KUNSERVE: Parameter-centric Memory Management for Efficient
Memory Overloading Handling in LLM Serving

Rongxin Cheng Yuxin Lai’ Xingda Wei™ Rong Chen Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

Serving LLMs with a cluster of GPUs is common nowadays,
where the serving system must meet strict latency SLOs re-
quired by applications. However, the stateful nature of LLM
serving requires maintaining huge states (i.e., KVCache) in
limited GPU memory. Under spikes in real-world workloads,
GPU memory can be easily overloaded, leading to orders of
magnitude higher response latency due to queuing introduced
by waiting for KVCache to be reclaimed. Prior KVCache-
centric approaches handle overloading by dropping, migrat-
ing, or swapping KVCache. These methods fail to release
sufficient memory quickly with requests still queued.

This paper proposes the first parameter-centric approach
to handling overloading by selectively dropping replicated
parameters to instantly free memory for requests, based on an
unnoticed observation that model parameters are commonly
replicated across GPUs for serving LLMs. With additional
memory, all requests can be served with a larger batch without
queuing. To make the parameter-centric approach correct and
efficient, we cooperatively execute requests on GPUs with a
complete copy of parameters using pipeline parallelism, and
derive an appropriate drop plan without unnecessary coopera-
tion. We also design techniques to minimize the performance
overhead due to pipeline parallelism with the execution pat-
terns of requests under drop. Evaluations show that KUN-
SERVE reduces the tail TTFT of requests under overloading
by up to 72.2 X compared to the state-of-the-art systems in-
cluding Llumnix, vLLM and InferCept.

CCS Concepts: * Software and its engineering — Cloud
computing; * Computer systems organization — Real-time
system architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

© 2026 Association for Computing Machinery.

ACM ISBN 979-8-4007-2212-7/26/04. .. $15.00
https://doi.org/10.1145/3767295.3769348

Keywords: LLM Serving; Cloud computing; Parameter-
centric memory management

ACM Reference Format:

Rongxin Cheng, Yuxin Lai, Xingda Wei, Rong Chen, and Haibo
Chen. 2026. KUNSERVE: Parameter-centric Memory Manage-
ment for Efficient Memory Overloading Handling in LLM Serv-
ing. In European Conference on Computer Systems (EUROSYS ’26),
April 27-30, 2026, Edinburgh, Scotland Uk. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3767295.3769348

1 Introduction

Transformer-based large language models (LLMs) are re-
shaping the computing industry, which generate output in
a token-by-token streaming fashion with auto-regressive in-
ference. The tokens are used by downstream tasks such as
chatbots [36], copilots [26], and interactive agents [24]. Such
tasks require human interaction, so serving LL.Ms has tight
latency requirements, e.g., less than 1 second [13, 55]. The
smaller, the better [25]. Specifically, both the time to gener-
ate the first token (TTFT) and the time between subsequent
tokens (TPOT) are important metrics.

A key feature of LLM inference is that the computation
is stateful: before generating the final token, the intermedi-
ate results of previously generated tokens (termed KVCache)
are kept in the scarce GPU memory (HBM) to accelerate
future token generation. Such a stateful generation introduces
a key issue: the serving latency could spike (up to 239 X in
BurstGPT [48], see §2.2 and others in §5) when the stored
KVCache exhausts the precious HBM. Such overloading is
common under real-world request bursts [23, 38] since the
KVCache is proportional to the number of requests processed
(or to be processed). Such overloading significantly impacts
latency, because requests must wait for GPUs to free up suf-
ficient memory for processing. Unfortunately, it could take
seconds for LLMs to generate the final token so as to release
memory due to the long and unpredictable token generation
process.

State-of-the-art approaches adjust KVCache stored in GPU
memory to handle overloading [30, 40, 44, 50]. When a GPU

fWork done while Yuxin was an intern at Institute of Parallel and Dis-
tributed Systems, Shanghai Jiao Tong University. Yuxin was affiliated with
Huazhong University of Science and Technology.

gXingda Wei is the corresponding author (wxdwfc@sjtu.edu.cn).

https://doi.org/10.1145/3767295.3769348
https://doi.org/10.1145/3767295.3769348
wxdwfc@sjtu.edu.cn

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

lacks sufficient HBM and causes request queuing, the sys-
tem either drops KVCache of existing requests, swaps it out,
or migrates it to an available spare GPU to make room for
queued requests (detailed in §2.3). We argue that adjusting
KVCache does not fundamentally resolve the queuing issue
caused by memory overloading, because these methods do
not release sufficient memory for all requests, i.e., they re-
place one set of queued requests with another. Thus, a portion
of requests must still be queued, still resulting in sharp tail
latency increases (e.g., more than 100).

This paper answers a key question: how can we effectively
handle the latency spikes caused by memory overloading in
LIM serving? To answer this question, we propose a new sys-
tem mechanism—parameter-centric memory management—
to instantly free up abundant GPU memory upon overloading
for all requests to eliminate queuing. Our method is moti-
vated by two insights. First, the HBM usage is dominated
by both KVCache and model parameters (34-74% per GPU,
see Table 1), so dropping a portion of parameters can free up
sufficient memory for processing all requests. While intuitive,
dropping parameters inevitably disrupts the inference process,
making the GPUs with dropped parameters unable to process
requests. Thus, our second insight is that, due to the massive
computational requirements of model serving, modern LLMs
are served with a cluster of GPUs where the parameters are
replicated across multiple GPUs [5, 6, 12, 14, 37, 38, 44]. As
a result, as long as we carefully drop parameters to ensure
complete copies exist cluster-wide, we can correctly process
requests with dropped parameters using cooperative execu-
tion.

Our parameter-centric memory management operates in
a three-step process. First, upon detecting that the serving
system has suffered or is about to suffer from memory over-
load, we derive a drop plan and execute it across GPUs to
free up sufficient memory. Afterward, requests executed on
GPUs with dropped parameters are seamlessly rescheduled to
groups of GPUs with complete parameters to ensure complete
execution. These requests are executed using parallel infer-
ence techniques across GPUs with pipeline parallelism, since
other techniques like tensor parallelism have more stringent
network requirements. Finally, once the memory demand of
the KVCache decreases, we restore parameters on the original
GPUs and reschedule the requests accordingly to achieve the
lowest inference latency.

Although the idea may appear simple, achieving parameter-
centric memory management necessitates tackling a set of
challenges. First, generating an efficient drop plan should
holistically consider the memory freed up by the dropped pa-
rameters as well as the performance overhead introduced by
dropping too many parameters. Meanwhile, we need a system
mechanism to allow existing GPU kernels highly optimized
for LLMs to use the HBM freed up by dropped parameters

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

without modifications. To this end, we first leverage the pre-
dictable performance pattern of pipeline parallelism—the
more parameters dropped, the more performance overhead
incurred—to quickly derive a drop plan that minimizes the
performance overhead while providing sufficient memory.
Next, we design a unified GPU virtual memory management
system with advanced GPU virtual memory features [4] to
allow unmodified kernels to access the memory used for pa-
rameters for KVCache (§4.1).

Second, efficiently resuming requests after dropping re-
quires exchanging KVCache between GPUs, since it is cou-
pled with the parameters. However, such an exchange would
significantly interfere with the pipeline-executed requests,
because transferring large KVCache saturates the network
used for forwarding activations. Observing that the activation
transfer is more critical and the network usage is small, we
design a coordinated network transfer engine that prioritizes
the activation transfer to ensure both transfers are not affected
(§4.2).

Finally, the pipelined execution across multiple GPUs af-
ter parameter dropping causes GPU bubbles [§], resulting
in increased serving latencies and degraded throughput. The
throughput degradation is particularly harmful in our setup,
because if requests are processed at a slower rate, it could
lead to another round of memory overloading. To tackle
this problem, we identify the root cause of bubbles as sub-
optimal batch formulation in state-of-the-art systems like
Sarathi-Serve [8]. By leveraging the observation that under
overloading many requests are queued, we holistically form
microbatches of queued requests using a new execution esti-
mation metric combined with a lookahead batch formulation
algorithm. Our scheduling minimizes the pipeline bubbles
thanks to the holistic formulation during pipelined execution
(§84.3).

We built KUNSERVE, the first LLM serving system with
parameter-centric memory management. Under various
real-world traces and datasets, when compared with the
state-of-the-art baselines including Llumnix [44], vLLM [30]
and InferCept [7], KUNSERVE achieves up to 12.7-72.2 X tail
latency reduction in these workloads, which further results in
7.2-12.8% lower SLO violations under common SLO factors.
In summary, this paper makes the following contributions:

e A new parameter-centric memory management design for
coping with memory overloading under LLM serving (§3).

o A set of new techniques to make parameter-centric memory
management efficient (§4).

e Extensive evaluations confirming the benefits of KUN-
SERVE (§5).

KUNSERVE is open-sourced at https://github.com/SJTU-
IPADS/kunserve.

https://github.com/SJTU-IPADS/kunserve
https://github.com/SJTU-IPADS/kunserve

Parameter-centric Memory Management for LLM Serving

Figure 1: An illustration of a typical LLM serving scenario: (a)
the model is deployed on different servers with model parallelism
and prefill and decode requests are processed in a batched way.
exe. is abbreviation for execution.

2 Background and Motivation

2.1 Preliminaries of LLM and LLM serving

LLM basics. LLM is a transformer-based [46] deep learning
model. Compared with traditional DNN, a key difference is
that it executes requests in an auto-regressive pattern with
a prefill and decode phase. In the prefill phase, the input is
fed to the model to generate the first token of the output.
The decode phase then iteratively generates the rest of the
output in a token-by-token way, where each iteration takes
the previously generated token as well as the prefill input as
the context. The decode' ends when the model generates a
special end-of-sequence (EOS) token.

During LLM inference, since the same prefix of input is
shared across all the iterations, the internal results (termed
KVCache) are cached in the GPU memory (HBM) for accel-
eration. This makes the computation patterns of prefill and
decode different [28, 38, 55]: the prefill is compute-bound,
while the decode is memory-bound. To improve GPU uti-
lization, modern LLM inference frameworks fuse prefill and
decode requests into a single batch [8, 30].

Serving metrics: TTFT and TPOT. As the output tokens
are generated iteratively, current systems serve requests in
a streaming fashion, i.e., once a token is generated, it is im-
mediately returned to the user. Thus, both the prefill latency
(Time-To-First-Token, TTFT) and the time to emit each token
(Time-Per-Output-Token, TPOT) matter.

