
ISA-Grid: Architecture of Fine-grained Privilege Control for
Instructions and Registers

Shulin Fan
forestree@sjtu.edu.cn

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating
Systems(Ministry of Education)

Shanghai, China

Zhichao Hua∗
zchua@sjtu.edu.cn

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating
Systems(Ministry of Education)

Shanghai, China

Yubin Xia
xiayubin@sjtu.edu.cn

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Shanghai AI Laboratory

Engineering Research Center for
Domain-specific Operating

Systems(Ministry of Education)
Shanghai, China

Haibo Chen
haibochen@sjtu.edu.cn

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating
Systems(Ministry of Education)

Shanghai, China

Binyu Zang
byzang@sjtu.edu.cn

Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Engineering Research Center for

Domain-specific Operating
Systems(Ministry of Education)

Shanghai, China

ABSTRACT
Isolation is a critical mechanism for enhancing the security of com-
puter systems. By controlling the access privileges of software and
hardware resources, isolation mechanisms can decouple software
into multiple isolated components and enforce the principle of
least privilege. While existing isolation systems primarily focus
on memory isolation, they overlook the isolation of instruction
and register resources, which we refer to as ISA (Instruction Set
Architecture) resources. However, previous works have shown that
exploiting ISA resources can lead to serious security problems, such
as breaking the system’s memory isolation property by abusing
x86’s CR3 register. Furthermore, existing hardware only provides
privilege-level-based access control for ISA resources, which is too
coarse-grained for software decoupling. For example, ARM Cortex
A53 has several hundred system instructions/registers, but only
four exception levels (EL0 to EL3) are provided. Additionally, more
than 100 instructions/registers for system control are available in
only EL1 (the kernel mode). To address this problem, this paper
proposes ISA-Grid, an architecture of fine-grained privilege control

∗Corresponding author: Zhichao Hua

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589050

for instructions and registers. ISA-Grid is a hardware extension that
enables the creation of multiple ISA domains, with each domain
having different privileges to access instructions and registers. The
ISA domain can provide bit-level fine-grained privilege control for
registers. We implemented prototypes of ISA-Grid based on two
different CPU cores: 1) a RISC-V CPU core on an FPGA board and
2) an x86 CPU core on a simulator. We applied ISA-Grid to differ-
ent cases, including Linux kernel decomposition and enhancing
existing security systems, to demonstrate how ISA-Grid can isolate
ISA resources and mitigate attacks based on abusing them. The
performance evaluation results on both x86 and RISC-V platforms
with real-world applications showed that ISA-Grid has negligible
runtime overhead (less than 1%).

CCS CONCEPTS
• Computer systems organization → Architectures; • Secu-
rity and privacy → Systems security.

KEYWORDS
Privilege Control, Instruction Set Architecture, Software Isolation
ACM Reference Format:
Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang. 2023.
ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions
and Registers. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3579371.3589050

1 INTRODUCTION
Isolation is a crucial mechanism for improving the security of both
user applications [14, 30, 42, 52, 59, 67] and system software [21, 31,

https://doi.org/10.1145/3579371.3589050
https://doi.org/10.1145/3579371.3589050
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589050&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

44, 49, 50, 78]. By breaking software down into multiple isolated
components, isolation makes vulnerabilities in one component have
less impact on the others. Each component is assigned limited
privileges, in accordance with the principle of least privilege, to
enhance software security [34].

Isolation mechanisms aim to create multiple domains and limit
their access to specific hardware and software resources. There
has been a long line of research on building isolation mechanisms
based on various hardware or software platforms by designing
new system-level architectures [21, 30, 31, 43, 78], using compiler
methods [14, 17, 20, 25, 45], leveraging existing hardwares [27, 29,
49, 52, 57, 61, 62], or adding new hardware features [59, 65, 72, 73].
However, the majority of these works concentrate exclusively on
isolating memory, which is just one type of system resource. As
a result, they neglect the isolation of instructions and registers,
which we refer to as ISA (Instruction Set Architecture) resources.

Abusing Instruction Set Architecture (ISA) resources can result
in serious security problems in both hardware and software sys-
tems [11, 15, 19, 36, 48, 51, 54, 64, 77, 79]. For instance, using cycle
registers, such as the rdtsc of x86, can increase the success rate of
timing-based side-channel attacks [77], while manipulating CPU
frequency and voltage control registers, such as MSR 0x150 in x86,
can facilitate voltage-based attacks [36, 48, 54]. Moreover, the abuse
of certain system control registers, such as the CR3 in x86, can
compromise the entire system’s security property. Many attacks
are based on the assumption that the attacker has the ability to
use specific instructions/registers. For example, the Stealthy Page
Table-Based Attack [64] assumes that the attacker can set the CD
bit of x86’s CR0, while the Controlled-Channel Attack [77] assumes
that the attacker can replace the fault handler by modifying IDTR
or changing IDT. In the V0LTpwn Attack [36], the attacker must
have access to MSR 0x150. We call such attacks whose prerequisite
is access to certain ISA resources ISA-abuse-based attacks.

On the contrary, unlike memory, existing hardware only pro-
vides privilege-level-based access control for ISA resources, which
is too coarse-grained for decoupling software. All software compo-
nents at the same exception level, such as the Linux kernel and all
system-level services in the kernel space, share the same privilege
on ISA resources. Although existing methods attempt to perform
fine-grained privilege control for ISA resources by scanning the
binary and replacing all possible binary code that may access illegal
instructions/registers [10, 21, 27, 32, 76], such methods significantly
increase development effort and lack proof of correctness and com-
pleteness. Currently, such a method is only applicable to specific
instructions or registers and is impractical for generic access con-
trol for ISA resources, particularly for ISAs with variable-length
instructions like x86 [56].

To solve the above problem, this paper introduces ISA-Grid, an
architecture of fine-grained privilege control for instructions and
registers. ISA-Grid is a hardware extension that enables software
to create multiple ISA domains, with each domain having different
privileges to access ISA resources. Our system can provide bit-level
fine-grained privilege control for registers that contain multiple
function fields. The design of the ISA-Grid includes three parts. First,
ISA-Grid introduces a hybrid privilege structure to perform the
privilege control with different granularities for different instruc-
tions and registers. Second, an unforgeable domain switching

method is provided for the secure switch between different ISA do-
mains. Finally, ISA-Grid uses a domain privilege cache to speed
up the privilege check procedure.

To demonstrate the effectiveness of ISA-Grid, we implemented
the proposed hardware extension in a RISC-V Rocket Core [9] on an
FPGA board and an x86 core on a cycle-accurate simulator. We then
applied ISA-Grid to different use cases to showcase its mitigation
capabilities. Firstly, we used ISA-Grid to decompose the Linux ker-
nel, where most of the Linux code runs in a de-privileged domain
that can only access general computing instructions/registers and
read a few other registers. Privileges of special instructions/reg-
isters are only granted to the code that requires them. Secondly,
we employed ISA-Grid to construct a nested monitor in the Linux
kernel for memory protection. We performed a detailed evaluation
using the x86 and RISC-V prototypes of ISA-Grid. The evaluation
results demonstrate that ISA-Grid provides the current system with
the capability to control instruction/register privileges at a fine
granularity while maintaining a very limited runtime overhead.

This work makes the following contributions:

• We analyze the importance of privilege control of ISA re-
sources, which previous works overlook.

• We provide the design of ISA-Grid, a new hardware archi-
tecture of fine-grained privilege control for instructions and
registers. The design of ISA-Grid does not bind to a specific
platform and can extend to different CPU implementations.

• We implement ISA-Grid on both RISC-V and x86 platforms
and use it in several use cases to show how it can help to
improve system security.

2 BACKGROUND AND MOTIVATION
2.1 The Complex ISA Resources
The ISA resources, which include instructions and registers, are the
crucial resource provided by the CPU. However, modern commer-
cial processors have intricate ISAs, with hundreds of instructions
and registers for system management, as seen in the ARM Cor-
tex A53 [6]. For instance, the EL1 mode contains over 100 system
control instructions and registers, such as identification registers,
exception handling registers, virtual memory control registers, and
TLB maintaining instructions. Similarly, x86 processors have even
more hardware features, leading to more instructions and registers.
Notably, every instruction or register may be complex to use. Tak-
ing the 32-bit SCTLR_EL1 register on ARM as an example, it can
have up to 28 different function fields, illustrating the intricacy of
these resources. Moreover, with CPU vendors continually adding
new hardware features, the ISA resources of commercial processors
are rapidly expanding. For example, ARMv6 has only 30+ system
registers [7], while ARMv9 grows to 400+ [5].

2.2 The Need for ISA Resources Access Control
Pure memory isolation, in other words, memory access control,
cannot de-privilege a piece of code or selectively grant code privi-
leges to execute certain instructions. However, access control of ISA
resources is necessary for software isolation, which can complete
the principle of least privilege.

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 1: Some of ISA-abuse-based attacks.

Attack Architecture Reg./Inst. as Prerequisites Consequence Can ISA-Grid mitigate

Controlled-Channel Attacks [77] x86 IDTR Stealing data from different types of TEEs. ✓
FORESHADOW Attacks [63] x86 wbinvd instruction, DR0-7 Extracting enclave secrets. ✓
NAILGUN Attacks [51] ARM PMU registers Stealing sensitive data. ✓
Stealthy Page Table-Based Attacks [64] x86 CR0.CD Stealing data from Intel SGX enclave [19]. ✓
Super Root Attacks [79] ARM DBGBCR, HDCR, HVC Obtaining the kernel or the hypervisor privilege. ✓
SgxPectre Attacks [16] x86 MSR 0x48, MSR 0x49 Stealing attestation keys of Intel SGX. ✓
TRESOR-HUNT Attacks [15] x86 DR0-7 Stealing cryptographic keys. ✓
Voltage-based Attacks [36, 48, 54] x86 MSR 0x150 Injecting bit flip to / Stealing secret from Intel SGX enclave. ✓

Attacks By Abusing ISA Resources: The ISA resources are of-
ten used for system control, including memory mapping, exception
handling, virtualization, and many others. Once the ISA resources
are abused, attackers can perform various attacks [15, 36, 48, 51,
54, 64, 77, 79]. Table 1 shows some ISA-abuse-based attacks, whose
prerequisite is access to certain ISA resources. For example, x86
processors allow system software to configure the CPU frequency
and voltage for power management. The MSR 0x150 is a register
for configuring the frequency and voltage. The attackers can use
this register to perform various attacks, including injecting fault
to enclave applications [48], tampering with the secure memory of
SGX [36], and stealing sensitive data from enclave applications [54].
Another example is the cycle counter instructions (e.g., the rdtsc
in x86) and cache maintaining instructions, which the attackers
can use to speed up the timing-based side-channel attacks. Besides
the above examples, many ISA resources are critical for the system,
and tampering with them could directly break the system-level se-
curity properties. For example, the memory mapping is controlled
by the page table base address register (e.g., CR3 in x86 and SATP
in RISC-V). Once such a register is abused, attackers can construct
malicious mappings and break the page table isolation.

