
Hardware Support for Concurrent Detection of
Multiple Concurrency Bugs on Fused

CPU-GPU Architectures
Weihua Zhang, Shiqiang Yu, Haojun Wang, Zhuofang Dai, and Haibo Chen, Senior Member, IEEE

Abstract—Detecting concurrency bugs, such as data race, atomicity violation and order violation, is a cumbersome task for

programmers. This situation is further being exacerbated due to the increasing number of cores in a single machine and the prevalence

of threaded programming models. Unfortunately, many existing software-based approaches usually incur high runtime overhead or

accuracy loss, while most hardware-based proposals usually focus on a specific type of bugs and thus are inflexible to detect a variety

of concurrency bugs. In this paper, we propose Hydra, an approach that leverages massive parallelism and programmability of fused

CPU-GPU architectures to simultaneously detect multiple concurrency bugs in threaded software, including data race, atomicity

violation and order violation. Hydra extends contemporary fused CPU and GPU by introducing two modules: 1) a trace collecting

module (TCM) that instruments and collects program behavior on CPU; 2) a trace preprocessing module (TPM) that processes and

then transfers the traces to GPU for bug detection. Furthermore, Hydra exploits three optimizations to improve speed and accuracy,

which includes: 1). using the bloom filter to filter out unnecessary traces; 2). avoiding eviction of shared traces; 3). comparing only last-

write traces for shared data with the happens-before relation. Hydra incurs small hardware complexity and requires no changes to

internal critical-path processor components such as cache and its coherence protocol, and is with about 1.1 percent hardware

overhead under a 32-core configuration. Experimental results show that Hydra only introduces about 0.18 percent overhead on

average for detecting one type of bugs and 0.46 percent overhead for simultaneously detecting multiple bugs, yet with the similar

detectability of a heavyweight software bug detector (e.g., Helgrind).

Index Terms—Concurrency bug detection, fused CPU-GPU architecture

Ç

1 INTRODUCTION

THE increasing number of cores in a single chip has made
parallel programming a necessity to harness the abun-

dant hardware resources. However, writing robust parallel
software is notoriously hard, partly due to the pervasive yet
hard-to-detect concurrency bugs. Such bugs, once manifest,
can lead to catastrophic failures, causing not only economy
loss, but also social impact [26].

Worse even, there are a variety of concurrency bug types,
such as data race, atomicity violation and order violation.
These bugs are usually hard to spot due to their non-
deterministic nature. Hence, a number of approaches have
been proposed to detect concurrency bugs. Generally,
they can be divided into two categories: software-based
approaches and hardware-based ones. Software-based
approaches [14], [18], which instrument program code and
analyze bug patterns in a software manner, may suffer from
either large performance overhead or poor detection accu-
racy. In contrast, hardware-based approaches [4], [5], [6],
[30], [31] result in better performance. However, they

generally focus on only one specific type of bugs, which lim-
its their flexibility to detect other types of bugs. As indicated
in prior work [33], there may be more than one types of
bugs hidden in the same program, even for some mature
commercial software such as MySQL. As programmers usu-
ally have no idea about which type the bug is, using a differ-
ent type of hardware detectors one by one is cumbersome
and inflexible. It is thus demanding for a hardware proposal
that simultaneously detects multiple types of bugs.

Currently, integrating CPUs and GPUs on a single
chip [45], [46] has become increasingly popular, which
opens new opportunity for bug detection. On one hand,
GPU includes a lot of general-purpose computation resour-
ces, which are usually idle at debug time.1 On the other
hand, the mainstream dynamic concurrency bug detection
algorithms are typically triggered by certain shared
resource accesses, resulting in similar detection process.
Furthermore, they usually have very good computation and
data parallelism. Therefore, it is intuitive to exploit the mas-
sive computation resources and programmability of GPU
for flexible concurrency bug detection.

In this paper, we propose a flexible and efficient GPU-
assisted software concurrency bug detection mechanism,
called Hydra, which leverages massive parallelism and
programmability of GPU to simultaneously detect multiple

� W. Zhang, S. Yu, H. Wang, and Z. Dai are with the Software School,
Shanghai Key Laboratory of Data Science, and Parallel Processing Insti-
tute, Fudan University.
E-mail: {zhangweihua, sqyu14, wanghaojun, dzf}@fudan.edu.cn.

� H. Chen is with the Institute of Parallel and Distributed Systems, Shang-
hai Jiaotong University. E-mail: haibochen@sjtu.edu.cn.

Manuscript received 10 Mar. 2015; revised 30 Oct. 2015; accepted 12 Dec.
2015. Date of publication 24 Dec. 2015; date of current version 14 Sept. 2016.
Recommended for acceptance by C. Metra.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2512860

1. The computation resource in GPU can be divided into general-
purpose computation units and graphics processors. Except for 3D
games, GPU only uses the graphics processors to handles displaying
work. Therefore, the general-purpose units are basically idle and are
available for other purposes even for basic desktop displaying.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016 3083

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

concurrency bugs. Hydra extends contemporary fused CPU
and GPU architecture by introducing two modules to collect
and transfer in-flight traces to GPU for bug detection, includ-
ing: 1) a per-core trace collection module (TCM) that collects
traces; 2) an added trace pre-processing module (TPM)
between CPU andGPU that receives traces from TCM, stores
the traces in a trace history buffer and passes the trace to
GPU for detection.

Further, as concurrency bugs are only triggered by
shared memory traces, Hydra exploits three optimization
strategies to improve both detection speed and accuracy.
First, Hydra leverages the bloom filter [29] to filter out traces
of private memory accesses. Second, Hydra uses a feedback-
directed approach that uses GPU execution information to
boost the priority of certain shared traces in the history
buffer to avoid being evicted. Finally, Hydra only compares
last-write traces for the shared data with the happens-before
(HB) relation in prior computation. Consequently, Hydra
removes unnecessary traces in the history buffer, which
brings benefits in both speed and accuracy.

By leveraging the programmability of GPU, Hydra is
able to detect data race, atomicity violation and order viola-
tion, which accounts for almost all (about 97 percent) of the
non-deadlock concurrency bugs [37]. For data race, Hydra
uses the happens-before algorithm [21], which compares
the timestamps of memory accesses to derive happens-
before relations. Order violation detection is also based on
the happens-before algorithm and the difference from data
race detection is that order violation focuses on operation
orders instead of orders of memory accesses (e.g., a file read
operation should be after the corresponding file open opera-
tion) [36]. To detect atomicity violation, a typical approach
(e.g., ColorSafe [31]) is assigning related variables in an
atomicity region with the same color. Possible atomicity vio-
lations occur when two accesses in an atomic region with
the same color are interleaved by at least one remote access
with the same color. During detection, TCM collects the
traces and TPM generates and stores the history information
(e.g., traces, timestamps and colors), while GPU processes
the history information and executes the kernels of the cor-
responding detecting algorithms. Hence, the detection log-
ics executed on GPU can be easily reprogrammed, which
makes it appealing to detect multiple bugs.

We have implemented a simulated version using
Sniper [25] with GPGPU-Sim [38] integrated into its back-
end. Experimental results show that Hydra only introduces
about 0.18 percent execution overhead on average for one
type of bug detection at a time and 0.46 percent for

simultaneous detection of the above three types of bugs
under a 32-core configuration with only 1.1 percent hard-
ware overhead on average. Furthermore, Hydra requires no
modification to the critical execution paths in CPU, such as
caches and coherence protocols.

In summary, this papermakes the following contributions:

� A case of reusing GPU for scalable and low-over-
head concurrency bug detection.

� A flexible design for general-purpose concurrency
bugs detection, including data race, atomicity viola-
tion, order violation, and simultaneous detection of
multiform concurrency bugs.

� Three optimizations that significantly improve the de-
tection efficiency and reduces performance overhead.

� A thorough evaluation showing the effectiveness
and efficiency of Hydra.

The rest of the paper is organized as follows. We briefly
introduce the basic GPU architecture and the concurrency
bug detection and discuss related work in Section 2. We
present the motivation and architecture design of Hydra in
Sections 3 and 4. In Section 5, we evaluate the performance
of Hydra. Finally, we draw a conclusion in Section 6.

