
Performance Analysis and Optimization of Full
Garbage Collection in Memory-hungry Environments ∗

Yang Yu‡¶, Tianyang Lei§, Weihua Zhang‡¶†, Haibo Chen§, Binyu Zang§
‡ School of Computer Science, Fudan University

¶ Shanghai Key Laboratory of Data Science, Fudan University
§ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

† Parallel Processing Institute, Software School, Fudan University
{yu y13, zhangweihua}@fudan.edu.cn, {sky1young, haibochen, byzang}@sjtu.edu.cn

Abstract
Garbage collection (GC), especially full GC, would non-
trivially impact overall application performance, especially
for those memory-hungry ones handling large data sets. This
paper presents an in-depth performance analysis on the full
GC performance of Parallel Scavenge (PS), a state-of-the-art
and the default garbage collector in the HotSpot JVM, using
traditional and big-data applications running atop JVM on
CPU (e.g., Intel Xeon) and many-integrated cores (e.g., Intel
Xeon Phi). The analysis uncovers that unnecessary memory
accesses and calculations during reference updating in the
compaction phase are the main causes of lengthy full GC. To
this end, this paper describes an incremental query model for
reference calculation, which is further embodied with three
schemes (namely optimistic, sort-based and region-based)
for different query patterns. Performance evaluation shows
that the incremental query model leads to averagely 1.9X (up
to 2.9X) in full GC and 19.3% (up to 57.2%) improvement in
application throughput, as well as 31.2% reduction in pause
time over the vanilla PS collector on CPU, and the numbers
are 2.1X (up to 3.4X), 11.1% (up to 41.2%) and 34.9% for
Xeon Phi accordingly.

1. Introduction
Managed programming languages like Java have been
steadily adopted in parallel computing due to its ease of pro-

∗ This work is supported by National High Technology Research and Devel-
opment Program of China (No. 2012AA010905), NSFC (No. 61572314 and
61370081), National Youth Top-notch Talent Support Program of China and
Singapore NRF (CREATE E2S2). Related patches have been upstreamed to
OpenJDK (JDK-8146987). Yang Yu was a visiting student at IPADS, SJTU
when doing this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VEE ’16, April 2–3, 2016, Atlanta, Georgia, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3947-6/16/04. . . $15.00.
http://dx.doi.org/10.1145/2892242.2892251

graming thanks to its inherit threading, portability and auto-
matic memory management. Actually, many big-data frame-
works like Hadoop and Spark [26, 30] use Java virtual ma-
chines (JVMs) to run their tasks. There is also a steady mo-
mentum to adopt Java-like programming language to high-
performance computing (HPC) domains to increase program
productivity [17, 27, 29].

While the volume of memory for a single machine has
been steadily increasing, memory is still a scarce resource.
First, many data-intensive Java applications with a large
working set suffer from a general phenomenon called mem-
ory bloat [6] due to processing a large amount of data. This is
especially true for a shared-cluster design inside many com-
panies like Google [31] such that each application is only
accompanied with a limited amount of memory. Second,
the increasing number of cores per-machine usually results
in limited per-core memory. This problem especially exists
in the Many Integrated Core (MIC) architecture (e.g., Intel
Xeon Phi), which has an excessive number of cores/hard-
ware threads sharing only a small amount of memory (e.g.,
60 cores/240 threads sharing only 8GB memory).

Efficiently running Java applications on such memory-
hungry environments requires efficient garbage collectors.
There have been a number of algorithmic designs that try to
mitigate memory pressure and improve scalability for such
environments [4, 23, 25]. Recent work also shows that GC
would occupy non-trivial proportion of execution time [13]
and the accumulated stragglers due to GC would lead to
increased overall execution time [15] as well as amplified
tail latency [9] for big-data applications.

In this paper, we present an in-depth study on the per-
formance behavior of Parallel Scavenge, the default garbage
collector for HotSpot JVM in OpenJDK. PS is a throughput-
oriented, stop-the-world garbage collector that uses a vari-
ant of Mark-Compact algorithm [14]. While less frequently,
full GC would cause longer pause time than minor GC and
thus incur more performance impact to applications. With
the assist of a detailed profiling, our analysis shows that full
GC may still cause a non-trivial impact to application per-
formance (e.g., more than 50% for JOlden.TreeAdd).

A detailed profiling reveals that the bottleneck lies within
the reference updating period of the compacting phase. The

123



Figure 1: Update references using mark bitmaps

updates need to query two globally-preserved bitmaps map-
ping to the heap space that is segregated into multiple re-
gions. The bitmap is searched from a specific region start as
a reference is updated, which results in a lot of redundant cal-
culations and memory accesses and contribute to more than
70% of full GC time. To this end, we propose a general incre-
mental query (IQ) model to dynamically reuse the result of
last query, which can significantly minimize the ranges for
bitmap searching. According to different query patterns of
runtime object references, we further design three IQ-based
schemes (namely optimistic, sort-based and region-based) to
maximize the reusability and query efficiency.