Deploying LLM instances with parallelism and replica-
tion. LLMs can be deployed on a single GPU or multiple
GPUs with parallelism [32, 42, 54]. Pipeline parallelism (PP)
partitions model parameters by layers, where layers belonging
to the same group (i.e., stage) are executed on the same GPU.
Tensor parallelism (TP) partitions each layer, while different
stages can reside on the same GPU. Parallelism comes at the
cost of extra latency. For methods with high communication

I'We use the term decode to refer to the execution of a single iteration in the
decode phase in this paper.

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

requirements like TP, parallelism is only applied to GPUs
within the same server, because their interconnects are fast.
PP on the other hand, can apply to GPUs across servers thanks
to its ultra-low communication volume. However, PP suffers
from bubbles [9] especially for requests with a small batch
size. TP and PP can be applied together.

In this paper, we define the minimal set of GPUs that have
a single copy of the model parameters as a serving instance.
The GPUs of an instance can be within the same server or
across servers, but typically within the same server for the
lowest serving latency unless the model exceeds capacity
of a single server, which is rare (e.g., Llama-3-405B). For
a serving cluster, a common practice is to deploy multiple
instances with replicated models [5, 6, 38, 44], as shown
in Figure 1, because a single instance has limited serving
capacity.

2.2 TTEFT spikes caused by memory overloading

Huge HBM demands and memory overloading of LLM
serving. The overall memory demand for LLM serving
is huge. For example, when serving a Qwen-2.5-14B model,
each token consumes 192 KB of memory, which is already rel-
atively small due to the use of GQA [10], a memory-efficient
attention mechanism. A typical burst still introduces an accu-
mulation of 243 K tokens per GPU on BurstGPT trace (see
Figure 2), consuming 45 GB KVCache memory per GPU.

We attribute GPU memory overloading to two causes. First,
real-world traces exhibit spiked loads: Figure 2 (a) shows
a real-world trace on BurstGPT [48], where the incoming
request rate increases by 2 X at time 45s with no clear pattern.
Since the KVCache demand is also proportional to the request
rate, the memory demand can easily exceed the GPU memory
capacity. Second, each request’s KVCache may reside in GPU
for a long time, with an unpredictable duration, depending
on how long LLMs generate the EOS. For BurstGPT dataset,
the average stay time for a request is 11 seconds, with a
variance of 14.9 seconds. Thus, even the HBM is sufficient
to hold incoming requests, GPUs still suffer from memory
overloading due to the unfinished requests.

Figure 2 (b) shows how existing serving systems behave
under BurstGPT. During a 640s serving period (§5.5), we
observed two overloading events on vVLLM [30], a state-of-
the-art LLM serving system. The timing of overloading is
strongly related to the request spikes. Note that we have cho-
sen a practical setup where the overall HBM provisioned
for KVCache is 2.1 X higher than the average requirement.
We use a standard approach [44] that counts the memory de-
mands by considering both the in-processing requests and
head-of-line queuing requests.

TTFT spikes. GPU memory overloading severely degrades
serving performance. As shown in Figure 2 (c), the TTFT

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

128

150 - (@) BurstGPT trace 500 (b) KV mem. demand 12 (c) Mean TTFT 12 (d) Mean TTFT 12 (e) Mean TTFT
— Lo 10ver ™ @ -
%112 g375 L Capacity limit ,V;& S Drop KVCache 29 Swap KVCache L gt— Migrate KVCache
> > >
3 75 =250} Avgusagesshae 1\ -] 2 6 S S
19 o 2 2 2
& 37 T125+ 1 ® 3 T 3 T 3 ‘
0 0 - o SLO(Sx):0.3s - o SLO(5x): 0.3s -~ 0 SLO(5x): 0.3s
0 25 50 75 100 0 32 64 96 128 0 0 32 64 96 128 32 64 96
(a) Timeline (s) (b) Timeline (s) Tlmellne s (d) Timeline (s) (e) Timeline (s)

Figure 2: Analysis of TTFT increases due to GPU memory overloadlng (abbreviated as “Over.” in figure). (a) The incoming request
rate of BurstGPT trace [48]. (b) KVCache memory demand on vLLM [30] and (c)—(e) requests TTFT of existing solutions (§2.3).

e Pending OO Pending (J(J Host DRAM Pending DO 0a Pending O 0o
Model reqgs reqs
parameters| 3 a 00 > q 00 o %reqs DD/\ = 00 %reqs 00 s o0
Tl DropD(XI[Ongoing | T o D@\o/f\ Il od| eF . o0 T |00(00| T |param. |00
a aram.ID regs a aram. DD | SWap g aram. DD S ‘aram. DD S . DD o 5' D D DD
D KVCache o0 O olit) S Mierat 3 Aduet &
igrate jus
@ 8ng0|ng @ @ Throttling! parameters @
E:‘/ES . Pending OO Wait! Pending(J(J Host DRAM Pending(J)(O) O Pending OO0
ache eqs eqs @ reqs Q d eqs @)
%f @% Pending %l’ @—@I D/_) % @—@ g (3 %l' @’QD g
T |Param enquete | T oo ram, D@e eswap | Tloam il T [Param 0o I ETD D& < |param| U0
Others, eg.| 2 100 2 %,n&out S 00| s 190 | SEmamlCON = PO 00
activation U] o % % % o
(a) Drop KVCache (b) Swap KVCache (d) This work (DropServe)

(c) Migrate KVCache

Figure 3: (a)—(c) Existing methodologies to address memory overloading of KVCache. (d) How KUNSERVE tackles this issue via
parameter dropping (@) and remapping memory to enlarge KVCache region (®).

increases significantly after the overloading happens (see (b)).
The increase comes from the queuing delays while waiting
for sufficient memory to be freed. The queuing time can
be lengthy because the memory can only be freed once the
ongoing request batch finishes. As we have mentioned before,
the ongoing requests may take a long time to finish (e.g., up
to 150s in BurstGPT).

2.3 Shortcomings of current solutions

Drop the KVCache [30, 40, 50] (Figure 3 (a)). A straight-
forward solution is to drop some KVCache of ongoing re-
quests (@). Subsequently, queued requests can be processed
with the freed GPU memory (). However, requests with
dropped KVCache must be re-enqueued and recomputed,
which also suffers the queuing overhead (®) even without
considering the recomputation cost. As a result, Figure 2 (c)
shows that simply dropping the KVCache faces up to 239 x
TTFT increases during memory overloading, even with a
modest average memory load (56.3%).

Swap the KVCache [7, 30, 52, 55] (Figure 3 (b)). A classic
solution to handle memory overloading is swapping: when it
happens, the system swaps out the overflowed KVCache to
other storage (e.g., CPU DRAM) to free the GPU memory for
execution (@). The key problem is that as the GPU memory
is still insufficient, there will inevitably be queued requests,
even without considering the swapping overhead. For exam-
ple, under overloading, InferCept [7] concurrently swaps out
the KVCache of ongoing requests to hide the transfer over-
head, but the queued requests are still waiting for ongoing
requests to finish. The waiting time can be substantial because

Model ‘ Model size #GPU/instance Ratio (%)
Qwen-2.5-14B 28 GB 1 (80GB) 34.4
Qwen-2.5-72B 136 GB 4 (320GB) 423
Llama-3.1-405B 756 GB 16 (1,280 GB) 59.1
Qwen-3-235B 479GB 8 (640 GB) 74.8
DeepSeek-V3-671B 1,572GB 32 (2,560 GB) 61.4

Table 1: Popular LLM models, their parameter memory usage,
the number of GPUs belonging to an instance, and the parameter
memory usage ratio. Note that within an instance, Qwen-3-235B
and DeepSeek-V3-671B are configured with expert parallelism
with degrees 8 and 32, respectively, a common serving setup [20].

the overall decode time is orders of magnitude higher than
TTFT. As a result, we still observed a 92 X TTFT spike on
InferCept [7] in Figure 2 (d). Worse still, the swapped-out
requests (@) further suffer high TPOT (see Figure 13).

Migrate the KVCache [44] (Figure 3 (c)). Finally, observ-
ing that a serving cluster typically has multiple instances, a
recent work (Llumnix [44]) migrates requests from a memory-
overloaded GPU to other (relatively) spare GPUs (@) for
pending requests (). The observation is that while no sin-
gle GPU can hold all the pending requests, we can migrate
requests to reduce fragmentation to free up sufficient mem-
ory. However, the queued requests can still be stalled because
memory is occupied by migrating requests or the destina-
tion node is also memory-overloaded (®). Worse still, under
spike workloads, there is little room for using migration to
free up memory because the overall memory KVCache is
insufficient even without considering fragmentation. Thus, as

Parameter-centric Memory Management for LLM Serving

shown in Figure 2 (e), migration still leads to a 148 x P99
TTFT increase (compared to the P50).

3 System Overview

Approach: online parameter dropping. As mentioned
in the introduction, KUNSERVE is based on two key obser-
vations of LLM serving: (1) parameters typically take up a
considerable portion of HBM per GPU (see Table 1) that
can be used for KVCache and (2) parameters are replicated
across instances so dropping them for KVCache does not im-
pact LLM serving. Figure 3 (d) illustrates KUNSERVE’s main
approach and a comparison with other baselines assuming
two instances and each instance uses one GPU. When the
HBM used for KVCache is exhausted on GPUO and GPU1,
we instantly drop the second half of layers on GPUO and the
first half of layers on GPU1 (@). Then, the queued requests
are rescheduled on both GPUs (@) for execution via pipeline
parallelism.

Discussion: why pipeline parallelism? We chose pipeline
parallelism because the network requirement can be easily
satisfied with the interconnects between instances. Specif-
ically, it requires orders of magnitude smaller communica-
tions than other parallelism setups that support execution after
the parameter drop like tensor parallelism. While instances
could link together via fast interconnects like NVLink for
tensor parallelism, the domain of NVLink is much smaller
than networks that could serve pipeline parallelism well like
RDMA [35]. Thus, under overloading, we may be unable to
find sufficient instances connected by NVLink.

System architecture. Figure 4 illustrates our system archi-
tecture as well as the workflow of parameter-centric memory
management for handling memory overloading. KUNSERVE
is a cluster-serving system that manages a set of LLM serving
instances. Requests are routed through a global dispatcher,
which enqueues them to the local executor of each instance
for execution. Our dispatcher incorporates the load-balancing
design from Llumnix [44]. The global monitor collects usage
information and calculates the load metric for each instance.