2 BACKGROUND AND RELATED WORK

To gain insight into using GPU for concurrency bug detec-
tion, we first briefly introduce the fused CPU and GPU
architecture. Then, we present an overview of several bug
detection algorithms and analyze the basic detection logic
to uncover possible portions that are suitable to be mapped
onto GPU.

2.1 Fused CPU and GPU Architecture

Typically, a GPU consists of hundreds of streaming-
processor (SP) units. These SP units are grouped into
streaming multiprocessors (SM). Each SM has a region of
on-chip memory, which contains thousands of registers and
tens of kilobytes shared memory. The on-chip memory is
shared among SPs inside a SM and not visible outside SMs.
Different SMs share data through off-chip global memory.
Every 32 or 64 threads are grouped into a warp and multi-
ple warps are assembled as a thread block. Each SM sup-
ports a few warps to hide memory latency. GPU provides
good programmability with mature programming models
such as CUDA [47] and OpenCL [42].

Due to the potentially superior performance and low
power consumption, fused CPU-GPU architecture has bec-
ome increasingly popular. Example architectures include
Intel Ivy Bridge [45] and AMD Fusion [46]. As shown in
Fig. 1, a CPU and a GPU are combined onto the same chip.
They exchange data through an on-chip interconnect, which
connects all on-chip modules, such as CPU cores, GPU and
the last-level cache (LLC). In this paper, we will use such a
design as the baseline architecture of Hydra, as it provides
high bandwidth and low latency for communication betw-
een CPU and GPU.

2.2 Concurrency Bug Detection

Based on the analysis of Lu et al. [37], real-world concurrency
bugs can be categorized into deadlock bugs andnon-deadlock
bugs, non-deadlock bugs occupy a majority of concurrency

Fig. 1. Fused CPU and GPU architecture.

3084 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

bugs (more than 70 percent as analyzed in [37]). Non-dead-
lock bugs can be further divided into atomicity violation and
order violation. These two kinds of bugs account for 97 per-
cent of non-deadlock bugs. Hence, Hydra mainly targets at
detecting these two types of bugs. In [37], data race is not clas-
sified as a bug pattern because there are benign races. How-
ever, Hydra also considers data race detection since a data
race is prone to cause a concurrency bug [3].

Atomicity violation. Atomicity violation occurs when a
code region of one thread is unserializably interleaved by
another thread, and it accounts for about 65 percent of non-
deadlock bugs. According to the number of variables
involved in the code region, atomicity violation can be fur-
ther divided into single-variable atomicity and multiple-
variable atomicity violation. Lu et al. proposed AVIO to
extract access interleaving invariant to detect single-variable
atomicity violation [30]. Lucia et al. proposed the ColorSafe
method to group related variables in an atomicity region
with the same color for both kinds of atomicity violation
detection [31]. Details of ColorSafe algorithm can be found
in the Appendix.

Order violation. Order violation occurs when an order
between two operations from different threads must be
guaranteed, but programmers forget to enforce this order.
This kind of bugs accounts for about one third of non-dead-
lock bugs. Order violation is different from atomicity viola-
tion because even if making critical regions atomic to each
other, it can also manifest in some execution orders. Detec-
tion algorithms [36] based on the Happens-before algorithm
are proposed for order violation bugs, details can also be
found in the Appendix.

2.3 Related Work

While there have been a number of concurrency bug detec-
tion systems, Hydra mainly differs from prior efforts in its
novel reuse of GPU hardware for general and flexible detec-
tion. In the following, we will discuss the close work to
Hydra and briefly illustrate related GPU architecture.

Software-based detection. Software detectors can be catego-
rized into static and dynamic ones, according to when bugs
are being detected. There are also several efforts in acceler-
ating software-based detectors.

Static detectors, such as RacerX [7], are generally based
on static analysis of source code to detect data race. Due to
the potential state space explosion problem, it is usually dif-
ficult for static detectors to scale to large programs. Further,
they may generate an excessive amount of false positives.

Dynamic detectors detect bugs by constantly monitoring
program execution and dynamically analyzing the runtime
states, which usually has very few false alarms. However,
to record and analyze the frequent memory accesses, soft-
ware-based detectors usually involve significant runtime
overhead. In addition, data race detectors for C/C++ can
incur more than 30X overhead [14]. As another example,
ConMem [36], an order violation detector, also brings about
16X slowdown for memory-intensive programs such as FFT.

To reduce the detection overhead, there are several
efforts trying to reduce the runtime overhead by trading
accuracy for speed. Examples include sampling-based
approach [12], [18] and leveraging existing hardware assis-
tance [8]. Such proposals have to make a balance between

performance and accuracy. By leveraging scalar timestamps
instead of vector ones, FastTrack [16], incurs about 8.5X
slowdown on the execution time of Java programs. Another
software approach is epoch outcome-based detection [13],
which introduces a small amount of overhead, but leverages
three times of CPU cores. Similarly, Wester et al. [40] rely on
uniparallelism to accelerate two classic types of data race
detectors, but at the cost of using four times the number of
cores as the original application. Such an approach also
relies on complex system software stack supporting record
and re-execution.

Hardware-based detectors. Most hardware proposals
require single-purposed changes to the processor internals,
which limits their detectable bug types to only one [4], [5],
[6], [30], [31], [32], [43]. Compared to existing proposals,
Hydra makes a novel reuse of GPU for flexible concurrency
bug detection, thus avoids changes to internal critical-path
processor components such as cache and its coherence pro-
tocol. Leveraging the massive parallelism of GPU, Hydra
can achieve better performance and scalability. Further, as
shown in this paper, Hydra can be used to detect different
types of bugs simultaneously.

Due to reusing GPU, Hydra is not only more flexible and
scalable but also incurs less performance and hardware over-
head. Early research efforts [5], [6] usually exploit cache
coherence-based mechanisms, which incur relatively large
space overhead (about 19 percent [6] and 12.5 percent [5]
overhead of cache capacity). SigRace [4] is similar with
Hydra in terms of hardware complexity, but it has higher
runtime overhead (about 22 percent under a eight-core con-
figuration) compared to Hydra. RADISH [32] requires less
hardware overhead than Hydra due to reusing of the cache
space to store metadata. However, Hydra achieves a better
performance than it (RADISH incurs 0-2x runtime over-
head). Similar to Hydra, LifeGuard [44] also aims at provid-
ing multiple-purpose hardware support, but for accelerating
awide range of instruction-grainmonitoring tools.

KUDA [39] maps a software-based lock-set algorithm on
GPU to detect data race only, which, however, still suffers
from a large overhead (only about 3-14x speedup over
sequential version).Hydra extends the fusedCPU-GPUarchi-
tecture with a novel set of hardware extensions to simulta-
neously detectmultiple bugswith negligible overhead.

Fused CPU-GPU architectures. The fused CPU-GPU archi-
tecture also stimulates research interests in improving per-
formance recently. Some prior efforts [9] use CPU to pre-
fetch memory data to accelerate GPU application perfor-
mance and vice versa. Hydra takes a different approach in
reusing fused CPU-GPU architecture for concurrency bug
detection.

3 MOTIVATION

To gain insight into flexible concurrency bug detection with
GPU, we further analyze the detection algorithms for these
bugs. We find that such concurrency bugs are similar in
manifestation. All of them are caused by some illegal shared
resource accesses and there are significant similarities in
their detection processes. The processes can be abstracted
and divided into three steps: 1) trace collection; 2) trace pre-
processing; and 3) bug detection. In the trace collection step,

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3085

memory, and related operation traces for each core are col-
lected during the program execution. Then, each collected
trace is attached with a timestamp or a color signature. In
the detection step, the algorithms for different bugs, such as
happens-before or ColorSafe, are applied to detect the bugs.