We have implemented the above designs in the HotSpot
virtual machine of OpenJDK 7u and 8and perform a
set of experiments using both standard benchmarks like
JOlden [7], Dacapo [5], SPECjvm2008 [1] as well as real-
world big-data frameworks like Spark [26] and Giraph [3].
Our evaluation shows that our incremental query achieves
up to 2.9x and 3.4x speedup in full GC throughput and
57.2% and 41.2% improvement in application throughput on
a Xeon CPU server and a Xeon Phi coprocessor accordingly.

This paper makes the following contributions:

• A thorough profiling-based analysis of the full GC in Par-
allel Scavenge, which uncovers that reference updating
in the compact phase is the most time-consuming bottle-
neck (§ 2).

• An incremental query model and three different schemes
to accelerate the bitmap searching and improve the full
GC throughput in Parallel Scavenge (§ 3).

• A detailed performance evaluation confirms the effective-
ness of our design on both Intel Xeon and Xeon Phi MIC
architectures (§ 4).

2. Performance Analysis of Parallel Scavenge
2.1 Parallel Scavenge
The HotSpot VM in OpenJDK leverages the well-known
generational collection [14] to segregate the heap into mul-
tiple areas on the basis of different objects’ ages, i.e., young,
old and permanent generations. Parallel Scavenge is the de-
fault garbage collector with a stop-the-world fashion, i.e.,
the application will be suspended during GC. Here, we
briefly introduce minor collection and review the design of
full GC in greater details.

Young/Minor GC: The young collector in PS uses a
copying algorithm by dividing heaps into several areas: an
eden space and two survivor spaces. Most objects are ini-
tially allocated in the eden space (except for some large

 0

 20

 40

 60

 80

 100

Em3d
MST

TreeAdd

Perimeter

GCBench

Em3d
MST

TreeAdd

Perimeter

GCBench

%
 f

u
ll 

G
C

 t
im

e
 i
n

 t
o

ta
l 
a

p
p

. 
ru

n

fullGC
minorGC&app.

					Xeon		PhiXeon CPU Server

Figure 2: Proportion of full GC time in total application run

ones). After a minor collection, some objects are moved to
one of the survivor spaces, with other aged live objects being
promoted to the old generation.

Full GC: The full GC leverages a mark-compact algo-
rithm to collect the whole heap. The compaction process
slides all live objects towards the starting side, thus could
effectively avoid fragmentation and allow the bump-the-
pointer technique for efficient memory allocation.

The full collection consists of three phases: marking,
summary and compacting. In the marking phase, the collec-
tor utilizes an important data structure called mark bitmap to
map the whole heap space. PS maintains two bitmaps, one
for the beginning address of an object and the other for the
end address. The corresponding bits in the two bitmaps are
set to identify if an object is alive. The heap space is par-
titioned into a lot of regions (each with a size of 4KB). A
piece of metadata is maintained for each region. As an object
within a region is marked alive, the corresponding metadata
for the region will be updated.

The summary phase is responsible for calculating the new
location for each compacting region and the live objects
within it, e.g., the new location of the region that a live
object will be copied to. This phase is done very quickly
and contributes little to the full GC time.

The essential work of the compacting phase is to move
live objects to their new locations and update all the refer-
ences contained in the objects. Initially, a set of empty re-
gions are maintained as the destination regions, whose corre-
sponding source regions have already been determined dur-
ing the summary phase. The collector sequentially moves the
live objects from the source region to the destination region.

For each live object, all its references will be updated as
long as it is moved to the destination region. As illustrated
in Figure 1, for a referenced object, e.g., O, its new loca-
tion could be calculated by using the mark bitmaps and the
metadata of the region it resides in. Since the region meta-
data records the new location of the first live object in the
region (denoted as N), any live object in this region could be
located by adding the total live objects’ size between the first
object and itself, e.g, S, to N. S can be computed by search-
ing the mapping range on the mark bitmaps of this region.
After the compacting phase, all live objects are compacted
to the beginning of the space.

2.2 Impact of GC on Big Data Applications
While GC usually should have only small impact on appli-
cation performance, there are several cases where the GC
time would constitute a non-trivial portion of application
execution time. Actually, a recent study shows that TPC-H
Q17 and “shopper” workflows in Naiad [19] spend 20∼40%

124



of their total runtime on GC regardless of the heap size
for young generation [13]. Besides, the full GC is always
claimed to be a key constraint to the throughput of stop-the-
word collectors [16, 20, 28] like the Parallel Scavenge.

