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Abstract
Distributed transaction systems incur extensive cross-node commu-
nication to execute and commit serializable OLTP transactions. As
a result, their performance greatly suffers. Caching data at nodes that
execute transactions can cut down remote reads. Batching transac-
tions for validation and persistence can amortize the communication
cost during committing. However, caching and batching can signif-
icantly increase the likelihood of conflicts, causing expensive aborts.
In this paper, we develop Hackwrench to address the challenge of
caching and batching. Instead of aborting conflicted transactions,
Hackwrench tries to repair them using fine-grained re-execution by
tracking the dependencies of operations among a batch of transactions.
Tracked dependencies allow Hackwrench to selectively invalidate
and re-execute only those operations necessary to “fix” the conflict,
which is cheaper than aborting and executing an entire batch of trans-
actions. Evaluations using TPC-C and other micro-benchmarks show
that Hackwrench can outperform existing commercial and research
systems including FoundationDB, Calvin, COCO, and Sundial under
comparable settings.

1 Introduction
Distributed system supporting serializable OLTP transactions is a
crucial component of the cloud’s storage infrastructure. Over the past
decade, many distributed transaction systems have been proposed
and deployed, with notable examples including Spanner [16],
CockroachDB [15], H-Store [30], and FoundationDB [65]. However,
while these systems can scale across many nodes, their achieved
performance still leaves much to be desired.

There are fundamental reasons why distributed transactions tend
to be slow. As data is partitioned across multiple nodes, the system
often must fetch data from a remote node (aka remote reads) during
transaction execution. More importantly, in order to commit a transac-
tion, the system must also coordinate across multiple nodes to ensure
serializability. Such coordination can show up in the form of dis-
tributed 2PL-style locking [16] or OCC-style [4] validation, followed
by two-phase commit (2PC) [4, 16, 40]. Consequently, executing and
committing a transaction requires multiple round trips of blocking
communication. This is disastrous for performance, resulting in sig-
nificantly reduced throughput, especially for contended workloads.

To substantially boost performance, we aim to drastically cut down
the amount of remote communication needed to execute and commit
a distributed transaction.Caching and batching are promising tech-
niques in realizing our goal. Caching data extensively at nodes that exe-
cute transactions can reduce remote reads. Batching a group of transac-
tions together for validation and commit can amortize the communica-
tion needed across multiple transactions. These techniques are already

used ubiquitously among single machine databases. Recently, the
cloud database Aurora [53, 54] achieves impressive performance us-
ing caching and batching. However, single-master Aurora’s simple set-
ting of executing transactions on a single database node makes it much
easier to apply caching and batching with good performance results.

Caching and batching have seen limited use in a distributed
setting where multiple nodes can execute and commit transactions
simultaneously. This is because both techniques can significantly
increase the likelihood of non-serializable interleaving under
contention. Sinfonia [4] performs best-effort caching. However,
under contention, cached reads can miss writes recently committed by
other nodes, causing the corresponding transactions to abort. When
transactions are batched together for validation, the invalidation of a
transaction due to conflicts will cause other transactions in the batch to
abort. Thus, COCO [40] validates transactions individually and only
batches validated transactions for cross-node replication. Addressing
these challenges is critical to enabling the effective use of caching
and batching, but how to do so has remained an open question.

In this paper, we propose Hackwrench, a distributed transaction
system designed for OLTP workloads. Hackwrench performs
best-effort caching and batched validation to reduce remote
communication while mitigating the harmful effect of increased
conflicts. Our key idea is to “repair” non-serializable transactions
by applying a minimal fix rather than naively aborting an entire batch
of transactions. Transactions are fixed by re-executing operations
that have read stale data and are thus invalidated.

To support fine-grained re-execution, Hackwrench transactions are
expressed as a dataflow graph of operations to make their dependen-
cies explicit. Hackwrench introduces a tiered commit protocol: trans-
actions first go through a local commit phase to resolve conflicts within
a database node, and then a global commit phase to resolve conflicts
among different database nodes. A database node uses a traditional
local concurrency control mechanism (e.g., 2PL [26]) to execute and
commit transactions locally. Transactions can read uncommitted data
of any locally-committed transaction without waiting for its global
commit, so that they will not be blocked. The resulting dependencies
are tracked by the database node and are used later during repair.

The global commit protocol validates and commits a batch of lo-
cally committed transactions. It works similarly to the two-phase
commit protocol: in the prepare phase, the database node contacts
all participating storage nodes to validate the reads and persist the
batch’s writes as well as transaction inputs at the storage nodes; in the
commit phase, the database node notifies storage nodes of the batch’s
commit status. Hackwrench’s global commit introduces two varia-
tions to this basic protocol. First, upon validation failure, the database
node tries to repair the batch using the updated cache; it re-executes
affected operations according to the tracked dependencies within and



among transactions, and includes the delta between the original and
repaired write set in the commit message. Second, Hackwrench relies
on a timestamp server to determine the commit order of transactions.
Storage nodes validate transactions in the order of their commit times-
tamps, which guarantees that repair only needs to happen at most once.

For a common but restricted class of transactions called one-shot
transactions [30, 45], we can optimize the global commit by offload-
ing the repair to storage nodes. A one-shot transaction’s dataflow
graph can be decomposed into several independent pieces. Hack-
wrench’s fast-path optimization leverages this feature to let a storage
node immediately commit a batch of transactions upon receiving its
prepare request, repairing if necessary, without waiting for the commit
message. This optimization allows storage nodes to handle prepare
messages without blocking, avoiding two-phase commit costs.

We have implemented Hackwrench as a distributed transaction
system and compared its performance with a baseline OCC system,
FoundationDB [65], Calvin [49], COCO [40], and Sundial [63]
Using a cluster of 19 machines, our TPC-C evaluation shows that
Hackwrench’s performance gains over existing systems in terms of
throughput can be up to 730.03% (OCC), 1889.52% (FDB), 385.57%
(COCO), 470.60% (Calvin) and 45.18%(Sundial) when the fraction of
multi-warehouse NewOrder exceeds 89% (§ 5). Further performance
analysis shows that Hackwrench’s fine-grained repair mechanism
can greatly reduce the overhead of aborts when commits are batched.
To summarize, the paper makes the following contributions:
• We introduce a new system design, Hackwrench, for distributed

OLTP transactions. Hackwrench exploits batching and caching
to reduce communication during transaction execution and
commit. In particular, we propose a tiered commit protocol to
validate and commit a batch of transactions in two stages, ensuring
serializability first within the local node that has executed the
transactions and then across all nodes globally. To mitigate
increased conflicts due to stale cache reads and batched validation,
we propose fine-grained re-execution to “fix” stale or invalidated
reads instead of doing traditional wholesale abort-and-retry. Doing
so greatly lowers the cost of transaction conflicts.

• For one-shot transactions [30, 45], we propose the fast-path opti-
mization which performs re-execution at storage instead of data-
base nodes with one fewer round-trip and no 2PC coordination cost.

• We build a prototype of Hackwrench and show that it can
outperform existing commercial and research systems including
FoundationDB [65], COCO [40], Calvin [49], and Sundial [63]
under comparable settings.

2 Background and Motivation
We discuss the cost of distributed OLTP transactions, explain the
performance challenges faced by two promising techniques, caching
and batching, and motivate our approach.