In the detection step of data race and order violation, every
memory trace needs to be compared with the history traces
and compute the happens-before relation. In atomicity viola-
tion detection, there is intensive intersection computation and
each intersection is independent from others. Note that, in
data race detection, as each access has to be comparedwith all
other cores (or threads), the computation complexity of the
detection algorithms inherently increases with the number of
cores (or threads). This indicates that using on-chip CPU log-
ics for concurrency bug detection may cause increasingly
large overhead with the increasing number of cores. Thus, it
is no surprise that prior hardware proposals usually focus on
small-scale cores (e.g., 4 and 8-cores).

To validate this hypothesis, we use QEMU [27] to collect
memory traces and implement a software-based happens-
before race detector as an example. Then we use Intel
VTune to analyze the hotspot in this detector. The results in
Fig. 2 show that the detection step accounts for more than
85 percent of the whole execution time under four-core, 91
percent under eight-core, 95 percent under 16-core and 98
percent under 32-core configurations.2

Fortunately, the comparison or computation in different
cores is completely independent (traces are only compared
with history without modifying it and each trace is indepen-
dent) and there are millions of traces in each thread, which
means there is abundant fine-grained parallelism. There-
fore, it is intuitive to map the computation in the detection
stage on GPU.

4 DESIGN OF HYDRA

The overall architecture of Hydra is shown in Fig. 3. Hydra
adds two simple hardware modules on chip: trace collection
module (Fig. 4) for each core and a global trace pre-process-
ing module (Fig. 5) between CPU and GPU. Briefly speak-
ing, TCM generates timestamp, collects traces in each CPU
core, and sends them to TPM. When TCM collides with L2
memory request on the interconnect, it waits L2 to finish.
TPM receives traces, maintains them in a history buffer and
sends them to GPU for bug detection. In this section, we
will first illustrate the basic workflow of Hydra and then

describe some optimizations for performance and accuracy.
Finally, we discuss how to virtualize Hydra to accommo-
date more threads than cores.

4.1 Trace Collection and Stamp Generation

Trace collection. Hydra instruments code in similar ways as
prior work [4], [32]. We use special instructions to label
operations related to order violation detection. Hydra rec-
ognizes the special instructions or memory access instruc-
tions in Re-order Buffer (RoB). For RoB, only a path is
required to forward ROB results to TCM. When an instruc-
tion is committed by RoB, it is also forwarded to TCM. TCM
identifies the labeled instructions and memory access
instructions, and stores them in its entries. Each trace con-
sists of three elements: 1) instruction program counter (PC);
2) memory access address; 3) trace type to identify the oper-
ation type, such as memory operations or the operations
used for detecting order violation.

Thread timestamp generation. Since timestamps for each
thread are generated according to synchronization opera-
tions (e.g., program-level synchronization such as lock,
unlock and barrier), we re-encapsulate synchronization
library for timestamp generation as in other work [4], [32].
Each TCM contains a register for current timestamp, which
is accessible to software and managed by the Hydra-aware
synchronization library. The main changes to the library
includes: (1) for each synchronization operation (e.g., lock),
the library maintains extra fields in each sync variable to
store some information (e.g., lock’s timestamp and last-
holder core) used for timestamp generation; (2) synchroni-
zation operations are re-encapsulated with timestamp gen-
eration function call through some extended instructions.

Hydra introduces two instructions, hydra_off and hydra_on,
to disable and enable TCM trace collection, as shown in the
following code snippet. hydra_offmeans a sync operation will
begin. When Hydra encounters hydra_off in a core, TCM
sends all remaining traces in current trace buffer to the TPM,
because the timestamp will be changed and these traces
belong to the current timestamp but not the upcoming one.

Fig. 2. Execution time percentage of race detection step.

Fig. 3. Hydra overview.

Fig. 4. TCM module.

2. Prior study uses FastTrack [16] under eight-core shows less ratio
of detection time [32]. This is because FastTrack uses scalar clock
instead of vector clock for most traces, which may cause accuracy loss.

3086 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

Hydra maintains a register in TPM for each core to store its
current timestamp for an executing thread. In the UpdateTS
function (Line 4), current core’s timestamp will be updated
according to the lock m’s timestamp and its last lock holder
core maintained in the library. hydra_on means a sync opera-
tion will finish. At this point, Hydra sends the current time-
stamp to the TPM.3 In this way, Hydra prevents address
pollution from instrumented code. Since synchronization
operations are relatively infrequent [4], [32], the timestamp is
also changed infrequently, especially comparedwith the trace
collection.

1 LOCK (‘{
2 hydra_off;
3 lock($m);
4 TS = UpdateTS(TS, $m);
5 hydra_on;
6 }’)

Trace transmission. The collected traces will be transmitted
to TPM for pre-processing via the network on chip (NoC).
Other than the forced transmission by hydra_off, Hydra trans-
fers traces in a batched manner when the collection buffer is
full. To support parallel trace transmission and generation,
Hydra uses a rotation buffer mechanism. If one buffer is
being transmitted, the other continues to collect the incoming
traces; if the other is also full, the CPU core has to be blocked
until one buffer is available. Fortunately, CPU blocking due
to rotation buffer rarely happens, as Hydra requires only a
small amount of NoC bandwidth (Section 5.3.8).

To further reduce the transmission overhead, Hydra
compresses traces into a sending message before sending. The
compression idea is based on the access locality. Hydra
selects a base address or PC and only sends offsets of traces.
Messages sent from the same core need to arrive in the TPM
in order, while messages from different cores can arrive in
any order. Such a design will not influence the detection
accuracy [4], as data race detection is based on the time-
stamps of the traces but not the arriving order of the traces.

4.2 Trace Pre-Processing

Trace pre-processing module mainly pre-processes the col-
lected traces before they are transferred to GPU (Fig. 5). We

use a centralized TPM here, as GPU has to access the history
buffer during detection. The access speed and bandwidth
will benefit much more from a centralized history buffer
than a distributed one. However, in extremely large or dis-
tributed environment, the TPM can be distributed as well,
which will be our future work.

When a trace arrives TPM, it will be decompressed and
attached with detection signatures (e.g., timestamp or
color). Then it will be put into a history buffer inside TPM
for bug detection. The followings describe the related hard-
ware mechanisms.

4.2.1 Trace Receiving Buffer (RB)

For large-scale designs (16-core, 32-core or more), only one
receiving port to the NoC may become a bottleneck (causing
traffic jam here). Hence, TPM uses different receiving ports
for different core groups (e.g., one port for four or eight
cores). To support multiple-bug detection on GPU, Hydra
needs to attach several detection signatures according to
different detection algorithms.

For data race and order violation, Hydra associates acc-
essing timestamp for traces according to the saved time-
stamps in TPM. To maintain color information, Hydra
follows the approach in ColorSafe [31]. A multilevel color
table resides in memory and keeps the ColorID information
at the desired granularity (word, line, page, etc.). To provide
fast lookup, a Color Lookaside Buffer (CLB) in TPM directly
caches coloring information from the Color Table. When a
CLB miss occurs, TPM will fetch the entry from the multi-
level color table in memory.

To process traces while receiving them, Hydra also
adopts two rotation receiving buffers for each core similar
to that in TCM, where one is for receiving and the other is
for processing.

4.2.2 History Buffer (HB)

Hydra uses a history buffer to keep the received traces for
latter detection by GPU. The history buffer consists of two
parts: one is the trace buffer used in the happens-before
algorithm for data race and order violation detection, while
the other is the color signature buffer used in the ColorSafe
algorithm for atomicity violation detection.

Trace buffer. Since the happens-before algorithm needs to
compare the current trace’s timestamp with those of previ-
ous traces (with the same address) to detect races, a trace
buffer is used to record the previous traces. After the time-
stamp attachment step, a trace with the information of
address, type and timestamp is inserted into the trace buffer.

To reduce address search time in the trace buffer, traces
are maintained in different sub-buffers according to their
core ID. The trace buffer is organized as a hash table shown
in Fig. 6, each entry of which is a FIFO queue to store traces
hashed to the same hash entry. To further filter out read-
read trace comparison that is race-free in race detection,
read and write trace histories are organized separately.
TPM hashes traces to different read/write FIFO queue
according to address and read/write types. When GPU
compares the current trace to the trace buffer, it hashes the
trace address to find the hashed buffer entry and then com-
pares the trace to those in the corresponding read/write
queue. Through such a strategy, GPU only needs to traverse

Fig. 5. TPM module.