Once a memory overloading event is detected by the mon-
itor, it invokes our global memory manager (®) to generate
dropping plans. The plan is then forwarded to the local man-
ager on the involved instances (@) to adjust the memory
according to the plan (details in §4.1).

After parameter dropping, KUNSERVE re-scheduled
queued requests and ongoing requests to execute on in-
stances with enlarged memory using pipelined parallelism
(®). To ensure a smooth resumption of the requests whose
KVCache is not on the target instances to avoid computation
waste, our network coordinator exchanges the KVCache of
ongoing requests between instances without blocking the

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

%unServe global scheduler

[LLM(requests

Dispatcher Distributed exec\ufion Global memory
& Mo\nitor scheduler(§4}.3) N manager (§4.1)l
¥ t \ u
ﬁ @Execute @Refschedule@Adjust
L L 1 AN 1
‘GPU v Network v Local memory\l’
executor coordinator (§4.2 & §4.4) manager (§4.1)
N =]]
Serving
instances oo

Figure 4: System overview of KUNSERVE.

— DP x 8(full) — Drop 50% layers — Drop 75% layers — Drop 88% layers
10 i o TIET g P P TPOT
o i
[CES ,/}' L
BI05F 41805} / .
a i L
0.0 00

o

9 18 27 36 45 0 50 100 150 200 250
Latency (s) Latency (ms)

Figure 5: A comparison of the latency of different parallelism
on BurstGPT dataset. All setups are evaluated with 8 GPUs.

activation transfer of pipelined execution (§4.2). Meanwhile,
our optimized pipelined scheduling minimizes the bubbles in
the upcoming execution (§4.3).

Finally, once the memory demand goes down, KUNSERVE
dynamically restores parameters such that future requests can
execute with lower latency. (§4.4).

4 Detailed Design and Implementation

4.1 Parameter drop during memory overloading

Upon overloading, KUNSERVE needs to generate a drop plan
to free up sufficient memory. Besides the memory require-
ment, the plan has to meet the following requirements: (1) we
need to generate the plan quickly online, (2) the plan needs to
ensure a correct execution and (3) the plan needs to minimize
the performance loss caused by parameters drop.

For (2), we only need to ensure that all the instances com-
bined have a complete copy of parameters. However, dropping
too many parameters incurs a performance cost. For exam-
ple, suppose we are serving a 7-layer model with 7 instances.
While dropping 6 layers on all instances can free 85 % of
the HBM for KVCache, it forces the scheduler to split the
batch into microbatches with smaller sizes, reducing the GPU
batch execution efficiency [21] and making the system more
vulnerable to pipeline bubbles. Figure 5 compares the serving
latencies for different degrees of parameter dropping. We can
clearly see that the more parameters are dropped, the higher
the execution latency.

A key takeaway from Figure 5 is that the performance loss
is strongly correlated with the number of instances involved
in processing a request, i.e., pipeline stages. Thus, we design

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

Input: G = {gy, g1, ---}, existing group assignment,
gi = {14, ...}, instances belonging to a group,
I; = {ly, 14, ...} ,layers belonging to an instance,
R: the total memory requirement to free.

Output: anew group assignment.

1 freed = 0

2 Q = PriorityQueue(G, sortBy = |g|) P min-heap
3 while |Q| = 2 and freed < R:

g0, g1 = Q.pop_front(), Q.pop_front()
Lo={1l1 €], 1€g0}

Lgo={1l1 €, Tegl}

duplicated_layers = Lgo N Lgy

new_g = merge(g0, g1) » Form a new group
freed += size(duplicated_layers)

101 Q.push(new_g)

11 return Q.to_set()

O 0 N O Ul b

Figure 6: The pseudocode of drop plan generation algorithm.

template <...>
__global__ void PagedAttentionKernel(
T*_restiict__k_cache_addr,

// Allocate a physical address
cuMemCreate(...)
// Unmap/map a physical address

// Shape: [num blocks, ...] to a virtual address

T*_restict__ v_cache_addr, cuMemUnmap...)
) { } cuMemMap(...)
cuMemSetAccess|...)

(a) (b)
Figure 7: (a) The GPU Kkernel signature of the pagedattention
kernel [2]. (b) CUDA virtual memory management APIs [4].

a greedy-based parameter dropping algorithm by grouping as
few instances as possible to minimize performance loss.

Algorithm 6 shows the details of our method that groups
instances into groups to free up memory. The initial con-
figurations (G) follow the setups without a drop, e.g., each
instance itself is a group. To support greedy grouping, the
group records the number of instances involved (g;) and all
instances are stored in a priority queue (Q).

Upon overloading, we first compute the memory demand
of all queued requests (R) and enter line 1. Afterward, we
iteratively group instances and then drop parameters to free
more space (lines 3-9). For example, if there are three groups
with sizes of 1, 2, and 3, we will select the two groups with
sizes of 1 and 2 to form a new group (lines 5-6). For the
selected groups, we drop a copy of the redundant parameters
(line 7) and update the available memory (line 9). At the end
of the iteration, the selected two groups are merged into a new
group and inserted back into the priority queue (line 8).

The iteration continues until the memory requirement is sat-
isfied or it fails to find a drop plan (line 3). In case we cannot
find a plan, we fallback to the KVCache-centric solution to
ensure continuous execution and autoscale the instance num-
bers. The complexity of the plan generation is O(N log N),
so we can quickly execute it online even with a large number
of instances.

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

Local instance memory management. A key challenge
of executing the drop plan at each instance is how to allow
existing attention kernels to use the freed parameter memory.
As shown in Figure 7 (a), the kernels are written with a single
static memory layout, e.g., [kcache_addr, kcache_-
addr + num_blocks * block_size], not multiple
virtual memory ranges provisioned dynamically. One possible
solution is to rewrite these kernels to suit the new memory
layout. However, efficiently rewriting LLM kernels is non-
trivial due to the complex and evolving nature of LLM kernels.
Simple rewrites lead to performance drops that require months
of iterative development to optimize [39].

To tackle the problem, we observe that recent GPUs have in-
troduced application-controlled virtual memory management
APIs: as shown in Figure 7 (b). For example, cuMemCreate
allows allocating a piece of GPU physical memory and
cuMemMap can map it to an arbitrary virtual address. With
such APIs, we can dynamically change the virtual address
space of KVCache without modifying the kernel code. The
overhead of calling these APIs is in the microsecond level
(5ms on our platform), which is negligible to the LLM in-
ference time. Specifically, our local instance memory man-
agement holistically manages the GPU physical memory for
both the parameters and the KVCache with cuMemCreate.
Afterward, when executing the drop plan received from the
global coordinator, we first identify the physical memory of
the dropped parameters. Then we extend the memory for KV-
Cache by mapping the tail of the KVCache memory to the
freed physical memory with cuMemCreate.

4.2 Smooth transition of requests from undropped to
dropped states with coordinated KVCache exchange

Because the KVCache has a one-to-one mapping with the
model parameters, we cannot simply execute ongoing decode
requests due to the lack of KVCache. For example, suppose a
request has executed on instance A, and A has formed a group
with instance B due to memory overloading. After the drop,
A will only have parameters of layers 0—4, while B will have
layers 5-7. Hence, B cannot directly execute the 5—7 layers
of a request originally on A because the required KVCache is
on A. Similarly, A cannot execute the 0—4 layers of a request
originally on B. One intuitive solution is to recompute the
KVCache on B. This is expensive since it causes queued re-
quests to wait for the recomputation even without considering
the recomputation time.

Network-based KVCache exchange. We choose to ex-
change the KVCache through the network to avoid recom-
putation. The KVCache is exchanged because after A and B
have formed a group, ongoing requests on A need to transfer
their KVCache to B, while B needs to do the same vice versa.

Parameter-centric Memory Management for LLM Serving

ard Pipeline
dependency

Inst.0 BO B1 B2 coe
Inst.1 X/ BO l/ B1 \\/ B2 .oe
Inst.0

BO B1 oo
Inst.1 X’ BO Bubble x B1

Figure 8: An illustration of pipeline execution bubbles caused
by imbalanced execution time of microbatches.

(a) Balanced
(b) Imbalanced

A drawback of the exchange is that the requests with the ex-
changed KVCache will be stalled during the exchange, which
we found to be acceptable in practice. This is because the
network between instances such as RDMA is sufficient for
transferring the KVCache quickly. For example, KVCache ex-
change typically introduces 1-2 s stall time on our 200 Gbps
network. This means a 10 ms increase at most in the TPOT
metric of a response with 200 decode tokens.

Note that during the stall, we can still schedule new re-
quests queued due to memory overloading to fully utilize the
GPUs. While in principle we can leverage techniques like
attention offloading (also called model-attention disaggrega-
tion) [16] to concurrently execute stalled requests during the
KVCache exchange, we found the excessive complexity of
the implementation is not worth the effort.

Coordinated KVCache exchange. Although straightfor-
ward, KVCache exchange could block new request if not
implemented properly, because the exchange competes for
bandwidth with activation transfers in pipelined execution.
Since the exchange time is much longer than forwarding the
activation, When the activation is waiting for the exchange to
finish, it will leave the GPUs idle, causing non-negligible per-
formance loss. Observing that the activation transfer is much
smaller yet more critical, we design a coordinated exchange
mechanism to prioritize the activation transfer. Specifically,
we transfer KVCache in finer-grained chunks such that the
transferring a chunk takes similar time to executing a pipeline
stage. After transferring one chunk, we will check whether
there will be activation transfer. If so, we pause the KVCache
transfer and let the activation transfer go first.

4.3 Serving requests efficiently after parameter drop

Key problem: pipeline bubbles caused by unbalanced mi-
crobatch execution time. A problem of pipeline execution
after parameter drop is that the system suffers from degraded
throughput due to pipeline bubbles. The bubbles arise from
the imbalanced execution time of different microbatches, as
illustrated in Figure 8 (b). For example, when B1’s execution
time is longer than B0, Inst.1 must wait for B1 to finish before
it can execute the layers on B2.

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

H—!TH—’H—’ —

Token count 1 1 1 4 @

Batch formed

[ro[R1[R2[R3]| || R4 || ®
w/ chunked prefill

Batch #0 (BO\

Batch #1 (Bl)\

Attention time per

s R1 R3
Execution time: request
RO R2 = 0(seq.Len?)
Time(BO) = 2
Batch [RoJR1[R2[R3] R4o]
formed
in an optimal setup: Time(BO) = 5
Time(B1) = 5 Ra!
(e Time(B1) = 8

Figure 9: (a) An illustration of serving requests to execute.
(b) The imbalanced batch execution time of existing chunking
method. (c) A balanced formulated batch configuration.