Importance of ISA Resources Access Control: Controlling
the privilege of instructions and registers is necessary to enhance
system security. Hardware manufacturers have acknowledged that
manipulating certain hardware features causes security problems.
As a result, CPU vendors have implemented mechanisms that con-
trol the access privilege of specific ISA resources. For instance, to
mitigate the above attacks based on CPU frequency and voltage,
Intel adds patches in BIOS and CPU microcode to allow users to
configure whether the software can accessMSR 0x150. Additionally,
for rdtsc, the CR4 register on x86 specifies whether this instruction
can be executed in user space. In ARM, the cache flush instructions
can be disabled in user space. Meanwhile, Modern processors in-
troduce privilege levels to manage access privilege for instructions
and registers at a coarse granularity.

Memory Isolation Needs ISA Resources Access Control:
There exist many systems for memory access control. However,
more than memory isolation is needed to build a secure system. For
example, the Intel MPK is used by many systems for isolating user-
level memory, but it has the security problem of abusing the wrpkru
instruction. Such an instruction is used to modify the PKRU register
and change memory access permission. However, wrpkru can be ex-
ecuted by any user-space code. Untrusted code can directly execute
wrpkru and switch to an arbitrary memory domain, which breaks
the memory isolation provided by MPK. Thus it requires methods

to deprive the untrusted code of the capability to execute wrpkru.
Similarly, the Intel PKS [35], which provides memory isolation in
kernel space, also needs to control the privilege of wrpkrs instruc-
tion. Besides MPK, many software-based memory isolation systems
also require access control of ISA resources. Nested Kernel [21]
separates the privilege of the kernel into two parts: a trusted inner
kernel controlling the mapping and a de-privileged outer kernel
containing other functionalities. It must enforce that the outer ker-
nel cannot modify CR0, CR3, CR4 or other memory management
registers. Meanwhile, PrivBox [38] and Colony [76] also require
untrusted privileged components cannot access privileged ISA re-
sources. For all the above systems, access control of ISA resources
is indispensable.

VulnerabilityMitigationNeeds ISAResourcesAccessCon-
trol: Also, if the system can control the access privilege of ISA
resources with fine granularity, ISA-abused-based attacks can be
mitigated more efficiently. With the access control of ISA resources,
the developer can selectively expose instructions/registers to a ker-
nel component. Thus the exploit in a module can only make limited
privileges available to the attacker. This is actually how the least
privilege principle works for mitigation. Take the voltage-based
attack [36] as an example. If there is a vulnerability that the attacker
can exploit to execute wrmsr (write MSRs in x86) in an unrelated
kernel module (e.g., debug module), then the attacker can exploit
it and write the MSR 0x150 to mount the voltage-based attack. On
the contrary, with ISA resources access control, the kernel can only
give the debug module privileges to access the debug registers.
Thus, even if the debug module is exploited, MSR 0x150 can never
be accessed by the attacker. How the other attacks are mitigated by
the access control of ISA resources is discussed in Section 8.

2.3 Limitations of Current ISA Access Control
Hardware Approaches: Modern processors mainly rely on the
CPU privilege level (called exception level in ARM) to perform ac-
cess control of ISA resources. However, since the CPU only provides
limited privilege levels (often including the user level, kernel level,
and hypervisor level), the software in a single privilege level can
access many instructions and registers. The software in the kernel
level can access most ISA resources. Once there is a bug in the
kernel level, attackers can further access all ISA resources in kernel
space and user space. Unfortunately, one privilege level usually
contains a large amount of code, corresponding to many vulnera-
bilities. Any of these vulnerabilities may give attackers the ability
to access critical ISA resources. Because of that, the coarse-grained
access control provided by the CPU privilege level is not enough for

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

controlling ISA resources. There also exist other hardware exten-
sions such as CODOMS [65] and Mondrix [73]. But they are still too
coarse-grained. CODOMS [65] designs a new hardware extension
and uses it to isolate Linux. Mondrix [73] can choose whether to
give a domain kernel privileges or not. However, in either of the
two works, all the kernel privileges for ISA resources are bound
together and are indicated by only one bit for each domain. The
result is that a considerable portion of the code still runs in domains
with complete kernel privileges.

Virtualization Approaches: Virtualization extensions in mod-
ern processors support trap-and-emulate. The privileged instruc-
tions cause traps to the hypervisor. The hypervisor can then check
if this instruction is allowed in the current privilege domain. How-
ever, the traps from virtual machines take many cycles (even an
empty VM call takes about 1700 cycles [29]), and the privilege
check of the instruction after the trap is not optimized by hardware.
Moreover, only hardware-specified privileged instructions can be
checked via this approach, which can lead to limitations in cases
such as restricting the usage of Intel MPK or PKS instructions, as
these instructions do not trap, and are therefore excluded from the
scope of virtualization.

SoftwareApproaches: Existing systems based on IntelMPK [27,
29, 62] have to solve the problem of abusing wrpkru instruction.
ERIM [62] tries to use binary scanning and rewriting to remove
unintended wrpkru instructions. This is complex because directly
rewriting the binary requires code disassembling. And the new
instruction sequence may be longer than the original. Thus the
control flow instruction must also be rewritten. The correctness
and completeness of the rewriting strategy are not proved by ERIM.
Even worse, such rewriting is inapplicable in the general case be-
cause of undecidable instruction alignment [55, 69]. Hodor [29]
also uses binary scanning, but it adds hardware breakpoints to a
page’s unintended wrpkru. If the number of wrpkru in a page ex-
ceeds the number of debug registers, the code page uses single-step
execution. These pages are unmapped, and the fault handler adds
breakpoints or starts single-step execution when these pages are
accessed. However, even after designing the system carefully, these
solutions based on MPK are still error-prone and fail in some cor-
ner cases [18, 66]. Thus recent works have to add more patches for
enhancement continually [58, 66].

Nested Kernel [21] also uses a software approach to de-privilege
the outer kernel. First, sensitive instructions are unmapped from
the kernel and mapped back when used. Second, to defend against
ROP (return-oriented programming) attacks, Nested Kernel must
enforce that no code gadget can be chained together to construct
sensitive instructions. So it requires the developers to analyze the
compiled binary and manually modify the source code by adjust-
ing alignments, changing functions, and adding nops to eliminate
implicit sensitive instructions. When the kernel is loaded, it scans
the binary and rejects the code containing sensitive instructions.
However, manually finding and modifying all possible gadgets is
error-prone and significantly increases development effort [56, 66].
And it is extremely difficult to control generic ISA resources [56].
For example, the x86 out instruction is only one byte and appears
over 50k times in Linux v5.4 kernel image, while only 300+ of
them are intended. It is almost impossible to remove unintended
occurrences of such instructions manually.

S

M

A

P

S

M

E

P

P

K

E

22 21 20 18 17 16 15

C

E

T

23

P

K

S

24 14

S

M

X

E

13

V

M

X

E

12 11

U

M

I

P

10 9 8

P

C

E

7

P

G

E

6

M

C

E

5

P

A

E

4

P

S

E

3

D

E

2

T

S

D

1

P

V

I

0

V

M

E

12

OSXSAVE

PCIDE

FSGSBASE

OSFXSR

OSXMMEXCPT

x86_64 CR4

64

Reserved

Figure 1: CR4 register in x86_64. Eachfield represents a hard-
ware capability.

3 SYSTEM OVERVIEW
3.1 System Goals
The main goal of ISA-Grid is to propose a hardware extension to
control access privilege for instructions and registers. The detailed
goals are:

• Fine-Grained Control: ISA-Grid should offer access con-
trol at the instruction and register level. For registers con-
taining multiple function fields, ISA-Grid should support
bit-level access control.

• Flexibility: ISA-Grid should allow multiple privilege do-
mains with varying access privileges. The number of privi-
lege domains should be sufficient to isolate different software
components.

• Security: ISA-Grid must ensure that hardware privilege con-
trol cannot be bypassed, so that software running in a privi-
leged domain cannot access ISA resources without permis-
sion. ISA-Grid must also prevent a domain from arbitrarily
switching to other domains.

• Performance: ISA-Grid should only have limited perfor-
mance overhead on protected software.

3.2 Design Challenges
There are three main challenges for designing a fined-grained hard-
ware access control mechanism for ISA resources.

Challenge-I: Access Control Granularity. The ISA resources
have significantly different requirements of control granularity. For
instructions and part of registers, each of them can be controlled
as a non-divisible entity. However, many system control registers
contain multiple function fields. For example, the CR4 register in
x86 contains 20+ different fields, representing different hardware
capabilities (as shown in Figure 1). Each bit of the register has a
distinct function and may be accessed by different software com-
ponents. These registers require bit-level access control. ISA-Grid
should support such a hybrid granularity.

Challenge-II: Secure Domain Switching. In addition to con-
trolling access privileges for each domain, secure domain switch-
ing is crucial. Existing memory isolation mechanisms leverage a
higher privilege level to perform domain switching (e.g., the page
table isolation schemes rely on the kernel-level code to switch
memory mappings) or ask the software developer to carefully de-
sign a switch function to enforce the switching security (e.g., Intel
MPK relies on the developer to design a secure domain switch-
ing gate [29, 62]). Both methods have drawbacks: changing to a

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Debug Domain
Exception Handler

Domain

Context Switching

Domain

Decoupled Software
(Linux Kernel)

Non-Privilege Domain

Domain Privileges

Domain Switch

Gate

…

… …

Debug Register Y N N N

Expt Cause Register Y NNN

Pagetable Ptr Register Y NNN

Flush TLB Instruction NNN N

…

General-Computing ISA Y YYY

Figure 2: Decoupled software (Linux kernel) with ISA-Grid
abstraction.

higher privilege level increases performance overhead when do-
main switching is frequent, and the latter method does not guaran-
tee strong security [18]. ISA-Grid should provide a secure and fast
method for domain switching.

