
Why Software Hangs and What Can Be Done With It ∗

Xiang Song, Haibo Chen and Binyu Zang

Parallel Processing Institute, Fudan University

{xiangsong, hbchen, byzang}@fudan.edu.cn

Abstract
Software hang is an annoying behavior and forms a ma-

jor threat to the dependability of many software systems.

To avoid software hang at the design phase or fix it in pro-

duction runs, it is desirable to understand its characteris-

tics. Unfortunately, to our knowledge, there is currently

no comprehensive study on why software hangs and how

to deal with it. In this paper, we study the reported hang-

related bugs of four typical open-source software applica-

tions, aiming to gain insight into characteristics of software

hang and provide some guidelines to fix them at the first

place or remedy them in production runs.

1 Introduction

Software dependability is crucial to server and user ap-

plications, especially mission-critical ones. Unfortunately,

software hang, a phenomenon of unresponsiveness, is still

a major threat to software dependability. This kind of bug

exists in many commodity software systems such as web

browsers, database servers and office applications. Most

hang bugs do not manifest noticeable effect during normal

execution. However, when they emerge, users are unable

to get response within expected time. Even worse, a seri-

ous hang bug may freeze the whole system and mandate a

reboot.

Most previous software bug studies focused on specific

systems such as operating system errors [1] and network

service bugs [9]. But none of them focused on software

hang bugs. Though there are several studies on a par-

ticular cause of possible software hang such as deadlock

bugs [3, 4], infinite loop and I/O blocking bugs [13, 10] and

concurrency [5], it is still unclear whether they are major

causes and how they contribute to software hang.

∗This work was funded by China National Science Foundation un-

der grant numbered 90818015, Shanghai Leading Academic Discipline

Project (Project Number: B114) and the Chun-Tsung Undergraduate Re-

search Endowment.

In this paper, we present the first comprehensive study

on real-world software hang bugs. We study the reports of

hang-related bugs from four popular open source applica-

tions: MySQL, PostGre, Apache HTTPD server and Fire-

fox, which are widely used in three-tier browser-server ar-

chitecture. In total, we collect 307 confirmed hang bugs

and analyze the characteristics of 233 bugs with known root

causes (categorized as Certain). We also examine the rest

74 bugs (categorized as Uncertain) to study the obstacles to

fix these bugs.

Our study makes the following observations:

• Applications not only heavily suffer from well-known

hang causes such as deadlock, data race and infinite

loop, but also from design errors and execution envi-

ronments.

• Uncertainty of the root cause of a hang bug is the

main obstacle to fix the bug, while concise test cases

for bug reproduction could significantly accelerate the

progress of bug fixes.

• The fix time span study reveals that environment re-

lated bugs, infinite loop bugs and concurrency bugs

survive much longer than other types of bugs.

• To mitigate hang-related bugs, operators should check

the protocol consistency before applying software up-

date, check the runtime resource before running an ap-

plication and simulate the runtime environment before

deploying the application.

The rest of the paper is organized as follows. Section 2

presents the bug survey methodology of our study. A full

analysis of hang bugs in the Certain category is presented

in Section 3. The study on how bugs are fixed is presented

in Section 4. Section 5 discusses our observations and sug-

gestions on avoiding hang bugs. We survey related work in

Section 6, and conclude our work in Section 7.

1



2 Bug Survey Methodology

2.1 Hang Bug Sources

We choose three server applications and one client ap-

plication for our study: MySQL, PostGre, Apache HTTPD

server and Firefox. They are widely used in three-

tier browser-server architecture with well-maintained bug

databases. Concurrency is widely used in these applications

to handle multiple requests. We believe the characteristics

of hang bugs of these applications should be representative

for many other applications.

2.2 Survey Methodology

We collect hang bugs from the bug databases of these

four applications. In order to collect hang-related bugs, we

use a set of keywords to process the search, for example,

’hang’, ’freeze’ and ’unresponsive’. After collecting the re-

ports, we manually analyze each bug report and make sure

whether it is a hang bug or not and find out the root cause

of each by studying the comments, test cases, patches, and

source code. We also managed to reproduce several bugs to

analyze their characteristics. In total, we studied 307 con-

firmed hang bugs.

