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Abstract—Today, most database-backed web applications de-
pend on the database to handle deadlocks. At runtime, the
database monitors the progress of transaction execution to detect
deadlocks and abort affected transactions. However, this common
detect-and-recover strategy is costly to performance as aborted
transactions waste CPU resources.

To avoid deadlock-induced performance degradation, develop-
ers aim to reorganize the application code to remove deadlocks.
Unfortunately, doing so is difficult for web applications. Not only
do their implementations include hundreds of thousands of LoCs,
but they also use third-party object-relational mapping (ORM)
frameworks which hide database access details. Consequently, it
is hard for developers to accurately diagnose deadlocks.

We propose WeSEER, a deadlock diagnosis tool for web appli-
cations. To overcome the opacity of ORMs, WeSEER performs
concolic execution on unit tests to extract a web application’s
transactions as a sequence of template statements with symbolic
inputs as well as path conditions that enable the sequence.
WeSEER then analyzes the extracted transactions based on fine-
grained lock modeling to identify potential deadlocks and report
the code locations that cause them. We implement WeSEER for
Java-based (OpenJDK) web applications, and use it to analyze
two popular open-source e-commerce applications, Broadleaf
and Shopizer . WeSEER has successfully identified 18 potential
deadlocks in Broadleaf and Shopizer. Eliminating these identified
deadlocks can result in up to 39.5× and 4.5× throughput
improvement for Broadleaf and Shopizer , respectively.

Index Terms—database locking, deadlock diagnosis, concolic
execution

I. INTRODUCTION

Nowadays, web applications often use database systems to

manage their data and protect critical business logic with

database transactions. Most commercial databases leverage

locks to provide isolation among concurrent transactions.

When transactions wait to acquire the locks of resources (e.g.,

database tables or rows) already held by others in a circular

hold-and-wait pattern, they incur deadlocks [1].

Existing databases, including MySQL [2], PostgreSQL [3],

and SQL Server [4], commonly adopt the detect-and-recover

strategy to handle deadlocks. As a transaction executes, the

database starts a hold-and-wait cycle detection procedure if

other transactions block its statement. If a cycle is found, the

database will roll back one of the involved transactions to

break the cycle. Although effective, this method is detrimental

to performance as aborted transactions waste the processing

power of both the application and the database.

To avoid performance degradation, web application devel-

opers try to eliminate deadlocks on the application side [5],

[6]. For instance, they could rewrite or reorganize part of

the application code or introduce application-level locking to

avoid deadlocks. However, doing so requires developers to be

able to first identify the code, which may cause a deadlock.

Unfortunately, such deadlock diagnosis is highly non-trivial

for real-world web applications due to two challenges.

First, web applications often have a large code base today.

For example, the ten most popular open-source web applica-

tions based on the number of GitHub stars have 160K LoC on

average, ranging from 50K to 406K LoC. Thus, it is laborious

to manually comb through the code for possible deadlocks [5].

Second, most web applications use the object-relational

mapping (ORM) frameworks to access databases in the object-

oriented programming paradigm [7]–[10]. ORM frameworks

automatically translate operations on objects into database

statements and hide the details of database access for opti-

mization [11]. On the one hand, ORM may merge multiple op-

erations into a single statement. On the other hand, ORM may

also buffer statements at the application side and issue them to

the database in a batch, to reduce network roundtrips. Existing

works require manually or statically extracting transaction

logic from application code [12], [13], which is impractical.

We propose WeSEER, a deadlock diagnosis tool for large-

scale ORM-based web applications. To cope with the barrier

of ORM, WeSEER performs concolic execution on a web

application’s API unit tests to extract transaction statements.

Concolic execution combines symbolic and concrete execu-

tion in which some of the program variables are marked

as symbolic, and their symbolic values can be propagated

to other variables through symbolic execution. Using con-

colic execution, WeSEER can collect a trace of transaction

statements with symbolic inputs and path conditions that

enable the trace. Afterward, WeSEER performs an offline

analysis of the traces to identify potential deadlocks and

their triggering conditions. Unlike prior work [12]–[16] that

identifies transaction conflicts or deadlocks based on table-

level locks, WeSEER extracts conflict conditions that will lead

to deadlocks assuming fine-grained row-level locks. Using an

SMT-solver, WeSEER solves the path and conflict conditions

necessary for deadlocks and prepares a detailed report on the

deadlock conditions and code locations.

We have prototyped WeSEER for Java-based web applica-

tions. Our implementation of WeSEER’s concolic execution

engine is based on OpenJDK8. WeSEER’s deadlock analyzer

is written in Java using the Z3 SMT solver. We use WeSEER
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to analyze two large-scale open-source e-commerce web ap-

plications, Broadleaf [17](190K LoC) and Shopizer [18](92K

LoC), and have identified 18 previously unknown deadlocks.

We reproduce the identified deadlocks in experiments and

showed that the performance of Broadleaf and Shopizer can

be improved by up to 39.5× and 4.5× once the deadlocks are

removed by fixing code on the application side.

In summary, our contributions are as follows:

• A deadlock diagnosis tool that could extract transaction

statements from ORM-based web applications using con-

colic execution, and identify potential deadlocks.

• A concolic execution engine based on OpenJDK, that

could run large-scale Java web applications.

• A deadlock analyzer that models fine-grained row-based

locking to analyze transctions’ conflict conditions that

could lead to actual deadlocks using the SMT solver.

• An evaluation using two real-world, large-scale web ap-

plications, Broadleaf [17] and Shopizer [18]. WeSEER is

able to detect 18 deadlocks, and removing them can lead

to significant performance improvements (up to 39.5×
for Broadleaf and up to 4.5× for Shopizer).

II. MOTIVATION & CHALLENGES

A. Eliminating Deadlocks in the Application Code

Today, most applications rely on the underlying database to

handle the deadlock. Commercial database systems, including

MySQL [2], PostgreSQL [3], and SQL Server [4], adopt

the detect-and-recover scheme to handle deadlocks. When a

transaction needs to wait for locks held by other transactions,

the database will attempt to detect deadlocks by finding

hold-and-wait cycles among transactions or employing other

mechanisms such as wait-die, wound-wait, and timeout. If

a potential deadlock is found, the database will choose a

victim transaction to abort. However, such a deadlock recovery

strategy usually incurs high performance overhead as the CPU

resources spent by victim transactions are wasted.

To avoid performance degradation due to deadlocks, devel-

opers often attempt to remove potential deadlocks by rewriting

relevant parts of the application code [5], [5], [6], [6]. Since

manual deadlock diagnosis is a serious burden, existing works

such as STEPDAD [12] and REDACT [13] try to diagnose

deadlocks automatically. However, these works require devel-

opers to manually extract each transaction’s SQL statements

from the application code. After extraction, they use graph-

based algorithms to discover potential hold-and-wait cycles

statically. The diagnostic information can be used for test case

generation [12] or runtime deadlock prevention [13]. However,

these existing works have limited practicality because modern

web applications have very large codebases that rely on

ORM (Object Relational Mapping) frameworks to interact

with the database. As such, it is impractical to manually extract

transaction statements from web applications.