2.1 The Cost of Distributed OLTP Transactions

Distributed OLTP transactions incur heavy performance costs
because of their intrinsic need for cross-machine communication.
There are two sources of communication. The first is remote reads,
incurred during transaction execution when data are not available
locally. For “remote storage” systems, aka systems that execute
transactions on machines separate from storage servers (e.g.,
Spanner [16], FoundationDB [65], CockroachDB [15], and MySql

NDB Cluster [43]), all reads are remote. For “co-located” systems,
aka systems that execute transactions on worker threads co-located
with storage servers (e.g. Calvin [49], H-Store [30], COCO [40],
and Sundial [63]), a fraction of the reads in a “multi-partition”
transactions1 must contact some remote server.

The second is remote synchronization, needed for ensuring
serializability, that can take several forms: i) distributed two-phase
locking [26], e.g., used by Spanner [16]); ii) OCC validation [31], e.g.,
used by COCO [40]; iii) two-phase commit (2PC) [23, 25], which
ensures that a committed transaction’s data is durable on all relevant
servers. To reduce round-trips, many systems also merge OCC
validation with the first phase of 2PC, e.g., Sinfornia [4], Granola [17].

Compared to local execution, remote communication drastically
increases transaction latency and decreases system throughput as well.
Throughput is particularly affected when a limited number of transac-
tions can be run concurrently to mask the increased transaction latency.
This could either be due to the lack of sufficiently many transaction-
issuing clients, or due to the workload having inherently limited
concurrency. For example, in the TPC-C workload, only a few trans-
actions can execute concurrently without conflicts in each warehouse.

2.2 Challenges of Caching and Batching

We work with a “remote-storage” system architecture in which data-
base nodes that execute transactions are separate from storage nodes
that store partitioned data. During transaction execution, database
nodes read from storage nodes and buffer writes locally. To commit
a transaction, the database node must first validate its reads with
the relevant storage nodes. Below, we discuss how the two common
performance-optimization techniques, caching and batching, can be
applied in this setting to reduce cross-node communication and the
challenges in realizing their performance potential.
Caching. Database nodes can keep a local cache of previously
accessed data and read cached data to avoid remote reads to storage
nodes. In the setting where only a single database can process write
transactions (e.g. Deuteronomy [33], single-master Aurora [53]), the
cache is always consistent and up-to-date. However, in our setting, dif-
ferent database nodes can commit transactions that write to the same
data, resulting in stale/inconsistent cache 2. For correctness, one can
check the cached reads’ validity during the commit validation, as done
in Sinfonia [4]. Thus, caching increases transaction aborts, which
may explain why most systems choose not to cache [15, 16, 43, 65].
Batching. To amortize the cost of remote synchronization, database
nodes can batch a group of transactions after they finish execution to
validate and commit them together at the storage nodes. Prior works
have proposed batching transaction commits, but not validation. For
example, single-writer Aurora [53, 54] only batches the writes of
committed transactions for replication to storage nodes. COCO [40]
first performs OCC validation for individual transactions and then
batches a group of validated transactions for replication. In our setting,
database nodes must validate a transaction’s reads at storage nodes,
a process that involves cross-node synchronization. Therefore, to
amortize this cost, it is imperative to batch the validation of a group of
transactions. Many tough design questions arise. Should we permit a

1Multi-partition transactions access multiple data partitions stored on different servers.
2Traditional cache consistency protocols [22, 34] are not robust against failures. Thus, it
is more practical to adopt a best-effort cache that is updated or invalidated asynchronously
in the background with no guaranteed consistency



𝑝
TPC-C Throughput (Txns/s)

Naive OCC +Caching +Batching +RU
0% 19.0k 32.3k 103.3k 337.7k

9.6% 18.3k 29.7k 72.6k 442
89.3% 13.7k 21.7k 28.2k 47

Table 1: The performance impact of caching and batching. 𝑝 is the
percentage of multi-warehouse NewOrder transaction. “Naive OCC” is similar
to COCO [40], except there is no co-location of transaction execution with
storage. “+Caching” adds a local cache at each database node. “+Batching”
further makes database nodes batch transaction validation and commit.
Finally, “+RU” permits reading uncommitted data between different batches.
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Figure 1: Fine-grained tracking of operation dependencies within a batch
of transactions,𝑇1 and𝑇2.
transaction to read uncommitted writes from those that are still waiting
for batch validation to complete at remote nodes? Does an entire batch
need to be aborted if one transaction in the batch fails the validation?

We conducted experiments on the TPC-C benchmark to quan-
tify the performance impact of caching and batching. The experi-
ments use 18 Amazon EC2 m5.2xlarge instances, among which 6
are database nodes and 12 are storage nodes. We increase the like-
lihood of cross-node conflicts by increasing the multi-warehouse
NewOrder transaction possibility (𝑝). The results are shown in Table 1.
Caching increases throughput by approximately 58.4% ∼ 69.8%.
Batching further improves performance by 219.5% (𝑝 = 0%) and
144.2% (𝑝 = 9.6%). However, when cross-node conflicts are com-
mon (𝑝 =89.3%), the improvement drops to 30.3% due to i) batched
validation increases the likelihood of conflicts between batches, ii) a
single aborted transaction causes the entire batch of transactions to
abort. Basic batching does not allow a transaction to read uncommit-
ted data of those batches still in the process of validation with remote
storage nodes. We also experimented with a variation (+RU) that
allows reading from such uncommitted batches. When there is no con-
tention (𝑝 =0%), this design achieves significantly higher throughput
than basic batching (337.7𝑘 vs 103.3𝑘 Txns/s). However, contention
tanks the performance due to cascading aborts across batches. This
motivates us to address the design challenge of sustaining the high
performance of “+RU” in the face of low to moderate contention.

2.3 Our Approach

We develop Hackwrench to exploit caching and batching more
effectively. To enable batched validation and commit, we propose
a two-tier commit protocol in which transactions are first checked
locally for serializability violations before being batched together and
validated globally. At the core of Hackwrench is the mechanism re-
pair through fine-grained re-execution, which can significantly lower
the cost of invalidated transactions compared to wholesale aborts.

Tiered commit. We separate the usual monolithic commit protocol
into two tiers (stages). In the first stage, referred to as “local commit”,
each node uses traditional local synchronization (e.g., 2PL) to
execute transactions individually and ensure their serializability
within a node. In the second stage, referred to as “global commit”,
each node groups together a batch of locally committed transactions
and communicates with (multiple) data servers to validate the batch’s
read set and persist its write set.

Separating commits into two tiers allows us to handle intra-node
conflicts using inexpensive local synchronization. More importantly,
a locally committed transaction makes its writes visible to other
transactions running on the same node, so they do not block waiting
for the transaction’s distributed global commit. As a result, we are able
to batch together dependent transactions. Otherwise, we would be
restricted to only batching together transactions with non-overlapping
data access, which can seriously constrain throughput when there
are only a limited number of such concurrent transactions.
Repair via fine-grained re-execution. Caching increases the
chances of aborts due to stale reads. Tiered commit makes this
situation worse because any transaction that has observed writes
from an aborted transaction must also be aborted. To mitigate the
cost of aborts, we need a more efficient solution than aborting and
retrying a batch of transactions. Our insight is that it is cheaper to
repair a batch of transactions by selectively re-executing only those
operations affected by stale or invalid reads.

