the efficiency of our used tools (KLEE and Z3),
we estimate the time required by each operator and report
the worst-case time in Table 6. For KLEE-based concolic
execution, aggregation operators like MIN take longer as these
operators batch many items, but cost only ≈ 0.03s per item
when amortized. String operator “LIKE” (using a regular ex-
pression library) and timestamp operator “EXTRACT” (using
big integer division) were also time-consuming. We reimple-
mented the division in EXTRACT to reduce it from 3.17s to
2.08s. Z3’s constraint solving time depends on the number of
constraints and symbolic variables. As a result, we found that
only a few constraints exist in HEDB’s operators.

7 Discussion
This section discusses several issues that HEDB currently does
not address but are worth exploring as future work.
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Enforcing deterministic replay. HEDB relies on record-
and-replay (R&R) of operator invocations to reproduce EDB
issues. However, due to the non-deterministic nature of con-
currency, HEDB does not support debugging queries with
non-determinism, e.g., concurrent writes. While providing
deterministic R&R frameworks would be essential for bug re-
production, it is orthogonal to our work. Alternatively, DBaaS
providers may also consider deterministic databases [46].

Fully supporting query rewriting. DBAs need to help
rewrite user queries for tuning (see Table 5). However, HEDB
does not support all query rewriting because allowing unseen
invocations could raise security issues. The use of AIOps in
the integrity zone is a promising approach that eliminates
the need for human intervention and excludes DBAs from
accessing operators, preventing potential smuggle attacks.

More flexible operator troubleshooting. If user-defined
masking rules are too restrictive, HEDB’s anonymized replay
may hinder the reproduction of bugs triggered by certain
values, such as division by zero. We aim to develop more
flexible masking rules that can disclose more operator bugs.

Examining metadata log privacy. Database logs are heavily
used for DBAs to diagnose DBMS issues [38, 52]. EDBs are
no exception. In HEDB, the record-and-replay logs are either
encrypted or anonymized. However, various metadata logs
exist in the integrity zone and might leak privacy. According
to our investigation, a DBaaS provider typically collects the
following logs (and potentially more):
• Syslogs: errors and exceptions of the DB processes.
• Operation logs: operations from all SQL clients/DBAs.
• Trace logs: internal exception logs for DBMS engines.
• WAL logs: transactions that make changes to the DB.
• Performance logs: environmental resource status, includ-

ing CPU, disk, and network I/O statistics.
In the future, we plan to examine their leakage profiles.

Porting to other architectures. The current prototype uses
ARMv8.4 S-EL2 for fast mode switch. We plan to port HEDB
to other VM-based confidential computing platforms such as
AMD SEV [13], Intel TDX [9] and ARMv9 CCA [36], and
explore optimization techniques for these architectures.

8 Related Work

Encrypted databases (EDBs). There is an increasing interest
in EDBs from academia [15, 17, 26, 42–44, 48] and indus-
try [14, 30, 50]. Type-I EDBs [17, 44, 45] lack DBA main-
tenance. Crypto-based Type-II EDBs [42, 43] lack full SQL
support. TEE-based Type-II EDBs [15, 48] suffer from smug-
gle attacks. Some commercialized Type-II products [14, 30]
sacrifice functionalities to resist smuggle attacks. Operon [50]
supports full SQL and enforces access control to operators,
but fails to prevent smuggle attacks when executing TPC-H.
In contrast, HEDB achieves full SQL, DBA maintenance and

interface security by introducing a dual-mode EDB design.

EDB attacks. A long line of studies has discussed the leakage
attacks of EDB systems, including ordering, distribution, vol-
ume, access patterns, and frequency analysis [27–29, 32, 39].
These types of leakage can be vulnerable to passive attack-
ers who attempt to recover the original data with sophisti-
cated background knowledge [29, 32, 39]. On the other hand,
active attacks that breach ordering without user authoriza-
tion are further discussed in [27]. We devise a new active
attack—smuggle attacks—which requires zero background
knowledge and is challenging to detect.

Analytical privacy processing. Monomi [47] splits client-
server query execution to support TPC-H over encrypted data.
Monomi requires a client-side computational platform, while
HEDB executes the full query on an untrusted cloud.

Record-and-replay (R&R) for databases. R&R is a well-
studied technique in database systems. FoundationDB [54]
uses R&R for deterministic distributed transactions. Zhang et
al. [53] adopts an R&R framework for ACID testing. HEDB
confines the misbehaviors of distrustful DBAs with R&R.