A preliminary on the state-of-the-art pipeline micro-
batch formulation. Modern pipeline implementations rely
on chunked prefill to reduce pipeline bubbles. Specifically,
they [8, 30] form microbatches in a token-count-based man-
ner, which balances the execution time of different micro-
batches by ensuring each microbatch has a similar number
of tokens. As shown in Figure 9 (a), suppose 5 requests (RO—
R4) arrive at an instance in turn, and the budget for each
microbatch is 4 tokens. The scheduler first merges incoming
requests into one microbatch (R0-R3 in (b)). R4 itself forms
another microbatch (B1). Note that if R4 exceeds the budget,
the scheduler will chunk it into two segments for execution.

Inefficiency of token-count-based chunking. A key issueis
that the microbatch execution time is not linearly proportional
to the total token count, because the attention computation
of each request is quadratic to its token count, as shown in
Figure 9 (b). Moreover, if a request is chunked into two parts,
the latter chunk is slower than the former even when the to-
kens are the same, because the latter chunk has to additionally
compute the attention with the former chunk.

The lookahead batch formulation. Fortunately, under
bursts, we have sufficient requests queued. Thus, we can
re-form the microbatches across them by looking ahead at all
requests queued. To efficiently find the balanced microbatch
configuration, we propose a heuristic divide-and-conquer al-
gorithm.

Our method works in two steps. First, we adopted a retro-
fitted cost model to precisely estimate the execution time of a
microbatch. Second, we recursively generate the microbatch
configurations according to the cost model. Specifically, bal-
ancing can be done by looking ahead all tokens to be chunked

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

Input: B
4/5[\
plit()
bo by
split() o asplit()
b01 b02 b11 b12
I\ merge(

Output: xboz xb:[l b12 N ot
bo1 boz byq b,

Figure 10: An illustration of how lookahead batch formulation
recursively generate balanced microbatches.

Input: B=[[r0||r|| ...]], the initial batch contain
one that has all requests,
MIN , the minimal tokens per batch.
derived by dividing total token numbers,
profiled off-line.

Output: a balanced micro batch set [b0, b1, ...,].
1 B = balance_micro_batch(B)

2 returnB

3 Function balance_micro_batch(B):

4 if |B[0]| < MIN:

5 | return B P Don't chunk if with few tokens
6 res=]]

7 ForbinB:

8 b0, b1 = b.split(0.5 * cost(b))

9 res = res || balance_micro_batch(b0)

10 res = res || balance_micro_batch(b1)

9 return res

Figure 11: The pseudocode of the divide-and-conquer micro-
batch formulation algorithm.

in a recursive manner, as shown in Figure 10. The initial batch
contains a single microbatch with all tokens, which is then
recursively split into two cost-balanced microbatches until it
reaches a balanced setup.

Figure 11 shows the detailed pseudocode. The algorithm
complexity is O(log L) so it can be quickly solved online. For
simplicity, we omit the details of split, which divides requests
in a batch into chunks and returns a new microbatch set whose
aggregated cost is equal to the objective (0.5 X cost(b)). This
ensures that each microbatch has sufficient tokens to fully
utilize the GPU. One thing to note is that the generation halts
once the number of tokens to form a batch is below a threshold
(line 4-5).

A key to the effectiveness of the above algorithm is to accu-
rately estimate the execution time (i.e., cost) of a microbatch.
We derive the cost model using a bottom-up approach: we
first model the cost of executing a chunk of a request, then
we sum the cost of all chunks in a microbatch as its cost.
Specifically, suppose we have a microbatch set B, denoted by

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

B ={by,b,,...,by}, The chunks are chunked from a request
set of size n, denoted by R = {ry,rs,...,r,}. The cost of a
chunk c;;, coste, ;, can be formulated as follows:

self-attn
prefix-attn ~ ~) 0 FFN other
— Ci j + cij —_—

COStCU =4 pijcij + +ﬂ Cij + Y (1)

The equation consists of four parts: the cost to compute atten-
tion with previous tokens (prefix-attn); the cost to compute
attention with the chunk itself (self-attn); the cost of com-
puting the activations (FFN (Feed-Forward Network)) for
tokens; and others. The prefix tokens of each chunk can be
calculated as p;; = ij: cik. The prefix-attn and self-attn
models the quadratic cost of attention computation missed
by existing models, e.g., NanoFlow [56] does not consider
self-attn, while DistServe [55] does not take prefix-attn into
account.

Our model depends on several hyperparameters (e.g.,)
that can be determined through offline profiling: before the
system is deployed for serving, we run multiple inference
samples offline, collect their execution times, and then use the
least squares method [49] to determine all hyperparameters.

Given the cost of each chunk, we can sum all the costs of
chunks in a microbatch to get the cost of the microbatch:

bkz{cij|x,~j=k/\cij>0}, ‘v’ke{l,...,m} 2)

costp, = Z coste,,—(|bx| = Dy 3)
(@.j)
xij=k
Note that the term —(|bx| — 1)A reflects the elimination of
duplicated parameter-loading when executing a batch, as re-
quests in a batch share the same model parameter. Like other
hyperparameters, A can be fitted with offline profiling.
Empirically, our cost model accurately models the exe-
cution time of a microbatch for common sequence lengths
in Figure 15. As a result, the pipelined execution with our
lookahead formulation can significantly reduce the execution
bubbles (see Figure 14).

Discussion: the generality of lookahead batch formulation
and cost model. While in principle, we could also apply
lookahead batch formulation to general LLM serving with
pipeline execution, it has one obstacle that the formulation
assumes a sufficient number of requests queued to “lookahead”
to be effective. Under normal serving without bursts, waiting
for requests to be looked ahead may add additional latency,
which we leave possible solutions as a future work.

Besides, readers may findEq. 1 still has a part that has
a linear correlation with the number of tokens (FFN), so if

Parameter-centric Memory Management for LLM Serving

the cost is dominated by FFN, existing token-count-based
cost models may suffice. We argue that our retrofitted cost
model is still important because the quadratic terms (prefix-
attn and self-attn) would become significant when the token
count increases (e.g., for requests with more than 4K tokens,
which are common in real-world workloads [15], see §5.1),
so existing works can leverage our model for a more accurate
estimation of microbatch execution time.

4.4 Dynamic restore and fault tolerance

Dynamic parameter restoration. While dynamic parameter
drop described in §4.1 can free up memory for new requests
under memory overloading, the pipelined execution is not op-
timal under normal execution because (1) pipelined execution
suffers from more frequent weight loading and (2) it has bub-
bles. Normal execution cannot simply apply our lookahead
scheduling described in §4.3 because there are insufficient
numbers of requests to balance.

To this end, KUNSERVE dynamically restores parameters
to return to a normal non-pipelined execution once the over-
loading fades away. Specifically, when the monitor detects
that the total KVCache usage is below a threshold, it trig-
gers a restoration process by loading the dropped parameters
back to the GPUs. Currently we use a simple threshold where
the memory usage is below 50 % of the GPU (without drop).
The missing parameters are pulled from instances whenever
possible using the network between instances.

Two things need to be noted about the restoration. First, we
overlap restoring with the normal request processing. Second,
since KUNSERVE is concurrently restoring when the request
is executing, the parameter pulling process may block acti-
vation transfer of normal requests, causing latency increases
(see Figure 14). Thus, we adopted a similar coordinated net-
work transfer approach described in §4.2 to ensure a smooth
execution of pipelined requests by prioritizing the pipeline
network over the parameter transfer.

Fault tolerance. Unlike traditional LLM serving where
failures between instances are isolated, a failure node in KUN-
SERVE can disrupt other instances that are involved in the
same pipeline-parallel group. Thus, we dynamically restore
these affected instances to ensure normal execution under
failures. By replicating parameters in host DRAM or SSDs,
we can always ensure successful parameter restoration.

5 Evaluation

5.1 Experiment setup

Testbed. We evaluate KUNSERVE on two clusters listed in
Table 2. Cluster A has one GPU per server so it is typically
used for running small models (e.g., 14 B models). Cluster
B has multiple GPUs per server interconnected with fast

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

NVLink, so it is suitable for running larger models (e.g., 72 B
models) with tensor parallelism.

Evaluated models. Similar to prior works [8, 38, 55], we
choose open-source models with leading accuracy: Qwen-2.5-
14B and Qwen-2.5-72B [45]. Both models adopt GQA [11] to
reduce KVCache size while maintaining high accuracy. We do
not choose models with huge KVCache usage (e.g., models
with MHA [46]) that could easily exhaust GPU memory—
though KUNSERVE is more effective when serving such mod-
els. This is because these models are being replaced by more
KVCache-efficient variants. Table 1 lists instance configu-
rations of each model. For the 72B model, we use tensor
parallelism to serve requests on multiple GPUs.

Evaluated traces and datasets. Since memory overloading
is sensitive to the request arrival pattern, we use a real-world
trace BurstGPT [48] with known request arrival information
(i.e., the invocation time of each request) as our main evalu-
ated application. Following the guide of BurstGPT, we scale
BurstGPT’s RPS to fit the serving capacity of our testbed
using a scaling method that preserves the temporal pattern
of the trace. Specifically, we upscale the trace with TraceUp-
scaler [41], and ensure that the average memory demand is
lower than 60% of the total memory during the entire evalua-
tion of the trace.

Besides the arrival pattern, LLM serving is also sensitive to
the input and output length of requests. Thus, given the trace,
we further evaluate requests from representative datasets rep-
resenting different scenarios, similar to prior works [32, 34]:
o BurstGPT. It is the original dataset of BurstGPT [48],

representing a conversion workload so both TTFT and

TPOT are important. The average input and output lengths

are 642 and 262, respectively.

o ShareGPT. ShareGPT [3] is another popular chatbot
dataset that is widely evaluated on [8, 44, 51, 55]. Its input
and output lengths are longer than BurstGPT, representing
a workload that is more sensitive to GPU memory provi-
sioning. The maximal input length is 4K, and the average
input and output lengths are 1,660 and 373, respectively.
Like BurstGPT, low TTFT and TPOT are both important
for benchmark using this dataset.

e LongBench. LongBench [15] is another popular dataset
used for evaluating document summarization tasks [55],
e.g., summarizing news, articles and scientific papers. The
average input length is 5.9 K and the average output length
is 499. Since the user expects a quick response to the sum-
marized content, TTFT is also important.