We implement such repair by representing transactions using
static dataflow graphs so that the dependencies between operations
are made explicit. Additionally, dependencies across different
transactions are dynamically tracked through the tuples that they
access. We illustrate the main idea of repair using an example.
Figure 1 shows the dependencies among a batch of two locally
committed transactions, 𝑇1 and 𝑇2, which access three data tuples
𝐴, 𝐵, 𝐶. We assume the version of a tuple is represented by its last
writer transaction. Since a locally committed transaction exposes
its writes to other transactions executing on the same database node,
there exist implicit dependencies across transactions within a batch,
as exemplified by the edges𝑊3→𝑅6 and𝑊4→𝑅7.

During the global commit, the read set of a batch is validated at
relevant data servers. A read can be invalidated if its version does not
match the tuple’s current version due to conflicts or the stale cache.
With the aid of the dataflow graph, we can repair the damage of the
invalidated read by precisely identifying the subset of operations that
need to be re-executed. In Figure 1, the read set consists of tuples
𝐴, 𝐵,𝐶, all with version𝑇0. Suppose the read of tuple𝐶 (version𝑇0)
fails its validation because the version has been changed to𝑇4, then
operations 𝑅2,𝑊4 of𝑇1 and 𝑅7,𝑊10 of𝑇2 must be re-executed using
the new version of tuple𝐶 while all other operations are unaffected.

The idea of fine-grained re-execution is inspired by transaction
healing and repair [18, 58], but differs in several important aspects.
First, since repairing is done to a batch instead of an individual
transaction, we need to track operation dependencies among different
transactions in a batch. Second, we rely on explicit dataflow graphs to
expose operation dependencies instead of static analysis [18] because
the latter lacks precision.



Segments

Storage
node

Segments

Storage
node

Segments

Storage
node

Cache

Database
node

Cache

Database
node

Cache

Database
node

Timestamp
server

Clients

Configuration
service

Configuration
service

Configuration
service
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3 Hackwrench Design
System overview. Figure 2 depicts Hackwrench’s architecture.
Hackwrench consists of three main components: a set of database
nodes, a set of storage nodes, and a timestamp server. Database
nodes execute transactions and coordinate their commits; storage
nodes store data and validate transactions. As Hackwrench supports
replication, we use the term logical storage node to refer to a group
of physical storage nodes that replicate the same data (the default
replication level is 3). Reading from (or writing to) a logical storage
node requires contacting the read quorum (or write quorum) of its
constituent physical storage nodes [53]. The size of the read/write
quorum is configurable and must ensure non-empty quorum
intersection. Hackwrench’s tiered commit protocol guarantees strict
serializability. It uses the timestamp server to ensure a consistent
ordering of concurrent global commits from different database nodes.

For fault tolerance, Hackwrench relies on a Paxos-replicated
configuration service to keep consensus on the current system
configuration (aka view) which includes the identity of the timestamp
server as well as the mapping of each data partition to its logical
storage node. Each view is identified with a unique view number
which is increased sequentially. RPC requests are attached with
the view number of the system configuration known to the sender.
The timestamp server and storage nodes reject requests whose view
numbers do not match theirs. Such use of a configuration service is
similar to that done in other distributed storage systems [13, 40, 44].

3.1 Data Organization and Caching

Hackwrench partitions data into segments, each of which contains
a set of versioned key-value tuples belonging to a table. Users can
designate a subset of the table’s primary key columns as the partition
key for each table. Each data segment is stored at a logical storage
node. The configuration service maintains the mapping from each
data segment to its logical storage node, which is cached by all the
database nodes. The version of a tuple consists of a 63-bit unique ID
of the last transaction that modifies that tuple and one “repaired” bit,
which is needed to ensure that the writes of a re-executed transaction
have versions different than those of its original execution.

Each database node keeps a large in-memory cache. Caching is
done at the tuple granularity. In the face of a cache miss, a database
node reads the tuple from the corresponding logical storage node. The
cache is kept up-to-date asynchronously with no freshness guarantee.

3.2 Transaction Execution and Local Commit

In Hackwrench, transactions are represented as stored procedures. For
OLTP workloads, stored procedures are commonly used for perfor-
mance acceleration [45]. Unlike other systems [40, 42, 49, 52, 56, 59]
that use C++-based stored procedures, Hackwrench provides a
dataflow-based programming abstraction for users to write store

procedures. Our dataflow APIs are inspired by Tensorflow [2],
except that instead of supporting tensor operators, our API supports
primitive operators on different tuple column types, including
integers, strings, and floats, as well operators for reading and writing
tuples in the database. All operators are deterministic. Their outputs
are only dependent on their input, except for database reads, which
depend on the current cached or database state. With our API, each
transaction is represented by a static dataflow graph. In the actual
implementation, we store one copy of the dataflow graph for a given
transaction type at each node.

In Hackwrench’s tiered commit protocol, concurrency control
for a transaction is decomposed into two parts: local commit for
resolving local conflicts within the same database node, and global
commit for handling remote conflicts across different database nodes.
The global commit protocol is discussed later in § 3.3.
Execution and local commit. To execute a transaction, a database
node reads from its data cache whenever possible and buffers writes
locally. It uses two-phase locking [26] (with NO_WAIT for deadlock
prevention) to ensure strictly serializable execution. Upon finishing,
the database node commits a transaction locally: it directly applies
the transaction’s writes to the database cache, making the writes
visible to other transactions on the same database node. Locally
committed transactions are then appended to one local queue of each
database node, waiting for batched global commit. By releasing the
locks held for 2PL after the transaction is pushed into the queue, we
ensure that the order of transactions in the queue corresponds to their
local commit order on the database node.

For performance’s sake, it is crucial to expose a transaction’s writes
upon local commit. The alternative, i.e., holding locks during global
commit , can seriously damage the system throughput because other
transactions could be blocked from execution and local commit. How-
ever, there is a downside: if transaction𝑇 is aborted later during global
commit, any transactions that have read 𝑇 ’s uncommitted writes
must also be aborted. This cascading effect can cause significant
abort overhead, which Hackwrench seeks to mitigate using repair via
fine-grained re-execution. To do so, Hackwrench needs to track the
dependencies of operations among locally-committed transactions;
if a read operation’s output changes during validation, then all its
dependent operations need to be re-executed as part of the repair. In
fact, transactions are executed according to their dataflow graphs,
which contain operation dependencies within the transactions. The
details of runtime dependency tracking are described in Section 4.