Challenge-III: Low Performance Overhead. To enforce ac-
cess control of ISA resources, ISA-Grid needs to check all executed
instructions. The overhead of the privilege check might affect the
overall performance of applications. ISA-Grid should achieve low
overhead for both the privilege check and the domain switching.

3.3 Overview of ISA-Grid
ISA-Grid Abstraction: We first introduce the hardware abstrac-
tion provided by ISA-Grid. ISA-Grid performs access control of ISA
resources based on ISA domains. Each ISA domain can be given
privileges to access different instructions and registers. One CPU
core only runs in one ISA domain at a time. ISA-Grid enforces that
software can only access ISA resources specified by the current ISA
domain. As shown in Figure 2, a software program (e.g., the Linux
kernel) can be decoupled into different ISA domains with different
ISA privileges. ISA-Grid introduces new instructions for switching
between different domains.

Design Overview: ISA-Grid introduces a new hardware unit
called PCU (Privilege Check Unit) in the CPU core to enforce the
privilege control of ISA resources. The PCU is connected to the CPU
pipeline to access the required information and then check all exe-
cuted instructions. If the PCU finds that there is no privilege for the
instruction, a hardware exception occurs. As shown in Figure 3, the
design of PCU includes three main components: aHybrid-grained
Privilege Check Engine, an Unforgeable Domain Switching
Engine and a Domain Privilege Cache.

Hybrid-grained Privilege Check Engine: To support privilege con-
trol in different granularities, ISA-Grid introduces a hybrid-grained
privilege data structure to describe the privileges of ISA resources
(Challenge-I). For instruction privilege, ISA-Grid leverages the
bitmap structure to represent whether an ISA domain can execute

CPU Core

Hybrid-grained

Privilege

Check Engine

Domain Privilege

Cache

PCU (Privilege Check Unit)

CPU Logic

Trusted Memory

MemoryTrusted StackSGTHPT

Unforgeable

Domain

Switching

Engine

Check
Result

Reg. / Inst.
Information

Figure 3: Architecture Overview.

different instructions. Each instruction corresponds to one privi-
lege bit. For register privilege, ISA-Grid uses a double-bitmap as
well as on-demand bit-masks to represent whether an ISA domain
can access a register and which bits can be accessed. The hybrid
privilege table (HPT) stores these privilege information for all do-
mains. Such a hybrid privilege data structure allows ISA-Grid to
support privilege control of ISA resources with different granu-
larities. More about the hybrid-grained privilege data structure
and how to use it for privilege control are shown in Section 4.1.
All the privilege data structures are stored in the trusted memory
(described in Section 4.5) to protect their integrity.

Unforgeable Domain Switching Engine: ISA-Grid provides an un-
forgeable domain switching method to enhance security when a
domain changes (Challenge-II). Such a method provides domain
switching instructions for developers and enforces that: 1) a mali-
cious domain switching instructions being injected to the code page
cannot be used to switch ISA domains; 2) a malicious switching
instruction being constructed by ROP cannot switch domains; and
3) a valid switching instruction cannot be abused to switch to arbi-
trary domains. ISA-Grid achieves such security goals by allowing
software to register multiple unforgeable switching gates. Each of
the gates corresponds to a legal switch to an ISA domain. A switch-
ing gate table (SGT) is used to store all registered gates. With such
gates, the domain switching engine can securely switch the ISA
domains and change control flow to the target address. Section 4.2
introduces more details.

Domain Privilege Cache: To accelerate the domain switching
and privilege check, a domain privilege cache is added in the PCU
(Challenge-III). It includes an HPT cache and an SGT cache. If
such a cache is hit, the privilege check and domain switching can
proceed without waiting for memory reading. To reduce the energy
cost of the domain privilege cache, ISA-Grid also provides the cache
bypass method. More details are described in Section 4.3.

4 SYSTEM DESIGN
This section introduces the detailed design, as shown in Figure 4.

4.1 Hybrid-grained Privilege Check
Each ISA domain has a unique domain id. The hybrid-grained priv-
ilege check engine inside PCU performs the privilege check. It

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

Register Bitmap Entry

1 1

sstatus scause

0 0 1 0

R W R W R W

1

dom_id

Register Mask Entry

1101….00111

dom_id

sstatus

reg_id reg_mask

ldcsrrw

0 1 0 …101

dom_id

Instruction Bitmap Entry

Switching Gate Entry

gate_id src_addr dst_dom dst_addr

0 0x10 2 0x24

Domain Privilege Cache

Unforgeable Domain
Switching Engine

Hybird-grained Privilege
Check Engine

Domain switch

success

01001…csrrw

1 1

R W

write on
sstatus

1101….0011value
and

check

check

ld, x5, 0(x4)

csrrw, x5, scause, x0

csrrw, x0, sstatus, x6

hccall gate0

0x4:

0x8:

0xB:

0x10:

ISA Domain 1

Privilege Check Unit (PCU)

Inst Bitmaps

CPU core

Trusted Memory

Hybrid Privilege
Table (HPT)

Reg Bitmaps

Reg Mask Arrays

Switching Gate
Table (SGT)

Trusted Stack

MemorySoftware

0x24: sd, x3, 0(x4)

… …

ISA Domain 2

ISA

inst_bit

reg_bits

reg_mask

Figure 4: Detailed design of the PCU in ISA-Grid.

leverages the HPT to check all instruction executions and register
accesses. The HPT consists of instruction bitmaps, register bitmaps,
and bit-mask arrays. For registers, ISA-Grid does not restrict the ac-
cess privilege of general-purpose registers because they are used for
almost all software components. ISA-Grid focuses on the registers
for hardware management, which are collectively called Control
and Status Registers (CSRs) in this paper. These registers have spe-
cial use cases and are essential for the entire software stack (e.g.,
RISC-V SATP register). This section describes how ISA-Grid checks
access privileges of instructions and CSRs with HPT.

Privilege Check Process: The instructions are checked simul-
taneously by CPU privilege level and ISA-Grid. An instruction can
only be executed when it passes both the check of privilege level
and ISA-Grid. Either rejection causes a hardware exception.

When an instruction is issued, ISA-Grid first checks its execu-
tion privilege. The instruction bitmap in the HPT is used for the
check. If the instruction explicitly accesses the CSRs, ISA-Grid will
further perform the register privilege check. ISA-Grid ignores the
register privilege check if an instruction accesses the CSRs as its
side effect. For example, the RISC-V ld instruction can cause excep-
tions and change the value of the SCAUSE register. PCU does not
check the register privilege for this instruction. On the contrary,
the RISC-V csrrw instruction must pass the register privilege check.
If the accessed CSR requires bitwise control and is written by the
instruction, the bit-mask in HPT is used for the bitwise privilege
check. Otherwise, only the register bitmap in HPT is used for the
privilege check of the CSR.

PrivilegeControl for Instructions: InHPT, instruction bitmaps
are used for controlling the execution privilege of instructions. Each
bit in the bitmap represents whether a particular type of instruction
can be executed in an ISA domain. The PCU reads the bitmap to de-
termine the execution privilege of the instructions. The instruction

type is specified by the instruction opcode. The hardware maps the
opcode of an instruction to the index of the corresponding bit in
the bitmap. The length of the bitmap depends on the number of
instruction types for a specific architecture.

Privilege Control for Registers: Different from instructions
which only require execution privilege, for each CSR, there are two
bits in the register bitmap to represent the read and write permis-
sion. The address of CSRs, which is used in CSR r/w instructions to
specify operands, is mapped to the index in the register bitmap.

Bitwise Control for Registers: Each Control and Status Reg-
ister (CSR) that requires bitwise access control in ISA-Grid is as-
sociated with a bit-mask of the same length for each domain. The
bit-mask indicates which bits of the CSR can be modified. Setting a
bit in the bit-mask enables modification of the corresponding bit in
the CSR. An equation is used to decide if a CSR write operation is
permitted. Suppose the original value of the register is VCSR , the
value to be written isVwrite , and the bit-mask isM . Then it should
satisfy: VCSR ⊕ Vwrite ∧ ¬M == 0. The bit-masks are only used
for CSR writing and not used for reading. All the bit-masks in a
domain constitute a bit-mask array. The CSRs that need bitwise
access control are mapped to the indexes in the bit-mask array. The
three mappings (instruction type to bitmap index, register address
to bitmap index, register address to bit-mask array index) are hard-
ware parameters of ISA-Grid and should be known by software
developers.

4.2 Unforgeable Domain Switching
ISA-Grid employs a novel domain switching method that uses ded-
icated instructions. It has the following properties: (i): Each gate
can only be called at a fixed address. (ii): Each gate jumps to a
deterministic address. (iii): Each gate changes to a deterministic
domain. (iv): Unregistered gates can never be executed.

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Unforgeable Switching Gate: ISA-Grid uses dedicated gate
instructions as domain switching gates. A gate instruction changes
the domain and transfers the control flow to the pre-registered
target address. The gate instruction itself can be executed by all ISA
domains. However, any gate must be registered before it is used.
For gate registration, the corresponding entry in the SGT should
be configured. Each entry in the SGT contains the gate address, the
destination address, and the destination domain of a gate. The entry
index of a gate is also used as its gate id. Each gate instruction has
to specify its gate id at runtime, which can be stored in a general-
purpose register. When a gate instruction is executed, PCU uses
the gate id to retrieve the gate information from the SGT. And the
hardware checks if the address of the gate instruction is the same
as the registered value. If the address matches, the gate instruction
changes the control flow to the registered destination address and
switches the ISA domain.

ExtendedGate:As described above, each gate instruction jumps
to a deterministic address and changes to a deterministic domain. If
a developer wants to implement a cross-domain function call, there
should be a gate instruction for entering the domain and another
gate for returning from the domain. Thus traditional call-and-return
convention cannot be directly used. To ease the development, ISA-
Grid provides extended gate instructions, including an extended
gate instruction and an extended return instruction. The registra-
tion of the extended gate instruction is the same as the original gate.
But when executed, it pushes the return address and source domain
id on the trusted stack located in trusted memory. The extended
return instruction does not need registration. This instruction pops
the return address and domain id from the trusted stack and returns
from the cross-domain call. The extended gate and return instruc-
tions can be used in pairs for cross-domain calls in a call-and-return
manner. With the extended instructions, only one gate needs to be
registered for a cross-domain call. For ISA-Grid’s implementation,
the two extended instructions and the trusted stack are optional.