In general, we divide these collected hang bugs into two

categories, Certain and Uncertain, representing whether the

root cause can be found or not. We get 233 Certain bugs

and 74 Uncertain ones. The details are shown in Table 1.

As for the hang bugs belonging to the Uncertain category,

we carefully confirm that they are true hang, by either find-

ing confirmations from application users and maintainers or

manually reproducing them.

Application Description Certain Uncertain

MySQL Database 97 39

PostGre Database 61 15

Apache Web server 35 8

Firefox Web browser 40 12

Total 233 74

Table 1: Distribution of Certain & Uncertain hang bugs

3 Bug Analysis

For hang bugs in the Certain category, we divide them

into nine sub-categories according to their root causes. A

general overview of the categorization is shown in Table 2.

We describe each sub-category and discuss several repre-

sentative hang bugs in this section.

3.1 Bug Categorization

Configuration One application may run across various

platforms under different configurations. Carelessly con-

figured software may encounter serious hang problems. For

example, a mis-configured port number might fail a connec-

tion and make a running MySQL cluster hang.

Reason #Bugs Percentage

Configuration 13 5.58%

Design 37 15.88%

Environment 39 16.74%

Infinite Loop 32 13.7%

Inefficient Algorithm 14 6.01%

Concurrency 54 23.2%

User Operation Error 20 8.58%

Plug In 12 5.15%

Others 12 5.15%

Total 233 100%

Table 2: Bug distribution of nine sub-categories.

Design A large fraction of hang bugs (15.88%) is related

to design problems. They are caused by application design

errors, maintenance mistakes or unexpected working sce-

narios. A detailed discussion is presented in section 3.2.1.

Environment A set of hang bugs are caused by unex-

pected environments applications depending on, composing

more than 16% of the Certain category. We will discuss it

in detail in section 3.2.2.

Infinite Loop In this case, the loop termination condition

cannot be satisfied and the CPU resource is exhausted. In

total such bugs account for 13.7% of all Certain hang bugs.

As this is another important category, we will discuss it in

detail in section 3.2.3.

Inefficient Algorithm This kind of problem is not re-

lated to correctness issues. However, an ill-designed al-

gorithm will be exponentially slower than a well-designed

one. When the ill-designed one is applied, the related oper-

ations would consume most of CPU and memory resources

for a long period, appearing like running in an infinite loop.

Concurrency Modern applications are usually multi-

threaded or multi-processed in order to exploit the

abundant resources in modern many-core architectures.

Concurrency-related bugs are caused by wrong synchro-

nization such as data races, deadlocks and live locks, which

consist of 23.2% of all hang bugs in the Certain category.

We will discuss them in detail in section 3.2.4.

User Operation Error Hang bugs in this case are caused

by operational mistakes from users. Misunderstanding or

misusage of operations is the main cause of the problem.

For example, forgetting to commit an in-flight transaction

will hang the related ones.

Plug-In All Plug-In & Extension caused hang bugs are

spotted in Firefox bugzilla. There are several kinds of plug-

in & extensions such as Flash, Adblock, and Adobe Acrobat

Reader. Debugging this kind of bugs requires the coopera-

tion of customers, application maintainers and plug-in &

extension providers. This could increase the complexity of



the bug-fix progress.

Others There are approximately 5% of other four kinds of

hang bugs: Resource Exhaustion, Resource Leakage, Pro-

gramming Error and Internal Structure Corruption.

3.2 Critical Hang Bug Analysis

About 70% of collected Certain hang bugs belong to

Design, Environment, Infinite Loop and Concurrency cate-

gories. In this section, we will study the main characteristics

of each category and provide several case studies.

3.2.1 Design

Design category contributes to 15.88% of total hang

bugs. We further divide them into two sub-categories: De-

sign & Protocol and Unexpected Input.