3. TCM does not attach the current timestamp to each trace to save
space. Instead, TPM will use the received timestamp from TCM upon
the hydra_on call to attach the accessing timestamp. This can avoid
redundant timestamp transmission.

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3087

the corresponding read/write queue (if the current trace is
read, it only traverses write queue; otherwise, it traverses
both queues) for trace comparison instead of traversing the
entire trace buffer.

In order violation detection, Hydra reuses the trace buffer.
As the operation types for order violation, such as open/
close files or malloc/free, are more than those in memory
access (write/read), TPM also hashes these operations based
on their addresses for a unified hardware design. Although
such a design would involve some unnecessary computa-
tion, it does not lead to any additional overhead because
the number of instrumented operations related to order
violation is much less compared to memory accesses in data
race detection. When Hydra detects multiple bugs simulta-
neously, the traces for different bug detection will be mixed
together. Otherwise, only the traces for one bug detection
will be stored in the buffer.

Color signature buffer. TPMgenerates color signature as fol-
lows. The colors ofmemory traces is firstly encoded into a sig-
nature (local read, local write, remote read or remote write)
using a bloom filter. After all signatures in an epoch are
grouped together to form a history item, it is inserted into the
color signature buffer. The color signature buffer is organized
as shown in Fig. 7. In each core, TPMmaintains four color sig-
natures, representing 1) local read, 2) local write, 3) remote
read, and 4) remote write, for the current epoch. Every four
signatures are grouped together to form a history item.

4.2.3 History Buffer Access Synchronization

As TPM maintains history buffer in pre-processing stage
and GPU reads it in detection stage, there may be races
between TPM and GPU. While GPU reads an entry in the
history buffer, its content may be updated by TPM, which
will lead to fewer traces being compared on GPU. To guar-
antee the accuracy, Hydra uses a simple synchronization
strategy between TPM and GPU. TPM processes incoming
traces and inserts them into the history buffer. After that,
GPU reads incoming traces into memory for bug detection.
While the next processing request is coming, TPM checks
whether GPU has completed its buffer reading. If so, new
traces are inserted into the history buffer. Otherwise, TPM
will be blocked until GPU finishes reading. Such a design
can work well. To illustrate its efficiency, we collect the pro-
portion of the conflicts between TPM and GPU to the num-
ber of GPU access to TPM, it is about 0.04 and 0.01 percent
under a four-core and a 32-core configuration accordingly.

4.3 Concurrency Bug Detection on GPU

For data race detection, each trace is transferred to the
buffer on GPU and GPU will compare its address and

timestamp to those in other cores’ trace buffers to detect
races. Here is a summary of the detection process:

� Each trace is hashed using its address to find the cor-
responding hashed trace buffer entry in all other
cores. If the current trace is a read operation, it will
be compared with the write queues. Otherwise, it
will be compared with both the read queues and the
write queues.

� The timestamp of the current trace will be compared
with the recorded timestamp of the found trace. If
there is no happens-before relation, these two mem-
ory accesses are identified as a race.

For order violation detection, TPM transfers all new
operations to GPU and then GPU detects violations almost
the same as it does in data race detection.

For atomicity violation detection, TPM transfers all new
traces to GPU. Then GPU detects bugs in the following
steps. First, it computes the intersection of colors in the cur-
rent traces, the earliest local signature and all remote signa-
tures between them (except for read-read-read cases). Then
the computation is processed from the earliest local access
to the latest access. If there is a non-empty intersection, an
atomicity violation is detected.

Since the detection process has very good parallelism,
Hydra offloads the whole process on GPU: each detection
trace is attached to a hardware thread on the SM so that
GPU can detect all traces in an epoch in parallel.

Detecting multiple bugs simultaneously. The basic detec-
tion algorithms of these three bugs are implemented as dif-
ferent GPU kernels. Since they are software kernels, Hydra
can flexibly detect each of such bugs respectively. More-
over, Hydra can also detect these three types of bugs
simultaneously. We use a tag to indicate whether Hydra is
used to detect a certain type of bugs or detect all three
types of bugs simultaneously. These three kernels are
implemented in a detection process. As a result, unneces-
sary context switches are avoided. When the detection pro-
cess begins, the kernel of the happens-before algorithm
will be invoked first for the detection of data race and
order violation, Then, the kernel of atomicity violation will
be executed.

4.4 Optimizations for Hydra

Hydra is also designed with three optimizations to improve
detection performance and accuracy. First, it uses a bloom
filter to filter out private traces, which can remove unneces-
sary computation in bug detection. Second, it avoids shared
traces eviction in history buffer as long as possible to
improve accuracy. Finally, it only compares with last-write
traces for shared data with happen-before relation in history
buffer based on the feedback in GPU.

Fig. 7. Color signature buffer for each core.

Fig. 6. Hashed trace buffer for each core.

3088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

4.4.1 Counted Bloom Filter Optimization

We measured the average execution overhead for the basic
design of Hydra.4 As shown in Table 1, atomicity violation
or order violation is almost free of overhead. However, the
happens-before algorithm for data race detection scales
poorly with cores, due to its inherent super-linear computa-
tion nature [16]. As all traces have to be comparedwith traces
in all other cores’ trace buffers, the required computation
will grow super-linearly [16] with the core number increas-
ing. With a relatively large number of cores, the GPU resour-
ces may not be enough to finish the trace comparison in time.
This may further block the execution of CPU cores. Because
order violation detection only focuses on operations, which
is much fewer thanmemory traces, the detectionworkload is
much less than that of data race detection. Atomicity viola-
tion detection does not suffer from this problem because it
considers all other cores as one remote core.

Bloom filter uses multiple hash functions to map an
element into a bit vector, converting the expensive set opera-
tions to fast bitwise logic operations, which can be performed
very efficiently in hardware with negligible overhead [4], [5],
[31]. This kind of signature may cause false positives, as it is
a superset of the encoded addresses. The false positives will
not affect correctness, as the unfiltered traces will still be
checked one by one in GPU. It never introduces false nega-
tives and thus causes no accuracy loss in detection.

Besides, to allow the removal of an individual trace from
the history buffer, Hydra uses a counting bloom filter [41].
As entries are inserted and removed from history buffer,
their addresses are added and removed from the filter. With
such a filter, before comparing the current trace to those in
another core’s trace buffer, Hydra first compares it with the
corresponding signature to check whether the trace buffer
contains the same address. If so, the current trace will be
compared with those in the corresponding hashed trace
buffer. Otherwise, the comparison will be skipped. Since
most traces are private and most of them can be filtered out,
a lot of computation on GPU can be avoided.

4.4.2 Avoiding Shared Traces Eviction

Due to the limited hardware structure, eviction of traces
may lead to possible accuracy loss. However, in practice, a
small amount of hardware is usually enough to detect the
same bugs as software, since concurrency bugs mostly hap-
pen within a small window [34], [37]. To further mitigate
the influence due to trace eviction, Hydra is integrated with
two optimizations to make the history buffer to keep more
shared traces and hold more traces.

More shared traces. In concurrency bug detection, only the
shared traces are useful. To hold more shared traces, Hydra

adds a shared tag for each entry to indicate whether the
entry is shared or not. When GPU finishes a detection pro-
cess, it returns the shared addresses to the TPM. TPMmarks
the corresponding traces in history buffer as shared. When
there is no empty entry for a new trace, TPM evicts those
non-shared entries first. In this way, Hydra maintains more
useful shared traces in the trace buffer.

More traces.Hydra exploits access locality in a program to
hold more traces. The trace buffer entry is reorganized as
shown in Fig. 8. Instead of storing a complete address per
entry, Hydra stores a block of addresses per entry. There is
a base block address in the entry, which is the trace address
except the least n significant bits. The remaining n bits have
2n combinations so there is a structure containing 2n offset
bits in the entry. Each bit in the structure maps to a combi-
nation. For example, when n ¼ 3, the 7th is set to 1 to repre-
sent the last 3 bits is “111”. To store the corresponding pc
for each address, the entry contains a base PC and 2n PC off-
sets. Unlike the offset bit, each PC offset is a byte, indicating
the offset (-128-127) relative to the base PC. Further, there
are 2n type bits indicating the address type (“0” for read,
“1” for write or write and read).