To confirm this, we measured a set of data-intensive Java
applications to demonstrate the significant impact of full GC
on both normal CPU and Xeon Phi (detailed evaluation setup
in § 4). As shown in Figure 2, a considerable proportion of
full GC time can be observed for all the applications with
multiple GC threads on both CPU and Xeon Phi. The full
GC time of TreeAdd could even exceed half of the whole
execution time. This is because that an insufficient heap
space caused by the memory-hungry environment may bring
a high probability of full GC.

2.3 Detailed Performance Analysis
To further discover the most time-consuming part in the
full GC of Parallel Scavenge, we designed and implemented
a detailed profiling tool to attribute the full GC execution
into individual operations. For simplicity, we utilize one GC
thread to focus on the key operational logic.

Algorithm 1 Calc new pointer
Require: addr ← old referenced object address
1: region← getRegion(addr)
2: dest← region.destination()
3: if region.allAlive() then # dense path
4: return dest+ offset in region(addr)
5: else # sparse path
6: return dest+ region.partial obj size() +

live words in range(region.partial obj end, addr)
7: end if

We first differentiate the full GC time in terms of the three
different phases. Figure 3 shows that the compacting phase
constitutes a majority of the total time for almost all appli-
cations, while the marking and summary phases only con-
stitute a very small percentage. As mentioned in section 2.1,
the compacting phase mainly does two thing: copy objects to
their new locations and update all the references. From the
graph we can see a much larger proportion for the reference
updating (sparse update and dense update), which is rea-
sonable because each time a reference is updated, the mark
bitmaps need to be traversed from the region start for calcu-
lation of the new location, no matter how far the object lies
from the start. Moreover, the amount of references is usually
far greater than that of live objects in a Java application.

When profiling deeply into the reference updating proce-
dure, we find that most time is spent on calculating the new
location of the referenced objects. The new address is cal-
culated by accumulating the live objects’ sizes within the
range, as illustrated in Algorithm 1, there are two paths:
dense path and sparse path. When all data in the region
is alive, it enters the dense path, where the new offset of
the object is exactly the same with the offset in the cur-
rent region. Otherwise, it enters the sparse path, in which the
live words in range() method will search the bitmaps from
the end of the object that partially extends onto the region to
the current object’s location for total live sizes. Figure 3 re-
veals that for most benchmarks, the time spent on the sparse
path significantly exceeds that on the dense path.

 0

 20

 40

 60

 80

 100

Em3d
MST

TreeAdd

Perimeter

GCBench

Em3d
MST

TreeAdd

Perimeter

GCBench

%
 o

f 
to

ta
l 
fu

ll 
G

C
 t
im

e

mark&summary
compact.copy_objects
compact.dense_update
compact.sparse_update
compact.others&overhead

				Xeon		PhiXeon CPU Server

Figure 3: Decomposition of full GC time

Using our profiling tool, we can observe a substantial
proportion of the “sparse path” of total full GC time. Hence,
it is critically important to optimize the sparse path in the
compacting phase for an overall reduction of full GC time.

3. Incremental Query
3.1 Basic Idea
According to our analysis, the key issue to optimize the
full GC is to minimize the unnecessary memory accesses
and calculations during reference updating period. However,
the original sparse path in PS collector’s compacting GC is
very time-consuming and inefficient. For example, as shown
in Figure 1, for two sequentially searched objects A and B
in the same region, the range from the region start to A is
repeatedly searched for both A and B.

To eliminate such redundant searches, we propose an
incremental query scheme, which dynamically reuses the
previous result for the next calculation. This idea is based
on a key observation on Parallel Scavenge that each query is
initialized from a fixed region start and confined within the
current region.

Specifically, when the objects that two sequentially up-
dated references point to lie in the same source region, the
calculation for the latter object’s new offset could be reduced
by keeping track of the former’s result. With the former ob-
ject’s address and new offset (i.e., the total size of live ob-
jects from region start), the latter object only needs to tra-
verse the range from the former object, which could reduce
a lot of redundant memory accesses and calculations.

Our basic idea is illustrated in Algorithm 2. The beg addr
and end addr refer to the start and end of the searching
range, respectively. In line 2 we first check if the beg addr
of current object matches that of last recorded object, if
matches, they are considered in the same region. Line 3∼13
compare the end addr and last end addr to determine the
new searching range. For example, in line 5, the current
end addr lies to the right of last end addr, it thus only needs
to search the live words between them, then line 7 will add
the result delta to last result to get the total live words within
the range from beg addr to the current end addr. Finally, it
updates the variables for the reusing of next object.