Analysis: ISA-Grid satisfies Property (i) because the address
of a gate instruction (unforgeable gate instruction or extended gate
instruction) is registered and frozen, and ISA-Grid enforces the
equality of the runtime address and registered address whenever
a gate instruction is executed. Similarly, because the destination
address and ISA domain are registered, the gate instruction cannot
be exploited to switch to arbitrary domains or addresses. Thus
Property (ii) and (iii) are satisfied. If a fake gate instruction is
injected at a new address or appears at an instruction boundary,
the runtime address of the gate cannot match any entry in the SGT,
and this causes an exception. Thus Property (iv) is enforced.

4.3 Domain Privilege Cache
ISA-Grid adds a domain privilege cache in PCU to reduce the run-
time overhead. The domain privilege cache consists of an HPT
cache and an SGT cache. The cache prefetch mechanism can reduce
overall cache latency, and the cache bypass mechanism reduces the
dynamic energy cost.

HPT Cache: The HPT cache is designed to accelerate access to
the hybrid privilege table (HPT), thereby reducing runtime over-
head. When there is a cache hit, the checked instruction incurs
no extra cycles. On the other hand, when there is a cache miss,

the instruction must wait for the corresponding HPT entry to be
retrieved from memory. Depending on the implementation, we can
stall the instruction by flushing the pipeline or stalling the ROB.

Because there are different privilege structures in HPT, the HPT
cache contains three different types of entries. For the bit-mask
array, each entry contains a CSR bit-mask. The entry tag consists
of the domain id and the CSR index in the bit-mask array. An entry
can be retrieved if the tag matches, which means a cache hit. For
the register bitmap, each entry contains bits representing the write
and read permission for a group of CSRs with adjacent index values.
If a single entry contains a bitmap for all the CSRs, it might be
quite large and take a long time to fill. So, a register bitmap for
a domain can be divided into several entries. For the instruction
bitmap, each entry is for a group of bits in an instruction bitmap.
The tag of each entry consists of only the domain id and the group
id. If requested HPT data is not in the cache, the data are fetched
from memory, and the corresponding entry in the cache is filled.
All three entry types use the domain id as part of the entry tag. As
a result, a cache flush is not necessary when the domain changes.
The HPT cache can be implemented either as three separate caches
or as a unified cache. In the case of a unified cache implementation,
each entry needs an additional field to specify the entry type. A
unified cache structure may improve the overall hit rate but incur
increased hardware complexity.

SGT Cache: To further reduce the latency of domain switching,
an SGT cache is added to PCU to cache the information of recently
used gates. The tag of each entry is the gate id, and the payload
of each cache entry is an entry in SGT. Given the gate id, the SGT
entry for the requested gate could be directly retrieved from the
cache. If the requested gate is not in the cache, the corresponding
SGT entry is loaded from memory and inserted into the cache.

Cache Bypass For Saving Energy: PCU checks every instruc-
tion to be executed. However, the PCU needs to look up the cache to
get the entry containing the instruction bitmap before the instruc-
tion privilege check. Thus, unlike CSRs, the instructions’ execution
privilege is checked more frequently. ISA-Grid uses a cache by-
pass mechanism to decrease the dynamic energy cost. ISA-Grid
introduces an instruction privilege register to store the instruction
bitmap of the current domain. The register is filled with the current
domain’s bitmap when the current domain’s first instruction is
executed. And then, the PCU can directly use the bitmap in this reg-
ister for the instruction privilege check. So the instruction bitmap
cache is only looked up fixed times after a domain switching. This
mechanism reduces fully associative cache lookups and decreases
the dynamic energy cost.

Cache Prefetch: A CSR r/w instruction might cause a long
latency because of memory access if the corresponding entries
are not in the HPT cache. ISA-Grid provides software prefetch
mechanisms to load CSR bitmaps or masks into the HPT cache in
advance. Sometimes only a few CSRs are accessed before exiting
the current domain, and prefetching all the CSRs is unnecessary.
The software developer can choose to fetch entries for all the CSRs
or just certain CSRs using the dedicated prefetch instruction. The
memory access requests from prefetching have a lower priority than
the normal memory requests. Thus, the cache prefetch does not
significantly affect the latency of normal load and store instructions.
Section 5.1 introduces more about the prefetch instruction.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

4.4 Special Domain for Initialization
Asmentioned before, each ISA domain has a unique id. Upon reboot,
the domain id for the processor is reset to zero, which corresponds to
the special initialization domain, domain-0. This domain is given all
the privileges by default and is responsible for initializing ISA-Grid.
After initialization is complete in this domain, the supervisor can
switch to a new domain and do real jobs. Domain-0 can also be used
for configuring new domains and gates after initialization. The code
in domain-0 should be kept small. The domain-0 can only be entered
when the processor reboots or executes the gate instructions. The
extended return instruction described in Section 4.2 is not allowed
to return to domain-0. Thus the instruction can not be exploited
to switch to domain-0 with all the privileges and a non-registered
destination address.

4.5 Trusted Memory
ISA-Grid needs a region of trusted memory to store the SGT, HPT
and the trusted stack. There are different ways to design such a
memory region. ISA-Grid uses a clean and architecture-independent
design for trusted memory. A special range of physical memory is
reserved for trusted memory. Two dedicated registers specify the
range and are set in domain-0, and every memory load or store
instruction is checked. The load and store instructions can access
the trusted memory region only in domain-0. In other ISA domains,
this memory region can only be accessed by PCU, and using load
or store instructions to access the trusted memory causes excep-
tions. The bound check overhead can be minimized by forcing the
trusted memory to be power-of-two sized and aligned. This design
of trusted memory can be integrated into different ISAs. For the
trusted memory, there also exist other design choices. For example,
it can be integrated into existing memory protection mechanisms
such as RISC-V Physical Memory Protection (PMP) [70].

5 SOFTWARE INTERFACE
5.1 ISA Extension
We introduce the ISA extensions of ISA-Grid in this section. New
registers and instructions are summarized in Table 2.

Domain Setup: There are four different registers that store the
address of the in-memory structures of ISA-Grid. The csr-cap, csr-
mask, inst-cap, and gate-addr store the base address of register
bitmaps, bit-mask arrays, instruction bitmaps, and SGT. A domain
register is used to store the current domain id. ISA-Grid can support
at most 264 domains in the current design. Only domain switching
instructions can change the domain register. The read permission
of the domain register can be configured by ISA-Grid, but normal
CSR write instructions cannot change it.

Domain Switching: ISA-Grid provides hccall as the basic gate
instruction and hccalls as the extended gate instruction. The hcrets
is the extended return instruction. The trusted stack is in the trusted
memory and is bounded by hcsb and hcsl register, which are the
base and limit of the stack. The stack pointer is hcsp and can be
changed by hccalls and hcrets. The hcsp values outside the range of
hcsb and hcsl cause exceptions.

Cache management: The pfch instruction is used for cache
prefetching. The prefetch instruction makes the PCU load bitmaps

and masks from memory to fill cache entries of requested CSRs in
the current domain. The pfch can fetch entries of all the CSRs or
certain CSRs depending on the operands. The pflh instruction is
used for flushing the cache. Different modules of domain privilege
cache (described in Section 4.3) are given different ids, and the pflh
can use the cache id to choose which cache to flush.

5.2 Programming Model
Domain&GateRegistration:The processor rebootswith domain-
0, and then ISA-Grid needs to be initialized first. The csr-cap, csr-
mask, and inst-cap should correctly point to structures in HPT. An
SGT should be created in trusted memory, and the base address
should be stored in gate-addr. The process of creating a new do-
main or gate involves adding entries in these in-memory structures.
HPT and SGT are stored in the trusted memory, so only domain-0
can configure new domains and gates. The registration of gates
and domains can be performed either during the system boot or at
runtime.

During system boot, domain-0’s software creates a special gate
for registering new domains and gates. Such a gate switches to
domain-0 and jumps to the entry of a domain-0 function which cre-
ates domains and gates. The gate is valid for all kernel components,
allowing them to invoke it for registration. Domain-0’s software
also creates a basic domain for kernel execution and a gate to enter
the basic domain. The gate is used for leaving domain-0 for the first
time when other domains are not yet created. After initialization is
finished and the CPU leaves domain-0, the kernel components can
invoke domain-0 to register domains and gates. How to pass the
required arguments for a domain/gate registration, including privi-
leges of a domain or the source/destination of a gate, depends on
the software design. Domain-0’s software can use these arguments
to configure the HPT and SGT and return the domain/gate id.

Although domains can be added at runtime, there is no con-
flict between domains. ISA-Grid does not force the privileges of
different domains to be mutually exclusive. However, developers
could implement a policy in domain-0 to reject creating domains
with overlapping privileges. Also, ISA-Grid works even if KASLR
is enabled. It is because the domains and gates are registered after
the kernel or kernel modules are loaded. After loading, the address
of the kernel code is already determined.

Cross-domain Call: A kernel component can register all its
entry functions’ information in domain-0. Then, a caller domain
can invoke domain-0’s software to register a new gate for invoking
another domain’s entry function. Inmore detail, the caller passes the
address of its gate instruction and the name of the target function
to domain-0. Then domain-0 sets up the new gate and allocates the
gate id which will be returned to the caller domain. The gate id is
further used by the caller domain to call the target domain. The
software in domain-0 should check whether a registration request
is valid or not. The developer can deploy different security policies
in domain-0 to perform such checks.

If only hccall is used for domain switching, the trusted stack is
not needed. A trusted stack should only be allocated if hccalls and
hcrets are used. The hcsp, hcsb, and hcsl should also be initialized
for the trusted stack. The hccalls and hcrets should always be used
in pairs in a call-and-ret manner. After domain changes, pdomain

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 2: New Instructions and Registers introduced by ISA-Grid.