B. ORM frameworks obscure transaction details

Modern web applications access the database using ORM

frameworks [7]–[10], which expose the abstraction of persis-

CREATE TABLE Order {
ID int, PRIMARY KEY (ID) };

CREATE TABLE Product {
ID int, QTY int, PRIMARY KEY (ID) };

CREATE TABLE OrderItem {
ID int, O_ID int, P_ID int, QTY int,
PRIMARY KEY (ID),
FOREIGN KEY (O_ID) REFERENCES Order(ID),
FOREIGN KEY (P_ID) REFERENCES Product(ID) };

SELECT * FROM OrderItem oi
JOIN Order o ON o.ID == oi.O_ID
JOIN Product p ON p.ID == oi.P_ID
WHERE oi.O_ID == ?; /* Q4 */

UPDATE Product SET QTY=? WHERE ID=?; /* Q6 */

1 @Transactional
2 void finishOrder(Long orderId) {
3 if (orderId == -1) return;
4 // o is read from read cache
5 Order o = orm.find(Order.class, orderId);
6 // Order Items are loaded lazily
7 for(OrderItem oi:o.getOrdItems()){//Trigger Q4
8 ... // Select Q5 sent to DB
9 updateQuantity(oi);

10 }
11 // Update Q6 sent to DB
12 }
13 void updateQuantity(OrderItem oi) {
14 Product p = oi.getProduct();
15 int p_qty = p.getQty();
16 int oi_qty = oi.getQty();
17 if (p_qty >= oi_qty) {
18 // Updates are buffered
19 p.setQty(p_qty - oi_qty); // Trigger Q6
20 } else {
21 throw new Error("No enough products"); }}

Fig. 1: Broadleaf’s finishOrder function. The example includes the
simplified table schema, ORM-based application code, and the ORM-
generated SQL templates. The SQL statements Q4, Q5, and Q6
correspond to the 4th, 5th, and 6th statements sent by finishOrder .

tent objects. Each object is mapped to a database row and

the ORM translates object accesses to SQL statements. The

resulting ORM-generated statements are often complex and

difficult to understand [19]. For example, many statements

contain multiple JOINs, in order to merge results from dif-

ferent tables. Also, statements can contain table and column

aliases which further complicate understanding.

ORM frameworks also obscure transaction logic through

optimization: 1) They use read cache to buffer data for future

reads. 2) They use write-behind cache to batch updates to

the same object. In particular, the ORM defers writes and

only flushes a transaction’s dirty objects when the transaction

commits or the application invokes flush operation. 3) They

perform lazy loading so an object is not immediately fetched

from the database upon its read, but only upon the actual use

of the object. Consequently, the order of statements issued can

be different from the order of operations on the object.

Because of ORM, it is impractical to statically (or manually)

extract transaction statements. We illustrate the challenges

involved using an example (Fig. 1), which is derived from

the open-source e-commerce application Broadleaf [17]. The

application function finishOrder finishes the processing of an
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order and is protected by a database transaction declared by the

Transactional annotation (Line 1). First, the application uses

orm.find() to read the target order (Line 5). Because persistent

Order o has already been fetched outside the transaction, it is

stored in the read cache, and no statements are sent to the

database. Further, the ORM framework applies lazy loading

to o’s list of order items. Thus, at the beginning of the loop

(Line 7), Q4 is issued to fetch the target order items implicitly.

In this example, only one order item is fetched, and the loop

body is executed only once. Before updateQuantity is invoked,

Q5 is sent by other application logic.

For any given OrderItem oi , updateQuantity checks and de-

creases the remaining quantity of Product p with the required

quantity of oi , where oi ’s foreign key is p’s primary key. As

p is already fetched by Q4, no statements are sent due to

read caching (Line 14). p.setQty(...) modifies the remaining

quantity of p when p’s quantity is enough. Otherwise, the

transaction is aborted, and the API returns an error to the

client. Please note that, with write-behind cache, the ORM

framework defers Q6 for p’s modification and implicitly sends

Q6 before the transaction tries to commit (Line 11). As the

code of Line 19 triggers Q6, we call it Q6’s triggering code.

C. Challenges of Deadlock Diagnosis in Modern Web Apps

Identifying deadlocks in real-world ORM-based web appli-

cations has the following challenges: First, it is difficult to

statically extract transaction statements from the application

source code. To analyze potential deadlocks, it is an important

first step to identify the set of transactions used by the applica-

tions. However, it is difficult to infer the transaction statements

of modern web applications based on static information, due to

three problems: 1) Static program analysis, such as symbolic

execution [20] and model checking [21], does not scale to large

scale applications with tens or hundreds of thousands lines of

code, because these techniques can require enumerating all

code paths, 2) Static approaches can be inaccurate because

not all object accesses will be translated into SQL statements

due to ORM caching. 3) Existing static approaches [12], [13]

assume that, for each code path, the execution order of SQL

statements is the same as the programming order of data

access operations. Unfortunately, this assumption does not

hold because of ORM’s lazy loading and write-behind cache

mechanisms, which defer the execution of SQL statements.

Second, when analyzing deadlocks, using coarse-grained

lock modeling simplifies analysis but results in increased

false positive rates. Coarse-grained locking is popular among

existing deadlock diagnosis solutions [12], [13], which re-

port potential conflicts among transactions if their statements

access a common database table and at least one of them

writes to the table. In other words, coarse-grained lock mod-

eling conservatively assumes the statements acquire table-

level locks. However, because real-world databases typically

use fine-grained row-level locks, coarse-grained locking is

unacceptable due to false positives.

Third, it is challenging to map a deadlock to its source code

location. The diagnostic tool must help developers identify the

Fig. 2: WeSEER’s Architecture. Gray blocks represent the compo-
nents provided by WeSEER. The developers run the web applications
with unit tests, which specify the target API, API input, and initial
database state. During the execution, the trace collector collects the
runtime traces and feeds them to the deadlock analyzer. After identi-
fying the deadlocks, the deadlock analyzer reports the deadlocks, with
information including the involved API, inputs, initial DB state, SQL
statements, and triggering code location that causes the deadlocks.

source code which triggers deadlock-prone SQL statements.

However, due to ORM’s write-behind cache, the code sending

SQL statements may not be the code triggering them. For

example, Q6 is sent in Line 12, while its triggering code is

Line 19. Furthermore, an SQL statement may be triggered by

normal object accesses rather than ORM operations. Thus, we

cannot identify the triggering code by simply recording the

stack trace and the invocation sequence of ORM operations.

III. OUR APPROACH

We propose WeSEER, the first diagnostic tool for identi-

fying database deadlocks for modern ORM-based web appli-

cations. In this section, we give an overview of WeSEER’s

approach and its key innovation. In the following sections

(Sec IV—VI), we delve into the details of the components.

WeSEER’s architecture. Fig. 2 shows the overall architec-

ture of WeSEER, which consists of a dynamic trace collector

and an offline deadlock analyzer. The trace collector extracts

transaction statements and their path conditions by running

an application’s unit tests using concolic execution [22]–[24].

Based on the collected trace, the deadlock analyzer encodes

the path and fine-grained lock conflict information for the

SMT-solver to precisely identify the conditions of a deadlock.

WeSEER also reports rich information for developers to un-

derstand and reproduce the deadlock.

A. Extracting transactions using concolic execution

Preliminaries on concolic execution. Concolic execu-

tion [22]–[25] is a hybrid program analysis technique that

combines symbolic and concrete execution. A concolic ex-

ecution engine maintains 1) a symbolic store that maps each

variable to its symbolic expression, and 2) path conditions

encoded in the first-order logic formula to track the branches

taken on the execution path. By assigning symbolic expres-

sions to target program variables, concolic execution models

all possible states of these variables in the execution path,

determined by the path conditions. Consider integer variable

a with concrete value 1 and symbolic alias syma. After

executing b = a + 1, the engine assigns the concrete value 2
to b and updates its symbolic value to syma+1. Furthermore,

assume that a branch statement if(b == 8) is executed with
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the else branch being taken, then syma + 1 �= 8 is recorded

as the path condition.