However, how to effectively reuse previous results is not
straightforward but depends on the query patterns of the ref-
erences before the compaction. Based on our observations,
the query patterns can be divided into two categories. The
first one is a local pattern that the sequentially referenced
objects tend to reside in the same region. For this pattern,
the results of last queries could thus be easily reused. The
second one is a random pattern that the referenced objects
always lie in random regions, which makes it incapable to

125



Algorithm 2 Calculate live words within a range
Require: beg addr, end addr
1: retrive last beg addr, last end addr, last result
2: if beg addr = last beg addr then
3: if end addr = last end addr then
4: live bits← last result
5: else if end addr > last end addr then
6: delta← live words in range(last end addr, end addr)
7: live bits← last result+ delta
8: else
9: delta← live words in range(end addr, last end addr)

10: live bits← last result− delta
11: end if
12: update last end addr, last result with delta
13: return live bits
14: end if
15: live bits← live words in range(beg addr, end addr)
16: update last beg addr, last end addr, last result
17: return live bits

reuse last results directly. Most applications are mixed with
these two query patterns, differentiated by their respective
proportions. To this end, we further propose three optimiz-
ing schemes accordingly to handle different situations.

3.2 Optimistic IQ
Targeting the applications with a high proportion of local
query patterns, we propose a straightforward implementa-
tion of our basic idea: the optimistic incremental query. This
approach complies with Algorithm 2, with each GC thread
maintaining only one global result of last query for all the re-
gions. Besides, when the object lies between the region start
and the last object, which corresponds to the condition in
line 8∼10 of Algorithm 2, its distances to both sides will be
checked to make sure the shorter path is selected.

The optimistic IQ relies heavily on the local pattern to
take good effect, while its advantage lies in the minimal
overhead for both memory utilization and calculation.

3.3 Sort-based IQ
For the applications with most random query patterns, the
optimistic IQ is not the best choice since the sequentially
referenced objects tend to reside in various regions. We thus
propose an approach called sort-based incremental query,
whose key idea is to dynamically reorder the references
based on their addresses with a lazy update.

The sort-based IQ employs a buffer with a fixed size. All
the references are first filled into the buffer in batches before
their updating. Each time the buffer fills up, the references
within the buffer will be reordered according to the region
index, and then be updated in their new sequences after the
sorting. The buffer size is typically set close to the size of an
L1 cache line for good locality.

With the sorting scheme, the references in the same re-
gion are gathered periodically, making it possible to effec-
tively apply Algorithm 2. However, this approach may im-
pose some overhead due to the extra sorting procedure.

3.4 Region-based IQ
Based on the insights of the two schemes as well as their
deficiencies, we propose a region-based incremental query

to embrace the best of the two schemes. This approach
maintains a result of last query for each region per GC
thread, thus can reasonably fit for both local and random
query patterns. The region-based IQ applies Algorithm 2
within a region’s bound.

We additionally employ a slicing scheme based on the
concern that in some cases, the searching distance for a ref-
erence could span a large portion of the region width even
with the reuse of the last result. Therefore, we reduce the
searching range by dividing each region into multiple slices,
maintaining the result of last query for each slice. For each
referenced object, the region-based IQ checks the distances
between it and last queried objects of two slices respectively:
the current slice it resides in and the neighboring slice on the
other side. The shortest searching path can thus be guaran-
teed with the slice-grained reuse of last queried result.

Minimize Overhead The region-based IQ is more aggres-
sive than other two schemes and may impose some memory
overhead due to the employment of slicing, especially with
multiple GC threads. To minimize this overhead, we use a
16-bit integer to store the calculated size of live objects since
it must be smaller than the region size (e.g., 4KB). Moreover,
considering the region start will never be altered, we thus re-
place the 64-bit full-length address of the last queried object
with the address offset to the region start, which only needs
12 bits and can perfectly fit in a 16-bit integer as well. By
this way, the memory overhead is minimized to 0.09% of
the entire heap size using the region-based IQ with one slice
for each GC thread.

3.5 Parallelism
In our design, the results of last queries maintained by each
GC thread are independent from each other, which can fun-
damentally eliminate the contention for updating the results
after a bitmap searching completes. Our approach has no
side effect to the multi-threading mechanism of the Parallel
Scavenge GC.

4. Evaluation
4.1 Experimental Environments
Hardware/software platforms: We have implemented our
optimization for OpenJDK 7u and later port it to version 8.
The porting effort is trivial, which shows the portability of
our optimization across versions. We evaluate our optimiza-
tion on both Intel Xeon and Xeon Phi platform. The Xeon
Phi Java support is based on OpenJDK 7u from our previ-
ous work [29]. The Xeon platform is an Intel Xeon E5-2620
CPU server with 6 cores at 2.0GHz frequency and 32GB
memory space. The Xeon Phi coprocessor has 60 in-order
cores at 1GHz, each of which has 4 hardware threads. There
is no traditional shared last-level cache and the memory size
is 8GB.