Register Description (R/W in domain-0.) Instruction Description

domain/pdomain ID of current/previous domain. Read only. hccall #gateid Domain switching instruction. Check the instruction address. If valid, jump to the
domain-nr Number of valid domains. destination address and change domain using #gateid stored in a register.
csr-cap Address of CSR bitmaps. hccalls #gateid Extended domain switching instruction. Do the same as hccall. But push the
csr-bit-mask Address of CSR bit-mask arrays. return address and current domain on the trusted stack.
inst-cap Address of instruction bitmaps. hcrets Extended domain return instruction. Pop the return domain and return address
gate-addr Address of SGT. from the trusted stack. Jump to the return address and change domain.
gate-nr Number of valid gates.
hcsp/hcsb/hcsl Stack pointer/base/limit of trusted stack pfch #csr Prefetch privilege structures of #csr. #csr is stored in a register. If #csr is zero, fetch all.
tmemb/tmeml Base/limit address of trusted memory. pflh #bufid Flush the cache with #bufid. #bufid is stored in a register. If #bufid is zero, flush all.

contains the previous domain id. The register can be read by the
code in the current domain for developer-defined security check.
The software can maintain separate trusted stacks for different
threads. For context switching, the hcsp, hcsb and hcsl of a thread
must be saved in trusted memory and restored later. This save-and-
restore procedure can be done in domain-0.

6 USE CASES
ISA-Grid enhances security by providing instruction-level and bit-
level access controls for instructions and registers, thereby im-
proving the principle of least privilege. With ISA-Grid, developers
can selectively grant the necessary privileges for a given software
component based on the required ISA operations. This level of per-
mission granularity allows a software component to be configured
with privileges to execute a single privileged instruction or to access
a single bit of a privileged register.

6.1 Linux Kernel Decomposition
We decompose the Linux kernel in a newwaywith ISA-Grid on both
the RISC-V and x86 prototypes. The new decomposition scheme
is based on the ISA resources used by the code and can be further
combined with memory isolation to provide stronger isolation. The
isolation scheme can perform as an efficient mitigation for ISA-
abuse-based attacks.

We introduce the decomposed kernel with the x86 prototype
here. In the kernel, some registers are only used for system initial-
ization. And values of these registers are already frozen before the
initial process runs, such as IDTR, GDTR, most bits in CR0/CR4, and
most of the MSRs. Thus, we deprive the kernel of the ability to
write IDTR, GDTR, and most of the bits in CR0/CR4 after the kernel
finishes the initialization. We analyze the MSRs supported by the
Gem5 simulator in kernel code and put each of such functions that
modify any of the MSRs in a different ISA domain with only the
privilege of modifying the MSRs involved in the function. Also,
each function that modifies any of LDTR, CR0.TS, CR0.NE, CR3 or
CR4.SMAP is put in a different ISA domain that only allows the
modification of registers or bits involved in the function. The other
code runs in a domain that cannot modify control registers and
MSRs. In our implementation, the domains are manually decided,
but it is feasible to add specialized plugins to the compiler to facili-
tate domain division. We assume that the attacker is a user seeking
to mount some ISA-abuse-based attacks (e.g., attacks in Table 1).
Thus the attacker aims to exploit kernel vulnerabilities to access
certain registers or execute certain instructions in order to launch

attacks. With ISA-Grid, the privilege of writing CSRs is only given
to specific function. Therefore, in other ISA domains, the kernel
cannot execute the disabled instructions even if such instructions
appear at the instruction boundaries, mixed read-only data in the
text segment, or injected code. Thus a vulnerability in one com-
ponent with no privilege of modifying a register never gives the
attacker chances to mount ISA-abuse-based attacks related to that
register. And the ISA-abuse-based attacks can be mitigated.

6.2 Enhancing Nested Kernel
To show how ISA-Grid can be integrated into memory protection
mechanisms to enhance system security, we combine ISA-Grid
with Nested Kernel [21]. With ISA-Grid, the memory protection
mechanism is more secure and practical to use.

The malicious access of the CR0, CR3, CR4, IDTR, or MSR EFER
can break the memory protection properties of Nested Kernel. As
mentioned in Section 2.3, Nested Kernel relies on the developer
to manually change the kernel code to remove the unintended
sensitive instructions from compiled binaries, which is error-prone
and impractical. Nested Kernel rejects kernel modules that contain
unintended sensitive instructions, including those appearing at the
instruction boundaries, even if the module is correctly implemented.
With ISA-Grid, the hardware enforces that the unintended sensitive
instructions are never executed, and therefore the module can be
loaded. We use ISA-Grid to construct a nested monitor with the
same ability as Nested Kernel. Various security policies such as
write-once data can be applied [21]. The nested monitor runs in
an ISA domain with the privilege of writing the MSRs and control
registers, while the outer kernel is in a domain that cannot modify
these registers except for CR4.SMAP. Except for the switching of
ISA domains, the entry and exit gates of the monitor are the same as
Nested Kernel. The entry gate uses hccall to switch to the monitor’s
ISA domain. It then sets the CR0.WP, does other checks and jumps
to the monitor code. The exit gate clears the CR0.WP and switches
to the outer kernel’s ISA domain and code.

6.3 Emerging Hardware Feature
ISA-Grid can enhance memory isolation provided by the new hard-
ware feature, Intel Protection Key for Supervisor (PKS) [35]. Just like
MPK-based works [29, 62], the malicious execution of the wrpkrs
instruction can break the memory isolation provided by PKS. How-
ever, as mentioned in Section 2.3, existing software approaches are
vulnerable. ISA-Grid provides a more reliable hardware approach
to disable wrpkru in untrusted code and introduces very limited

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

overhead. With ISA-Grid, the trampoline function that modifies
the PKRS register can run in an ISA domain where wrpkrs can be
executed, and the other code runs in an ISA domain where wrpkrs
is disabled. Then the wrpkrs can never be executed outside the
trampoline function.

6.4 Other Use Cases
The fine-grained ISA access control of ISA-Grid can also be used
in the sandbox or virtualization systems. PrivBox [38] proposes
an in-kernel sandbox to run application code. The sandbox needs
to prevent the inside code from executing privileged instructions.
Colony [76] constructs software TEEs (trusted execution environ-
ments) with a trusted monitor and has to ensure that there are no
critical instructions outside the trusted monitor. With ISA-Grid, the
execution of privileged instruction can be eliminated more reliably
in these two works. Dune [12] allows Dune Processes leveraging lib-
Dune to run in VMX non-root ring 0 to access privileged resources
for security and performance. The Dune process can access most
of the privileged ISA resources, which is dangerous when the code
is vulnerable. With ISA-Grid, the Dune Processes and libDune can
be divided into ISA domains, reducing the chance of exploitation.

7 EVALUATION
The evaluation tries to answer the following questions: 1) How ef-
fective is the domain switching of ISA-Grid? 2) What is the runtime
overhead of ISA-Grid? 3) What is the hardware resource cost of
ISA-Grid?

Configuration: In the prototype, the HPT cache is implemented
as three separate caches. Thus, ISA-Grid introduces three HPT
caches and one SGT cache, and each of them is implemented as
a fully associative LRU cache. The evaluation tests ISA-Grid with
three configurations. The 16E. and 8E. mean each cache has 16 or
8 entries. The 8E.N uses eight entries for each HPT cache but no
SGT cache.

RISC-V Prototype:We implement the RISC-V prototype based
on Rocket Core [9], which is a 5-stage in-order scalar processor. The
Privilege Check Unit (PCU) is implemented as a unit of the Rocket
Core. The SSTATUS register needs bitwise control. Other supervisor
and user CSRs only require the check with register bitmaps. The
prototype implementation only supports 212 domains to reduce
the cache entry size. The modified RISC-V core runs on the Xilinx
VC707 FPGA board at 100MHZ with 1GB DDR3 memory.

x86 Prototype: The x86 prototype is implemented based on
the Gem5 [13] cycle-accurate simulator, and the O3 core model
is used. In this prototype, the CR0 and CR4 need bitwise control.
Other control registers and MSRs only need read and write control.
Some x86 instructions can be combined with different prefixes. The
ISA-Grid ignores the instruction prefix and use the opcode to decide
the instruction type. Table 3 shows the detailed configuration of
the simulated x86 processor.

Software Setup: We use Linux 5.15 for the RISC-V prototype
and Linux 5.4 for the x86 prototype. LMbench [46] is used to mea-
sure low-level OS operations. Also, some real-world applications
are used. SQLite3 [3] is a widely-used database engine. We use the
speed benchmark tool of SQLite3.Mbedtls [8] is a C library that
implements cryptographic primitives and the SSL/TLS protocols.

Table 3: Simulation Parameters.

HW Parameter

Pipeline 8 fetch/decode/issue/commit, 32/32 SQ/LQ entries,
192 ROB entries, Tournament branch predictor

L1 I-Cache 32 KB, 64 B line, 4-way, 2-cycle latency, 4 MSHRs
L1 D-Cache 32 KB, 64 B line, 4-way, 2-cycle latency, 4 MSHRs
L2 Cache 256 KB, 64 B line, 16-way, 20-cycle latency, 20 MSHRs
L3 Cache 2 MB, 64 B line, 16-way, 32-cycle latency, 512 MSHRs
Memory Latency 30ns after cache miss

Table 4: Domain switching latency. (* means ISA-Grid)

CPU Instruction Cycles Explanation
RISC-V Rocket [9] load/store >120 Cache miss latency.
* RISC-V Rocket hccall 5 Gate instruction.
* RISC-V Rocket hccalls/hcrets 12 / 12 Extended gate/return inst.
x86 Gem5 load/store >200 Cache miss latency.
* x86 Gem5 hccall 34 Gate instruction.
* x86 Gem5 hccalls/hcrets 52 / 44 Extended gate/return inst.

CPU Scheme Cycles Explanation
CHERI MIPS CHERI [71] >400 Change capability for memory.
RISC-V Ariane [1] Donky [59] 2136 Change memory permission.
RISC-V Rocket System call 532 Empty call w/ PTI.
RISC-V Rocket Supervisor call 434 Empty supervisor call.
* RISC-V Rocket X-domain call 13 / 32 Empty call (hccall / hccalls).
Intel i7-4770 x86 Rings [39] >1300 Call to unused privilege levels.
x86 Gem5 System call 1050 Empty call w/ PTI.
* x86 Gem5 X-domain call 70 / 87 Empty call (hccall / hccalls).