WeSEER’s use of concolic execution. Concolic execution

is a form of dynamic program analysis. In detail, WeSEER

uses concolic execution to run a web application’s unit

tests in order to extract transaction statements. WeSEER’s

concolic engine provides three interfaces: start concolic() ,

end concolic() , and make symbolic(variable) . To prepare unit

tests for concolic execution, programmers 1) use start concolic

and end concolic to wrap a code section where concolic exe-

cution should be enabled, and 2) use make symbolic(variable)

to mark inputs to web application’s API as symbolic.

We extend WeSEER’s concolic execution engine to dy-

namically track database operations (transaction begin/com-

mit/abort and SQL statements) and record them in traces

(Sec. IV-A). This dynamic approach allows us to sidestep

the opaqueness and complexity of ORM. During concolic

execution, WeSEER (1) marks the API inputs and SQL results

(which reflect the database state) as symbolic variables to track

their data flows; (2) records the execution’s control flow as

path conditions; (3) records the SQL statements (or templates)

and SQL parameters’ symbolic values. The resulting trace

represents all possible states of API input and database states

for the analyzed code path. They are then used by WeSEER’s

offline deadlock analyzer. Fig. 3 shows an example trace.

B. Fine-grained deadlock diagnosis using an SMT Solver

Given the traces of extracted transactions, the deadlock

analyzer aims to identify conditions that can lead to actual

deadlocks. In particular, WeSEER assumes fine-grained row-

level locking. It encodes transactions’ path conditions and

conflict information as first-order logic formula and uses an

SMT-solver to determine how deadlocks can arise.

Preliminaries on SMT solving. Satisfiability Modulo The-

ories (SMT) solvers [26]–[30] are tools for determining the

satisfiability of first-order logic formulas. For a given formula,

the SMT solver may output 1) SAT (satisfiable) together with

an arbitrary satisfying assignment of the formula’s variables, 2)

UNSAT (unsatisfiable), or 3) a timeout. Suppose the formula is

a conjunction of path conditions: (syma+1 �= 8)∧(syma > 3)
where symbolic alias syma is a variable. The SMT solver may

output the satisfying assignment syma == 4. If we change

the formula to (syma + 1 �= 8) ∧ (syma == 7), then the

SMT solver would return UNSAT. SMT solver and concolic

execution are usually used together [25]. SMT solver is used

to find a (concrete) satisfying assignment of program variables

among the possible states modeled by the recorded symbolic

expressions. WeSEER uses Z3 [27] for SMT solving.

WeSEER’s use of SMT for deadlock diagnosis. Like

existing approaches [12], [13], WeSEER’s deadlock analyzer

discovers potential hold-and-wait cycles by analyzing the

conflict pattern of transactions at the coarse-granularity of

tables (Sections V-A and V-B). However, unlike existing

work, we make WeSEER’s deadlock diagnosis more precise

by further checking the trigger conditions of these potential

deadlocks (Sec. V-C). To perform this check, the analyzer

Fig. 3: The runtime trace of Fig. 1’s finishOrder transaction’s API.
The trace contains 1) transaction-related information (SQL template
and parameters) and path conditions, 2) necessary information for
deadlock reporting, such as the mapping from reordered statement to
the code location (stack trace) of its triggering code. res4.row0.p.ID
is the p.ID column of Q4’s database result’s first row.

generates the conflict conditions for each conflict edge of

the hold-and-wait cycle including predicates constructed from

SQL parameters and query conditions (Sec. V-C4). Doing

so requires modeling which database index(es) may be used

for execution (Sec. V-C2) and how locks are acquired at the

granularity of rows (Sec. V-C3). The analyzer encodes the

conjunction of conflict conditions and path conditions related

to the hold-and-wait cycle into a first-order logic formula. The

formula is checked for satisfiability by an SMT solver. If the

solver reports SAT, then the analyzer confirms the deadlock

with a satisfying assignment of the API input and database

state that can be used to reproduce this deadlock. If the solver

reports UNSAT or timeout, then no deadlock is reported.

C. Mapping deadlocks to their triggering code

For preparing the deadlock diagnostic report, WeSEER’s

analyzer uses an ORM-aware tracking mechanism to map a

SQL statement to its triggering code. To do so, we model

ORM operations and handle them differently. Combined with

stack traces recorded during concolic execution, WeSEER

can identify the triggering code locations for SQL statements

involved in the deadlocks.

IV. MAKING CONCOLIC EXECUTION PRACTICAL FOR

COLLECTING TRANSACTION TRACES

It is non-trivial to apply concolic execution to modern web

applications because of their large and complex code base.

Each execution can encounter a large number of branches,

resulting in numerous path conditions. For example, executing

the unit test of Broadleaf ’s Ship API (shown in Table I)

results in 656K path conditions, which cause timeouts in SMT
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solvers. To simplify concolic execution, we observe that many

path conditions are unrelated to the application logic and can

be pruned. In particular, we find that the database driver, the

language’s built-in classes, and container classes contribute the

most to unnecessary path conditions. Thus, our main strategy

for simplification is to disable concolic execution and only

rely on concrete execution when running the functions of

these libraries and classes. If the “ignored” function takes a

symbolic input, the engine generates a new symbolic variable

to represent its output. There are no path conditions that

relate the function’s input and output symbolic variables. After

simplification, the number of path conditions of Broadleaf ’s

Ship API’s unit test is reduced from 656K to 2.7K.

A. Handling Database Driver Functions
Database drivers send SQL statements to the database and

parse query results. Their internal logic is not related to

the application logic and should be ignored for concolic

execution. However, the trace collector needs to track their

use to record transactions’ life cycles and SQL statements.

Our trace collector works for the popular ORM (JDBC [31]

and ODBC [32]), and handles four kinds of database driver

functions: (1) Functions that start and finish a transaction.

WeSEER monitors them to infer each transaction’s life cycle.

(2) Functions that prepare SQL statements using the input SQL

templates and parameters. WeSEER records the SQL templates

and (symbolic) SQL parameters passed to the preparation

methods. WeSEER also associates the prepared SQL statement

with its corresponding transaction. (3) Functions that submit

the SQL statements and return an object representing the

database result. Once these methods are called, the correspond-

ing SQL statement’s information is recorded into the trace.

(4) Functions that retrieve the values from a given database

result object. WeSEER assigns symbolic aliases to their return

values, representing the fetched database state.

B. Handling Built-in classes
WeSEER’s concolic execution engine works for Java whose

language built-in classes include String and BigDecimal (high-

precision number). Their implementation’s internal logic is

complex, causing numerous path conditions under concolic

execution. Instead of completely ignoring them, we model the

semantics of String and BigDecimal by approximating them

using simpler alternatives. In particular, we model BigDecimal

as Z3’s floating numbers because float numbers are capable

of supporting the numeric ranges used in the unit tests. In

other words, our execution engine maps the functions of high-

precision numbers to corresponding float number operations.

Likewise, we model Java String as Z3’s string [33], [34].

C. Handling Container classes
Container classes, such as Map (key → value) and Set

(key → key) are a special case of the languages’ built-in

classes that establish a mapping from key to value. They have

various implementations, such as hash table-based and tree-

based implementations. The hash function and traversal of

trees may introduce lots of unnecessary path conditions.