Benchmarks: We use standard benchmarks like JOlden,
Dacapo, SPECjvm2008 as well as emerging big-data frame-
works like Spark and Giragh for our study. We evaluate the
memory-intensive applications from the suites to evaluate
the GC behavior. As memory bloat is common for big-data
applications [6, 13], we set the heap size (e.g, 1GB) close to

126



 0

 0.5

 1

 1.5

 2

 2.5

 3

BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.
BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.

S
p
e
e
d
u
p
 o

f 
fu

ll 
G

C
 t
h
ru

.

OpenJDK_8 Optimistic Sort-based Region-based

6 GC threadsSingle GC thread

Figure 4: Speedup of full GC throughput with 1&6 GC threads on CPU.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.
BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.S
p

e
e

d
u

p
 o

f 
th

ru
. 

o
n

 X
e

o
n

 P
h

i

FullGC
App.

20 GC threadsSingle GC thread

Figure 5: Speedup of full GC & app. thru. with 1&20 GC threads
using region-based IQ on Xeon Phi

the workload size to emulate a memory-hungry environment
for most of them to tax the GC, similar to prior work [11].
Besides, we evaluate Spark and Giraph with larger input and
heap sizes (e.g., 10GB) as well to confirm the effectiveness
of our optimization alone with increase of heap size.

GC setup: We present the throughput comparison of both
full GC and application running with single and six GC
threads on CPU and twenty for Xeon Phi. Twenty is the
most appropriate thread count for Xeon Phi since the Par-
allel Scavenge does not scale well under a large number of
GC threads [10]. Meanwhile, the memory overhead for the
region-based IQ is about 3∼4% with twenty threads which
is modest and acceptable. The performance is normalized to
that of the original OpenJDK 7u version. We also provide
the reduction in full GC time and the total pause time.

Application
Heap Size

(GB) Description

JOlden.BiSort 1 A bitonic sort
JOlden.Em3d 1 Models electromagnetic waves
JOlden.MST 1 Computes minimum spanning tree
JOlden.TreeAdd 1 Recursive DFS of a binary tree
JOlden.Health 3 Simulates health-care system
JOlden.Perimeter 1 Computes perimeter in image
GCBench 1 Build arrays and trees
Dacapo.H2 1 Executes transactions in H2
SPECjvm2008.X.v. 1 Validates an XML tree
SPECjvm2008.C.c. 1 Test javac compiler
Spark.pagerank 1&10 Rank websites
Giraph.sssp 1&10 Shortest path compution

Table 1: Benchmarks. (X.v & C.c in SPECjvm2008 refer to
Xml.validation & Compiler.compiler)

4.2 Improvement on Standard Benchmarks
4.2.1 Speedup in Full GC
Figure 4 depicts the speedup of full GC throughput on Xeon
server. The results cover the three different schemes (region-
based with 2 slices). Besides, OpenJDK 8 has made some

 0

 0.5

 1

 1.5

 2

BiSort

Em
3d

M
ST

TreeAdd

H
ealth

Perim
eter

G
C
Bench

H
2

Xm
l.validation

C
.com

piler

Avg.S
p
e
e
d
u
p
 o

f 
th

ru
. 
in

 f
u
ll 

G
C Region-based_on_JDK8

(a) Full GC thru. relative to JDK 8

 0

 0.5

 1

 1.5

BiSort

Em
3d

M
ST

TreeAdd

H
ealth

Perim
eter

G
C
Bench

H
2

Xm
l.validation

C
.com

piler

Avg.

S
p
e
e
d
u
p
 o

f 
a
p
p
. 
th

ru
.

Region-based_on_JDK7u

(b) App. thru. relative to JDK 7u

Figure 6: Speedup of throughput with six GC threads on CPU

revision in region management by separating each region
into multiple blocks. To study its performance impact, we
provide a performance comparison with our optimization.

We can see that the optimistic and region-based IQ could
both achieve significant speedup for most benchmarks. The
two schemes perform similarly except for Em3d, Health,
H2 and C.compiler. This is because these four applications
mainly consist of random query patterns during compaction,
which do not fit well for optimistic IQ. The sort-based IQ
has inferior performance compared to the other two, which
indicates: 1) a majority of sequentially updated references
conform to a local pattern; 2) the overhead of sorting is
significant, which makes the sort-based IQ less attracting.

When scaling up to six GC threads, there shows no sig-
nificant reduction in speedup. This confirms that our ap-
proach has no side effect to the multi-threading mechanism.
The region-based IQ achieves up to 2.9x and averagely 1.9x
speedup for full GC throughput on CPU. Besides, by using
the optimization in section 3.4, the memory overhead can be
reduced to only 1.1% with six GC threads.