In this way, each entry can contain a block of addresses.
There are some corner cases for this optimization: 1). All the
addresses in the block must share the same timestamp. If
two addresses are mapped to the same block with different
timestamps, they will be stored separately; 2). When the
new trace’s PC cannot be represented by offset (�128-127),
the trace will be stored in another entry. The reorganized
entry works well as the access locality.

4.4.3 Last-Write Awareness Optimization

Shared traces many exist in multiple threads. If there are
happens-before relations among them, we can only com-
pare a new trace’s timestamp with the last-write trace to the
same address [16]. The following is such an example. Sup-
posing x and y are two memory operations to address A
and y is a write operation. x happens before y (x 7!y), y will
be the last-write operation to A. When a new memory oper-
ation to A (z) comes, if y happens before z (y 7!z), x happens
before z (x7!z) based on the transitivity feature of happen-
before algorithm. If there are no happens-before relations
between y and z, a race happens. As a result, last-write is
enough for detection.

Therefore, Hydra introduces optimization in two folds:
the first one is that for the local accesseswithin one thread, the
succeeding traces happen after all local previous traces with
the same address. Therefore, Hydra will replace previous
traces to the same address in the buffer; the second one is that
for accesses across threads, GPU will send derived happens-
before relations in detection as feedback. Hydra resolves the
relations and marks the last-write across threads. For other

Fig. 8. Reorganized TPM trace buffer entry for mitigating trace eviction.

TABLE 1
Detection Overhead without Optimization

Race Atom-V Order-V

4-Core 0% 0% 0%
8-Core 0% 0% 0%
16-Core 11.98% 0% 0%
32-Core 76.08% 0% 0%

4. Detailed experimental setup and benchmarks are in Section 5.

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3089

traces to the same address except the last-write, Hydra
removes them from history buffer. By leveraging this feed-
back-directed strategy, Hydra improves both accuracy and
speed.

4.5 Hydra Virtualization

Here, we consider how Hydra works on a real multi-
threaded environment where threads may migrate and the
number of threads may be larger than cores.

Thread migration. We first consider the case of thread
migration only (the numbers of threads and cores are
equal): 1). Hydra uses thread ID to identify threads in the
program instead of the core ID. As a result, each thread ID
represents each dimension in the timestamp. The buffers in
TPM are indexed through thread ID instead of the core ID;
2). The timestamp in each TCM will be saved when the cur-
rent thread is preempted. When the thread runs again, its
timestamp will be restored according to the thread ID.
Moreover, Hydra regards the switching as a synchroniza-
tion operation, the remaining traces of the preempted
thread will be sent to TPM. After that, the upcoming thread
will send its timestamp and its thread ID to TPM; 3). A redi-
rection table is added in the TPM. The table is the one-to-
one mapping between thread ID and core ID. The mapping
is built and updated when TPM receives thread ID from
TCM (indicating core ID). It will ask TPM to insert the traces
in receiving buffer to which thread’s history buffer.

More threads than cores. Based on thread migration exten-
sion, Hydra is extended to support a larger number of
threads than the number of cores. In this situation, the
dimensions of timestamp and redirection table in TPM are
set as large as the maximum range of thread ID. However, if
we set the number of sub history buffers in TPM as many as
the maximum range of thread ID, it would involve large
space overhead. Similarly, if we set the number of sub his-
tory buffers the same as the number of cores, it would incur
large overhead due to swapping sub history from memory
when thread migration happens. To avoid unnecessary
space and swapping overhead, we set the number of sub
history buffers in TPM as twice as physical core number, as
shown in Fig. 9. Besides, we keep the signature number for
the bloom filters as the maximum range of thread ID. Every
two sub history buffers are binding to one physical core.
One sub history buffer is used to maintain the current active
thread’s history, called active history buffer. The other sub
history buffer is used to maintain the last active thread’s his-
tory, called last-active history buffer. The two sub buffers
are rotated during processing. For the threads that are not
active or last-active, their sub history buffers will be stored
in memory. When these threads are active, Hydra switches

their sub history buffers into TPM. To illustrate this more
clearly, we use an example show in Fig. 9. If the current run-
ning thread a is preempted by thread b and b is the last-
active thread, then the last-active history buffer become the
active history buffer and the active history buffer become
the last-active history buffer. If b is not the last-active history
buffer, the history buffer of b is loaded from memory, the
last-active history buffer is swapped into memory, and the
buffer of a becomes the last-active history buffer.

Additionally, for all threads, their signatures are kept in
TPM all the time. Therefore, the filter optimization can
work well in this situation. When a new trace needs to com-
pare with the traces in memory, the traces in the last active
history buffer is swapped into memory and the correspond-
ing traces are loaded into the last-active history buffer.
Although a swap of history buffers needs thousands of
cycles to finish, such a strategy is almost overhead-free
according to our experimental results. The primary reason
is that such a swap rarely happens with our three optimiza-
tion techniques.

4.6 Hydra Configuration

We set some parameters of Hydra according to prior pro-
posals or experimental results.

Collection buffer size and timestamp length. The size of col-
lection buffer in TCM and receiving buffer in TPM is a
tradeoff between performance and space overhead. We col-
lect the performance data under different buffer sizes and
get the best configuration. When the buffer size is 4, the
CPU blocking overhead (both in TCM and TPM) is 0 percent
for all benchmarks. When the buffer size reduces to 2, the
overhead is about 2.75 percent. Hence, we set the collection
buffer size as 4. The length of timestamp is the number of
cores and each dimension is 20 bits, which is a popular con-
figuration in prior designs [4], [6] and is enough in Hydra.

History buffer size. The lengths of hashed trace buffer and
that of FIFO queues may influence not only the performance
and space overhead, but also detection accuracy. To make a
reasonable design tradeoff, we collect the data for the
parameters of the hashed trace buffer. Based on the analysis,
when hashed buffer size is 16, FIFO queue size is 16 and
eviction block size is 8, the race detection accuracy can be
guaranteed5 by Hydra, i.e., finding the same amount of
static races with that of Helgrind [48], which is a widely-
used software tool for data race detection. Due to much
fewer traces in order violation detection, this configuration
also ensures detection accuracy. Therefore, we use this set-
ting as our default configuration. Since the least significant
bits of traces will be more distinct to find the same address.
Therefore, we use the lower 3-to-6 bits as the hash function.
Second, in atomicity violation detection, the color look-aside
buffer size is the same as that in ColorSafe [31]. In theory,
there could be possible accuracy loss due to limited hard-
ware structure. In practice, a small amount of hardware is
usually enough to detect the same bugs as software due to
the fact that concurrency bugs mostly happen within a small
window [34], [37].

Fig. 9. Sub history buffer structure.

5. Here, we mainly focus on the number of static race instead of the
number of dynamic race instances. The reason is that many dynamic
race instances are related to the same static race. Therefore, it is unnec-
essary to report all the dynamic instances.

3090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

Filter configuration. We also collect the filter efficiency of
different bloom filters. The efficiency is the percentage of fil-
tered out traces. With an 8-to-256 bloom filter, more than 95
percent traces have been filtered out. When a much larger
filter, such as 16-65536, is applied, only about 0.1 percent
more traces can be filtered out. Moreover, it also involves
more space overhead (16 KB per core). Therefore, we use a
bloom filter with a 8-256 size as the default configuration.

5 EVALUATION

In this section, we evaluate Hydra from the following two
aspects using simulation: 1) bug detection capability; 2)
time and space overhead.

5.1 Experimental Setup

We use Sniper6 integrated with GPGPU-Sim in its memory
back-end. The basic architecture of Hydra is a four-core
Out-of-Order CPU integrated with a 240 SPU core GPU,
which is a low-end configuration for a fused CPU and GPU
architecture. The system uses the MESI coherence protocol,
and is with four-way 32 KB private L1 caches, four-way
256 KB private L2 cache and eight-way 4 MB shared last
level cache (all with 64 B lines). The latencies of L1, L2 and
last level cache hit is set as 1, 20 and 40 cycles. In terms of
our simulation model, the frequency rate between CPU and
GPU is set as 4:1. The latency for hydra_off and hydra_on are
100 cycles. Modules are connected in a multistage network
with a maximum bandwidth as 32 Bytes/Cycle.