3.3 Global Commit

Hackwrench dequeues a batch of locally committed transactions and
tries to globally commit them at the logical storage nodes responsible
for the batch’s read set/write set. At the high level, Hackwrench’s
global commit follows the spirit of two-phase commit (2PC) where a
database node coordinates with the set of participating logical storage
nodes to go through a prepare phase followed by commit phase. Sim-
ilar to [4], the prepare phase validates the batch’s read set and persists
its write set for crash recovery. We introduce two crucial variations to
2PC [4]. First, Hackwrench relies on a centralized timestamp server
to assign the batch of transactions a consistent commit ordering.
Second, instead of aborting the whole batch upon detection of conflict,
Hackwrench repairs conflicted transactions. Next, we describe the
commit timestamp assignment and the global commit procedure



Basic fields of Batch:

▷ A database node (DB) starts the global commit.
GlobalCommit(local_queue, batch_size):
▷ Assemble a batch of locally committed transactions.
  1:    batch := BatchLocalTxns(local_queue, batch_size)
▷ Fetch the batch’s commit timestamps from the timestamp server, 
    and these requests are sent in one message.
  2:    foreach segment seg in batch.rset and batch.wset do:
  3:        batch.cts[seg.id] := FetchTimestamp(seg.id, seg.op_type)
▷ Check whether the batch could commit with fast path.
  4:    batch.fast_opt := AnalyzeFastPathFeasibilityOf(batch)
▷ Send Prepare requests to the target logical storage nodes.
  5:    sn_locations := FindSnLocations(batch) 
  6:    foreach sn in sn_locations do:
  7:        send Prepare(batch) to all physical replicas of sn

▷ DB receives the responses from the write quorums of all target 
    logical storage nodes. 
28:    if at least one PrepareNotOK reply was received: 
▷ The repairing transactions directly read from fresh_tuples or 
    recorded value in the read set, avoiding reading uncommitted 
    data written by ongoing transactions in DB.
29:        Repair(batch.input, batch.rset, batch.wset, fresh_tuples) 
30:        RefreshDbCache(fresh_tuples) 
31:        ApplyToDbCache(batch.delta_wset)
 ▷ Send Commit requests to the target logical storage nodes.
32:    foreach sn in sn_locations do: 
33:        send Commit(batch) to all physical replicas of sn

▷ A storage node (SN) processes a Prepare request.
 HandlePrepare(batch):
▷ Acquire locks for accessed tuples in the timestamp order.
  8:    foreach seg in batch do:
  9:        local_ts := GetLocalTimeStamp(seg.id)
10:        WaitForPreviousBatch(local_ts, batch.cts[seg.id])
11:    EnqueueTupleLockRequests(batch.rset, batch.wset)
12:    foreach seg in batch do:
13:        UpdateLocalTimeStamp(seg.id, seg.op_type)
14:    WaitForAllTupleLocksAcquired(batch.rset, batch.wset)
▷ Perform the validation on the tuples in the read set.
15:    validation := success
16:    foreach tuple in batch.rset do:
17:        if tuple.version != GetCurrentVersion(tuple):
▷ Prepare fresh committed data for dirty tuples.
18:            fresh_tuples.add(tuple)
19:            validation := fail
20:    if batch.fast_opt is false:
21:        Persist(batch.cts,batch.input, batch.wset, batch.rset.keys)
22:        if validation is success: ▷ Validation succeeds
23:            reply <PrepareOK> to DB
24:        else:                               ▷ Validation fails
25:            reply <PrepareNotOK��fresh_tuples> to DB 
26:    else:    ▷ Use the fast path
27:        goto line 39

▷ SN commits the batch in the fast path from line 27.
39:    Persist(batch.cts, batch.input) ▷ cts and input of all txns.
40:    if validation is fail:
▷ No concurrent conflicting batches can update tuples required
    for repair, as they are blocked by locks of conflicting tuples.
41:        Repair(batch.input, batch.rset, batch.wset)
42:    ApplyToSnStorage(batch.final_wset)
43:    ReleaseTupleLocks(batch.rset, batch.wset)
44:    reply <FastPathOK, fresh_tuples,batch.delta_wset> to DB
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▷ DB receives FastPathOK from the write quorums of all target 
    logical storage nodes.
45:    if batch was repaired:
46:        RefreshDbCache(fresh_tuples) 
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▷ SN processes a Commit request.
 HandleCommit(batch):
34:   if batch was repaired:
35:       Persist(batch.deleta_wset) ▷ the entire delta_wset. 
▷ The final write set should be reformed as it is not directly 
    transferred by the Commit request.
36:       ReformFinalWriteSetOf(batch.wset, batch.delta_wset)
37:   ApplyToSnStorage(batch.final_wset)
▷ Release the locks to unblock subsequent batches.
38:    ReleaseTupleLocks(batch.rset, batch.wset)

    fast_opt:     whether to use the fast path optimization.
    input:            the input of transactions in the batch.
    final_wset:   the final write set after repair or the original 

write set if the batch is not repaired.
    delta_wset:   the delta of write set before and after repairing.

    rset & wset:  the original merged tuple-level read set and
write set, which can determine the id of and
operation type towards accessed segments.

    cts:                the list of segment-level timestamps which
assigns global commit orders to batches.

Figure 3: The algorithm for global commit. Procedures in stacked boxes are executed on the storage node.

without validation failure. Repair is discussed in § 3.4. Finally, we
propose an optimization that enables certain types of transactions
to be repaired efficiently at the logical storage nodes (§ 3.5).
Commit timestamp assignment. The goal of the centralized commit
timestamp assignment is to ensure that all logical storage nodes
agree on a consistent ordering when handling conflicting batches of
transactions. Suppose transaction𝑇1 and𝑇2 have conflicting accesses
on tuples 𝑥,𝑦 which are stored at nodes 𝑠𝑛𝑥 and 𝑠𝑛𝑦 , respectively.
With commit timestamping, we aim to guarantee that both servers
𝑠𝑛𝑥 and 𝑠𝑛𝑦 will validate and commit𝑇1 and𝑇2 in the same order.

One design is to assign a total order to commit timestamps.
This strategy is straightforward and adopted by many systems, e.g.
FoundationDB [65], Spanner [16], and Deterministic DB [1, 49].
We instead assign commit timestamps using partial ordering, which
can also ensure the consistent ordering of conflicting transactions,
with the added advantage that non-conflicting batches will not
unnecessarily block each other.

In Hackwrench, the timestamp server maintains a counter for each
data segment. The per-segment counter is represented as a pair: <𝑠𝑒𝑞,
𝑟𝑒𝑎𝑑𝑒𝑟𝑠>, where 𝑠𝑒𝑞 tracks the number of batches that have written
the segment and 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 tracks the number of batches that have read



the segment’s latest write. When requesting a commit timestamp for
a batch of transactions, the database node submits the list of segments
in the batch’s read set and write set to the timestamp server. The times-
tamp server locally locks all segments, reads each segment’s current
counter value into the commit timestamp, increments each write seg-
ment’s 𝑠𝑒𝑞 field while zeroing its 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 field, and increments each
read segment’s 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 field while leaving its 𝑠𝑒𝑞 field unchanged.

Storage nodes handle global commits according to the partial
ordering of commit timestamps. Suppose a batch with segment 𝑠 has
commit timestamp𝐶𝑇𝑆 [𝑠]=<𝑠𝑒𝑞,𝑟𝑒𝑎𝑑𝑒𝑟𝑠>. If 𝑠 is in the read set, the
storage node must wait for the arrival of the batch that has written to
𝑠, aka batch with timestamp𝐶𝑇𝑆 [𝑠]=<𝑠𝑒𝑞,0>; If 𝑠 is in the write set,
the storage node must wait for the arrival of all 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 batches that
have read 𝑠, aka batches with timestamps 𝐶𝑇𝑆 [𝑠]=<𝑠𝑒𝑞,𝑖>, where
0≤ 𝑖 ≤𝑟𝑒𝑎𝑑𝑒𝑟𝑠.