Design & Protocol During the program design and main-

tenance progress, some program fragments will be added,

modified or removed to fix bugs, add new features or im-

prove performance. The internal protocol may be changed

or even broken, which will cause serious hang bugs. Un-

fortunately, such side effects are usually hard to detect and

correct. The most common case is that one component fails

to send the required message to another, hanging the waiter.

Figure 1 shows an example bug related to protocol bro-

ken. In MySQL, all arguments to its internal function

NAME CONST should be consistent expressions. A soft-

ware evolution, however, breaks such an invariant, causing

the client hang for responses from the server.

Application: MySQL 5.0.40 Platform: FreeBSD

Description: MySQL’s internal function NAME CONST

requires all of its arguments to be constant expressions.

This constraint is checked in the Item name const::fix fields

method. Yet if the argument of the function is not a constant

expression no error message will be reported to the client

end. As a result, the client will hang forever waiting for a

response from the server end.

Figure 1: Typical protocol design hang bug

Unexpected input Though many software systems usu-

ally have many test cases to verify expected inputs, there is

still coverage problems that leaves some legal but untested

inputs from abnormal scenarios, which could cause a pro-

gram to enter an undefined state such as software hang. This

kind of bug is hard to detect but relative easy to resolve

when the erroneous input is determined.

3.2.2 Environment

Environment category takes up to 16.74% of hang bugs. We

group several of them into more specific sub-categories ac-

cording to the system components they depend on. Table 3

lists such categorization and their distributions.

I/O disconnection A manually plugging-out of network

cable, a shutdown of network services, a processing error

of hub and other accidents would cause this kind of bugs.

Module Dependency Modules is a typical way to pro-

vide convenient extensions to the main functionality of soft-

ware. However, this also increases the possibility of soft-

ware hangs if the interactions between modules and the

main software are not well designed or the modules are

buggy.

Multi-threading Support This category concerns about

the multi-threading support of the underling environment.

A well-known example is the thread rwlock unlock assem-

bly code bug in glibc. We discover it in MySQL hang bug

report, while there are many other similar bug reports as

those in Redhat, Ubuntu and others.

Resource Unavailable Resource unavailable is another

important source of environment related hang bugs. Ex-

amples include a missing daemon causes the whole Apache

HTTPD server to hang and some missing files hang the ini-

tialization progress of a PostGre Admin process.

Type Bugs Percentage

I/O disconnect 5 12.82%

Module Dependency 3 7.69%

Multi-thread support 3 7.69%

Resource unavailable 7 17.95%

Others 21 53.85%

Total 39 100%

Table 3: Distribution of environment related hang bugs

However, the rest 53.85% cannot be labeled into any of

the above sub-categories. Most of them relate to the entire

execution environment as listed below.

• Operating System.
• Simulation environment, like Cygwin for PostGre.
• Zombie applications running in the background.
• Network environment, especially for multi-level http

servers.
• Firewall.

3.2.3 Infinite Loop

Infinite Loop category takes up to 13.7% of hang bugs. We

divide them into three sub-categories.

Unsatisfied loop condition As the name suggested, this

kind of loop is caused by an infinite loop like “while (true)”.

The problem is that the loop termination condition cannot

be satisfied, exhausting the CPU resources.

Cycle-linked list A careless processing of a linked list

may cause an infinite loop. When part of the list nodes

form a cycle and the target node is outside of the cycle, a

walk through this cycle towards the target node will run in-

finitely. A typical example is in Figure 2.



Application: MySQL 5.0 Platform: ALL

Description: In mysql make view for joining algorithm

views, views’ sub-queries are inserted into select lex-

>slave(->next)* chain. In case a join has several views,

adding the same sub-queries several times will form a loop

on the above chain which breaks many parts of the data.

Figure 2: Example of cycle-linked list caused hang

Others Other kinds of infinite loop hang bug are similar

to the above two. A cycle is always formed. An example

is a hang caused by a self-referenced bookmark reported in

Firefox bugzilla.