Algorithm 1: Handling map.

1 PC // The global path conditions
2 arrId // The map’s unique id corresponding to a Z3 array
3 keyOf // The map’s mapping from its value to key
4 get(key, retV alue):
5 if retV alue �= null:
6 PC.append(“key = keyOf[retV alue]”)
7 return true
8 else
9 PC.append(“read(arrId, key) = False”)

10 return false
11
12 put(key, value, retV alue):
13 if get(key, retV alue):
14 keyOf.remove(retV alue)
15 else
16 PC.append(“write(arrId, key, T rue)”)
17 keyOf[value]← key
18
19 remove(key, retV alue):
20 if get(key, retV alue):
21 PC.append(“write(arrId, key, False)”)
22 keyOf.remove(retV alue)

1) Intuitive approach for containers
Intuitively, we can model the containers as Z3 [27]’s array

theory [35]. Z3’s array theory exposes the array read and

write operations, v ← read(A, i) and A′ ← write(A, i, v).
The term A and A′ means the symbolic array, i means the

symbolic (or concrete) index, and v means the symbolic (or

concrete) value being read or written. Besides, these operations

are recorded as path conditions for each symbolic array access,

enlarging the number of states for SMT solving. As the

value v might be an object rather than a primitive, all the

fields of the objects need to be recorded. Web applications’

heavy use of complex objects, which contains numerous fields,

makes the problem more serious. Our observation of the web

applications’ use of containers leads us to avoid such complex

handling of symbolic objects and containers (object arrays).

2) Handling the containers
For symbolic containers, we observe that there exist one-to-

one mappings for their key and value. For example, the ORM

caches are map from persistent objects’ unique keys to the

objects themselves. set’s key and value are equivalent and thus

have one-to-one mapping. Therefore, only the keys need to be

recorded for each symbolic array access, as one unique key is

binding to its value. The containers are uniformly encoded as

Z3’s array<KeySort, Bool>, where KeySort can be Int,
Float, or String, and Bool represents the existence.

Alg. 1 describes how we generate path conditions for

map’s methods, where key and value are the parameters and

retV alue is the return value. If key exists, then retV alue
must be previously put into the map . Due to the one-to-one

mapping, we record the certain constraint into path condition

(Line 6), where keyOf maintains the mapping from value to

its corresponding key. Otherwise, we record the non-existence

of key in the arrId’s Z3 array (Line 9). Further, get is

reused by put and remove to determine the existence of key
(Lines 13 and 20). For put operation, if key already exists,
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the old value retV alue is removed from keyOf (Line 14).

Otherwise, we record that key exists in arrId’s Z3 array

(Line 16). Finally, keyOf is updated accordingly (Line 17).

For remove operation, if key exists, the existence of key and

keyOf’s retV alue entry should be cleared (Line 21).

V. THE DEADLOCK ANALYZER

Similar to existing works [12], [13], WeSEER uses a graph-

based deadlock detection algorithm. The key difference is that

WeSEER identifies potential conflicts in a more fine-grained

manner: it gives more precise conflict conditions under which

deadlocks occur, reducing the high false positive rates of

coarse-grained approaches used by existing works.

A. SC-Graph and Deadlock Cycle

Before describing the fine-grained deadlock detection algo-

rithm, we first introduce the SC-Graph and how a deadlock

cycle is found. In WeSEER’s SC-Graph, each vertex is one

SQL statement of a given transaction instance, assumed to

execute atomically. There are two kinds of directed edges. The

S(ibling)-edges connect consecutive SQL statements from the

same transaction instance in the chronological execution order.

The two-way C(onflict)-edges connect SQL statements from

different transaction instances if they have potential conflicts

(e.g., they access the same table and at least one is write). One

directed cycle in the SC-Graph corresponds to one hold-and-

wait cycle among involved transactions. The directed cycles

indicate potential deadlocks and thus are called deadlock

cycles. Fig. 4 shows an example SC-graph of finishOrder

transaction’s (Fig. 1) two instances. Considering the deadlock

cycle [ins1.Q4→ins1.Q6→ins2.Q4→ins2.Q6], both instances

hold shared locks on Product table and try to obtain exclusive

locks on the same table. Thus, they may result in a deadlock.

Traditional SC-graph is coarse-grained as the C-edges are

established if two SQL statements access the same table and

at least one is write. Reporting deadlocks based on a coarse-

grained SC-graph can have two problems: (1) The coarse-

grained SC-graph’s inaccuracy. The potential conflicting state-

ments in reported cycle may not access the same database

row at runtime. (2) The SC-graph alone is not enough. Some

potential deadlocks may be impossible as the SQL parameters

might be against the path conditions. Thus, deadlock diagnosis

based on coarse-grained SC-graph has the problem of high

false-positive rates.

We propose two approaches to solve the above problems

separately and consequently reduce the false-positive rate.

First, we adopt a fine-grained database lock modeling to

establish C-edges in finer granularity. A C-edge is established

between two SQL statements if and only if their conflict

conditions (generated by the fine-grained database lock mod-

eling) can be satisfied. Second, we encode both the conflict

conditions and path conditions into a first-order logic formula

and feed it into the SMT solver. Only when the solver returns

SAT, do we consider a deadlock to have been found.

Fig. 4: The SC-graph of two instances of the finishOrder transaction
in Fig. 1. The instance 2’s statements are simplified.

B. Three-Phase Deadlock Diagnosis

The intuitive approach is to construct a large SC-Graph in-

volving transactions of all collected traces and then encode (1)

the cycle detection problem, (2) conflict conditions between

every pair of SQL statements, and (3) all path conditions

into a first-order logic formula. If the solver reports SAT for

the formula, then one potential deadlock is found. However,

this brute-force approach significantly increases the time for

solving due to the excessive number of conditions considered.

WeSEER proposes a novel three-phase deadlock diagnosis

method to efficiently detect deadlock cycles. In the early

phases, WeSEER applies coarse-grained but efficient algo-

rithms to filter out most impossible deadlock cases. In the

later phases, WeSEER applies more fine-grained but costly

detection algorithms to diagnose deadlocks accurately among

the remaining cases. Fig. 5 shows the procedure. The deadlock

analyzer passes all the traces to the first phase and initiates the

diagnosis. Each collected trace has two instances, representing

the concurrent execution of the same API.

The Transaction-Level Phase adopts the most coarse-

grained algorithm to identify transactions that may cause po-

tential deadlocks. It analyzes the tables accessed by the trans-

actions and builds a transaction conflict graph, where vertexes

represent transactions. A directed edge is established between

two transactions if at least one writes a common table the

transactions access, representing potential conflicts between

them. Directed cycles in the graph are termed transaction

conflict cycles. This phase filters combinations of transactions

that cannot form transaction conflict cycles. As no circular

waits exist in such combinations, they cannot cause deadlocks.

The Coarse-Grained Phase builds a coarse-grained SC-

graph for transactions in every input transaction conflict cycle

and detects all coarse-grained deadlock cycles (mentioned in

Sec. V-A). For each coarse-grained deadlock cycle, WeSEER

filters out statements not connected by C-edges (e.g., Q5 in

Fig. 5(b)) because they do not contribute to the deadlocks,

reducing the number of statements to process in the following

phase. Then, we feed the simplified coarse-grained deadlock

cycles to the next phase as input.