To evaluate the scalability of Hydra, we also evaluate the
configurations of eight-core, 16-core and 32-core. We use
SPLASH2 [19], PARSEC [20] and some real-world applica-
tions for evaluation, which are widely used in prior bug
detectors [4], [31], [32]. The programs in benchmarks
include fft, radix, lu, ocean, water-n, cholesky, swaption,
blackscholes, streamcluster and canneal. The real-world
applications are pfscan, pbzip2, and aget.

5.2 Bug Detection Capability

To measure the race detection capability of Hydra, we use
Helgrind [48], a well-known open-source data race detector,
as the baseline. Our results show that Hydra is able to detect
all bugs found by Helgrind, which are shown in Table 3. Lu
et al. [37] present the definitions of atomicity violation and
order violation and analyzed different reasons for such
bugs. Based on their case studies, we inject one single-vari-
able atomicity violation and one multiple variable atomicity
violation and two order violations randomly in each bench-
mark. We classify the injected bugs according to their

causes, as summarized in Table 2. Experimental results
show that Hydra can detect all these bugs.

5.3 Overhead Evaluation

To illustrate the efficiency of Hydra, we evaluate the time,
bandwidth and hardware overhead respectively.

5.3.1 Time Overhead for Single Bug Detection

We collect the detection performance data under four-core,
eight-core, 16-core and 32-core configurations respectively.
By default, we run the same number of threads as cores, as
done in prior evaluations. The data are shown in Fig. 10. As
shown in the figure, the overheads for single bug detection
are about 0, 0, 0.07 and 0.18 percent respectively. As Hydra
is mostly overhead-free for atomicity violation and order
violation detection (the overhead is less than 1 percent even
in the worst case), all the maximum values are from data
race detection. Thanks to powerful computation ability of
GPU, Hydra is nearly overhead-free to detect a single type
of bugs alone. It is also enough for the detection of atomicity
violation and order violation. Although the computation
load of data race detection increases super-linearly, the
three optimizations can significantly improve the perfor-
mance and mitigate the scalability problem.

5.3.2 Execution Overhead for Multiple-Bug Detection

We further evaluate the execution overhead for simulta-
neous detection of multiple bugs. As shown in Fig. 11, the
overhead for simultaneous detection is only a little bit larger
than single bug detection. Hydra incurs only 0.46 percent on
average under the 32-core configuration.

5.3.3 Virtualization Overhead

By leveraging last-active history buffer, Hydra reduces the
memory-swap rates to under 0.01 percent even when run-
ning 16 or 32 threads on four physical cores. The overhead of
running 32 threads on 4 physical cores is only 0.93 percent.

5.3.4 Effectiveness of Optimizations

We also evaluate the efficiency of our three optimizations.
Counted bloom filter optimization. By leveraging counted

bloom filter, we filter out 95 percent traces for the configura-
tion in 4.6 and achieve nearly overhead free during dete-
ction (reducing overhead from 76.08 to 0.35 percent under
32-core).

Keeping more shared traces optimization. The optimization
for keeping more shared traces results in that the shared
traces eviction rate is under 0.01 percent on average. Fur-
ther, mitigating trace buffer eviction by leveraging locality
can save more precious on-chip space. Our evaluation show
that it results in 5.11X more capacity for history buffer on
average with only 1X more space overhead.

Last-write awareness optimization. For more than 49.32 per-
cent shared traces detected in GPU, Hydra can figure out
which one is last-write trace by the derived happens-before
relation from GPU, which means large computation reduc-
tion. Therefore, Hydra achieves significant performance
improvement (from 0.35 to 0.18 percent under 32-core).

5.3.5 GPU Scale Requirement and Utilization

The GPU used in experiments only contains a low-end con-
figuration. A configuration with 400 SPUs is a modest

TABLE 2
Injected Bugs Detected by Hydra

Bug Classification Bug Description % detected

Atomicity violation Single variable 100%
Atomicity violation Multiple variables 100%
Order violation Access closed files 100%
Order violation Invalid pointer dereference 100%

6. We have tried GEMS, which, however, cannot simulate beyond 24
cores.

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3091

configuration in 2012. With such a trend, the GPU scale in a
fused GPU and CPU architecture will continue to increase.

We also evaluated a relatively larger GPU configuration.
The overhead for simultaneous bug detection can be further
reduced to 0.15 and 0.10 percent for 320 and 400 SPUs
accordingly shown in Fig. 12. Hence, a user can make a
tradeoff between the incurred overhead and the dedicated
SPUs. Therefore, it is reasonable to allocate some GPU cores
for production-run bug detection while the remaining GPU
cores continue to process general GPGPU applications.

Influence on fused CPU and GPU. In our current design,
a fused CPU and GPU is exploited. Since CPU and GPU
exchange data through on-chip interconnection with some
hardware support, such a design involves very little over-
head. To further illustrate the influence of fused CPU and
GPU on performance, we also implemented a software
version of Hydra based on QEMU and the detection part
is also mapped on GPGPU. Experimental results show,
the data communication will become the performance
bottleneck,which leads to about 8X to15X additional overhead
over native execution except the instrumentation overhead.

5.3.6 Benefit from HW and GPU

On one hand, software implementation suffers from prohib-
itively large instrumentation overhead to collect traces. For
example, the software version of Hydra using QEMU men-
tioned in Section 2 incurs 46X for happen-before data race
detection alone. The overhead largely comes from instru-
mentation. Even excluding the essential overhead with

QEMU, the overhead would still be around 5X, which pre-
vents this from being used in the production run.

On the other hand, the CPU implementation suffers from
large detection computation workload. In the software ver-
sion, GPU is about 10X faster than CPU does in detection.
Moreover, KUDA [39], deploys a software-based lock-set
algorithm on GPU to detect data race, showing that the ratio
of the speedup of race detection is between 3.3X and 14.7X.

Worse even, a software version may incur much more
overhead to detect the three types of bugs simultaneously.

5.3.7 Space Overhead

The space overhead of Hydra comes from TCM and TPM.
We present the detailed analysis of four-core configuration
as an example. After that, we present the overhead under
eight-core, 16-core and 32-core configurations.

� Each core has a TCM. TCM contains a vector time-
stamp and two collection banks. Each bank has four
entries and each entry is 83 bits. Therefore, it is 83
bytes for the collection buffer. The timestamp is 10
bytes under a four-core configuration. Hence, the
overhead of each TCM is 93 bytes.

� There is a centralized TPM between CPU and GPU.
Each core has a two-bank receiving buffer on TPM to
receive traces from the corresponding TCM. Each
bank can buffer up to four traces. To record trace
and color signature history, each core consumes
about 3,680 and 15,360 bytes, respectively. Further-
more, to reduce the address comparison in data race
detection, each core maintains a 1,024-bit signature.
In total, the size for each core inside TPM consumes
about 20K bytes space overhead.

As a result, Hydra involves 93 bytes space for TCM. For
the TPM on-chip, it requires less than 25K bytes per core.
The total space overhead is less than 0.23 percent compared
to the whole die area [35] under four-core configuration.
The overhead under 8-core configuration is 0.28 percent.
Similarly, the space overheads are about 0.74 and 1.1 per-
cent for 16- and 32-core accordingly. Moreover, we also
evaluated the area overhead in the logic simulation with
Synopsys Design Compiler using CMOS technology, the

TABLE 3
Races Detected by Hydra and Helgrind

Benchmark fft radix lu ocean water-n cholesky swaption blackscholes streamcluster canneal pfscan pbzip2 aget sum

Helgrind 0 0 0 1 0 3 0 0 62 0 10 6 0 82
Hydra 0 0 0 1 0 3 0 0 62 0 10 6 0 82

Fig. 10. Maximum overhead for single type of bug detection among data
race, atomicity violation and order violation. Overhead free under four-
core and eight-core configurations.