3.2.4 Concurrency

This category takes up to 23.2% of hang bugs. Modern ap-

plications are usually multi-threaded or multi-processed in

order to run efficiently in modern many-core architecture.

As more CPU cores are used, hang bugs due to concurrency

are becoming more and more serious. A summary of differ-

ent sub-categories is shown in Table 4.

Type Deadlock Live lock Race Total

Bugs 32 13 13 58

Percentage 59.26% 24.07% 16.67% 100%

Table 4: Distribution of concurrency related hang bugs

Deadlock There are many examples of deadlock related

hang, especially in database applications (MySQL and Post-

Gre) during modifying tables or accessing data. Although

some deadlock detection mechanisms emerged in the past

few years, it still exists and takes significant part of soft-

ware hang.

Live lock Live lock is generally not caused by locking

situations such as deadlock. Some even do not need a single

lock to generate. There are various causes of live lock:

• Application waiting for a none-existing thread or ob-

ject, which is not created or already cleaned.
• Application waiting for a message which has already

been sent due to an error state on the other side.
• A full-filled log file causing a block of log operations.
• A signal notification error because of privilege lacking.

Race When multi-threading or multi-processing pro-

gramming model is used, races between different threads

or processes are common. Race related hangs are usually

caused by a wrong sequence of status transferring, such as

event delivering sequence and state changing sequence. Re-

play is a good method to deal with race problems. However,

unlike deadlock, Race bug is more complex for the follow-

ing reasons:

• Status variables are not as apparent as locks.
• Combination of status is more complex than locks.
• There are multiple forms of status.

4 Bug Fix Study

In this section, we first provide the study on bug fix

strategies. Then we examine the Uncertain category to

show that the uncertainty of root causes is a main obsta-

cle to hang bug fix. Finally, we present the study on the fix

time span of each kind of bugs.

4.1 Fix Strategy

There are several bug fix strategies to deal with hang

bugs during our study.

• Fix by patch A well-tested patch is applied.

• Bypass error code Error code is removed or the er-

ror condition is filtered. However, this may sacrifice

scalability or functionality of an application.

• Unfixable Some bugs cannot be fixed or even by-

passed, because of the complexity of the bug and the

importance of its functionality. The only thing can do

is to notify users the existence of certain bug.

• Update The last strategy is updating the application

with a new design or implementation. Usually when

root cause is not discovered, trying a newer version

and expecting a fix is the only choice.

Category Bugs With reproducing Percentage

description

Uncertain no fix 33 12 36.4%

Uncertain quick fix 14 12 85.7%

Uncertain patch fix 10 9 90%

Uncertain version fix 17 8 47.1%

Total 74 41 55.4%

Table 5: Distribution of Uncertain category

4.2 Obstacles to Bug fix

One major obstacle to hang bug fix is the uncertainty of

how a bug occurs, where the bug locates and what causes

the bug. As shown in Table 5, nearly a half of them are not

fixed as bug reports indicate, while only 13.5% were fixed

by patches. Patch fix & quick fix means the bug is fixed

by patch or will be fixed in the next version sooner. Though

we failed to figure out their causes, maintainers might have

discovered the root causes of them. With 21 out of 24 bug

reports, we successfully find the test cases to reproduce each

bug. Version fix means the hang bugs are fixed by version

update. With 8 out of 11 bug reports with reproducing de-

scriptions, maintainers quickly responded with which ver-

sion had fixed or would fix the bug. While among the re-

maining 6 bugs, 5 are fixed by trying the newer versions

repeatedly. No Fix means no cause of hang is found and

no fix report is found in bug reports. They only contain

conform messages and scenario descriptions of hang. Only

12 bug reports provide steps to reproduce the bugs, most of

which are useless.



Since uncertainty is an important obstacle to hang bug

fix, concise test cases for bug reproduction are the keys to

accelerate the bug-fix progress.

4.3 Fix Time Span

We checked the fix time span of 160 hang bugs, all of

which belong to the Certain category. We did not analyze

the time span of hang bugs from PostGre because its bug re-

port time is not well logged. We also did not check the time

span of bugs from Plug-in & Extensions category, as they

are usually not maintained by the application providers. Ta-

ble 6 shows the average fix time span of eight Certain sub-

categories.