Privacy-preserving debugging systems. Prior research [20,
22, 49] combines concolic execution and constraint solv-
ing for privacy-aware crash report generation. Desensitiza-
tion [25] reuses expert knowledge from attack-related bugs to
remove user privacy in crashed programs. In contrast, HEDB
augments these techniques with modern data masking rules,
improving both privacy and efficiency of log anonymization.

9 Conclusion
Encrypted databases (EDB) are the holy grail of database
security. HEDB is a novel EDB design that achieves interface
security yet preserves database maintainability. Execution
Mode prevents illegal invocations to operators while Main-
tenance Mode allows untrusted DBAs maintenance. HEDB
introduces several key techniques such as authenticated replay
and anonymized replay. The source code of HEDB is publicly
available at https://github.com/SJTU-IPADS/HEDB.
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A Appendix
A.1 Attacking Encrypted Data Types

1. Integer: The DBA leverages arithmetic operators (+, −,
×, ÷) and comparison operators (>, =) to construct
an encrypted arithmetic progression which assists in
recovering the original integers, as described in § 2.5.

2. Decimal: Like Integer, a DBA can construct cipher-
texts equal to 1.0 using arithmetic operators. With +,
10.0 can be derived and further help construct 0.1 by
dividing 1.0 by 10.0. Similarly, 0.01 and 0.001 can
also be recovered. Using these pivot values, 32-bit Real
and 64-bit Double can be recovered in terms of integral
and fractional parts, respectively.

3. Text: Text does not support arithmetic operators. Still,
a DBA can invoke the operator substring(string,
from, to) which splits each character, by manipulating
the encrypted integer arguments from and to. As the
character has a finite domain (256 as defined in ASCII),
once 256 different values are fulfilled, a DBA can infer
the actual character and the original text.

4. Time: Because DBMSes support arithmetic operators
such as +, −, < on 32-bit Date and 64-bit Time, these
operators can be exploited to conduct full recovery.

A.2 HEDB Query Execution Optimization

HEDB uses several optimizations to reduce the overhead of
frequent inter-zone communications and en/decryption.

Parallel Decryption (O1). Data decryptions in an expression
can be done in parallel as they do not depend on one another.
HEDB uses a thread pool: when a new invocation arrives, the
dispatcher seeks an idle thread and assigns a decryption task.

Order-revealing Encryption (O2). We observe from real-
istic workloads that encrypted texts have many comparisons,
but only a few unique values. Also, ordering is revealed dur-
ing query execution. We thus insert the integer order into each
encrypted text’s header. HEDB utilizes the embedded order to

compare two encrypted text values, avoiding decryption.

Expression Evaluation (O3). User queries might contain
complex expressions. For instance, TPC-H Q1 contains
SUM(l_extendedprice * (1 - l_discount)). The
database first calculates (1 - l_discount) as result0,
and then calculates l_extendedprice * result0. In total,
3 decryptions and 2 encryptions are performed. To reduce the
redundant en/decryptions, HEDB parses the whole expression,
leading to 2 decryptions and 1 encryption. Aggregations (e.g.,
SUM, AVG) are also optimized using expressions.

B Artifact Appendix
B.1 Abstract

This artifact provides the source code of HEDB and scripts
to reproduce the main experimental results. To reproduce the
results in § 6, we provide instructions to build binaries and run
experiments. The source code of HEDB can be retrieved from
a public open-source repository under the Mulan Permissive
Software License v2. Although the scripts target our testbed,
readers can port them to other platforms. For those interested
in using HEDB in their own research, we recommend using the
main branch of our repository, which would be maintained by
members of the Institute of Parallel and Distributed Systems.

B.2 Scope

The artifact contains instructions and scripts for reproducing
Figure 5 and Figure 6 that support the following four claims:
• Claim-1: HEDB’s optimizations speed up Type-II EDB.
• Claim-2: HEDB’s record overhead is low and acceptable.
• Claim-3: HEDB’s replay overhead is much faster than

operator-based replay.
• Claim-4: HEDB’s optimizations boost the anonymized log

generation speed.

B.3 Hosting

The artifact is publicly available at our GitHub repository:

git clone https :// github.com/SJTU -IPADS/HEDB
git checkout main

B.4 Contents

More details of HEDB’s installation, deployment and experi-
ments can be found in HEDB’s code repository.
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