Our scheme ensures that conflicting batches are handled in
a consistent order at storage nodes. We note that while commit
timestamps are coarse-grained at segment level, storage nodes still
use tuple-level locking during validation to minimize false blocking
and false conflicts. Because timestamps are coarse-grained and
assigned to a batch of transactions, a single timestamp server can
support high transaction throughput (§ 5.6, Figure 15).
Batched global commit. Hackwrench’s global commit process
works at the batch granularity. The pseudocode of the commit proto-
col is shown in Figure 3. To start, the database node dequeues a batch
of transactions from its local queue (Line 1), with the local commit
order of transactions preserved (§ 3.2). The batch’s read set and write
set are merged from its transactions’ read set and write set, with
careful deduplication. The batch’s read and write set determine the set
of participating logical storage nodes involved in the global commit.

After a batch is assembled, the database node fetches a commit
timestamp from the timestamp server (Line 3). The timestamp server
handles requests from the same database node in order, to ensure that
commit timestamps are consistent with the local commit order of
batches.

After obtaining the batch’s commit timestamp, the database
node proceeds to the prepare phase. It prepares the batch’s read
set for validation and the write set for persistence as redo logs. Let
𝑆𝑁read (or 𝑆𝑁write) denote the set of logical storage nodes managing
the segments for the read set (or write set). The database node
sends Prepare requests in parallel to all storage nodes in 𝑆𝑁read
and 𝑆𝑁write (Lines 6,7). The Prepare request contains the batch’s
commit timestamp, read set, write set, and transactions’ inputs.

Upon receiving a batch’s Prepare request, the storage node
acquires tuple-level locks for the batch, following the commit
timestamp’s partial order. It first checks whether this request must
wait for other batches to finish enqueuing their lock requests (Line
10), by comparing its responsible segments’ current timestamps with
those from the batch’s commit timestamp. Once the waiting is over,
the storage node enqueues a lock request in a FIFO queue for each
tuple according to the batch’s read set and write set (Line 11) and
updates the accessed segments’ timestamp (Lines 12,13), thereby
allowing subsequent batches to enqueue their lock requests.

Once a batch’s locks have all been acquired (Line 14), the storage
node can validate the batch’s read set (Lines 16,17). If a tuple’s current
version does not match the one in the read set, then the validation

fails (Line 19). When a transaction’s read depends on the write of
other transactions in the same batch, the corresponding validation
is skipped. No matter whether the validation succeeds or fails, the
storage node persists the information contained in the Prepare
request (Line 21). For the batch’s read set, only keys are persisted.

If validation succeeds, the storage node replies with PrepareOK
(Line 23). Once the database node receives replies from a write
quorum of each participating logical storage node and all the replies
are PrepareOK, it can enter the commit phase to notify clients and
send the commit decision to storage nodes (Lines 32, 33). Finally,
when a storage node receives the Commit request, it knows the
corresponding batch has been committed, applies the batch’s write
set to local storage, and releases its locks (Lines 37, 38).

3.4 Transaction Repair

When validation fails (Line 19) due to conflicting transactions from
different database nodes, the storage node sends back those tuples
which have caused invalid reads in the PrepareNotOK reply (Line
18 and 25) to help the database node refreshes its local cache. Note
that storage nodes do not release tuple-level locks at this point. After
the database node receives replies from the write quorums of all
participating logical storage nodes, the database node proceeds to
repair the batch if any PrepareNotOK reply is received (Line 29).
We take the example shown in Figure 1 and assume𝑅2 fails validation.
The repair procedure sequentially processes every transaction in
one batch as follows. It starts with the first transaction in the batch,
𝑇1. Checking 𝑇1’s reads, the procedure detects that 𝑅2 needs to be
re-executed. It re-executes 𝑅2 which results in the write𝑊4 to tuple𝐶
being repaired as well. The procedure then proceeds to the next trans-
action in the batch, 𝑇2. Checking 𝑇2’s reads, the procedure detects
the change of𝐶, and re-executes the affected operations 𝑅7 and𝑊10,
resulting in a new final write to tuple𝐶. After all the transactions are
checked and repaired if necessary, the re-execution can finish and
the database node notifies clients of the results. Finally, the database
node refreshes its stale cache (Line 30) and then applies the delta of
write set before and after repair (𝑑𝑒𝑙𝑡𝑎𝑤𝑠𝑒𝑡 ) to its cache (Lines 31).

After completing re-execution, the database node sends the
Commit requests to all participating storage nodes (Lines 32, 33).
Instead of transferring the final write set (𝑓 𝑖𝑛𝑎𝑙_𝑤𝑠𝑒𝑡), the database
node saves network I/O by sending the delta of write set, which can
be used to reconstruct the final write set at the storage node (Line 36).
Then, the storage node applies the final write set to local storage and
releases the batch’s locks (Lines 37,38).

Our design guarantees that the repair will succeed, except for two
scenarios. The first scenario is when a read/write operation changes
its key during re-execution. For repair to be successful, tuple-level
locks must be held during re-execution to protect the read and write
set. However, as these locks are acquired by storage nodes during the
original validation, they do not cover the changed keys. The second
scenario is when a user-initiated abort is triggered during re-execution.
In both cases, the database node aborts the corresponding transaction
and replaces it with a special NOP transaction, which means its write
set is nullified. Ideally, aborts during repair should be rare. There are
no such aborts in many workloads because their transactions’ read set
and write set are not affected by execution [20, 21, 35, 36, 49, 50, 61].



3.5 Fast-Path Optimization

A common but restricted form of transaction is the so-called one-shot
transaction [30, 45]. In our setting, a one-shot transaction is one
whose dataflow graph be decomposed into subgraphs, each of which
only accesses data within a single data partition and can execute and
reach a commit decision independently. For one-shot transactions,
we can optimize the global commit process to let each storage node
independently commit a batch of transactions without coordinating
with others (aka without waiting for the Commit request of 2PC).
This is possible for one-shot transactions if we offload repair from
database nodes to storage nodes so that each logical storage node
can independently repair (its portion of) the batch successfully.

We use the example in Figure 1 to illustrate fast-path optimization
for one-shot transactions. Let us assume tuples𝐴,𝐵 belong to the same
data partition stored at logical storage node 𝑠𝑛1, and tuple𝐶 belongs to
a different partition stored at logical storage node𝑠𝑛2. We can partition
each transaction’s dataflow graph into two pieces such that there are no
dependencies between the subgraph accessing𝐴/𝐵 and the subgraph
accessing𝐶. Therefore, this batch qualifies for fast path global commit.
The database node sends Prepare requests to logical storage nodes.
Suppose operation 𝑅2 fails validation, instead of returning to and
repairing at the database node, 𝑠𝑛2 directly repairs𝑇1’s piece (𝑅2→
𝑊4) and𝑇2’s piece (𝑅7→𝑊10). As these two pieces only access tuple
𝐶 and do not have dependencies with the pieces sent to 𝑠𝑛1, 𝑠𝑛2 can
independently perform the repair and commit𝑇1 and𝑇2.

The pseudocode for the fast path is shown in the bottom right corner
of Figure 3. In this case, every logical storage node persists the commit
timestamp and input of all transactions in the batch (Line 39), which is
needed for failure recovery (§3.6). The storage node repairs the batch
locally if validation fails (Line 41), and commits without waiting
for 2PC Commit requests (Lines 42-44). This can greatly improve
commit throughput under contended workloads because the logical
storage nodes can “pipeline” their handling of batches that conflict on
the same segment, incurring no network delay. Finally, the logical stor-
age node replies to the requesting database node with FastPathOK.
Once the database node receives FastPathOK from the write quo-
rums of all participating logical storage nodes, it can notify the clients.
If the batch has been repaired, the database node then refreshes its
cache with fresh tuples and the delta of write set (Lines 46-47).