Fig. 11. Overhead of simultaneous multiple-bug detection.
Fig. 12. Overhead of simultaneous multiple-bug detection with larger
GPU Scale.

3092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

clock frequency is set to 1 GHz. Based on the evaluations,
the extra area overhead incurred is about 0.01 percent for
Intel i7 core or Xeon Nehalem-EX core, and 0.09 percent for
ARM Cortex-A9 core. Therefore, the space overhead of
Hydra is reasonably small. Though adding virtualization
support further introduces some hardware such as the map-
ping table and per-thread buffer, the overhead is negligible.

Hardware complexity. Though there are some other hard-
ware extensions in Hydra, we argue that it leverages reason-
able andwell-understood technologies. First, themechanisms
to collect traces in processors have already been proposed in
somepreviouswork [4], [32]. Then for the hardware pre-proc-
essing logic in Hydra, the timestamp and signature genera-
tion logic has also been used in [5], [6], [31], [32]. The support
for an external history buffer is also popular in hardware bug
detection mechanisms [4], [31]. Therefore, our design should
be relatively easy to implement by incorporating prior hard-
ware proposals.

5.3.8 Bandwidth Overhead

To measure the bandwidth consumption of Hydra, we
count howmany bytes of traces are transmitted on the inter-
connect. Fig. 13 shows the transmitted data size per cycle for
each benchmark. As the data shows, Hydra produces an
average bandwidth overhead of about 0.86, 1.43, 1.87 and
2.06 bytes/cycle under 4-, 8-, 16- and 32-core configurations
respectively, where the on-chip interconnect bandwidth is
32 bytes/cycle. In other words, the bandwidth overhead is
less than 2.70, 4.48, 5.83 and 6.44 percent. Moreover, we
evaluate the bandwidth with the compression mechanism
we mentioned in Section 4.1. Even under a 32-core configu-
ration, the bandwidth overhead is reduced to 3.01 percent
on average and 7.58 percent as the maximum with an aver-
age compression rate of about 3.8. To further show that the
bandwidth usage is reasonable, we count the bandwidth
overhead occurred by last level cache miss of these bench-
marks. The data is shown in Fig. 14. The bandwidth over-
head between LLC and memory is about 0.26, 0.55, 0.75 and
1.91 bytes/cycle on average, less than 0.81, 1.72, 2.33 and
5.97 percent of the bandwidth.

Moreover, the link between TPM and GPU is not a bottle-
neck on Hydra. On fused CPU-GPU architecture, the on-
chip bandwidth for GPU is about 250 bytes/cycle. We col-
lected the data transferred to GPU for debugging. The band-
width occupation for debugging only takes about 2 percent
of GPU on-chip memory bandwidth [45], [46]. Therefore,
the bandwidth consumption is modest.

6 CONCLUSION AND FUTURE WORK

This paper proposed Hydra, a flexible and efficient GPU-
assisted concurrency bug detector with low overhead in both
space and time. Unlike prior work, Hydra exploited the

massive parallelism and computation power of GPU to simul-
taneously detect multiple concurrency bugs. Experimental
results showed that Hydra introduced small performance,
space and bandwidth overhead, even under a 32-core config-
uration. In future, we plan to study the performance implica-
tion on extremely large-scale cores, extend Hydra to support
more algorithms and study the energy efficiency ofHydra.

APPENDIX A
BUG DETECTION ALGORITHMS

A.1 Data Race Detection

Hydra uses the happens-before algorithm [21] for data race
detection, as done in many other systems [4], [6], [8], [18],
[32], [40]. It will be our future work on extending Hydra to
support the lockset algorithm [28]. Here, we briefly describe
such algorithms.

Happens-Before Algorithm. The HB relation is formally
defined as the least strict partial order on events, which can
be described by the following three rules:

� HB1: a 7! b if a and b are events from the same thread
execution and a precedes b.

� HB2: a 7! b if a and b are synchronization operations
from different threads and the synchronization semantics
infer that a precedes b.

� HB3: transitivity, if a 7! b and b 7! c, then a 7! c.

According to the above rules, a data race is defined as two
memory accesses (at least one is write) to the same address
without a happens-before relation. Typical implementation
partitions a program into epochs, which are separated by
synchronization operations. Each thread maintains a vector
timestamp, with each dimension in the vector timestamp
representing the perceived epoch for each thread. A synchro-
nization operation will cause a thread to update its own
vector timestamp from the prior thread accessing the syn-
chronization variable, and to increase the logic clock of the
executing thread (representing a new epoch). Each variable
also has a vector timestamp derived from the thread’s vector
timestamp, presenting when a thread accesses a variable.
Upon each access, the timestamp for a sharedmemory access
will be compared with accesses in all other threads to the
same variable to see if a happens-before relation holds by
comparing the vector timestamps. Fig. 15 shows an example
of the happens-before relation between two threads. As the
timestamp ([2, 1]) of “Wr” in thread 1 is larger than that for
“Rd” ([1, 0]) in thread 0, there is a happens-before relation
between the two accesses and thus no race is detected. The
traces in each core will be compared with traces from other
cores to check happens-before relation.

A.2 Atomicity Violation Detection

Atomicity violation is a popular concurrency bug, which
accounts for about 65 percent of non-deadlock concurrency
bugs [37]. Therefore, there are many proposals for atomicity

Fig. 13. Bandwidth consumed by Hydra. Fig. 14. Bandwidth consumed by LLC Miss.

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3093

violation detection [30], [31]. Here, we choose ColorSafe [31]
as our atomicity violation detection algorithm because it is
efficient and can be used for multi-variable bug detection.

ColorSafe. ColorSafe assigns related variables in an atomic-
ity region with the same color. Possible atomicity violation
occurs when two accesses in an atomic region with the same
color are interleaved by at least one remote access with the
same color. The code in the left side of Fig. 16 shows an exam-
ple of multiple variable atomicity violation. The code of T1
should be an atomic region and there should be no otherwrite
operations to variables fifo and tail. However, when the code is
executed, the atomic region, read operations on variables fifo
and tail, is broken by some remote write accesses to the same
variables in thread T2. The dotted arrows in the figure denote
the access order of this atomic violation. In the ColorSafe algo-
rithm, related variables fifo and tail are both colored with
BLUE before detection. The detection workflow is shown in
the right side of Fig. 16. All accesses are inserted into their cor-
responding history buffers (local or remote) as they happen.
When the last rd BLUE is inserted, ColorSafe detects that two
rd BLUE accesses are interleaved by two remote wr BLUE
accesses, which results in an atomicity violation.

A.3 Order Violation Detection

Order violation bugs account for about 32 percent of non-
deadlock concurrency bugs [37]. Recently, researchers start
paying more attention to order violation. The detection
algorithms in [36] are based on happens-before algorithms.
They analyze whether the order between operations obeys
correct happens-before relation (specifications order). For
example, operation “file open” should happen before opera-
tion “file access”.

ACKNOWLEDGMENTS

The authors are grateful to supports from the National High
Technology Research and Development Program of China

(No.2012AA010901), the National Natural Science Founda-
tion of China (No. 61370081). They would like to thank all
our anonymous reviewers for valuable feedback on the
paper. Haibo Chen is the corresponding author.

REFERENCES

[1] M. Prvulovic and J. Torrellas, “ReEnact: Using thread-level specu-
lation mechanisms to debug data races in multithreaded codes,”
in Proc. 30th Annu. Int. Symp. Comput. Archit., 2003, pp. 110–121.

[2] R. Huang, E. Halberg, and G. E. Suh, “Non-race concurrency bug
detection through order-sensitive critical sections,” in Proc. 40th
Annu. Int. Symp. Comput. Archit., 2013, pp. 655–666.

[3] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. data race
bugs: Telling the difference with portend,” ACM SIGARCH Com-
put. Archit. News, vol. 40, no. 1, pp. 185–198, 2012.

[4] A. Muzahid, D. Suarez, S. Qi, and J. Torrellas, “SigRace: Signa-
ture-based data race detection,” ACM SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 337–348, 2009.