The Fine-grained Phase applies the most accurate algo-

rithm. It leverages fine-grained database lock modeling to

generate conflict conditions for all C-edges in the input coarse-

grained deadlock cycle. Then, it prepares the path conditions

recorded before each transaction’s last statement in the cy-
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Fig. 5: WeSEER’s three-phase deadlock diagnosis. In the transaction-level phases, the transactions are represented as gray vertexes, and each
bi-directional arrow corresponds to two directed edges established between two conflicting transactions. The mirror edges are omitted. For
example, as there are edges between B1.Tx1 and A1.Tx2, the edges between B1.Tx1 and A2.Tx2 are omitted. In the coarse-grained
phase, WeSEER builds the SC-graph and finds coarse-grained deadlock cycles for input transaction conflict cycles. In the fine-grained phase,
WeSEER encodes the conflict conditions and path conditions and leverages the SMT solver to identify potential deadlocks.

SELECT . . . FROM tab alias1 [ JOIN tab aliasn ON ...]∗

WHERE ...

UPDATE tab SET col1 = . . . [, coln = . . . ]∗ WHERE ...

INSERT INTO tabVALUES (param1, . . . , paramn)

DELETE FROM tabWHERE ...

Fig. 6: The syntax of statements WeSEER supports.

cle. The subsequent path conditions are omitted as they are

recorded after the code location where potential deadlocks may

occur. Finally, it conjuncts all generated conflict conditions and

prepares path conditions into a first-order logic formula. We

feed this formula to the SMT solver. A potential deadlock is

found if the solver reports SAT.

C. Fine-Grained Database Lock Modeling

To give precise conflict conditions between two statements

with potential conflicts, WeSEER models the database locking

procedure to describe the conflicts between SQL statements

in a fine-grained manner. As a representative set of database

systems (such as MySQL, PostgreSQL, etc.) acquire locks

during database index (or index, for short) traversing, we

decide to model database locking by simulating the indexing

procedure. WeSEER first analyzes given statements to infer

all possible database indexes to be used. Then, it models

database lock acquiring accordingly. Two SQL statements have

potential conflicts if and only if there exists a pair of their

locks that have potential conflicts. Finally, based on the above

conflicting locks, we generate the conflict condition between

two potentially conflicting SQL statements.

1) The target SQL statements
Fig. 6 gives the SQL syntax that WeSEER currently sup-

ports. tab means the table, alias is the table alias, col is

the table column; param represents the SQL parameters. The

statements’ query conditions are the conjunction of predicates

in the Join and Where clauses. Fig. 7 shows the grammar

of query conditions (Qcond), which is the conjunction of

conditions related to indexes (Icond) and conditions unrelated

to indexes (Ncond). We say a condition (or predicate) is

related to an index if contains table columns indexed by that

index. Variable(var) represents either SQL parameters or pairs

of table aliases and columns.

Qcond ::= Icond ∧ Ncond

, Icond ::= Icond ∧ Exp |Exp

Ncond ::= Disj

Disj ::= Disj ∨ Conj |Conj

Conj ::= Conj ∧ Term |Term

Term ::= id is null |Exp

Exp ::= ArithExp |StrExp

ArithExp ::= var NumOp var

| var NumOp number

StrExp ::= var StrOp var

| var StrOp string

NumOp ::= �= | = | < | > | >= | <=

StrOp ::= �= | =

Fig. 7: The grammar of query conditions WeSEER supports.

2) Inferring the database indexes to be used
Databases leverage indexes to fetch data and acquire locks

accordingly. We use the term index(table, type, columns)
to represent a database index, where table is the index’s

corresponding table, type is the index type (pri for the primary

index, sec for the secondary index), columns is the set of data

columns indexed by the index. If no indexes are used, the

database will scan the whole table. WeSEER needs to infer

all possible indexes to analyze how locks are acquired.

When a SQL statement tries to access data, it is pos-

sible that not all target tables’ indexes are used. The rea-

son is that databases prefer fetching data with indexes

to scanning the whole table for efficiency. Taking Q4 (in

Fig. 1) as an example. The database tends to first use

index(OrderItem, sec,O ID), as Q4’s Where clauses con-

tain predicates related to this secondary index. Then, it fetches

data for Order and Product tables with their corresponding

indexes. Note that index(OrderItem, sec, P ID) will not be

used. Otherwise, the database has to scan Product table first

to prepare input corresponding to OrderItem.P ID column.

To find such preferred indexes and predicates, we present a

graph-based algorithm. The index usage graph is constructed

for each SQL statement. One vertex is created for each unique

SQL parameter or table alias in the statement. One directed

edge represents the database that can use the SQL parameters

or table data of its source vertex to access its target vertex’s

table leveraging the given index. The edges correspond to one

pair of the index and predicates related to the index. They

are established only when the statement’s query conditions

are related to their corresponding indexes. Fig. 8 shows Q4’s

index usage graph. Since predicates p2 and p3’s variables

correspond to the indexed table column, we establish two

directed edges for each of them. As one of p1’s variables is
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Fig. 8: The index usage graph for Q4 in Fig. 1. p1, p2, and p3 are
predicates of Q4’s Join and Where clauses. Each edge is tagged with
its database index and related predicates. The red edges represent all
possible database indexes for Q4.

the SQL parameter, we establish only one directed edge from

order id to oi . This algorithm can also be applied to UPDATE

and DELETE statements as they have Where clauses. INSERT

statements’ query conditions can be treated as equations on

inserted database rows’ primary keys.

Through topologically sorting the given statement’s index

usage graph, the sequences of indexes used for data fetching

are generated. Because an index can be used when its input

data is available and SQL parameters are always available, the

topological sorts should start from vertexes of SQL parame-

ters. Considering the index usage graph in Fig. 8, it has two

possible topological sorts starting from order id : order id →
oi → o → p and order id → oi → p → o . By enumerating

the edges used in the topological sorts, we collect the possible

indexes with the predicates related to them, shown in red.

3) Generating the locks to be acquired
WeSEER generates all possible locks for each given SQL

statement. One lock contains (1) index for locking (index), (2)

lock granularity (ROW , RANGE, TABLE), (3) whether

it is shared (S) or exclusive (X), and (4) predicates (cond)

for range locks. Alg. 2 shows how to generate the locks. As

lock conflicts always happen on the commonly accessed table,

Alg. 2 generates locks only for the common (or target) table.

GenSharedLocks generates shared locks. Input isEmpty
means whether the statement fetches an empty result. The

algorithm first infers all pairs of sql’s possible indexes and re-

lated predicates. For every pair containing indexes of the target

table, it generates shared locks accordingly. Row/range locks

are acquired for unique or non-unique indexes. Meanwhile, for

secondary indexes, an extra row lock is acquired to protect

the fetched row on the primary index. When no data rows

are fetched, range locks are acquired to protect empty read

sets. Note that table-level locks are acquired when no indexes

are used. GenExclusiveLocks generates exclusive locks for the

input SQL statement and the target table. WeSEER assumes

the database executes UPDATE/INSERT/DELETE statements

by selecting database rows first and then acquiring exclusive

locks for target rows. It generates exclusive locks for each

updated row on the primary index and the secondary indexes

whose related table columns are modified accordingly. After

then, WeSEER compares two SQL statements’ locks and infer

potential conflicts between them. If the two SQL statements

have locks on the same database index and at least one of the

locks is exclusive, then the statements have potential conflicts.

Algorithm 2: Generate locks.