Baselines. We compared with the state-of-the-art LLM
serving systems with various techniques to cope with mem-
ory overloading. For all systems, we have carefully tuned
their configurations to meet the optimal performance without

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

— VvLLM (DP) VLLM (PP) InferCept —— Llumnix —— KunServe

600 BurstGPT x 14B =8 Mean TTFT PP Throughput
O 450 [Kunserve] 6 7 2181 : 7
= 300 [capacty - E % 4t i % 12 /“Mu-\ q
@150 F . 2ol , i S gl J
£ N T |, lstosy f < .
600 ShareGPT x 14B - 16 012
9450 [KunServe] . 12r | b 2 9r o ~ 7
m 150 = = 4+ 4 L2 3¢ i
I, L 0 SLO(5x) will, X g
600 LongBench x 14B - 40 o4
O 450 Kunserve b ; 30 4 2 3 ‘ B
=300 [eapatty "’_\ | 2201] g2t .
@ 150 - RROE] 210 . 2 N
T, N 5 ', Lo _ dil <o

G 750 KunServe] > 18r b 23

< 500 [capaciy m] § 12 1 % 2

@ 250 2 1 < 63sL06%) [’ o1

I 0 4 9 P L X 0

0 35 70 105 140 0 35 70 105 140 0 35 70 105 140

(a) Memory timeline(s)

(b) Latency timeline(s)

(c) Throughput timeline(s)

Figure 12: First column: the memory usage pattern of KUNSERVE. Second column: the mean TTFT during the evaluation. Third

column: the throughput during the evaluation.

Cluster A (s x g) Cluster B (s x g)
A800 80GB (8x1) HB800 80 GB (2x8)
N/A 300GB/s NVLink

200 Gbps RDMA 400 Gbps RDMA

GPU
GPU-GPU (scaleup)
GPU-GPU (scaleout)

Table 2: Testbed. s is the number of servers and g is the number
of GPUs per host. The scaleup and scaleout here means scale-
up network and scale-out network, respectively. The reported
bandwidth is unidirectional.

memory overloading. We have also enabled all known serv-
ing optimizations to these systems even though the vanilla
systems are not optimized (e.g., InferCept [7]). For those with
our optimizations, we have calibrated that our optimizations
enabled better performance than the original open-sourced
codebase. More specifically, our baselines are:

e VLLM (default + PP) [30]. We compare two configurations
of vVLLM (release v0.6.3): The default configuration stores
the entire parameters on each instance, while pipelined
parallelism (PP) further frees half of the parameters on each
instance and leverages PP to execute requests across two
instances. This setup frees up more memory for KVCache,
but it also introduces pipelined execution overhead. By
default, vLLM uses recomputation to cope with memory
overloading. We compared the vLLM with swapping to
InferCept described below.

Before the evaluation, we carefully tuned the configurations
of vLLM. Specifically, we tuned the block size to achieve
the best performance under our setup. We chose 64 because
(1) it is small enough to avoid memory fragmentation while
(2) it is sufficiently large to achieve good performance [21].

o InferCept [7]. InferCept designs an optimized swap mech-
anism that eliminates 1O idle time atop vLLM. We tried
to compare its original open-sourced version, but found its
performance is 1.2-5.1 x slower in TTFT and 1.2-1.9 X in
TPOT than the chosen vLLM release even without memory
overloading. This is because it was implemented on an old
version of vVLLM (v0.2.0), where important optimizations
(e.g., FlashAttention/FlashInfer kernels [17, 21], chunked
prefill [8]) are missing. Therefore, we integrated our sched-
uler and attention backend into the original InferCept for a
fair comparison.

o Llumnix [44]. Llumnix adopts load balancing to cope with
memory overloading of an instance, and migrates KVCache
between instances to free sufficient memory in case of in-
sufficient memory even with load balancing. We compared
with the latest version of Llumnix (release v0.1.0).

5.2 End-to-end Results

End-to-end serving performance. We first measure the end-
to-end latency of serving requests when running BurstGPT
with different datasets on different systems, where the latency
is measured from the client’s perspective, i.e., the time from
the client sending a request to receiving the tokens.

The second column of Figure 12 presents how the mean
TTFT changes over time given a measured time window (e.g.,
100s), and Figure 13 presents the zoomed-in view of the P50
and P99 latencies when evaluating different workloads on
different models. First, KUNSERVE has 12.7-72.2 X faster

Parameter-centric Memory Management for LLM Serving

—— VLLM (DP) —+ VLLM (PP)

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

InferCept —e— Llumnix —e— KunServe

. 042 PSOTTFT 35 POSTIFT 500 PSOTPOT 555 POSTPOT__ g SLOViolation
o 0.09F 127+ 1150 - 1150 1] 1 L2t 5 g
2%0.06- — {18t 4100 - 4100 - IR SHEN e e el
o o - > & - o
0.00 | 0 0 0 = O TS
020 36 200 200 20 = =
o 015] {ort 1150 - 1150 - 1 S5} 5| 5|
23010 u {18t 4100 - 4100 - u 1 o10f i—a—a—uie
L—“"o.osll ll 9+ £ 50+ 501[1[8 5) S
? 0.00 - 0 =1 o 0 . 0
o 048 36 200 200 48
g 036} {27 150 |- 1150 | 4 Rser 8
85024 118 100 - 4100 - 1 go4f 1
g o012 1[[9 50 - 450t 1 B2t 1
0.00 0 0 0 0
2 4 6 8 10
< 060 36 240 240 86— ~
2 045 127t 1180 1180 X7t 5 gl
88030 1[[181 {120} {120 _218\\ £l
7045 1 9M 60 - 160 8 ot e g |
- 0.00 0 0 0 0 =SS

Latency (s) Latency (s)

Latency (ms)

o

4 6 8
SLO scale

Latency (ms)

Figure 13: The end-to-end latency results. Column from 1 to 4 is the end-to-end metrics of different workloads. The last column is the

SLO violation of TTFT and TPOT with different SLO scales.

P99 TTFT than other baselines, because it frees up sufficient
memory under memory overloading, which enables requests
queued in other systems to be served with a larger batch
size. For other systems, they either suffer from recomputation
overhead (VLLM), or queuing overhead waiting for swapping
(InferCept) or migration (Llumnix) under memory overload-
ing. Specifically, the timeline plotted in Figure 12 clearly
shows that the TTFT increase coincides with the increased
KVCache demands (the first column in Figure 12).

Although vLLM (PP) has a larger KVCache capacity, it
still suffers from medium and tail latency increases due to the
lower throughput. As shown in the third column of Figure 12,
the average throughput of PP is 3.3-21.8% slower than other
systems, because PP has bubbles during execution. Such a
lower throughput leads to more KVCache capacity being re-
quired under bursts since pending requests are not digested
by the system. Meanwhile, unlike KUNSERVE that sched-
ules pending requests to eliminate bubbles, vanilla pipelined
execution cannot simply adopt lookahead batch formulation
techniques (§4.3) because it requires waiting for sufficient
requests to be scheduled. Such waiting also leads to increased
end-to-end latencies.

Compared to other baselines, KUNSERVE trades a little
increase in P50 TPOT, and P99 TPOT because it executes
requests in a larger batch to eliminate queuing. For example,
in LongBench-14B workload, the P50 TPOT of KUNSERVE
is 15.8-22.7% higher than other baselines. We believe it is a

reasonable trade-off because such increases are still within
the SLOs of targeted applications, which we describe next.
Interestingly, KUNSERVE even has a little PSO TTFT im-
provement in the LongBench workload. This is because the
long and diverse input of requests in this workload makes the
system more prone to memory overloading caused by severe
memory fragmentation [44]. Thus, the many queued requests
affect normal requests.

SLO attainment. SLO is an important metric for serving
systems [32, 55], which defines the maximum acceptable la-
tency for a request. Requests whose latency exceeds the SLO
are not useful because users may abandon them [40]. Because
different applications have different maximum acceptable la-
tency requirements (SLOs), we evaluate the SLO violation
of all systems under different SLO scale factors, similar to
previous works [32, 38, 43, 55].

Specifically, the last column of Figure 13 shows the SLO vi-
olation of all systems with different SLO scale factors, where
a scale factor of N means that the maximal tolerable latency
is N times the P50 latency of the best baseline. To help under-
stand how the reduced SLO violations of KUNSERVE benefit
end-to-end applications, we also mark the typical scale for
our evaluated applications, i.e., we set 5 for chat—a tight SLO
as it requires quick responsiveness, while for document sum-
marization, we set a looser factor of 10, following previous
works [55]. We can see that KUNSERVE achieves 7.2—12.8%
average SLO violation reductions on various workloads, and

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

I vLLM (DP) [+Dynamic drop I + Lookahead
I vLLM (PP) E + Coordinated ex.
31 TTFT - 160

» L]
g I]
g o 5
© =40+ il
SR R o OIHH”

0

P50 P90 P99 P999

TPOT

=
<5100

%‘ﬁ 75 vLLM (PP) + Coordinated ex.
EE 50 +Dynamic drop BE + Lookahead
22

36

@

(1

0 6 12 18 24 30 36
Timeline(s)

Figure 14: An ablation study of running KUNSERVE on Qwen-

2.5-14B on LongBench dataset. A smaller bubble time directly

implies a better GPU utilization.

more importantly, it almost eliminates all violations with a
scale larger than 4 for all workloads. Other baselines can-
not eliminate SLO violations even with an extremely loose
factor of 10 because during bursts, there are considerable
numbers of queued requests suffering from 45—840 X tail
latency increases.

Multi-GPU instance performance. Due to space limita-
tions, we only present the results of the model (Qwen-2.5-
72B) that requires multi-GPU for serving on the LongBench
dataset. Results on other datasets are similar. As shown in
Figure 12 and Figure 13, the trend is similar to that of single-
GPU instances: KUNSERVE reduces the P99 latency by 8.4—
11.9 X compared to other baselines, at the cost of a slight
(18.3-22.7%) increase in P50 TPOT and P99 TPOT. The
multi-GPU model achieves similar results because each in-
stance (containing multiple GPUs) can be viewed as a whole
as a single logical GPU. The multi-GPU model benefits even
more from dropping parameters because the relative ratio of
parameter memory is large, as shown in Table 1.

5.3 Ablation Studies

To study the effectiveness of each technique proposed in §4,
we conducted an ablation study on the system performance
with different techniques incrementally enabled. Figure 14
shows the detailed study results on the LongBench dataset
with Qwen-2.5-14B model. We omit other workloads and
models due to space limitation since they have similar results.
We report the end-to-end request latencies during the burst
period in Figure 12.