3.6 Failure Recovery

Failure model. We assume that database nodes and the timestamp
server can fail, but replicated logical storage nodes do not fail.
Recovering the database node failures. When recovering from
database failures, we must complete (i.e., either commit or abort) all
pending transactions from the failed database node. This is because
unfinished transactions can impede progress by blocking conflicting
transactions from other database nodes. Our design relies on a repli-
cated configuration service for failure detection, and to initiate recov-
ery. Upon detecting a database node failure, the configuration service
notifies all storage nodes, which then stop processing Prepare and
Commit requests from the failed node. Next, the configuration service
appoints another database node to be a (recovery) coordinator. The
coordinator contacts the timestamp server to identify pending trans-
action batches from the failed node, and the logical storage nodes to

determine what information has been persisted for each batch. The co-
ordinator uses this information to decide whether each pending batch
should be committed (because sufficient information is available to do
so), or aborted, and we describe both cases below. Recovery is com-
plete once all pending batches have been either committed or aborted.

A pending batch is aborted if any of its participating logical storage
nodes have not persisted its Prepare request. This is because as an
optimization, we only include the part of the batch that is relevant to a
storage node in its Prepare message, and must combine these during
recovery. Similarly, we commit a pending batch if all participating
logical storage nodes have persisted its Prepare requests and no re-
pair is required. Handling batches that require repair is more complex,
because it requires recomputing the final write set, and consequently,
our handling depends on the state at logical storage nodes.

If the recovering batch has not been committed at any logical
storage node, we use the Prepare requests, which contain the commit
timestamp, transaction inputs, and read set and write set keys to
recompute the final write set. To do so, we re-execute the transaction
using the tuples stored at the storage nodes, the timestamp, and the
transaction input. Similar to the transaction repair logic, our recovery
logic aborts transactions for which the set of keys in the original read
or write set changes during re-execution.

On the other hand, if the batch was committed at a logical storage
node, we must commit it at other storage nodes. However, we cannot
simply re-execute the transaction: tuples in any logical storage node
that committed the transaction might have been updated subsequently
by batches with later timestamps. To address this problem, Hack-
wrench persists the entire delta of a batch’s write set and not just the
part relevant to the storage node before committing the batch at that
node. During recovery, the coordinator reads this delta write set from
a logical storage node that committed the transaction, combines it
with the write set from the persisted Prepare request to construct
the final write set, and uses this write set to commit the batch.

Transactions processed with the fast-path optimization are handled
slightly differently because storage nodes independently make
commit decisions for them. Our recovery procedure for these trans-
actions depends on two design choices: first, the Prepare request
sent to participating logical storage nodes contains timestamps
and transaction inputs for all transactions in the batch; and second,
transaction inputs suffice to re-execute the one-shot transactions
contained in a batch that uses the fast-path optimization. Therefore,
recovering these batches requires the recovery coordinator to re-send
the Prepare request to all participating logical storage nodes.
Recovering from timestamp server failures. We also rely on the
replicated configuration to detect timestamp server failures. However,
handling this requires global quiescence and a view change. To do so,
the configuration service informs all storage nodes to stop processing
new transactions and finish all pending ones in the current view, using
the scheme for recovering failed database nodes if necessary. Once
this is finished, the configuration service can install at all storage
nodes the new view containing the new timestamp server. The new
timestamp server assigns timestamps starting with the initial value.
Storage nodes only wait for batches whose timestamps belong to the
current view. We believe one can use view changes to add or remove
storage nodes, however, our prototype does not support such changes.



3.7 Correctness

Next, we provide a proof sketch showing that Hackwrench imple-
ments strict serializability. The proof follows Adya’s formulation for
transaction isolation [3], which we briefly review below. A schedule
is a sequence of operations performed by transactions. A schedule 𝑠 is
serializable if there exists a schedule 𝑠′ where committed transactions
are executed serially and produce the same results as in 𝑠. A schedule 𝑠
is strictly serializable if it is serializable and such 𝑠′ preserves the real-
time order: for any transaction𝑇1 and𝑇2, if𝑇1 commits before𝑇2 be-
gins, then𝑇1 is serialized before𝑇2 in 𝑠′. Transactions have dependen-
cies: Transaction𝑇2 read-depends on transaction𝑇1 if some operation
𝑜2 in𝑇2 reads a tuple version written by some operation 𝑜1 in𝑇1;𝑇2
write-depends on𝑇1 if 𝑜2 overwrites a tuple version written by 𝑜1;𝑇2
anti-depends on𝑇1 if𝑜2 overwrites a tuple version read by𝑜1. Transac-
tion𝑇2 depends on transaction𝑇1 if𝑇2 read-, write-, or anti-depends on
𝑇1. Further, for two commit timestamps 𝑐𝑡𝑠1 and 𝑐𝑡𝑠2 of two batches,
we say 𝑐𝑡𝑠1<𝑐𝑡𝑠2 iff there exists at least one segment 𝑠 they have in
common and 𝑐𝑡𝑠1 [𝑠] is before 𝑐𝑡𝑠2 [𝑠] in the timestamp order.

Definition 1 (Effective Operation). An operation 𝑜 of a com-
mitted transaction𝑇 is effective if𝑇 has not been repaired or, during
repair, 𝑜 is not discarded due to re-execution or control flow changes.

Definition 2 (Repair Direct Serialization Graph). A repair
direct serialization graph (RDSG) is a directed graph where every
vertex represents a committed transaction, and there exists one
directed edge 𝑇1 → 𝑇2 iff 𝑇2 depends on 𝑇1 and the operations
establishing the dependency are effective.

Lemma 1. For any transaction 𝑇1 and 𝑇2 that are executed on
different database nodes, if𝑇1→𝑇2 in the RDSG, then the batch 𝐵1
that contains𝑇1 globally commits before the batch𝐵2 that contains𝑇2.

PROOF SKETCH. There are two cases.
Case 1. 𝑇2 read- or write-depends on 𝑇1. In this case, 𝑇2 must

have accessed a tuple version written by 𝑇1 and this tuple version
must be committed. If the tuple version is not committed,𝑇2 cannot
have accessed such a version as𝑇1, and𝑇2 are executed on different
database nodes that do not share the same cache. Therefore,𝑇1 must
globally commit before𝑇2, and due to the dependency (aka conflicts)
between𝑇1 and𝑇2, 𝐵1 must globally commit before 𝐵2.

Case 2. 𝑇2 anti-depends on 𝑇1. Let 𝑜1 and 𝑜2 respectively
denote the effective operations from 𝑇1 and 𝑇2 that establish the
anti-dependency. 𝐵1 must have performed validation before 𝐵2
commits at the storage node containing the segment 𝑜1 and 𝑜2 access.
Otherwise, 𝐵1 would fail at the validation of 𝑜1, and 𝑜1 would be
re-executed or even be discarded by control flow changes, which
would disqualify 𝑜1 as an effective operation. As storage nodes
handle conflicting batches sequentially WRT timestamp ordering,
𝐵1 must globally commit before 𝐵2. □

Lemma 2. For any committed transactions𝑇1 (from batch𝐵1 with
commit timestamp𝑐𝑡𝑠1) and𝑇2 (from batch𝐵2 with commit timestamp
𝑐𝑡𝑠2) such that 𝐵1≠𝐵2, if𝑇1→𝑇2 in the RDSG, then 𝑐𝑡𝑠1<𝑐𝑡𝑠2.