There are three categories of hang bugs requiring more

than 100 days on average to fix, Environment, Infinite Loop

and Concurrency. Especially, the Race and Pipe (part of

Live Lock) related hang bugs, which belong to the Concur-

rency category, take a much longer time to fix (213 days and

444 days respectively). Three of eight analyzed bugs in the

Race category even take more than 1.5 year to fix as they

are very complex to find the root causes.

Reason Days

Configuration 74.10

Design 74.32

Environment 147.46

Infinite Loop 140.23

Inefficient Algorithm 96.50

Concurrency 137.47

User Operation Error 85.64

Others 62.78

Table 6: The average fix time span of eight hang bug categories.

(We ignored two bugs requiring about 2000 days to fix)

5 Lessons Learnt from Study

In this section, we present our observations and sugges-

tions on how to improve hang bug fix progress.

5.1 Bug Distribution within Applications

Different applications usually have different usages, de-

signs and implementation strategies. To gain the soft-

ware hang information about each application, we present

a generic summary in Table 7. From the table, we observe

that the four major hang bug contributors affect any of the

four applications heavily. However, they also suffer signifi-

cantly from specific kind of hang bugs as well:

• Database applications suffer heavily from Concur-

rency problems, which comprise about 25 percents of

all bugs.

• Environment related hang bugs take up nearly one

third of all in Apache HTTPD server.

• Firefox, the web browser is affected by inefficient al-

gorithm heavily.

Reason MySQL PostGre HTTPD Firefox

Configuration 3.09% 4.92% 11.43% 10.71%

Design 21.65% 14.75% 11.43% 10.71%

Environment 13.40% 18.03% 34.29% 10.71%

Infinite Loop 12.37% 14.75% 14.29% 21.43%

Inefficient Algm 6.01% 1.64% 0% 21.43%

Concurrency 23.2% 26.23% 14.29% 17.86%

User Oper Error 7.22% 16.39% 8.57% 0%

Others 6.19% 3.28% 5.71% 7.14%

Total 100% 100% 100% 100%

Table 7: Hang bug distribution

5.2 Observations

We get several interesting observations about hang bug

causes during our study.

1. Many hang bugs, especially belonging to Infinite Loop,

Design and Race, are actually related to state inconsis-

tency. How to maintain the right state at the right time

is a crucial problem to programmers. This also raises

challenges to researchers to provide practical and easy-

to-use tools.

2. Incompatibility introduced by TCP stack change and

program update may cause hang problems as well as

other bugs. Some of the hang bugs treated as De-

sign bugs are actually caused by internal compatibility

problem between different components such as the re-

quest processing incompatibility. As modern software

becomes more and more complex and heavily relies

on cooperation between components, the compatibil-

ity problem becomes more and more serious.

3. Resource Unavailable is a major cause of hang, as dis-

cussed in section 3.2.2 and section 3.2.4, no matter

what is the root cause of the unavailability. Checking

the availability of runtime resource before execution

should be a common program rule during software de-

velopment.

4. Configuration problems might cause software hang.

This requires programmers to write better auto-

configuration code to adjust the software according to

the environments.

5. Users with diverse knowledge may have different un-

derstanding of how software works. It is important to

tune the software and to inform users how to correctly

use software. Documents should have more details and

highlights on the critical parts of using software.

6. As mentioned in section 3.2.3, linked list is vulnerable

to hang. As it is widely used in modern software, it

would be good to use well-encapsulated interface to

manipulate linked list to avoid software hang.



5.3 Methodologies to Improve Bug Fix

The followings are suggestions on detecting software

hang and improving hang bug fix based on our study:

1. Incompatibility of communication protocols between

different components may be introduced by soft-

ware updates. Hence, a general protocol consistency

checker should be provided and applied for software

updates.

2. It is important for developers to provide enough test

cases with different execution environments, to miti-

gate hang bugs caused by unexpected environments.