As illustrated Figure 5, the best-performed region-based
IQ achieves a full GC speedup of 3.4x for MST and aver-
agely 2.1x with twenty GC threads on Xeon Phi. The results
are mostly consistent to those of the Xeon server.

Portability of our optimization: We also compared the
port of our region-based IQ to OpenJDK 8 with the vanilla
GC. As shown in Figure 4, the new revision of OpenJDK
8 performs even worse with multiple GC threads for many
benchmarks than the original 7u version. However, as shown
in Figure 6a, our region-based IQ could still achieve signifi-
cant performance improvement, which can reach up to 1.8x
for TreeAdd and averagely 1.5x speedup. This result con-
firms the portability of our optimization.

4.2.2 Application Performance Improvement
The three approaches have incremental performance, e.g.,
region-based IQ outperforms the other two. Despite some
minor overhead, we believe that in most cases, the region-

127



 0

 0.2

 0.4

 0.6

 0.8

 1

BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.
BiSort

Em3d
MST

TreeAdd

Health
Perimeter

GCBench

H2 Xml.validation

C.compiler

Avg.N
o
rm

a
liz

e
d
 e

la
p
s
e
d
 t
im

e

fullGC
pauseTime

		Xeon	PhiXeon CPU Server

Figure 7: Normalized elapsed time. Lower is better

based IQ performs best and should be the default choice.
Thus, we mainly use the it to demonstrate the speedup in the
applications’ throughput.

Figure 6b plots the improvement with six GC threads on
CPU. While the proportions of full GC time vary across dif-
ferent applications, the performance improvement is remark-
able for most benchmarks, which is up to 57.2% and aver-
agely 19.3% with six GC threads.

As shown in Figure 5, the region-based IQ can bring up
to 41.2% improvement in the application’s throughput for
the MST program with twenty GC threads on Xeon Phi. In
general, we could achieve averagely 11.1% improvement for
the applications under the multi-GC-threading environment.

Reduction in pause time: Figure 7 depicts the reduction
in full GC time and total pause time by using the region-
based IQ with multiple GC threads, compared to the original
Parallel Scavenge in OpenJDK 7u. Due the significant per-
formance improvement in full GC, the total pause time is no-
tably reduced, which can reach averagely 31.2% and 34.9%
for CPU and Xeon Phi respectively.

4.3 Improvement on Big-data Applications
We further use Spark and Giraph to show the effectiveness
of our optimization for real-world applications, with both
normal (i.e., 1GB) and larger (i.e., 10GB) heap sizes. The
input data size is also increased, which is from 100MB
to 2.6GB for Spark, and 400MB to 4GB for Giraph. The
normalized throughputs relative to the original PS collector
in OpenJDK 7u are provided in Figure 8 for both full GC
and application execution.

A significant performance speedup comparable to the
standard benchmarks in full GC can be observed with vary-
ing heap sizes. For the application execution time, the im-
provement can steadily reach about 10%, which is typically
up to 16.3% for Spark with 10GB heap size.

Our optimization is orthogonal to distributed execution.
To confirm this, we conducted a small-scale evaluation on a
5-node cluster. Each machine has two 10-core Intel Xeon
E5-2650 v3 processors and 64GB DRAM. We ran Spark
PageRank with 100 million edges and configured 10GB heap
size on each node. We recorded the accumulated full GC
time for all nodes and the elapsed application time on master.
The improvement on full GC and application throughput is
63.8% and 7.3%, respectively. The speedup is smaller due to
network communication becomes a more dominating factor
during distributed execution. Yet, a still significant reduction
in full GC time may help a lot in reducing tail latency [9, 15].

5. Related Work
There is a long thread of research to improve the perfor-
mance of garbage collection, especially the mark-compact

 0

 0.5

 1

 1.5

 2

 2.5

 3

Spark
Giraph

Spark
Giraph

S
p
e
e
d
u
p
 o

f 
th

ru
. 
in

 f
u
ll 

G
C JDK7u_base

Region-based

10GB Heap1GB Heap

(a) Full GC

 0.8

 0.9

 1

 1.1

 1.2

Spark
Giraph

Spark
Giraph

S
p
e
e
d
u
p
 o

f 
a
p
p
. 
th

ru
. JDK7u_base

Region-based

10GB Heap1GB Heap

(b) Application

Figure 8: Throughput speedup of big-data applications with vary-
ing input and heap sizes

collector [2, 8, 18, 24]. For example, Abuaiadh et al. [2]
proposed a heap compaction algorithm for SMP platforms,
which saves information for a pack of objects instead of
using standard forwarding pointer mechanism for updating
references. Chung et al. [8] proposed a sweeping approach
that traverses only the live objects so that the sweeping time
depends only on the number of live objects in the heap.
Our approach also only scans live objects but further reuses
the prior scanning result. Morikawa et al. [18] described
an adaptive scanning method between scanning bitmap and
scanning heap for Lisp2 compactor collector. However, they
did not consider the reuse of previous scanning result. Our
optimization aligns with this thread of research by pinpoint-
ing a major bottleneck of the compaction phase and design-
ing a novel solution to significantly boost the performance.