[5] P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: Hardware-assisted
lockset-based race detection,” in Proc. IEEE 13th Int. Symp. High
Perform. Comput. Archit., 2007, pp. 121–132.

[6] M. Prvulovic, “CORD: Cost-effective (and nearly overhead-free)
order-recording and data race detection,” in Proc. 12th Int. Symp.
High-Perform. Comput. Archit., 2006, pp. 232–243.

[7] D. Engler and K. Ashcraft,“RacerX: Effective, static detection of
race conditions and deadlocks,” ACM SIGOPS Operating Syst.
Rev., vol. 37, no. 5, pp. 237–252, 2003.

[8] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin,
“Demand-driven software race detection using hardware perfor-
mance counters,” ACM SIGARCH Comput. Archit. News, vol. 39,
no. 3, pp. 165–176, 2011.

[9] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted
GPGPU on fused CPU-GPU architectures,” in Proc. IEEE 18th Int.
Symp. High Perform. Comput. Archit., 2012, pp. 1–12.

[10] D. H. Woo and H. S. S. Lee, “COMPASS: A programmable data
prefetcher using idle GPU shaders,” ACM SIGPLAN Notices,
vol. 45, no. 3, pp. 297–310, 2010.

[11] A. Nistor, D. Marinov, and J. Torrellas, “Light64: Lightweight
hardware support for data race detection during systematic test-
ing of parallel programs,” in Proc. 42nd Annu. IEEE/ACM Int.
Symp. Microarchit., 2009, pp. 541–552.

[12] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk,
“Effective data-race detection for the kernel,” in Proc. 9th USENIX
Symp. Operating Syst. Des. Implementation, 2010, vol. 10, pp. 1–16.

[13] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy,
“Detecting and surviving data races using complementary sched-
ules,” in Proc. 23rd ACM Symp. Operating Syst. Principles, 2011,
pp. 369–384.

[14] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas, “Accurate
and efficient filtering for the Intel thread checker race detector,” in
Proc. 1st Workshop Architectural Syst. Support Improving Softw.
Dependability, 2006, pp. 34–41.

[15] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race
detection in practice,” in Proc. Workshop Binary Instrumentation
Appl., 2009, pp. 62–71.

[16] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise
dynamic race detection,” ACM SIGPLAN Notices, vol. 44, no. 6,
pp. 121–133, 2009.

[17] K. Sen, “Race directed random testing of concurrent programs,”
ACM SIGPLAN Notices, vol. 43, no. 6, pp. 11–21, 2008.

[18] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effec-
tive sampling for lightweight data-race detection,” ACM SIG-
PLAN Notices, vol. 44, no. 6, pp. 134–143, 2009.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 2,
pp. 24–36, 1995.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. 17th
Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[21] L. Lamport, “Time, clocks, and the ordering of events in a distrib-
uted system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[22] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for GPU architectures,” in Proc. IEEE 17th Int. Symp. High
Perform. Comput. Archit., 2011, pp. 382–393.

Fig. 16. ColorSafe example.

Fig. 15. Happens-before example.

3094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016

[23] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” ACM SIGPLAN Notices,
vol. 42, no. 6, pp. 89–100, 2007.

[24] C. J. Mauer, M. D. Hill, and D. A. Wood,“Full-system timing-first
simulation,” ACM SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1,
pp. 108–116, 2002.

[25] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-
core simulation,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2011, p. 52.

[26] K. Poulsen, “Software bug contributed to blackout,” Security
Focus, 2004.

[27] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proc. USENIX Annu. Techn. Conf., FREENIX Track, 2005, pp. 41–46.

[28] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded pro-
grams.”ACMTrans. Comput. Syst., vol. 15, no. 4, pp. 391–411, 1997.

[29] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[30] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting atomicity
violations via access interleaving invariants,” ACM SIGARCH
Comput. Archit. News, vol. 34, no. 5, pp. 37–48, 2006.

[31] B. Lucia, L. Ceze, and K. Strauss, “ColorSafe: Architectural sup-
port for debugging and dynamically avoiding multi-variable
atomicity violations,” ACM SIGARCH Comput. Archit. News, vol.
38, no. 3, pp. 222–233, 2010.

[32] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer, “RADISH: Always-on sound and complete race detec-
tion in software and hardware,” in Proc. 39th Int. Symp. Comput.
Archit., 2012, pp. 201–212.

[33] J. Yu and S. Narayanasamy, “A case for an interleaving con-
strained shared-memory multi-processor,” ACM SIGARCH Com-
put. Archit. News, vol. 37, no. 3, pp. 325–336, 2009.

[34] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-aid: Detecting
and surviving atomicity violations,” in Proc. 35th Int. Symp. Com-
put. Archit., 2008, pp. 277–288, .

[35] A. Branover, D. Foley, and M. Steinman, “AMD fusion APU:
Llano,” IEEE Micro, vol. 32, no. 2, pp. 28–37, Mar./Apr. 2012.

[36] W. Zhang, C. Sun, and S. Lu, “ConMem: Detecting severe concur-
rency bugs through an effect-oriented approach,” ACM SIGARCH
Comput. Archit. News, vol. 38, no. 1, pp. 179–192, 2010.

[37] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug character-
istics,” ACM SIGARCH Comput. Archit. News, vol. 36, no. 1,
pp. 329–339, 2008.

[38] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2009, pp. 163–174.

[39] U. C. Bekar, T. Elmas, S. Okur, and T. S. Kuda, “GPU accelerated
split race checker,” presented at the Workshop Determinism Cor-
rectness Parallel Programming, London, England, U.K.,Mar. 2012.

[40] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanas-
amy, “Parallelizing data race detection,” in Proc. 18th Int. Conf.
Architectural Support Program. Languages Operating Syst., 2013,
pp. 27–38.

[41] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.
Varghese, “An improved construction for counting Bloom filters,”
in Proc. 14th Conf. Annu. Eur. Symp., 2006, pp. 684–695.

[42] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL
programming guide. Pearson Education, 2011.

[43] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas, “iWatcher: Effi-
cient architectural support for software debugging,” in Proc. 31st
Annu. Int. Symp. Comput. Archit., 2004, pp. 224–235.

[44] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, and E. Vlachos, “Flexible hardware acceleration for
instruction-grain program monitoring,” ACM SIGARCH Comput.
Archit. News, vol. 36, no. 3, pp. 377–388, 2008.

[45] (2016). [Online]. Available: http://en.wikipedia.org/wiki/Ivy_-
Bridge_(microarchitecture)

[46] (2016). [Online]. Available: www.amd.com/us/products/tech-
nologies/fusion/Pages/fusion.aspx

[47] (2016). [Online]. Available: http://developer.nvidia.com/nvidia-
gpu-computing-documentation

[48] (2015). [Online]. Available: http://valgrind.org/docs/manual/
hg-manual.html

Weihua Zhang received the PhD degree in com-
puter science from Fudan University in 2007.
He is currently an associate professor in the
Parallel Processing Institute, Fudan University. His
research interests are in compilers, computer
architecture, parallelization, and systems software.

Shiqiang Yu is currently working toward the
graduate degree in the Software School of Fudan
University and in the Parallel Processing Institute.
His work is related to computer architecture,
CUDA Programming, parallel optimization, and
so on.

Haojun Wang is currently working toward the
graduate degree in Software School of Fudan
University and in Parallel Processing Institute. His
work is related to computer architecture, simula-
tion, parallel optimization, and so on.

Zhuofang Dai is currently working toward the
graduate degree in the Software School of Fudan
University and in the Parallel Processing Institute.
His work is related to computer architecture, sim-
ulation, parallel optimization, and so on.

Haibo Chen received the BSc and PhD degrees
in computer science from Fudan University in
2004 and 2009, respectively. He is currently a
professor in School of Software, Shanghai Jiao
Tong University, doing research that improves the
performance and dependability of computer sys-
tems. He is a senior member of the IEEE and the
IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ETAL.: HARDWARE SUPPORT FOR CONCURRENT DETECTION OF MULTIPLE CONCURRENCY BUGS ON FUSED CPU-GPU... 3095

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