3. Runtime checking or resource insurance mechanism,

such as checking the underlining TCP stack to avoid

firewall incurred stack inconsistency problem, can help

to avoid resource related problems.

4. Configuration scripts should be designed to satisfy as

many hardware and software combinations as possible,

and auto configuration tools should adjust themselves

when the execution environment changes. A simula-

tion on different combination of various hardware and

software can help to detect script errors earlier before

deploying the application.

6 Related Work

Bug characteristic study: There has already been a lot

of work on studying the other types of bugs in commer-

cial software, including Operating System errors [1], sys-

tem utilities [6], network applications [9] and Concurrency

bugs [5]. Compared to these studies, our study is unique in

providing a comprehensive study on the characteristics of

software hang.

Bug analysis and debugging tools: Lots of studies have

been done to analyzing and detecting bugs. Replay tech-

niques [7, 11] is heavily discussed in the past ten years.

Some remote logging techniques [12] are developed to en-

able bug analysis in distributed systems and the internet.

Recent work also proposed to statically check semantic con-

sistency of software [2]. These techniques can be used on

debugging some of hang bugs in categories like Concur-

rency, Infinite Loop and Design.

Hang detecting tools: There are several techniques ex-

ist to detect software hang [8] with the help of hardware

or using kernel modules. Most of such approaches use a

heartbeat technique, which works like a watchdog helping

detecting the hang of the system. However, the satisfied

timeout is very hard to decide [10] in practice.

7 Conclusion

Software hang is a severe threat to software dependabil-

ity. In this paper, we present a comprehensive study on

the characteristics of hang-related software bugs from four

popular open-source applications. Our study presents nine

categories of bugs that are major causes of software hang.

Design, Environment, Infinite Loop and Concurrency are

four main contributors of software hang. The bug fix study

shows that a well-formed bug report is a key to accelerate

hang bug fix progress. We also provide several observations

and suggestions on how to improve hang bug fix progress.

References

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In Proc. SOSP,

pages 73–88, 2001.

[2] I. Dillig, T. Dillig, and A. Aiken. Static error detection us-

ing semantic inconsistency inference. In Proc. PLDI, pages

435–445, 2007.

[3] D. Engler and K. Ashcraft. RacerX: effective, static detec-

tion of race conditions and deadlocks. ACM SIGOPS Oper-

ating Systems Review, 37(5):237–252, 2003.

[4] T. Li, C. Ellis, A. Lebeck, and D. Sorin. Pulse: a dynamic

deadlock detection mechanism using speculative execution.

In Proc. USENIX ATC, pages 3–3, 2005.

[5] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug char-

acteristics. ASPLOS, 2008.

[6] B. Miller, L. Fredriksen, and B. So. An empirical study

of the reliability of UNIX utilities. Communications of the

ACM, 33(12):32–44, 1990.

[7] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Record-

ing and Deterministically Replaying Shared-Memory Multi-

processor Execution Efficiently. In Proc. ISCA, pages 289–

300, 2008.

[8] N. Nakka, G. Saggese, Z. Kalbarczyk, and R. Iyer. An ar-

chitectural framework for detecting process hangs/crashes.

In European Dependable Computing Conference (EDCC),

2005.

[9] D. Oppenheimer. Why do Internet services fail, and what

can be done about it? In Proc. USITS, 2003.

[10] S. Peter, A. Baumann, T. Roscoe, P. Barham, and R. Isaacs.

30 seconds is not enough!: a study of operating system timer

usage. In Proc. Eurosys, pages 205–218, 2008.

[11] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flash-

back: a lightweight extension for rollback and deterministic

replay for software debugging. In Proc. USENIX ATC, pages

3–3, 2004.

[12] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,

J. Lee, Y. Wang, and R. Roussev. Flight data recorder: mon-

itoring persistent-state interactions to improve systems man-

agement. In Proc. OSDI, pages 117–130, 2006.

[13] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and

Z. Zhang. Hang analysis: Fighting responsiveness bugs. In

Proc. Eurosys, 2008.