Effectiveness of dynamic parameter drop. First, we can
see that parameter drop contributes (+Dynamic drop) to the
most tail latency reductions. On the LongBench workload, the
P90, P99 and P999 TTFT of KUNSERVE are reduced by 8.8 X,

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

Prefill w/o prefix Prefill w/ prefix

%1000 %1000
£ 750l = Estimated (w/o attn.) £ 759
é‘ 500 Estimated (ours) § 500
Q

£ 250+ - Actual £ 250
-0 -0

512 1K 2K 4K 6K 8K 512 1K 2K 4K 6K 8K
Prompt length Prefix length

Figure 15: A comparison of execution latency estimated with
our cost model and the real execution time of a Qwen-2.5-14B
model in A800 GPUs. Left: the execution without prefix attention
while right: the execution with prefix attention.

11.7 x and 10.3 X compared to vLLM (DP). The key reason
is that it completely eliminates queuing delays. Specifically,
under bursts, there are 87 queued requests (whose TTFT
> SLO(5 X)) in this evaluation, KUNSERVE executes them
with enlarged GPU memory freed by dropping parameters.
Though a larger batch size and pipeline bubbles lead to a
TPOT increase in request processing (21-31.9% increase
compared to the original DP scheduling), it is still orders of
magnitude smaller than queuing introduced by insufficient
memory of vanilla vLLM.

Effectiveness of coordinated exchange. Second, with co-
ordinated exchange (+ Coordinated ex.), KUNSERVE further
reduces the P99 and P999 TTFT by 1.5 X, and 1.4 X respec-
tively. Meanwhile, it reduces the P90 and P999 TPOT by
5%. Coordinated exchange benefits both the TTFT and TPOT
because without it, the prefill of new requests as well as their
decode requests cannot execute smoothly, because the inter-
mediate activation suffers significant stalls due to exchanging
the KVCache. Since the exchange time (1.3s) is larger than
the typical execution time (e.g., 221ms for prefill and 60ms
for decode), the stall is non-trivial.

Effectiveness of lookahead batch formulation. With looka-
head batch formulation (+ Lookahead), we further reduce the
P90, P99, and P999 TPOT by 4.5%, 10.6%, and 9.7%, respec-
tively. The reduction in latency directly comes from the more
efficient pipeline execution: without lookahead batch formula-
tion, KUNSERVE suffers 21.9% bubble time (the ratio of idle
GPU cycles) on average during pipelined execution, while
with it, the bubble time is only 8.3%. The reduced bubble
time further improves throughput by 20%.

5.4 Accuracy of the batch formulation cost model

To evaluate the accuracy of KUNSERVE’s cost model de-
scribed in §4.3, we compare it with a baseline cost model
neglecting attention computation cost found in existing
work [56] and the ground truth. To demonstrate the generality
of our model in both prefill and chunked prefill, we evaluate
both requests without attention chunk (R4° in Figure 9 (c))
and with it (R4!). As shown in Figure 15, for both cases, our
cost model shows less than 5% deviation while the current

Parameter-centric Memory Management for LLM Serving

200————— BurstGPT Trace
© 1501 i
$ 1001 1
o
31’_ 50 1
0 Lo om
0 80 160 240 320 400 480 560 640
5500 KV mem. demand
G375 A vLLM (DP) capacity limit f I\ |
) Z
2 i
e VI
o m 4
2 i
320 400 480 560 640
Mean TTFT
8 6l — VLM (DP) KunServe w/o restore — KunServe -

I ‘ N SLO(5x) A |

0 80 160 240 320 400 480 560 640

0.20,; P50 TTFT, 8 P99 TTFT, 80,P50 TPOT 200 ,P99 TPOT

0.15 6 60 150 }
0.10 - 4 40 100
0.05 - 2 20 50

. 0 | 0 0
Latency (s) Latency (s) Latency (ms) ~ Latency (ms
Figure 16: The performance of KUNSERVE and its baselines in
a long run (640s) of BurstGPT.

formulation without considering attention has up to 48% and
74% deviations for requests without and with prefix attention,
respectively. This confirms the importance of considering the
attention computation cost in the cost model.

5.5 Effectiveness of dynamic restoration

To show the effectiveness of dynamic parameter restoration,
Figure 16 presents the serving performance over a long run
of BurstGPT workload with multiple overloading periods. To
help understand the behavior of KUNSERVE, we mark the
time periods with dropping as grey boxes, other periods are
running without parameter drop.

First, we observe that dynamic parameter restoration re-
duces the P50 latencies of TTFT and TPOT by 28 % and 23 %,
respectively, due to the reduction of unnecessary pipeline exe-
cution. Second, restoration improves the P99 TTFT and TPOT
by 6.4 x and 1.2 X, respectively. Without restoration, KUN-
SERVE falls back to vLLM (PP), resulting in lower throughput
during normal periods, and consequently suffers from larger
bursts with insufficient memory even with the dropped param-
eters, as illustrated at the beginning of the second wave in the
third row of Figure 16 (time 440s).

5.6 Performance under extreme bursts

While KUNSERVE drops parameters to mitigate queuing, the
memory that can be freed is bounded by the model size (see

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

20— LongBench x 72B
< 5L Origin — Replay-and-rescale]
b7}
S 1o0f 1
8 | "] i
g: 5 h ;v,ll
% 32 9 128 160
1200— KV mem. usage — 32— Mean TTFT ——
™ 900 KunServe capacit @oal — VLLM (DP) R
S DP capacity | Py
= 600 04g| — KunServe
m 1st 2nd 2
T 300 drop | drop | s 8 7SLO Bx
%0 80 100 120 140 160 %0 80 100 120 140 160
Timeline (s) Timeline (s)

Figure 17: An evaluation of KUNSERVE running Qwen-2.5-72B
under extreme bursts.

Table 1), so we have a limit in handling overloading caused
by bursts. Nevertheless, KUNSERVE can handle bursts much
longer than existing systems, i.e., longer than any burst we
have seen in the BurstGPT trace.

To evaluate the limit in handling bursts with KUNSERVE,
Figure 17 shows the performance of KUNSERVE and vLLM
when running under an unrealistic extreme burst. Specifically,
to evaluate an extreme burst, we use a BurstGPT setup as
follows: upon meeting the first burst, we repeatedly replay
the bursts until all evaluating systems are out of memory.
The setup is shown in the first row of Figure 17 while the
second row compares the performance of KUNSERVE and
vLLM (DP). The evaluated model is Qwen-2.5-72B. First,
KUNSERVE reaches the memory limit in 152s, which is 1.5 X
longer (starting from 60s) than vLLM thanks to the dropped
memory. During this period, KUNSERVE triggers 2 times
of parameter dropping, resulting in 57% incrementally freed
KVCache memory. Before KUNSERVE reaches the memory
limit, KUNSERVE meets no SLO (5 X) violations while vLLM
suffers up to 42 X TTFT increase.

While KUNSERVE also suffers from latency increases
when out of memory, we don’t encounter such a situation
under real-world traces. More importantly, the much longer
standing time of KUNSERVE allows the serving systems to
smoothly scale up new instances to handle the bursts.

6 Discussion

Supporting MoE models. Our current implementation fo-
cuses on dense models, while Mixture of Experts (MoE)
models are becoming increasingly popular recently: A key
feature is that the inference of a request only activates a
small subset of model parameters. For common MoE serving
configurations like expert parallelism (EP) [20], KUNSERVE
seamlessly supports them because EP only changes the mem-
ory layout within an instance, while KUNSERVE focuses on
managing the GPU memory across serving instances. More

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

importantly, KUNSERVE is still effective for MoE models
because KUNSERVE only relies on the assumption that the
model weights occupy a large portion of the GPU memory
on an instance, which holds even with a sparse activation of
experts (see Table 1). The assumption holds because though a
request only requires a small portion of the model parameters,
an instance still needs to load all the (large) model parameters
to handle batches of requests that may activate all the experts.

Compatibility with different parallelism. KUNSERVE is
compatible with different parallelism in LLM serving. KUN-
SERVE only changes the parameter layout across instances
in layer granularity, which is orthogonal to both the intra-
layer layout change (e.g., EP and TP) within one instance
and instance cooperation in SP. Thanks to the LLM’s modu-
lar structure, the intra-instance and inter-instance parallelism
techniques can be applied together [42, 51].

Comparison with autoscaling. Autoscaling—adding more
instances to handle overloads—is also a common approach
to handle memory overloading [53]. A key difference is that
KUNSERVE does not have the cold start time—the time to
make an instance capable of serving. Thus, KUNSERVE is
better than autoscaling in cases where dropping alone is able
to handle the overloading, as the cold start time is typically
non-trivial for LLM providers [40]. Nevertheless, for long
bursts (see §5.6), KUNSERVE still incorporates autoscaling
since the memory that can be freed by dropping is limited:
the continuously coming requests from the burst will exhaust
all the free memory freed by dropping.

7 Related Work

Handling memory overloading with lossy methods. One
possible way to handle memory overloading is to reduce
the memory footprint of the serving, e.g., by compressing
the activations [19, 31]. For example, FP8 quantization [47]
reduces the token memory usage by 2 X, and methods like
SparseGPT [22] prune parameters to 50% sparsity. Unfortu-
nately, such methods are lossy and can lead to model accu-
racy degradation or compromised user experience [33]. KUN-
SERVE copes with the performance degradation caused by
memory overloading without sacrificing the model accuracy.

Handling memory overloading with lossless methods.
KUNSERVE continues the line of work on handling mem-
ory overloading during LLM serving without modifying the
model inference [7, 30, 30, 40, 44, 50, 55]. These works focus
on allowing queued requests to execute by reorganizing GPU
memory either with swap or migration-based methods, which
do not create more space for execution so they either sacrifice
ongoing requests or queued requests, as analyzed in §2.3. In

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

contrast, KUNSERVE frees more memory for execution with
a new parameter-centric memory management method.

LLM serving optimizations. Considerable research has fo-
cused on improving the efficiency of LLM serving under
abundant memory [9, 17, 18, 27, 30, 38, 39, 55]. KUNSERVE
builds on these works and seamlessly integrates with them.
A recent work—POD-ATTENTION [29]—proposes a better
chunked prefill implementation. It is orthogonal to our work
and KUNSERVE can benefit from its high-performance kernel
to get better performance in all states. NanoFlow [56] pro-
vides us with a more efficient microbatch scheduling, which
is of help to KUNSERVE after parameter dropping.