We use the benchmark tool provided by Mbedtls. For file com-
pression, we use the gzip command to measure the extraction and
compression of the kernel image of Linux 5.15. Also, we use the
tar command to measure the extraction and compression of the
Mbedtls-3.1.0 source code.

7.1 Microbenchmarks
We evaluate the latency of ISA-Grid’s domain switching instruc-
tions (Table 4). We compare ISA-Grid’s domain switching with
the empty system calls, empty supervisor calls (RISC-V only), and
other isolation mechanisms’ domain switching operations. The
X-domain call means an empty function call with ISA domain
switching. We evaluate the latency with two hccall and with hccalls
+ hcrets. The empty X-domain call on x86 is faster than the sum
of hccalls and hcrets because of the store-to-load forwarding in the
load-store queue. We evaluate the cache hit rate on the 8E. x86 pro-
totype with the decomposed Linux kernel described in Section 6.1.
We run the three applications with the decomposed kernel and
record the cache hit rate. After the applications run, the cache hit
rates of all the SGT caches and HPT cache reach 99.9%. It is because
some functions in the kernel are very hot when user applications
are running. ISA-Grid can be used for different purposes, and the
hit rate might differ depending on the workload.

7.2 Use Case Evaluation & Analysis
Case 1: Linux Decomposition. We implement the Linux decom-
position use case (Section 6.1) with both the RISC-V and x86 kernels.
We run LMbench [46] on the RISC-V kernel and three real-world

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

80%

100%

120%

140%

Pip
e

AF-U
NIX

File
-rd

Mm
ap-rd

Bcopy(h
and)

Bcopy(li
bc)

Mem
-rd

Mem
-w

t

(a) LMbench - Local Communication latencies

N
o

rm
.

E
x
e

c
.

T
im

e

16E 8E 8E.N

80%

100%

120%

140%

0K-C
rt

File
-D

el

10K-C
rt-

Del

Mm
ap-L

ty

Pro
t-F

lt

Page-F
lt

(b) LMbench - File and VM system latencies

16E 8E 8E.N

80%

100%

120%

140%

Null-
IO

Null-
call

Sta
t

Open-c
lo

se

Slct-t
cp

Fork
-p

ro
c

(c) LMbench - Processor, Processes

16E 8E 8E.N

Figure 5: Normalized execution time for LMbench benchmarks with case 1: Linux decomposition on RISC-V.

80%

100%

120%

140%

SHA-2
56

SHA-5
12

DES
ChaCha20

AES-1
28

AES-1
92

AES-2
56

Poly1305

GeoAvg

(a) Mbedtls Encryption

N
o

rm
.

E
x
e

c
.

T
im

e

16E 8E 8E.N

80%

100%

120%

140%

gzip
-d

gzip
-c

ta
r-x

f

ta
r-c

f

GeoAvg

(b) File Compression

16E 8E 8E.N

80%

100%

120%

140%

In
s-id

x

In
s-o

rd

In
s-n

ord

In
s-3

id
x

Sel-n
um

Sel-l
ike

Sel-o
rd

Sel-i
dx

Sel-p
k

Sel-t
xt

Cre
-id

x

Del-t
ab

GeoAvg

(c) SQLite Benchmark

16E 8E 8E.N

Figure 6: Normalized execution time for different applications with case 1: Linux decomposition on RISC-V.

applications on both kernels. The results of LMbench and appli-
cations are shown in Figure 5, 6 and 7. We run these benchmarks
multiple times and calculate the average overhead to reduce the
error of randomness. The results show that decomposing Linux
with ISA-Grid only causes limited overhead (less than 1% for real-
world applications). The SQLite benchmark with FPGA has more
noise with even an unmodified kernel and hardware because of the
latency and throughput variation of the external storage card.

Case 2: Enhancing Nested Kernel.We implement the Nested
Kernel use case (Section 6.2) on x86 with 8E.. We use three appli-
cations to evaluate the performance of the kernel with a nested
monitor. The performance is compared with the unmodified Linux
kernel. Compared to the original implementation of Nested Ker-
nel [21], our implementation does not need to scan the binary or
unmap the code that modifies the control registers and MSRs. We
evaluate two different implementations. Nest.Mon. uses a monitor
thatmediates all thememorymapping changes, andNest.Mon.Log
uses a monitor that mediates all the changes and logs recent modi-
fications of page tables with a circular buffer. The results are shown
in Figure 8. The overhead of different applications is lower than 1%.

Case 3: Emerging Hardware Feature. The performance of
Intel PKS [35] can be estimated with Intel MPK. We add the ISA
domain switching overhead to a trampoline function that changes
memory permission with wrpkru and calls the target function. We
estimate the overhead of domain switching with both PKS and ISA-
Grid using metrics from Hodor [29]. The wrpkru takes 26 cycles,
and a trampoline function with MPK domain switching takes 105
cycles. Switching to an ISA domain where wrpkrs is enabled and
back with two hccall needs 70 cycles. If the wrpkru and wrpkrs
instructions have the same latency, domain switching with both
PKS and ISA-Grid takes 105 + 70 = 175 cycles. It is still faster than
other methods of changing memory permission (938/577 cycles for
changing page table with/without page table isolation, 268 cycles
for changing extended page table using vmfunc [29]).

Case 4: Multiple Service Protection. We use four simple ser-
vices, implemented as different kernel modules, to evaluate the
performance overhead of protecting multiple services on x86 Linux.
Each of them is put in a different ISA domain to access different priv-
ileged ISA resources at the same time. These services use CPUID

Table 5: Latency for different services (in cycles).

Inst./Reg. Purpose ISA-Grid Native Overhead

Service-1 CPUID Get CPU information. 2081 1997 4.21%
Service-2 MTRR Get memory type. 2038 1970 3.45%
Service-3 PMC Get number of interrupts. 1803 1721 4.76%
Service-4 PMC Get number of iTLB miss. 1776 1698 4.60%

Table 6: Hardware cost of ISA-Grid

Rocket Core 16E. 8E. 8E.N

LUT as Logic 51137 53421(4.47%) 52685(3.03%) 52267(2.21%)
LUT as Memory 6420 6420(0%) 6420(0%) 6420(0%)
Slice Registers 37576 40280(7.20%) 39208(4.34%) 38683(2.95%)

RAMB36 10 10(0%) 10(0%) 10(0%)
RAMB18 10 10(0%) 10(0%) 10(0%)
DSP48E1 15 15(0%) 15(0%) 15(0%)

instruction, memory type range registers (MTRRs), or performance-
monitoring counters (PMCs). A user application invokes these ser-
vices with ioctl and evaluates the latency. The baseline is directly
running services with unmodified Linux. As shown in Table 5, ISA-
Grid only causes less than 5% overhead. A real-world service often
contains more complex logic, and the overhead of ISA-Grid should
be much smaller.

7.3 Hardware Resource Cost
We use Vivado [4] for synthesis and hardware implementation for
FPGA and use the report of Vivado to analyze resource utiliza-
tion. ISA-Grid uses more LUT and Slice Registers than the original
Rocket Core, as shown in Table 6. The hardware cost is mainly from
different kinds of caches. If ISA-Grid uses 8E.N, the hardware cost
is limited (2.21% of LUT, 2.95% of Slice Register, and 0.0% of RAM
and DSP). The utilization can be further optimized by adjusting
cache size and using Verilog instead of Chisel.

8 DISCUSSION
Security Analysis: ISA-Grid can control the privileges of ISA re-
sources in a fine-grained manner and give only a necessary subset
of privileges to a software component. Leveraging such fine-grained

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

80%

100%

120%

140%

SHA-2
56

SHA-5
12

DES
ChaCha20

AES-1
28

AES-1
92

AES-2
56

Poly1305

GeoAvg

(a) Mbedtls Encryption

N
o

rm
.

E
x
e

c
.

T
im

e

16E 8E 8E.N

80%

100%

120%

140%

gzip
-d

gzip
-c

ta
r-x

f

ta
r-c

f

GeoAvg

(b) File Compression

16E 8E 8E.N

80%

100%

120%

140%

In
s-id

x

In
s-o

rd

In
s-n

ord

In
s-3

id
x

Sel-n
um

Sel-l
ike

Sel-o
rd

Sel-i
dx

Sel-p
k

Sel-t
xt

Cre
-id

x

Del-t
ab

GeoAvg

(c) SQLite Benchmark

16E 8E 8E.N

Figure 7: Normalized execution time for different applications with case 1: Linux decomposition on x86.

80%

100%

120%

140%

SHA-2
56

SHA-5
12

DES
ChaCha20

AES-1
28

AES-1
92

AES-2
56

Poly1305

GeoAvg

(a) Mbedtls Encryption

N
o

rm
.

E
x
e

c
.

T
im

e

Nest.Mon. Nest.Mon.Log

80%

100%

120%

140%

gzip
-d

gzip
-c

ta
r-x

f

ta
r-c

f

GeoAvg

(b) File Compression

Nest.Mon. Nest.Mon.Log

80%

100%

120%

140%

In
s-id

x

In
s-o

rd

In
s-n

ord

In
s-3

id
x

Sel-n
um

Sel-l
ike

Sel-o
rd

Sel-i
dx

Sel-p
k

Sel-t
xt

Cre
-id

x

Del-t
ab

GeoAvg

(c) SQLite Benchmark

Nest.Mon. Nest.Mon.Log

Figure 8: Normalized execution time for different applications with case 2: Nested Kernel on x86.

access control, even if a vulnerability is exploited, only the privi-
leges assigned to the compromised component can be exposed to
the attacker. All the ISA-abuse-based attacks listed in Table 1 can
be mitigated by ISA-Grid like cases in Section 6. For the Controlled-
Channel Attacks [77], the access privilege of IDTR can be limited
to the component that initializes the interrupt descriptor table
(IDT) by ISA-Grid. Thus the exploitation in another component
cannot modify IDTR. And the potential attack is prevented. For
the Stealthy Page Table-Based Attacks [64], the CR0.CD is not al-
lowed to be changed during normal kernel execution. Thus the
vulnerabilities cannot cause the modification of CR0.CD. And this
attack is mitigated. For the TRESOR-HUNT/FORESHADOW At-
tacks [15, 63] or NAILGUN Attacks [51], the x86 debug registers
or ARM PMU registers can only be made available for the trusted
kernel components and only exposed interfaces to trusted services.
For the Super Root Attacks [79], the access of related registered
can be disabled in unrelated components. For the Voltage-based
Attacks [36, 48, 54], the MSR 0x150 is not allowed to be changed
outside the initialization code of the kernel. There is no chance
for the attackers to change MSR 0x150 after initialization. Thus
the exploitation in the kernel or the untrusted applications cannot
mount such attacks. For SgxPectre Attacks [16], some BTB features
can be set in MSR 0x48 and MSR 0x49 during initialization, and
then the modification of these registers can be disabled by ISA-Grid.
Then such attacks are mitigated. And for other ISA-abuse-based
attacks mentioned in related works [18, 21, 29, 62], they can also be
mitigated by limiting the use of some registers and instructions to
specified software components such as the cases in Section 6.2 and
6.3. Thus, unintended instructions, such as instructions appearing
at the instruction boundaries or constructed at runtime, can never
be executed. For the ISA-abuse-based attacks surveyed in this
paper, ISA-Grid can mitigate 100% of these attacks.