1 GenSharedlocks(sql, targetTable, isEmpty):
2 indexPredPairs← InferPossibleIndexes(sql)
3 locks← empty set
4 foreach index, preds pair in indexPredPairs:
5 if index.table �= targetTable:
6 continue
7 if not isEmpty: // when there exist rows fetched
8 if index is unique:
9 if preds represents a point query:

10 locks.add(index,ROW,S)
11 else:
12 locks.add(index,RANGE,S, preds)
13 if index is secondary:
14 pindex← primary index of index.table
15 locks.add(pindex,ROW,S)
16 else: // when no rows are fetched
17 locks.add(index,RANGE,S, preds)
18 if locks is empty: // No indexes are used
19 locks.add(NULL, TABLE, S)
20 return locks
21
22 GenExclusivelocks(sql, targetTable):
23 locks← empty set
24 pindex← primary index of targetTable
25 locks.add(pindex,ROW,X)
26 foreach index written by sql:
27 if index is unique:
28 locks.add(index,ROW,X)
29 else:
30 locks.add(index,RANGE,X,NULL)
31 return locks

4) Generating the conflict conditions
For potentially conflicting SQL statements, WeSEER gen-

erates their conflict conditions. If the conflict conditions are

satisfied, then WeSEER confirms the deadlock related to

the statements. Alg. 3 describes how to generate conflict

conditions. The basic idea is assuming a database result (r),

such that one database row in r satisfies both sqlw’s and sqlr’s

query conditions. Assuming that sqlw is the UPDATE/IN-

SERT/DELETE statement, while sqlr can be any statement.

Unfortunately, we cannot naively treat the conjunction of

sqlw’s and sqlr’s query conditions as the conflict condition

because their variables’ naming is not unified. For example,

Q4 and Q6 both access Product table, and use different

names p.ID and ID (no table alias is used for Q6) for the

same table column. Thus, we unify sqlw’s and sqlr’s query

conditions and then conjoin them. The unifying procedure

of sqlr (GenUnifiedCondForRead in Line 5) associates every

identifier in sqlr’s query conditions with r. For example, in the

unified query condition of Q4, p.ID is replaced with r.p.ID ,

which is a variable corresponding to ID column of database

result r’s table alias p. The unifying procedure of sqlw
(GenUnifiedCondForWrite in Line 6) requires more steps. As

sqlr may have multiple table aliases of the common table, sqlw
needs to generate one unified query condition for every sqlr’s

table alias. Then, the disjunction of these conditions is returned

as sqlw’s final unified query condition. Assuming sqlr has two

table aliases p1 and p2 related to table Product , the unified

query condition of Q6 is (r.p1.ID = ...) ∨ (r.p2.ID = ...).
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Algorithm 3: Generate conflict conditions.

1 GenConflictCond(sqlw, sqlr, isEmptyr):
2 r ← symbol of unified database row
3 comTable← the commonly table of sqlr and sqlw
4 aliases← all sqlr’s table aliases related to common table
5 conflictCond← GenUnifiedCondForRead(sqlr, r)
6 ∧ GenUnifiedCondForWrite(sqlw, r, aliases)
7 ∧ GenAssociatedCond(r, sqlr.res)
8 locksw ← GenExclusiveLocks(sqlw, comTable)
9 locksr ← GenSharedLocks(sqlr, comTable, isEmptyr)

10 foreach range lock lr in locksr:
11 if exists lw in locksw such that lr.index = lw.index:
12 rangeCond← GenRangeConflictCond(lr, r)
13 conflictCond← conflictCond ∨ rangeCond
14 return conflictCond
15
16 GenRangeConflictCond(lockr, r):
17 transfer lockr.cond to rangeCond with following steps:
18 “var = exp” to “var ≥ exp ∧ var ≤ exp”
19 “var �= exp” to “var < exp ∨ var > exp”
20 “var < exp” to “var ≤ varg ∧ exp ≤ varg”
21 “var ≤ exp” to “var ≤ varg ∧ exp < varg”
22 “var > exp” to “var ≥ varl ∧ exp ≥ varl”
23 “var ≥ exp” to “var ≥ varl ∧ exp > varl”
24 rangeCond← GenUnifiedCondForRead(rangeCond, r)

25 return rangeCond

Further, we need to associate the assumed database result

r with sqlr’s database result sqlr.res collected at runtime

(e.g., Q4’s res4). GenAssociatedCond generates the associ-

ated condition between r and sqlr.res, representing that there

exists one row (row) in sqlr.res, such that all columns in

r have the same value with corresponding columns in row.

After unifying sqlr’s and sqlw’s query conditions and the

associating condition between r and sqlr’s database results,

their conjunction is treated as the conflict condition.

The current conflict conditions do not consider range

locks [36], such as gap locks and next-key locks commonly

used in commercial databases [37], [38]. Range locks’ protec-

tion ranges depend on the runtime database state. Thus, the

SQL statements’ query conditions may not precisely indicate

the actual protection range of range locks.

We observe that the actual protection range is always the

superset of the range lock’s condition. Therefore, if sqlw
writes a database row within the enlarged range of the given

range lock’s condition, then one potential conflict exists.

GenRangeConflictCond in Alg. 3 generated conflict conditions

for a shared range lock lockr. Note that lockr.cond is the

conjunction of predicates related to lockr.index, it can be

parsed to predicates in the form of var op exp, where var
is the variable representing columns related to lockr.index,

op can be <, >, ≤ and ≥, and exp can be any expression.

The equality and inequality operators are also supported by

transferring them to equivalent expressions containing <, >,

≤, and ≥. Given one expression indicating a range, the

algorithm extends its protection ranges by replacing exp with

a new variable varg or varl (where varg > id and varl < id).

Take the condition id > 4∧id ≤ 8 as an example, its enlarged

expression is id ≥ varl∧4 ≥ varl∧id ≤ varg∧8 < varl. The

range of id specified by the original condition is (4, 8], while

the enlarged range is [varl, varg), where 4 ≥ varl∧8 < varl.
To generate sqlr’s conflict conditions related to range locks,

we find all sqlr’s possible shared range locks that may conflict

with sqlw’s exclusive locks (Lines 10-13) and disjoin their

conflict conditions (generated by GenRangeConflictCond in

Line 12) with the origin conflict condition. The disjoined

conditions serve as the final conflict conditions returned by

GenConflictCond . Fig. 9 uses an example illustrating how

WeSEER’s SMT Solver-based deadlock analyzer works.

D. Discussion

We now discuss WeSEER’ limitation in terms of how its

design choices can miss deadlocks (false negatives) or report

deadlocks that can never be triggered (false positives).

False negative. WeSEER uses the test cases written by

developers to collect transaction traces. As the test cases do not

cover all code paths of the target web application, WeSEER

can miss deadlocks hidden in paths unexplored by the test

cases, thus resulting in false negatives.

WeSEER’s concolic execution engine cannot comprehen-

sively capture transaction traces and their path conditions if

they depend on shared variables whose values are affected by

thread interleaving. As the concolic execution engine does not

explore all thread interleaving, false negatives can occur.

For lock modeling, WeSEER assumes that databases prefer

using indexes to full table scans. However, this assumption

may fail: a full table scan is preferred when the query is not

selective enough, causing WeSEER to miss a deadlock and

thus incur false negatives.

False positive. Developers may sometimes use ad-hoc trans-

actions that rely on application-level synchronization mecha-

nisms to prevent database deadlocks [5]. As WeSEER does

not take into consideration application-level synchronization,

it is possible that deadlocks reported by WeSEER will not take

place at runtime, thus resulting in false positives.