OS techniques for handling memory overloading. Han-
dling memory overloading has been studied in operating sys-
tems for decades: e.g., Linux adopted a swap-based mech-
anism to handle memory pressure [1]. KUNSERVE lever-
ages the domain-specific knowledge of LLM serving to ex-
pose more memory to serving requests beyond the limit of a
general-purpose swap-based method.

8 Conclusion

In this paper, we are the first to demonstrate that parameter-
centric memory management can effectively address the la-
tency spikes caused by memory overloading in LLM serving.
We built KUNSERVE, an LLM serving system that coop-
eratively drops parameters to free up memory to eliminate
queuing under overloading. We also proposed a set of tech-
niques to ensure all requests execute efficiently after parame-
ter dropping, including drop plan generation with local unified
memory management, coordinated KVCache exchange and
lookahead batch formulation. KUNSERVE reduces tail TTFT
by up to 72.2 x compared to state-of-the-art systems like
Llumnix, vLLM and InferCept.

9 Acknowledgement

We sincerely thank our shepherd Jayashree Mohan and the
reviewers from OSDI’25 and EuroSys’26 for their insightful
feedback. We are grateful to Wencong Xiao from ByteDance,
Mingcong Han, Hanze Zhang, Xian Xu, Yu Xia, Yingyi Hao,
and Hongrui Xie from IPADS for their valuable advice. We
also thank the ByteDance seed-foundation team for their plat-
form support. We thank Chao Fei from KAUST for his con-
tributions to the codebase of KUNSERVE. This work was
supported in part by the National Natural Science Foundation
of China (No. 62572302 and 62272291), and the Fundamental
Research Funds for the Central Universities.

Parameter-centric Memory Management for LLM Serving

References

[1] Multi-gen Iru. https://docs.kernel.org/admin-guide/mm/multigen_lru.
html, 2023.

[2] Easy, fast, and cheap llm serving for everyone. https://github.com/vlim-
project/vllm, 2024.

[3] Sharegpt_gpt4, 2024. https://huggingface.co/datasets/shibing624/
sharegpt_gpt4, 2024.

[4] Virtual memory management. https://docs.nvidia.com/cuda/cuda-
driver-api/group__ CUDA__ VA .html, 2024.

[5] How multi-node inference works for massive llms like deepseek-r1.
https://www.baseten.co/blog/how-multi-node-inference- works-1lms-
deepseek-r1/#from-single-node-to-multi-node-infrastructure, 2025.

[6] Lower latency and higher throughput with multi-node deepseek deploy-
ment. https://www.perplexity.ai/hub/blog/lower-latency-and-higher-
throughput-with-multi-node-deepseek-deployment, 2025.

[7] ABHYANKAR, R., HE, Z., SRIVATSA, V., ZHANG, H., AND ZHANG,
Y. Infercept: Efficient intercept support for augmented large language
model inference. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024 (2024), Open-
Review.net.

[8] AGRAWAL, A., KEDIA, N., PANWAR, A., MOHAN, J., KWATRA,
N., GULAVANI, B. S., TUMANOV, A., AND RAMIJEE, R. Taming
throughput-latency tradeoff in LLM inference with sarathi-serve. In
18th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024 (2024),
A. Gavrilovska and D. B. Terry, Eds., USENIX Association, pp. 117—
134.

[91] AGRAWAL, A., PANWAR, A., MOHAN, J., KWATRA, N., GULAVANI,
B. S., AND RAMJEE, R. SARATHI: efficient LLM inference by
piggybacking decodes with chunked prefills. CoRR abs/2308.16369
(2023).

[10] AINSLIE, J., LEE-THORP, J., DE JONG, M., ZEMLYANSKIY, Y., LE-
BRON, F., AND SANGHAI, S. GQA: training generalized multi-query
transformer models from multi-head checkpoints. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023 (2023),
H. Bouamor, J. Pino, and K. Bali, Eds., Association for Computational
Linguistics, pp. 4895-4901.

[11] AINSLIE, J., LEE-THORP, J., DE JONG, M., ZEMLYANSKIY, Y., LE-
BRON, F., AND SANGHAI, S. GQA: training generalized multi-query
transformer models from multi-head checkpoints. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023 (2023),
H. Bouamor, J. Pino, and K. Bali, Eds., Association for Computational
Linguistics, pp. 4895-4901.

[12] ANYSCALE. Ray serve: Scalable and programmable serving. https:
/ldocs.ray.io/en/latest/serve/index.html, 2024.

[13] ARAPAKIS, 1., BAI, X., AND CAMBAZOGLU, B. B. Impact of re-
sponse latency on user behavior in web search. In The 37th Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 14, Gold Coast, QLD, Australia - July
06 - 11, 2014 (2014), S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke,
and K. Jdrvelin, Eds., ACM, pp. 103-112.

[14] AWS. Amazon bedrock. https://aws.amazon.com/en/bedrock/, 2024.

[15] BAIL, Y., Lv, X., ZHANG, J., LYu, H., TANG, J., HUANG, Z., DU,
Z., L1u, X., ZENG, A., Hou, L., DONG, Y., TANG, J., AND LI,
J. Longbench: A bilingual, multitask benchmark for long context
understanding. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024 (2024), L. Ku,
A. Martins, and V. Srikumar, Eds., Association for Computational

EUROSYS 26, April 27-30, 2026, Edinburgh, Scotland Uk

Linguistics, pp. 3119-3137.

[16] CHEN, S., LIN, Y., ZHANG, M., AND WU, Y. Efficient and eco-
nomic large language model inference with attention offloading. CoRR
abs/2405.01814 (2024).

[17] DAo, T. FlashAttention-2: Faster attention with better parallelism and
work partitioning. In International Conference on Learning Represen-
tations (ICLR) (2024).

[18] Dao, T., Fu, D. Y., ERMON, S., RUDRA, A., AND RE, C. FlashAtten-
tion: Fast and memory-efficient exact attention with IO-awareness. In
Advances in Neural Information Processing Systems (NeurIPS) (2022).

[19] DEEPCHECKS. Top llm quantization methods and their impact on model
quality, 2024. https://www.deepchecks.com/top-1lm-quantization-
methods-impact-on-model-quality/, 2024.

[20] DEEPSEEK-AI, L1u, A., FENG, B., XUE, B., WANG, B., WU, B.,
Lu, C., ZHAO, C., DENG, C., ZHANG, C., RUAN, C., DAL, D., Guo,
D., YANG, D., CHEN, D., J1, D., L1, E., LIN, F.,, DAL F., Luo, F.,
Hao, G., CHEN, G, L1, G., ZHANG, H., Bao, H., XU, H., WANG,
H., ZHANG, H., DING, H., XIN, H., Gao, H., L1, H., Qu, H., CAI,
J. L., LIANG, J., Guo, J., N1, J., L1, J., WANG, J., CHEN, J., CHEN,
J., YUuaN, J., QIu, J., L1, J., SONG, J., DONG, K., Hu, K., GAO,
K., GUAN, K., HUANG, K., YU, K., WANG, L., ZHANG, L., XU,
L., X1A, L., ZHAO, L., WANG, L., ZHANG, L., L1, M., WANG, M.,
ZHANG, M., ZHANG, M., TANG, M., LI, M., TIAN, N., HUANG,
P., WANG, P., ZHANG, P., WANG, Q., ZHU, Q., CHEN, Q., DU, Q.,
CHEN, R. J., JIN, R. L., GE, R., ZHANG, R., PAN, R., WANG, R.,
XU, R., ZHANG, R., CHEN, R., LL, S. S., LU, S., ZHOU, S., CHEN,
S., Wu, S., YE, S., MA, S., WANG, S., ZHOU, S., YU, S., ZHOU,
S., PAN, S., WANG, T., YUN, T., PEL, T., SUN, T., X1A0, W. L.,
AND ZENG, W. Deepseek-v3 technical report. CoRR abs/2412.19437
(2024).

[21] FLASHINFER Al. Flashinfer: Kernel library for 1lm serving. https:
//github.com/flashinfer-ai/flashinfer, 2024.

[22] FRANTAR, E., AND ALISTARH, D. Sparsegpt: Massive language mod-
els can be accurately pruned in one-shot. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA (2023), A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, Eds., vol. 202 of Proceedings of Machine Learning
Research, PMLR, pp. 10323-10337.

[23] Fu, Y., XUE, L., HUANG, Y., BRABETE, A., USTIUGOV, D., PATEL,
Y., AND MAI, L. Serverlessllm: Low-latency serverless inference for
large language models. In /8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2024, Santa Clara, CA,
USA, July 10-12, 2024 (2024), A. Gavrilovska and D. B. Terry, Eds.,
USENIX Association, pp. 135-153.

[24] FUruUTA, H., LEE, K., NACHUM, O., MATSUO, Y., FAUST, A., GU,
S. S., AND GUR, I. Multimodal web navigation with instruction-
finetuned foundation models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024 (2024), OpenReview.net.

[25] GIGASPACES. Amazon found every 100ms of latency cost them
1% in sales. https://www.gigaspaces.com/blog/amazon-found-every-
100ms-of-latency-cost-them- 1-in-sales, 2024.

[26] GITHUB. Accelerate your development speed with copilot. https:
//copilot.github.com, 2024.

[27] HOLMES, C., TANAKA, M., WYATT, M., AWAN, A. A., RASLEY, J.,
RAJBHANDARI, S., AMINABADI, R. Y., QIN, H., BAKHTIARI, A.,
KURILENKO, L., AND HE, Y. Deepspeed-fastgen: High-throughput
text generation for llms via MII and deepspeed-inference. CoRR
abs/2401.08671 (2024).

[28] Hu, C., HUANG, H., XU, L., CHEN, X., XU, J., CHEN, S., FENG,
H., WANG, C., WANG, S., BAO, Y., SUN, N., AND SHAN, Y. In-
ference without interference: Disaggregate LLM inference for mixed

https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://www.baseten.co/blog/how-multi-node-inference-works-llms-deepseek-r1/#from-single-node-to-multi-node-infrastructure
https://www.baseten.co/blog/how-multi-node-inference-works-llms-deepseek-r1/#from-single-node-to-multi-node-infrastructure
https://www.perplexity.ai/hub/blog/lower-latency-and-higher-throughput-with-multi-node-deepseek-deployment
https://www.perplexity.ai/hub/blog/lower-latency-and-higher-throughput-with-multi-node-deepseek-deployment
https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/serve/index.html
https://aws.amazon.com/en/bedrock/
https://www.deepchecks.com/top-llm-quantization-methods-impact-on-model-quality/
https://www.deepchecks.com/top-llm-quantization-methods-impact-on-model-quality/
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://copilot.github.com
https://copilot.github.com

EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

downstream workloads. CoRR abs/2401.11181 (2024).