On the other side, the runtime access control provided by ISA-
Grid can achieve stronger security than statically checking whether
a code component contains illegal instructions. The static method
can be bypassed by dynamic code injecting/constructing attacks,
e.g., ROP attacks. It is possible to statically discover code gadgets
of illegal instructions, but binary rewriting to remove the illegal in-
struction is inapplicable in the general case because of undecidable
instruction alignment [55, 69]. And existing works do not prove the

correctness and completeness of such static scanning and rewrit-
ing methods targeting specified instructions. ISA-Grid can defend
against such dynamic code injecting/constructing attacks.

Development Complexity: First, the configuration of ISA do-
mains is simple. An ISA domain has, by default, no privilege to
access privileged instructions/registers, and the code component
in the domain needs to acquire the necessary privileges explic-
itly. And most components do not need additional privileges. Sec-
ond, the bitmaps/masks-based privilege configuration is not error-
prone, which has been used by existing hardware features (e.g.,
Intel VT). Most developers just need to concern about interaction
with domain-0 to ask for privileges and information about cross-
domain calls. Finally, developers may need to register domains and
add cross-domain calls in their code. This kind of modification is
common for existing isolation mechanisms [29, 59, 65, 72], and the
complexity is acceptable. Software engineering methods or com-
piler technologies can be used to simplify development, such as
providing SDKs or automation tools. These are works from the
perspective of software, which we leave for future work.

Cache Optimization: On the security side, the cache mecha-
nism may be used to mount side-channel attacks (e.g., PRIME +
PROBE) to infer what ISA resources are being used. Such infor-
mation may be sensitive in some scenarios. A domain can make a
performance-security tradeoff by flushing the cache before the do-
main switching to mitigate such attacks. Meanwhile, ISA-Grid uses
fully associative caches, which makes it harder to perform cache-
based side-channel attacks. More importantly, knowing which in-
structions or registers are used does not break the security guaran-
tee of ISA-Grid. The hardware still enforces that a domain cannot
access the ISA resources without corresponding permissions.

On the performance side, many existing works can be used to op-
timize the cache performance of ISA-Grid. For example, the method
in Draco [60] can be used to reduce the privilege check latency. ISA-
Grid can add a cache to store all legal instructions, including the
instruction bytecode and register values. If such a cache is hit, the
execution is legal, and ISA-Grid does not need to run the privilege
check logic.

Possible Simplification: ISA-Grid gives the system the strong
capability to control ISA resources in fine granularity. In cases

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

where some instructions/registers are always used together, ISA-
Grid with coarser granularity may have worked. For example, RISC-
V architecture has many extensions, and customized extensions
might provide new instructions/registers that are always used to-
gether in a small piece of code. It is possible to simplify the imple-
mentation of ISA-Grid by using one bit to control the privilege for
a small group of instructions/registers introduced by an extension.

Extending to User Space: Although ISA-Grid focuses on pro-
tecting kernel-level software, it can be extended to isolate user-level
software. The software in domain-0 needs to: 1) maintain a trusted
stack for each user thread and kernel thread, and switch the stack
for user-kernel switching and thread switching; and 2) maintain
multiple SGTs for different processes and the kernel, and switch
among them. While abuse of kernel-level ISA resources can have
serious consequences, user-level ISA resources are generally less
critical. For this reason, ISA-Grid currently prioritizes the protection
of kernel-level software.

9 RELATEDWORK
There has been a long line of research on building isolation mech-
anisms based on various hardware or software platforms. Most
of them focus on memory isolation, while ISA-Grid targets ISA
resources.

Isolation Using Page Table: Existing works leverage page ta-
bles to isolate software components [14, 30, 33, 43, 67, 76]. LWC [43]
designs a new OS abstraction for isolation, and the memory isola-
tion is enforced by using different page tables. Wedge [14] could
limit memory access and system calls for a thread. SMV [30] could
construct secure memory views for different threads. Arbiter [67]
designs new memory privilege control interfaces based on page
tables for multi-thread applications. Colony [76] constructs iso-
lated execution environments in privileged software by controlling
page tables. TZ-Container [33] builds a secure monitor in Trust-
Zone secure world and leverages the page table to isolate container
processes.

Isolation Using Virtualization: Virtualization extensions are
also used for isolation [32, 41, 44, 47, 49, 53, 68, 78]. CloudVisor [78]
uses nested virtualization to isolate different VMs. vTZ [32] lever-
ages ARM TrustZone and virtualization to isolate multiple secure
VMs. LXDs [49] uses virtualization to construct isolated domains
in kernel space. SeCage [44] uses Intel VT-x to automatically de-
compose an application and protect the secret data. xMP [53] lever-
ages virtualization extensions to isolate sensitive data for virtual
machines. Skybridge [47] uses VMFUNC to speed up the domain
switching between isolated environments.

Isolation Using Intel MPK: Recently, there have been many
works leveraging Intel MPK to isolate memory resources [25–29,
37, 40, 52, 62]. Libmpk [52] provides virtualization for Intel MPK in
order to support more keys. Enclosure [25] and Hodor [29] can use
Intel MPK as a backend isolation mechanism. Enclosure restricts
untrusted libraries by language construct. Hodor is designed for
data plane libraries requiring fast transition. ERIM [62] uses Intel
MPK to isolate the trusted and untrusted parts of an application.
UnderBridge [27] uses MPK to isolate system servers of micro-
kernels and speed up the IPC. FlexOS [40] allows the developer
to specialize the isolation strategy at compilation or deployment

time. It supports Intel MPK, EPT, and other isolation mechanisms.
PKRU-Safe [37] can provide isolation for applications mixed with
both safe language and unsafe language and reduce the impact of
memory-corruption vulnerabilities.

Hardware Extensions for Isolation: Researchers also intro-
duce hardware extensions to provide high-performance isolation [22–
24, 59, 65, 73–75]. Section 2.3 has introduced Mondrix [73] and
CODOMs [65]. IMIX [24] extends the x86 ISA with dedicated in-
structions to access protected memory regions and can protect data
for applications. CHERI [74] and its following works extend the
MIPS and RISC-V architectures to support software compartmen-
talization and enforce memory safety. Donky [59] uses a software-
hardware co-design for intra-process memory isolation on x86
and RISC-V platforms. XPC [22] introduces a hardware exten-
sion to speed up the switching between isolated environments.
PENGLAI [23] provides a scalable memory protection for RISC-V
CPU.

Call Gate (Intel): A Call Gate is a mechanism to change privi-
lege levels and runs a predefined function using IA-32 mode CAL-
L/JMP FAR instruction in Intel processors. It requires setting up
call gate descriptors in the GDT or LDT. When such an instruction
is executed, the CPU switches to a new privilege level and address
according to gate descriptors. For both Call Gate and ISA-Grid, the
destination level/domain and address are specified in advance. But
ISA-Grid’s switching mechanism validates the address of the gate
instruction and uses a cache to speed up gate looking up.

Microkernel: Microkernel uses process-level isolation to de-
privilege some code but faces the tradeoff of security and perfor-
mance. Fine-grained isolation brings more IPCs (inter-process com-
munications) and downgrades the system performance. Modern
microkernels need hundreds of cycles even for a one-way fast path
IPC [2]. Furthermore, a single exploitation in the kernel can still
make all the privileged ISA resources available.

10 CONCLUSION
In this work, we propose ISA-Grid, a new architectural extension to
provide fine-grained privilege control for instructions and registers,
which we refer to as ISA resources. ISA-Grid allows the software
to create multiple ISA domains and give different ISA access privi-
leges to each ISA domain. Such a method could control instructions
individually and control registers at bit-level. With ISA-Grid, de-
velopers can decompose software into different compartments and
selectively grant them privileges to access ISA resources. We use
several use cases to show the capability of ISA-Grid. We have imple-
mented the prototypes of ISA-Grid in a RISC-V Rocket Core on an
FPGA board and an x86 core on the Gem5 simulator. The evaluation
shows that ISA-Grid has negligible runtime overhead (less than
1% for real-world applications) and acceptable hardware cost.

11 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work is supported in part by China National Natural Science
Foundation (No.62202289, 62132014, 61925206), High-Tech Support
Program from Shanghai Committee of Science and Technology (No.
22511101102), and a research grant from Huawei Technologies.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang

REFERENCES
[1] 2019. Ariane RISC-V CPU. https://github.com/pulp-platform/ariane.
[2] 2022. seL4 Benchmark Performance. https://sel4.systems/About/Performance/

home.pml
[3] 2022. SQLite. https://www.sqlite.org/. https://www.sqlite.org/
[4] 2022. Vivado Design Suite. https://www.xilinx.com/products/design-

tools/vivado.html. https://www.xilinx.com/products/design-tools/vivado.html
[5] Referenced Feb 2022. Arm Architecture Reference Manual for A-profile architec-

ture. https://developer.arm.com/documentation/ddi0487/latest.
[6] Referenced Feb 2022. Arm Cortex-A53 MPCore Processor Technical Reference

Manual. https://developer.arm.com/documentation/ddi0500/j/.
[7] Referenced Feb 2022. Armv6-M Architecture Reference Manual.

https://developer.arm.com/documentation/ddi0419/e/.
[8] ARM. 2022. Mbed TLS. https://tls.mbed.org/. https://tls.mbed.org/
[9] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[10] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 90–102.

[11] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 1–26.