PROOF SKETCH. Let 𝑜1 and 𝑜2 denote the effective operations
from𝑇1 and𝑇2 that establish the dependency, respectively.

Case 1.𝑇1 and𝑇2 are executed on the same database node, and 𝐵1
is thus serialized before 𝐵2. As the timestamp server never reorders
requests from the same database, 𝑐𝑡𝑠1<𝑐𝑡𝑠2 must hold.

Case 2. 𝑇1 and 𝑇2 are executed on different database nodes. By
Lemma 1, 𝐵1 globally commits before 𝐵2. As the storage node

handles 𝐵1 and 𝐵2 in timestamp order, the commit order between
𝐵1 and 𝐵2 implies that 𝑐𝑡𝑠1<𝑐𝑡𝑠2. □

Lemma 3. Hackwrench’s RDSGs are acyclic.

PROOF SKETCH. We prove the lemma via contradiction, assum-
ing that there exists a valid schedule in Hackwrench whose RDSG
contains a cycle denoted as𝑇1→···→𝑇𝑛→𝑇1.𝑇1 and𝑇𝑛 must belong
to different batches as transactions in the same batch are totally or-
dered. Let 𝐵1 and 𝐵𝑛 denote the batches that contain𝑇1 and𝑇𝑛 , whose
commit timestamps are 𝑐𝑡𝑠1 and 𝑐𝑡𝑠𝑛 , respectively. By Lemma 2,
𝑐𝑡𝑠1 <𝑐𝑡𝑠𝑛 as𝑇1→𝑇𝑛 and 𝑐𝑡𝑠𝑛 <𝑐𝑡𝑠1 as𝑇𝑛→𝑇1. However, the rela-
tionship between 𝑐𝑡𝑠1 and 𝑐𝑡𝑠𝑛 contradicts the fact that the timestamp
server ensures a partial order among the commit timestamps. □

Theorem 1. Hackwrench preserves serializability.

PROOF SKETCH. We first show that for any valid schedule 𝑠𝑟
with repair in Hackwrench, there exists a valid schedule 𝑠 without
repair that produces the same results as in 𝑠𝑟 . The key is that, though
the order of operations for each transaction may not obey the
programming order due to repair, the dependency between operations
always preserves the relative order among conflicting operations in a
transaction, as dependent operations’ re-execution would be triggered
by the re-execution of the operation they depend on. We then show
that for any valid schedule 𝑠 without repair in Hackwrench, there
exists a valid serial schedule of committed transactions that produce
the same results as in 𝑠. By Lemma 3, RDSGs derived from 𝑠 are
acyclic, thus allowing producing serial schedules by topological sort-
ing. The validity of such serial schedules follows directly from [10].
Therefore, by definition, Hackwrench preserves serializability. □

Lemma 4. For any transaction𝑇1 and𝑇2, if𝑇1 globally commits
before𝑇2 begins, then there is no path from𝑇2 to𝑇1 in the RDSG.

PROOF SKETCH. We prove the lemma by contradiction, assum-
ing that there exists a path 𝑝 = (𝑇2, ...,𝑇1) in the RDSG. 𝑇1 and 𝑇2
must be executed in different batches because transactions in a batch
commit simultaneously by design and𝑇2 could not have begun before
𝑇1 globally commits. 𝑇1 must wait for 𝑇2 to global commit before
𝑇1 is validated, because for any edge𝑇𝑖 →𝑇𝑗 in 𝑝 and𝑇𝑖 and𝑇𝑗 are
in different batches,𝑇𝑗 must wait for𝑇𝑖 to global commit before𝑇𝑗
is validated and committed. This implies that 𝑇2 begins before 𝑇1
globally commits, causing contradiction. □

Theorem 2. Hackwrench preserves strict serializability.

PROOF SKETCH. We prove it by construction. By adding edge
(𝑇𝑖 ,𝑇𝑗 ), where𝑇𝑖 globally commits before𝑇𝑗 begins, to any RDSG 𝑔,
we could obtain an acyclic graph𝑔′. The argument for the acyclicness
of 𝑔′ is similar to [41] based on Lemma 4, which we skip for brevity.
Following the same reasoning in the proof sketch for Theorem 1, topo-
logically sorting 𝑔′ gives a valid serial schedule WRT the real time
order. By definition, Hackwrench preserves strict serializability. □

4 Implementation
This section describes the implementation details of Hackwrench.
All nodes assign one worker thread per core, which executes an event
loop to process network messages, transaction logic, etc. We use
64MB segments and currently store data and metadata in memory.
Batch splitting. A naive approach to forming batches is to combine
all pending transactions into a batch. However, this approach has
two drawbacks: 1) it limits parallelism because non-conflicting



transactions execute sequentially, and 2) repairs to a transaction can
unnecessarily delay commit for a non-conflicting transaction.

Therefore, Hackwrench splits a batch into non-conflicting sub-
batches to improve parallelism. Specifically, after a batch is formed,
the database node constructs an undirected graph with transactions as
nodes and edges connecting transactions accessing the same segment.
A connected component in this graph represents a set of conflicting
transactions, and we merge these into a sub-batch. Different sub-
batches in a batch access different segments, and can be validated,
repaired and committed concurrently.
Dependency tracking. Hackwrench needs to track dependencies
among transaction data accesses (the dashed lines in Figure 1).
To do so, for any read 𝑂𝑝𝑟 , Hackwrench stores the <𝑘𝑒𝑦,𝑣𝑒𝑟𝑠𝑖𝑜𝑛>
pair of each accessed tuple. In this case, the 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 indicates the
last transaction 𝑇𝑤 that wrote to 𝑘𝑒𝑦’s tuple, it implicitly records
𝑂𝑝𝑟 ’s dependency on𝑇𝑤 . During execution, Hackwrench does not
record any write dependencies, since these can be inferred from
Hackwrench’s dataflow API statically. Tracking dependency adds
an overhead of 16 bytes per tuple read by a transaction.
Fine-grained re-execution. An intuitive approach for fine-grained
re-execution is constructing a large operation-level dependency
graph for all transactions in one batch and repairing transactions
accordingly. However, this approach introduces runtime overhead
for dependency graph construction and traversal. Hackwrench uses
a simple but efficient way instead. Thanks to the local queue on each
database node, transactions within the same batch are totally ordered.
Hackwrench repairs transactions sequentially in the total order. To re-
pair one transaction, Hackwrench re-executes it according to its static
dataflow graph. For each read, Hackwrench compares the recorded
<𝑘𝑒𝑦,𝑣𝑒𝑟𝑠𝑖𝑜𝑛> pair with the current key and tuple version. If such
metadata changes, then the read is repaired. Writes are repaired if one
of the reads they depend on is repaired, according to the dependencies
encoded in the dataflow graph. When a write is repaired, it assigns the
tuple a new version containing the repaired transaction’s ID and sets
the repair bit to true. The complexity of the above repair procedure
is O(N), where N is the number of read operations in one batch.