KAMATH, A. K., PRABHU, R., MOHAN, J., PETER, S., RAMIEE, R.,
AND PANWAR, A. Pod-attention: Unlocking full prefill-decode overlap
for faster LLM inference. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2025, Rotterdam, Netherlands,
30 March 2025 - 3 April 2025 (2025), L. Eeckhout, G. Smaragdakis,
K. Liang, A. Sampson, M. A. Kim, and C. J. Rossbach, Eds., ACM,
pp. 897-912.

KwoN, W, L1, Z., ZHUANG, S., SHENG, Y., ZHENG, L., Yu, C. H.,
GONZALEZ, J., ZHANG, H., AND STOICA, I. Efficient memory man-
agement for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023 (2023), J. Flinn,
M. L. Seltzer, P. Druschel, A. Kaufmann, and J. Mace, Eds., ACM,
pp. 611-626.

L1, S., NING, X., WANG, L., L1u, T., SHI, X., YAN, S., DAI, G.,
YANG, H., AND WANG, Y. Evaluating quantized large language mod-
els. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024 (2024), OpenReview.net.

L1, Z.,ZHENG, L., ZHONG, Y., LIU, V., SHENG, Y., JIN, X., HUANG,
Y., CHEN, Z., ZHANG, H., GONZALEZ, J. E., AND STOICA, I. Al-
paserve: Statistical multiplexing with model parallelism for deep learn-
ing serving. In /7th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2023, Boston, MA, USA, July 10-12, 2023
(2023), R. Geambasu and E. Nightingale, Eds., USENIX Association,
pp. 663-679.

MARCHISIO, K., DASH, S., CHEN, H., AUMILLER, D., USTUN,
A., HOOKER, S., AND RUDER, S. How does quantization affect
multilingual llms? In Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16,
2024 (2024), Y. Al-Onaizan, M. Bansal, and Y. Chen, Eds., Association
for Computational Linguistics, pp. 15928-15947.

Miao, X., SHI, C., DUAN, J., X1, X., LIN, D., Cu1, B., AND J1A, Z.
Spotserve: Serving generative large language models on preemptible
instances. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1
May 2024 (2024), R. Gupta, N. B. Abu-Ghazaleh, M. Musuvathi, and
D. Tsafrir, Eds., ACM, pp. 1112-1127.

NVIDIA. Nvidia dgx superpod: Next generation scalable
infrastructure for ai leadership. https://docs.nvidia.com/dgx-
superpod/reference-architecture/scalable-infrastructure-h200/1atest/
_downloads/bbd08041e98eb913619944ead1£92373/RA-11336-001-
DSPH200-Reference Arch.pdf#page=8.10, 2024.

OPENALI Chatgpt. https://chatgpt.com, 2024.

OPENAI Openai api. https://openai.com/index/openai-api/, 2024.
PATEL, P., CHOUKSE, E., ZHANG, C., SHAH, A., GOIRI, I MALEKI,
S., AND BIANCHINI, R. Splitwise: Efficient generative LLM inference
using phase splitting. In 5/st ACM/IEEE Annual International Sympo-
sium on Computer Architecture, ISCA 2024, Buenos Aires, Argentina,
June 29 - July 3, 2024 (2024), IEEE, pp. 118-132.

PRABHU, R., NAYAK, A., MOHAN, J., RAMJEE, R., AND PANWAR,
A. vattention: Dynamic memory management for serving 1lms without
pagedattention. CoRR abs/2405.04437 (2024).

QIN, R., L1, Z., HE, W., ZHANG, M., WU, Y., ZHENG, W., AND XU,
X. Mooncake: A kvcache-centric disaggregated architecture for LLM
serving. CoRR abs/2407.00079 (2024).

SAJAL, S. M., ZHU, T., URGAONKAR, B., AND SEN, S. Traceup-
scaler: Upscaling traces to evaluate systems at high load. In Proceedings
of the Nineteenth European Conference on Computer Systems, EuroSys
2024, Athens, Greece, April 22-25, 2024 (2024), ACM, pp. 942-961.

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

R. Cheng, Y. Lai, X. Wei, R. Chen, and H. Chen

SHOEYBI, M., PATWARY, M., PURI, R., LEGRESLEY, P., CASPER, J.,
AND CATANZARO, B. Megatron-lm: Training multi-billion parameter
language models using model parallelism. CoRR abs/1909.08053
(2019).

STOJKOVIC, J., ZHANG, C., GOIRI, I., TORRELLAS, J., AND
CHOUKSE, E. Dynamollm: Designing LLM inference clusters for
performance and energy efficiency. CoRR abs/2408.00741 (2024).
SUN, B., HUANG, Z., ZHAO, H., X1A0, W., ZHANG, X., L1, Y.,
AND LIN, W. Llumnix: Dynamic scheduling for large language model
serving. In /8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024
(2024), A. Gavrilovska and D. B. Terry, Eds., USENIX Association,
pp. 173-191.

TEAM, Q. Qwen2.5: A party of foundation models, September 2024.
VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is
all you need. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA (2017), I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, Eds., pp. 5998-6008.

VLLM PROJECT. Llm compressor, 2025. https://github.com/vlim-
project/llm-compressor, 2025.

WANG, Y., CHEN, Y., LI, Z., KANG, X., TANG, Z., HE, X., Guo,
R., WANG, X., WANG, Q., ZHOU, A. C., AND CHU, X. Burstgpt: A
real-world workload dataset to optimize 1lm serving systems, 2024.
WEISSTEIN, E. W. "least squares fitting." from mathworld—a wolfram
resource. https://mathworld.wolfram.com/LeastSquaresFitting.html,
2025.

Wu, B., LIu, S., ZHONG, Y., SUN, P, Liu, X., AND JIN, X.
Loongserve: Efficiently serving long-context large language models
with elastic sequence parallelism. CoRR abs/2404.09526 (2024).
Wu, B., L1U, S., ZHONG, Y., SUN, P, L1u, X., AND JIN, X.
Loongserve: Efficiently serving long-context large language models
with elastic sequence parallelism. In Proceedings of the ACM SIGOPS
30th Symposium on Operating Systems Principles, SOSP 2024, Austin,
TX, USA, November 4-6, 2024 (2024), E. Witchel, C. J. Rossbach, A. C.
Arpaci-Dusseau, and K. Keeton, Eds., ACM, pp. 640-654.

Wu, B., ZHONG, Y., ZHANG, Z., HUANG, G., L1U, X., AND JIN,
X. Fast distributed inference serving for large language models. CoRR
abs/2305.05920 (2023).

ZHANG, D., WANG, H., L1u, Y., WEI, X., SHAN, Y., CHEN, R.,
AND CHEN, H. Blitzscale: Fast and live large model autoscaling with
O(1) host caching. In 19th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2025, Boston, MA, USA, July 7-
9, 2025 (2025), L. Zhou and Y. Zhou, Eds., USENIX Association,
pp. 275-293.

ZHENG, L., L1, Z., ZHANG, H., ZHUANG, Y., CHEN, Z., HUANG, Y.,
WANG, Y., XU, Y., ZHUO, D., XING, E. P., GONZALEZ, J. E., AND
STOICA, I. Alpa: Automating inter- and intra-operator parallelism for
distributed deep learning. In /6th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA, USA,
July 11-13, 2022 (2022), M. K. Aguilera and H. Weatherspoon, Eds.,
USENIX Association, pp. 559-578.

ZHONG, Y., LIu, S., CHEN, J., HU, J., ZHU, Y., L1U, X, JIN, X.,
AND ZHANG, H. Distserve: Disaggregating prefill and decoding for
goodput-optimized large language model serving. In 18th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2024, Santa Clara, CA, USA, July 10-12, 2024 (2024), A. Gavrilovska
and D. B. Terry, Eds., USENIX Association, pp. 193-210.

ZHU, K., ZHAO, Y., ZHAO, L., ZUvo, G., GU, Y., XIE, D., GAo,
Y., XU, Q., TANG, T., YE, Z., KAMAHORI, K., LIN, C., WANG, S.,

https://docs.nvidia.com/dgx-superpod/reference-architecture/scalable-infrastructure-h200/latest/_downloads/bbd08041e98eb913619944ead1f92373/RA-11336-001-DSPH200-ReferenceArch.pdf#page=8.10
https://docs.nvidia.com/dgx-superpod/reference-architecture/scalable-infrastructure-h200/latest/_downloads/bbd08041e98eb913619944ead1f92373/RA-11336-001-DSPH200-ReferenceArch.pdf#page=8.10
https://docs.nvidia.com/dgx-superpod/reference-architecture/scalable-infrastructure-h200/latest/_downloads/bbd08041e98eb913619944ead1f92373/RA-11336-001-DSPH200-ReferenceArch.pdf#page=8.10
https://docs.nvidia.com/dgx-superpod/reference-architecture/scalable-infrastructure-h200/latest/_downloads/bbd08041e98eb913619944ead1f92373/RA-11336-001-DSPH200-ReferenceArch.pdf#page=8.10
https://chatgpt.com
https://openai.com/index/openai-api/
https://github.com/vllm-project/llm-compressor
https://github.com/vllm-project/llm-compressor
https://mathworld.wolfram.com/LeastSquaresFitting.html

Parameter-centric Memory Management for LLM Serving EUROSYS '26, April 27-30, 2026, Edinburgh, Scotland Uk

KRISHNAMURTHY, A., AND KASIKCI, B. Nanoflow: Towards opti- (2024).
mal large language model serving throughput. CoRR abs/2408.12757

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminaries of LLM and LLM serving
	2.2 TTFT spikes caused by memory overloading
	2.3 Shortcomings of current solutions

	3 System Overview
	4 Detailed Design and Implementation
	4.1 Parameter drop during memory overloading
	4.2 Smooth transition of requests from undropped to dropped states with coordinated KVCache exchange
	4.3 Serving requests efficiently after parameter drop
	4.4 Dynamic restore and fault tolerance

	5 Evaluation
	5.1 Experiment setup
	5.2 End-to-end Results
	5.3 Ablation Studies
	5.4 Accuracy of the batch formulation cost model
	5.5 Effectiveness of dynamic restoration
	5.6 Performance under extreme bursts

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