[12] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe user-level access to privileged CPU features.
In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). 335–348.

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[14] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 08). USENIX
Association, San Francisco, CA. https://www.usenix.org/conference/nsdi-08/
wedge-splitting-applications-reduced-privilege-compartments

[15] Erik-Oliver Blass and William Robertson. 2012. TRESOR-HUNT: attacking CPU-
bound encryption. In Proceedings of the 28th Annual Computer Security Applica-
tions Conference. 71–78.

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Spec-
ulative Execution. In 2019 IEEE European Symposium on Security and Privacy.
142–157. https://doi.org/10.1109/EuroSP.2019.00020

[17] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-grained execution units with private memory. In 2016 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 56–71.

[18] R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In 29th USENIX
Security Symposium (USENIX Security 20). 1409–1426.

[19] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[20] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual Ghost:
Protecting Applications from Hostile Operating Systems. In Proceedings of the
19th International Conference on Architectural Support for Programming Languages
and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association
for Computing Machinery, New York, NY, USA, 81–96. https://doi.org/10.1145/
2541940.2541986

[21] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and
Vikram Adve. 2015. Nested kernel: An operating system architecture for intra-
kernel privilege separation. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
191–206.

[22] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and Haibo Chen. 2019. XPC:
Architectural support for secure and efficient cross process call. In Proceedings of
the 46th International Symposium on Computer Architecture. 671–684.

[23] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave.. In OSDI. 275–294.

[24] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. 2018. IMIX:In-Process Memory Isolation EXtension. In 27th USENIX

Security Symposium (USENIX Security 18). 83–97.
[25] Adrien Ghosn, Marios Kogias, Mathias Payer, James R Larus, and Edouard

Bugnion. 2021. Enclosure: language-based restriction of untrusted libraries.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 255–267.

[26] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. {EPK}: Scal-
able and Efficient Memory Protection Keys. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). 609–624.

[27] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen.
2020. Harmonizing performance and isolation in microkernels with efficient
intra-kernel isolation and communication. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 401–417.

[28] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. A
{Hardware-Software} Co-design for Efficient {Intra-Enclave} Isolation. In 31st
USENIX Security Symposium (USENIX Security 22). 3129–3145.

[29] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 489–504.

[30] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.
2016. Enforcing least privilege memory views for multithreaded applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 393–405.

[31] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. 2018. EPTI:
Efficient Defence againstMeltdownAttack for Unpatched {VMs}. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). 255–266.

[32] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. vTZ: Virtualizing ARM TrustZone. In 26th USENIX Security Symposium
(USENIX Security 17). 541–556.

[33] Zhichao Hua, Yang Yu, Jinyu Gu, Yubin Xia, Haibo Chen, and Binyu Zang. 2021.
TZ-container: Protecting container from untrusted OS with ARM TrustZone.
Science China Information Sciences 64, 9 (2021), 192101.

[34] Tyler Hunt, Zhipeng Jia, Vance Miller, Hunt Tyler, Jia Zhipeng, Miller Vance,
Christopher J. Rossbach, and Emmett Witchel Witchel. 2019. Isolation and Be-
yond: Challenges for System Security. In The Workshop on Hot Topics in Operating
Systems (HotOS 19). ACM.

[35] Intel. 2022. Intel software developer’s manual.
https://www.intel.com/content/www/us/en/develop/download/intel-64-
and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-
programming-guide.html.

[36] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza
Sadeghi. 2020. V0LTpwn: Attacking x86 Processor Integrity from Software. In
29th USENIX Security Symposium (USENIX Security 20). 1445–1461.

[37] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
Proceedings of the Seventeenth European Conference on Computer Systems. 132–
148.

[38] Dmitry Kuznetsov andAdamMorrison. 2022. Privbox: Faster system calls through
sandboxed privileged execution. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22).

[39] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 1441–1454. https://doi.org/10.1145/3243734.3243748

[40] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian Teodorescu,
Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. 2022. FlexOS:
towards flexible OS isolation. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
467–482.

[41] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and Haibing Guan.
2021. Twinvisor: Hardware-isolated confidential virtual machines for arm. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
638–654.

[42] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: Automatic application partitioning for intel SGX.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17). 285–298.

[43] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Ab-
straction for Safety and Performance. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 49–64.

[44] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. 1607–1619.

https://sel4.systems/About/Performance/home.pml
https://sel4.systems/About/Performance/home.pml
https://www.sqlite.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://tls.mbed.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1145/2541940.2541986
https://doi.org/10.1145/2541940.2541986
https://doi.org/10.1145/3243734.3243748

ISA-Grid: Architecture of Fine-grained Privilege Control for Instructions and Registers ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[45] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-
principal modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. 115–128.

[46] LarryWMcVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Performance
Analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279–294.

[47] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. Skybridge:
Fast and secure inter-process communication for microkernels. In Proceedings of
the Fourteenth EuroSys Conference 2019. 1–15.

[48] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466–1482.

[49] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall,
Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen,
Moinak Bhattacharyya, et al. 2019. LXDs: Towards Isolation of Kernel Sub-
systems. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 269–284.

[50] Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An operating system with
kernel virtualization. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. 116–132.

[51] Zhenyu Ning and Fengwei Zhang. 2019. Understanding the security of arm
debugging features. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
602–619.

[52] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software abstraction for intel memory protection keys (intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 241–254.

[53] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,
and Michalis Polychronakis. 2020. xmp: Selective memory protection for kernel
and user space. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
563–577.

[54] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey:
Breaking SGX by software-controlled voltage-induced hardware faults. In 2019
Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 1–6.

[55] G. Ramalingam. 1994. The Undecidability of Aliasing. ACM Trans. Program. Lang.
Syst. 16, 5 (sep 1994), 1467–1471. https://doi.org/10.1145/186025.186041

[56] Philip Reames. 2021. Unintended Instructions on x86.
https://github.com/preames/publicnotes/blob/master/unintended-
instructions.rst.

[57] Vasily A Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS: a library
OS with software componentisation for practical isolation. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 546–558.

[58] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium.

[59] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, StefanMangard, and Daniel Gruss. 2020. Donky: Domain Keys–Efficient
In-Process Isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20). 1677–1694.

[60] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and Josep Tor-
rellas. 2020. Draco: Architectural and Operating System Support for System Call
Security. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 42–57. https://doi.org/10.1109/MICRO50266.2020.00017

[61] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-
unikernel isolation with intel memory protection keys. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. 143–156.

[62] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). 1221–1238.

[63] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution. In Proceedings fo the 27th USENIX Security Symposium.
USENIX Association.

[64] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In 26th USENIX Security Symposium (USENIX
Security 17). 1041–1056.

[65] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOMs: Protecting software with code-centric memory domains. ACM
SIGARCH Computer Architecture News 42, 3 (2014), 469–480.

[66] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,
266–282. https://doi.org/10.1145/3492321.3519560

[67] Jun Wang, Xi Xiong, and Peng Liu. 2015. Between mutual trust and mutual
distrust: Practical fine-grained privilege separation in multithreaded applications.
In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 361–373.

[68] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. Seimi: Efficient and
secure smap-enabled intra-process memory isolation. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 592–607.

[69] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. 2011. Differentiating code from data in x86 binaries. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 522–536.

[70] Asanovic Waterman and SiFive Inc Hauser. 2021. The RISC-V instruction set
manual volume II: Privileged architecture Document Version 20211203. CS
Division, EECS Department, University of California, Berkeley (2021).

[71] Robert N.M. Watson, Robert M. Norton, Jonathan Woodruff, Simon W. Moore,
Peter G. Neumann, Jonathan Anderson, David Chisnall, Brooks Davis, Ben Laurie,
Michael Roe, Nirav H. Dave, Khilan Gudka, Alexandre Joannou, A. Theodore
Markettos, Ed Maste, Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and
Munraj Vadera. 2016. Fast Protection-Domain Crossing in the CHERI Capability-
System Architecture. IEEE Micro 36, 5 (2016), 38–49. https://doi.org/10.1109/MM.
2016.84

[72] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. 2015. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 20–37.

[73] Emmett Witchel, Junghwan Rhee, and Krste Asanović. 2005. Mondrix: Memory
isolation for Linux using Mondriaan memory protection. In Proceedings of the
twentieth ACM symposium on Operating systems principles. 31–44.

[74] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

[75] Yubin Xia, Dong Du, Zhichao Hua, Binyu Zang, Haibo Chen, and Haibing Guan.
2022. Boosting Inter-process Communication with Architectural Support. ACM
Transactions on Computer Systems (TOCS) 39, 1-4 (2022), 1–35.

[76] Yubin Xia, Zhichao Hua, Yang Yu, Jinyu Gu, Haibo Chen, Binyu Zang, and
Haibing Guan. 2021. Colony: A privileged trusted execution environment with
extensibility. IEEE Trans. Comput. 71, 2 (2021), 479–492.

[77] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[78] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloudvisor:
retrofitting protection of virtual machines in multi-tenant cloud with nested
virtualization. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 203–216.

[79] Zhangkai Zhang, Yueqiang Cheng, and Zhoujun Li. 2020. Super Root: A New
Stealthy Rooting Technique on ARM Devices. In International Conference on
Applied Cryptography and Network Security. Springer, 344–363.

https://doi.org/10.1145/186025.186041
https://doi.org/10.1109/MICRO50266.2020.00017
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1109/MM.2016.84
https://doi.org/10.1109/MM.2016.84

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Complex ISA Resources
	2.2 The Need for ISA Resources Access Control
	2.3 Limitations of Current ISA Access Control

	3 System Overview
	3.1 System Goals
	3.2 Design Challenges
	3.3 Overview of ISA-Grid

	4 System Design
	4.1 Hybrid-grained Privilege Check
	4.2 Unforgeable Domain Switching
	4.3 Domain Privilege Cache
	4.4 Special Domain for Initialization
	4.5 Trusted Memory

	5 Software Interface
	5.1 ISA Extension
	5.2 Programming Model

	6 Use Cases
	6.1 Linux Kernel Decomposition
	6.2 Enhancing Nested Kernel
	6.3 Emerging Hardware Feature
	6.4 Other Use Cases

	7 Evaluation
	7.1 Microbenchmarks
	7.2 Use Case Evaluation & Analysis
	7.3 Hardware Resource Cost

	8 Discussion
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