For lock modeling, WeSEER assumes that databases use

all possible join orders if multiple ones exist for one SQL

statement. In reality, however, the database can choose the

most effective one. Therefore, WeSEER may wrongly assume

that some database indexes are used and thus report a deadlock

that cannot happen, leading to false positives.

As part of future work, we believe WeSEER can be im-

proved in two ways. First, we can remove the false positives

and false negatives resulting from inaccurate lock modeling.

In particular, WeSEER can query the database for its concrete

execution plan on a given SQL statement. Such functionalities

exist in many commercial and open-source databases [39]–

[41]. The concrete execution plan contains sufficient infor-

mation to determine whether and how database indexes are

used for a particular SQL statement, thereby avoiding incorrect

assumptions on indexes used when modeling locking. Second,

we can develop a framework to automatically reproduce the

deadlocks according to WeSEER’s report. Doing so helps

eliminate all false positives and removes the burden on de-

velopers to manually verify reported deadlocks.
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Fig. 9: An end-to-end example demonstrating how WeSEER encodes the conflict conditions and path conditions for the deadlock cycle in
Fig. 5(c). For the C-edge between trace A1’s statement A1.Q4 and trace A2’s statement A2.Q6, we show the unified query conditions for
the SELECT statement (in blue) and the UPDATE statement (in red), where r1 and r2 are the assumed database results for unifying. The
associated condition (in green) between r1 and A1.res4 (database result of A1.Q4) is also presented. Symbolic values are associated with
their trace ID for distinction (e.g., order id in A1.Q4 is replaced with A1.order id). As the locks do not contain potentially conflicting
range locks, no conflict conditions for range locks are required. Then, WeSEER conjoins the conflict conditions of both C-edges and the
path conditions until the last involved SQL statement (A1.Q6 and A2.Q6) of both traces. The resulting formula is fed to the SMT solver,
and an SAT result is returned, which means the input deadlock cycle is confirmed to be a deadlock.

VI. MODELING THE ORM TO MAP STATEMENTS TO

TRIGGERING CODE

WeSEER reports information to help developers understand

how the applications cause deadlocks. We try to establish the

mapping from SQL statements to their triggering code. We an-

alyze different ORM operations and handle them accordingly.

First, the ORM operations can be eager or lazy ones: Those

eager operations send SQL statements immediately. Therefore,

WeSEER directly records the current stack trace for SQL

statement submission inside eager operations; Lazy operations

buffer the SQL statements and send them when needed,

which can be divided into lazy read and lazy write ones.

Read operations may return objects which are dynamically

generated for lazy read operations. When these objects are

first accessed, the ORM sends SQL statements and loads the

database results into these objects. As the SQL statements

are sent immediately before the objects are used, the code

that accesses them can be treated as their triggering code.

Therefore, WeSEER records the current stack trace for any

SELECT statements, no matter they are eager or lazy.

Lazy write operations can be further classified into explicit

and implicit ones. The ORM delays the submission of SQL

statements triggered by explicit lazy write, until the transaction

commits or the application forces flushing. The remaining

problem is how to associate the operations with corresponding

SQL statements. With the observation that a well-developed

ORM framework should have internal helper functions that

translate given persistent objects to corresponding SQL state-

ments. We specially handle these functions to associate the

persistent objects with their corresponding SQL statements.

Consequently, the mapping from the explicit lazy write oper-

ations to corresponding SQL statements can be established.

The remaining implicit lazy write operations are triggered

when the application modifies in-memory persistent objects

returned by ORM read operations. WeSEER tracks all per-

sistent objects returned by ORM read operations and records

the stack trace of the last modification to them. Therefore, the

mapping from the invocations of implicit lazy write operations

to corresponding SQL statements is also established.

VII. EVALUATION

A. Implementation

We implemented WeSEER’s concolic execution engine or

trace collector based on the HotSpot VM of OpenJDK8 [43].

We implement the deadlock analyzer with Java and use

Microsoft’s Z3 [44] of version 4.8.14 as the SMT solver.

Although WeSEER currently targets Java web applications, we

believe WeSEER’s design is general because it does not exploit

the properties of any specific programming languages, ORM

frameworks, web applications, or database drivers. WeSEER

can diagnose deadlocks of web applications written by pro-

gramming languages other than Java, as long as we implement

WeSEER with target languages’ concolic execution engines.

B. Experimental setup

Hardware Configuration. Three machines are used, each

of which is equipped with two 10-core Intel Xeon E5-2650

processors, 64 GB of RAM, and an Intel X520 10GbE NIC.

They are dedicated as the web, database, and client server.

Web Applications and Database. We diagnose two pop-

ular Java E-commerce web applications in the GitHub. One

application is Broadleaf [17] (version broadleaf-6.0.9-GA ),

and we choose its official Java demo website [45] (version

broadleaf-6.0.9-GA ) as the front-end. The other application is

Shopizer [18] (version 2.12.0 ), which contains the front-end

in the same code repository. Broadleaf has 1.5K GitHub stars
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TABLE I: The target APIs’ information. As Broadleaf and Shopizer provide different forms of input, only common and representative inputs
are shown. Shopizer does not contain Payment API.

API Name API Description Input description Times in
Broadleaf

Times in
Shopizer

Register Register one user username, email, password, password for confirmation 1 1
Add Add one product to cart userId, productId 3 3
Ship Edit user’s shipment information userId, shippment address, phone number, ... 1 1

Payment Edit user’s payment information userId, payment address, phone number, ... 1 -
Checkout Checkout the order userId 1 1

TABLE II: Deadlocks found by WeSEER [42]. Description and fixing approaches of involved API and transactions are provided. Deadlocks
(d3, d4), (d5, d6), (d7∼9), (d12, d13), and (d14∼16) can be prevented by the same fixing approach, respectively.

App. Id. Deadlock APIs Descriptions of deadlock-prone Txn App-level fixing approaches

Broadleaf

d1 Register — Register Create a new user f1: Use correct ORM operation
d2 Add2 — Add2 App-level locks protecting cart f2: Use MySQL UPSERT mechanism

d3, d4 Add2,Add3 — Add2,Add3 Create a new order item f3: Separate SELECT from original transaction
d5, d6 Add2,Add3 — Add2,Add3 Create order and fulfillment items f4: Move forward ORM flush
d7, d8 Add2,Add3 — Add2,Add3

Calculate shopping cart’s price f5: Separate SELECT from original transaction
d9 Add2,Add3 — Ship

d10 Ship — Ship Create address information f6: Reorder SQL statements
d11 Ship — Ship Calculate shopping cart’s price f7: Separate SELECT from original transaction

d12, d13 Ship — Ship Calculate shopping cart’s price f8: Separate SELECT from original transaction
d14 Ship,Checkout — Ship,Checkout Price the order’s products

f9: Force serial execution with app-level locks

Shopizer

d15 Ship,Checkout — Checkout Price/Commit the order’s products
d16 Checkout — Checkout Commit the order’s products

d17
Checkout —

Add2,Add3,Ship,Checkout
Commit/Price the order’s products f10: Ensure the same locking order

d18
Checkout —

Add2,Add3,Ship,Checkout
Commit/Read the cart’s products f11: Ensure the same locking order

and 190K LOCs, while Shopizer has 2.7K starts and 92K

LOCs. Both applications’ ORM framework is Hibernate [7]

(version 5.2.17 ). The database is MySQL 5.7.25 .

The deadlock diagnosis is not completely free because we

are not the target web applications’ developers. It still takes

lots of effort to analyze both web applications, considering

their large codebases. We have to 1) understand the application

logic, 2) reproduce reported deadlocks, 3) propose fixing

approaches, and 4) write performance evaluations. We believe

this effort is acceptable for web application developers.