Some efforts have been made on the throughput-oriented
Parallel Scavenge garbage collector. Gidra et al. [11, 12]
studied the scalability issues of Parallel Scavenge on NUMA
systems, and presented a NUMA-aware design which can
maximize the memory access locality during collection.
Some recent work advocates of using coordination to miti-
gate garbage collection for big data runtime [15, 19]. Specif-
ically, Murray et al. [19] leveraged event information to par-
tition objects into different regions for better memory man-
agement. Maas et al. [15] showed that coordination of GC
among multicore nodes may reduce the impact of GC on big
data performance. Our work is orthogonal to such work and
could further reduce the GC impact.

Xu et al. [21, 22] performed a lot of work based on the
problem of runtime bloat. They witnessed significant perfor-
mance impact and severe pressure on the garbage collector,
which is caused by the memory bloat in a managed runtime
like JVM. They proposed an application-level approach to
tackle this problem, such as a bloat-aware design paradigm
towards the development in GC enabled languages to elimi-
nate the bloat for large-scale data-intensive applications [6].

6. Conclusion
This section presented a detailed study on the full GC perfor-
mance using standard and big-data applications. Our study
found that full GC still contributes a non-trivial portion of
application execution time. Our profiling found that the ref-
erence updating in the compaction phase is a major perfor-
mance killer. To this end, this paper presented an incremen-
tal query model with three schemes. Our evaluation confirms
the benefit of our optimization.

128



References
[1] SPECjvm2008. https://www.spec.org/jvm2008/, 2015.
[2] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein.

An efficient parallel heap compaction algorithm. In Pro-
ceedings of the 19th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’04, pages 224–236, New York,
NY, USA, 2004. ACM. ISBN 1-58113-831-8. . URL
http://doi.acm.org/10.1145/1028976.1028995.

[3] Apache. Apache giraph: an iterative graph processing system
built for high scalability. http://giraph.apache.org/.

[4] S. M. Blackburn and K. S. McKinley. Immix: A mark-
region garbage collector with space efficiency, fast collec-
tion, and mutator performance. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’08, pages 22–32, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. . URL
http://doi.acm.org/10.1145/1375581.1375586.

[5] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The dacapo bench-
marks: Java benchmarking development and analysis. In
Proceedings of the 21st Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pages 169–190, New York,
NY, USA, 2006. ACM. ISBN 1-59593-348-4. . URL
http://doi.acm.org/10.1145/1167473.1167488.

[6] Y. Bu, V. Borkar, G. Xu, and M. J. Carey. A bloat-
aware design for big data applications. In Proceedings
of the 2013 International Symposium on Memory Manage-
ment, ISMM ’13, pages 119–130, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2100-6. . URL
http://doi.acm.org/10.1145/2464157.2466485.

[7] B. Cahoon and K. S. McKinley. Data flow analysis
for software prefetching linked data structures in java.
In Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniques,
PACT ’01, pages 280–291, Washington, DC, USA, 2001.
IEEE Computer Society. ISBN 0-7695-1363-8. URL
http://dl.acm.org/citation.cfm?id=645988.674177.

[8] Y. C. Chung, S.-M. Moon, K. Ebcioğlu, and D. Sahlin. Re-
ducing sweep time for a nearly empty heap. In Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’00, pages 378–389, New
York, NY, USA, 2000. ACM. ISBN 1-58113-125-9. . URL
http://doi.acm.org/10.1145/325694.325744.

[9] J. Dean and L. A. Barroso. The tail at scale. Commun.
ACM, 56(2):74–80, Feb. 2013. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/2408776.2408794.

[10] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing
the scalability of garbage collectors on many cores. SIGOPS
Oper. Syst. Rev., 45(3):15–19, Jan. 2012. ISSN 0163-5980. .
URL http://doi.acm.org/10.1145/2094091.2094096.

[11] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of
the scalability of stop-the-world garbage collectors on multi-
cores. In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 229–240, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1870-9. .
URL http://doi.acm.org/10.1145/2451116.2451142.

[12] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen.
Numagic: A garbage collector for big data on big numa ma-
chines. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 661–673, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-2835-7. .
URL http://doi.acm.org/10.1145/2694344.2694361.

[13] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytin-
iotis, G. Ramalingan, D. Murray, S. Hand, and M. Isard.
Broom: Sweeping out garbage collection from big data
systems. In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems, HOTOS’15, pages
2–2, Berkeley, CA, USA, 2015. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2831090.2831092.