Workload. Our target workload uses multiple clients se-
quentially issuing HTTP requests to invoke APIs shown in

Table I, simulating one customer who uses browsers to access

the web applications. Note that Add is invoked three times,

and each invocation runs different code paths due to different

database states. We use Add1 , Add2 , and Add3 to distinguish

them. We sequentially run one unit test for each API in Table

I for trace collection. The former unit test’s database state after

execution is used as the next one’s initial database state. We

also use the coarse-grained approach of STEPDAD [12] and

REDACT [13] for deadlock diagnosis. However, the approach

is impractical, as it outputs 18,384 hold-and-wait cycles among

the transactions provided by WeSEER’s trace collectors.

C. Diagnosing and Fixing Deadlocks

After checking the deadlocks reported by WeSEER, we

manually confirm 18 deadlocks (shown in Table II) and

propose the fixing approaches.

1) Deadlocks in Broadleaf
All Broadleaf ’s deadlocks are due to the pattern that range

locks of some transactions’ SELECT statements block the

other’s INSERT. For d1, the deadlock-prone transaction uses

the wrong ORM operation merge to insert new database

rows. The merge operation issues one SELECT statement

followed by one INSERT statement and thus may cause

deadlock. We fixed this deadlock by replacing merge with

persist , which issues one INSERT statement only. As the

application doesn’t use eliminated SELECT statements, this

solution doesn’t change application semantics.

For d2, the deadlock-prone transaction first checks the

existence of one target database row. If the row exists, the

transaction updates it. Otherwise, it inserts a new row. When

the target row does not exist, a range database lock is acquired,

and the deadlock is possible to occur. We leverage MySQL’s

UPSERT mechanism [46] to replace the transaction logic with

a semantically equivalent SQL, and thus avoid the deadlock.

For d3∼d4, d7∼d9, and d11∼d13, all the deadlock-prone

transactions of issue SELECT statements first. These state-

ments may return empty results and acquire range locks, which

unnecessarily block the other transactions’ insertion. To avoid

such deadlocks, we modify the application so that these state-

ments are issued in a separate transaction from the deadlock-

prone transaction. As Broadleaf uses application-level locks to

protect consistency, this approach has no correctness issues.

For d5 and d6, the deadlock cycles are formed due to the

statements reordering caused by ORM write-behind cache. We

move forward an ORM flush and thus avoid the deadlocks. As

this approach does not modify the statements, it is correct.

For d10, the deadlock-prone transaction scans target address

information and then inserts new information into the same

table. Range locks acquired by the scan can cause deadlocks.

We rewrite the transaction to a semantically equivalent one,

which inserts first and then scans, avoiding the deadlock.

2) Deadlocks in Shopizer
All the deadlocks in Shopizer are caused by accesses to

the Product table. For d14∼d16, all deadlock-prone transac-
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Fig. 10: Performance impact of Broadleaf’s deadlocks.
TABLE III: Time (milliseconds) spent by different JDK versions for
executing unit tests of Broadleaf .
JDK Version Register Add1 Add2 Add3 Ship Payment Checkout
Original 9 822 117 107 211 114 103
Interpretive 42 6953 1062 1070 3062 1328 1391
Interpretive+Concolic 147 43409 5079 4842 17231 7196 6336

tions read-modify-write common database rows and can cause

deadlocks. We use application-level locks to enforce the serial

execution of these transactions, preventing deadlocks. For

d17 and d18, Checkout’s deadlock-prone transactions update

multiple database rows in Product table, which are concur-

rently accessed by other transactions. If they access common

database rows in different orders, deadlocks occur. We fix the

deadlocks by enforcing the transactions to access the common

rows in the same order. The above two approaches do not

modify SQL statements and thus are correct.

D. The Performance Evaluation
Figures 10 and 11 shows the performance after we manually

fix the deadlocks. The “enable all”/“disable all” legends mean

that all fixing approaches are enabled/disabled. For each appli-

cation, we disable one fixing approach each time and enable

the rest to show the performance impacts. Comparing “enable

all” and “disable all”, 39.5× and 4.5× performance improve-

ment are achieved for Broadleaf and Shopizer , respectively.

After deadlocks are fixed, the database server’s CPU resources

are saved due to fewer transaction aborts. For example, the

number of transaction aborts per second reduces from 904

(“disable all”) to 0 (“enable all”), for the 128-client Broadleaf

experiment. The result shows that fixing the deadlocks can

achieve performance similar to or better than that of leaving

them handled by databases. Further, no deadlocks are triggered

for “enable all”, showing the effectiveness of WeSEER’s

deadlock diagnosis and our deadlock fixing approach.

E. The Concolic Excecution Overhead
This section presents the overhead for concolic executing

Broadleaf ’s unit tests. For development ease, the concolic

execution engine is based on the interpretive execution version

of OpenJDK8’s HotSpot VM, which disables performance op-

timization such as the JIT compiler. We evaluate the execution

time of the original JDK version (Original), the interpretive

execution JDK version (Interpretive), and the concolic exe-

cution JDK version (Interpretive+Concolic). Table III shows

the result. As WeSEER requires executing each unit test only

once, we consider the second-level overhead acceptable.

VIII. RELATED WORK

Language-level deadlock. There are numerous works tar-

geting solving language-level deadlocks. They cannot be di-

rectly applied to handle deadlocks of database lock due to
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Fig. 11: Performance impact of Shopizer’s deadlocks.

the mismatched abstraction (lock/unlock V.S. SQL). Model

Checking [47] can enumerate all possible code paths but is too

costly for large-scale applications. Static analysis [48] cannot

be applied to ORM-based web applications, as SQLs are

generated dynamically. WeSEER uses the dynamical deadlock

cycle detection similar to [49]–[51]. Deadlock Immunity [52],

[53] uses runtime-collected information to prevent deadlocks.

Deadlock of database lock. REDACT [13] is a deadlock

prevention tool that provides deadlock immunity [52] for

database deadlocks. It records the potential deadlock cycles

and prevents them from occurring at runtime. STEPDAD [12]

is a test case generation tool. It intercepts the database drivers

to increase the probability of concurrent execution of state-

ments belonging to the same deadlock cycle. However, they

cannot be applied to the problem studied by WeSEER due to

the challenges described in Sec. II-C. Tang et al. [5] study

ad hoc transactions written by developers on the application

side. They summarize the data access patterns causing dead-

locks and how application-level locks help prevent deadlocks.

Qiu et al. [6] do a survey on deadlocks of database-backed

applications. They study how deadlocks are caused inside the

database and summarize the common deadlock patterns.

SC-graph. SC-graph originally aims for transaction chop-

ping [54] . Many existing works [14]–[16], [55]–[57] use SC-

graph to design high-performance concurrency control, while

WeSEER uses SC-graph for detecting deadlock cycles and

applies conflict conditions to the SC-graph’s C-edges.

IX. CONCLUSION

We present WeSEER, the first tool which uses information

collected by concolic execution and fine-grained database lock

modeling for deadlock diagnosis. Thus, WeSEER supports

large-scale ORM-based web applications. WeSEER diagnose

18 real-world deadlocks in large-scale Java web applications,

Broadleaf and Shopizer. Compared to MySQL, manually fix-

ing these deadlocks achieves up to 39.5× and 4.5× perfor-

mance improvement for Broadleaf and Shopizer, respectively.
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