[14] R. Jones, A. Hosking, and E. Moss. The Garbage Collec-
tion Handbook: The Art of Automatic Memory Management.
Chapman & Hall/CRC, 1st edition, 2011. ISBN 1420082795,
9781420082791.

[15] M. Maas, T. Harris, K. Asanovic, and J. Kubiatowicz.
Trash day: Coordinating garbage collection in distributed
systems. In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems, HOTOS’15, pages
1–1, Berkeley, CA, USA, 2015. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2831090.2831091.

[16] S. Microystems. Memory management in the java hotspot
virtual machine, 2006.

[17] J. E. Moreira, S. P. Midkiff, M. Gupta, P. Wu, G. Al-
masi, and P. Artigas. Ninja: Java for high perfor-
mance numerical computing. Sci. Program., 10(1):
19–33, Jan. 2002. ISSN 1058-9244. . URL
http://dx.doi.org/10.1155/2002/314103.

[18] K. Morikawa, T. Ugawa, and H. Iwasaki. Adaptive scan-
ning reduces sweep time for the lisp2 mark-compact garbage
collector. In Proceedings of the 2013 International Sympo-
sium on Memory Management, ISMM ’13, pages 15–26, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2100-6. .
URL http://doi.acm.org/10.1145/2464157.2466480.

[19] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, SOSP ’13, pages 439–455, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. . URL
http://doi.acm.org/10.1145/2517349.2522738.

[20] R. M. Muthukumar and D. Janakiram. Yama: A scal-
able generational garbage collector for java in multipro-
cessor systems. IEEE Trans. Parallel Distrib. Syst., 17
(2):148–159, Feb. 2006. ISSN 1045-9219. . URL
http://dx.doi.org/10.1109/TPDS.2006.28.

[21] K. Nguyen and G. Xu. Cachetor: Detecting cacheable
data to remove bloat. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 268–278, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2237-9. . URL
http://doi.acm.org/10.1145/2491411.2491416.

[22] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and
G. Xu. Facade: A compiler and runtime for (almost)
object-bounded big data applications. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 675–690, New York, NY,

129



USA, 2015. ACM. ISBN 978-1-4503-2835-7. . URL
http://doi.acm.org/10.1145/2694344.2694345.

[23] N. Sachindran, J. E. B. Moss, and E. D. Berger. Mc2: High-
performance garbage collection for memory-constrained envi-
ronments. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’04, pages 81–98, New
York, NY, USA, 2004. ACM. ISBN 1-58113-831-8. . URL
http://doi.acm.org/10.1145/1028976.1028984.

[24] V. Sarkar and J. Dolby. High-performance scalable
java virtual machines. In Proceedings of the 8th In-
ternational Conference on High Performance Com-
puting, HiPC ’01, pages 151–166, London, UK, UK,
2001. Springer-Verlag. ISBN 3-540-43009-1. URL
http://dl.acm.org/citation.cfm?id=645447.652938.

[25] S. Soman, C. Krintz, and L. Daynès. Mtm2: Scal-
able memory management for multi-tasking managed
runtime environments. In Proceedings of the 22Nd
European Conference on Object-Oriented Programming,
ECOOP ’08, pages 335–361, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 978-3-540-70591-8. . URL
http://dx.doi.org/10.1007/978-3-540-70592-5 15.

[26] Spark. Apache spark is a fast and general engine for large-
scale data processing. http://spark.apache.org/, 2015.

[27] G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, and
R. Doallo. Java in the high performance computing arena:
Research, practice and experience. Sci. Comput. Program.,
78(5):425–444, May 2013. ISSN 0167-6423. . URL
http://dx.doi.org/10.1016/j.scico.2011.06.002.

[28] D. Vengerov. Modeling, analysis and throughput opti-
mization of a generational garbage collector. In Pro-
ceedings of the 2009 International Symposium on Mem-
ory Management, ISMM ’09, pages 1–9, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-347-1. . URL
http://doi.acm.org/10.1145/1542431.1542433.

[29] Y. Yu, T. Lei, H. Chen, and B. Zang. Openjdk meets xeon
phi: A comprehensive study of java hpc on intel many-core ar-
chitecture. In Parallel Processing Workshops (ICPPW), 2015
44th International Conference on, pages 156–165. IEEE,
2015.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Pro-
ceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 2–
2, Berkeley, CA, USA, 2012. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2228298.2228301.

[31] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes. Cpi2: Cpu performance isolation for
shared compute clusters. In Proceedings of the 8th
ACM European Conference on Computer Systems,
EuroSys ’13, pages 379–391, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1994-2. . URL
http://doi.acm.org/10.1145/2465351.2465388.

130