5 Evaluation

5.1 Experiment Setup

5.1.1 Comparison targets. We evaluate Hackwrench by compar-
ing to five systems: an OCC implementation, FoundationDB [65],
COCO [40], Calvin [49], and Sundial [63]. Hackwrench, OCC, and
FoundationDB use remote storage. COCO, Calvin, and Sundial use
co-located storage. For all systems, we store data in memory. We
use three-way replication for all systems other than Sundial. We
used the original implementation from GitHub [5, 38, 60, 62] for
FoundationDB, COCO, Calvin and Sundial.
Hackwrench. Our default configuration enables fast-path optimiza-
tion. For comparison, Hackwrench-nofast in the evaluation refers to
a version where the fast-path optimization is disabled. In both cases,
we set the read quorum to one and the write quorum to three.
OCC. The OCC system we compare against modifies Hackwrench’s
code, and uses tiered commits. Our implementation uses 1) two-phase
locking [26] (with NO_WAIT) to handle local conflicts, 2) optimistic
concurrency control [31] to resolve remote conflicts, and 3) two-phase
commit for global committing. By default we neither cache data, nor

batch transactions. The OCC+Caching results we present represent
an OCC configuration where caching is enabled. Note, this OCC
implementation uses tiered commit, and thus differs from the naive-
OCC implementation used for Table 1. However, caching, batching,
and uncommitted reads have similar impact on their performance.
FoundationDB (FDB). Similar to Hackwrench, FDB is an open-
source system that uses remote storage. FDB uses a centralized
sequencer to assign totally-ordered commit timestamps and performs
OCC-style validation. Unlike FDB, Hackwrench timestamps are
partially ordered, allowing greeater parallelism. Unlike Hackwrench
and OCC, FDB cannot cache data in database servers3. Each FDB
component is implemented by a separate process, and we assign
separate cores to each process. We partition processes across physical
servers as follows: 1) Database servers, which run client processes
that execute transaction logic, and one proxy process that acts as the
transaction coordinator. 2) Storage servers, which run one logging
process and data storage processes. Every two storage servers share
one resolver process, which is used to validate transactions. 3) One
configuration server, which runs the sequencer process that provides
timestamps. For a fair comparison, we configure FDB to use its
memory storage engine and tmpfs as persistent storage. For all the
experiments, we use one storage server per database server because
this configuration resulted in the best FDB performance.
Calvin. Calvin is a deterministic database that assigns transactions a
commit order before execution. A single thread schedules these totally
ordered transactions on each server, limiting parallelism. Calvin also
batches transactions to improve performance and replicates each trans-
action for fault tolerance. Unlike Calvin, Hackwrench assigns commit
order after transaction execution and thus has better concurrency.
COCO. COCO is a distributed database with OCC and 2PC. When
committing transactions, it validates each transaction individually,
and batches validated transactions together for replication. COCO
does not batch transaction validation to avoid cascading aborts. By
comparison, Hackwrench batches both transaction validation and
replication because it uses fine-grained re-execution. We use COCO-
colocated to denote measurements from the original implementation.
Sundial. Sundial is a distributed database with caching. It uses logical
leases for cache management and reduces the probability of OCC
validation fails. In contrast to Hackwrench, Sundial sends network
messages for remote write operations to lock tuples, thus negating the
benefits of caching. Hackwrench instead allows transactions to read
uncommitted data and stale data from caches, and uses fine-grained
re-execution for repair, thus avoiding this overhead. The Sundial im-
plementation does not currently support replication. We use Sundial-
colocated to denote measurements from the original implementation.

COCO and Sundial’s design assumes that storage and transaction
processing are co-located. Consequently, using their concurrency
control protocols with remote storage introduces message overheads
due to the need to validate data by comparing it to the current value in
remote storage. These systems, unlike Hackwrench, don’t implement
tiered commits. Therefore, they must incur the message overhead
even when the transaction is aborted due to conflicts with transactions
executed by the same database node. We measure these overheads

3FoundationDB’s documentation mentions "distributed caching," but we have confiemed
with the developers that caching support is currently not implemented.



TPC-C Transaction Types NewOrder Payment OrderStatus Delivery StockLevel
Latencyes (ms) P50 P90 P99 P50 P90 P99 P50 P90 P99 P50 P90 P99 P50 P90 P99
HackWrench(BS=1) 0.75 0.84 0.98 0.66 0.75 0.91 0.65 0.75 0.94 1.10 1.25 1.38 1.37 1.52 1.63
HackWrench(BS=50) 2.56 3.20 3.93 2.55 3.18 3.85 2.55 3.13 3.98 2.78 3.40 3.99 2.77 3.42 4.26
HackWrench-nofast(BS=1) 1.14 1.31 1.63 1.05 1.33 1.64 1.00 1.11 1.27 1.55 1.69 1.90 1.77 1.94 2.16
HackWrench-nofast(BS=50) 2.93 3.52 4.13 2.91 3.51 4.11 2.90 3.45 4.06 3.12 3.68 4.28 3.19 3.75 4.33
OCC 2.65 5.58 10.17 2.10 4.17 8.59 1.70 1.99 2.92 2.93 3.21 5.58 3.43 5.87 9.50
OCC+Caching 1.33 2.35 4.42 1.20 2.19 3.98 1.06 1.21 1.65 1.69 2.25 3.41 2.04 3.24 5.36
FDB 7.95 10.32 14.37 3.64 4.75 8.4 2.8 3.09 6.77 27.05 31.59 39.25 40.79 46.85 54.08

Table 2: Latencies in standard TPC-C (𝑟 =1%). “BS” stands for “batch size”. The darker green/red lines have lower/higher latencies.

using modified implementations of both (COCO-remote and Sundial-
remote in the graphs) that use remote storage. Our modification forces
any single-server transaction4 in COCO or Sundial to do a 2PC proce-
dure with one remote server. This allows us to simulate a case where
the transactions use a local cache (no messages are sent for reads) but
are committed at a remote storage server.

5.1.2 Benchmarks and workloads. We use two benchmarks for
our evaluation: (a) The FoundationDB’s FDB-Micro microbench-
mark [65]; and (b) the TPC-C benchmark [51].
FDB-Micro. This benchmark has 214M tuples in total, each of which
consists of an 8-byte key and a 24-byte value. The tuples are parti-
tioned evenly across storage nodes, and database nodes, according
to their keys. The workload is a mix of 80% read-only transactions
with 20% read-write transactions. Each read-only transaction reads
ten tuples. Each read-write transaction reads five tuples and updates
another five tuples. In this workload, a local transaction is one where
the database only accesses tuples in its partition, while a distributed
transaction is one where an operation accesses a tuple in a remote
database node’s partition. The parameter 𝑑 dictates the percentage of
distribution transactions, the rest are local transactions. The tuples are
accessed following uniform distribution (low contention) or Zipfian
distribution [24] with 𝜃 =0.99 (high contention).
TPC-C. By default, we run the standard TPC-C benchmark with
five different types of transactions. In the standard benchmark,
when a NewOrder transaction updates the Stock tuple, there is a
1% probability that the tuple belongs to a remote warehouse. The
higher the remote access probability (𝑟 ), the more remote distributed
NewOrder transactions are. Thus, we vary 𝑟 to see how Hackwrench
performs. We use warehouse IDs to determine the database node
that executes a transaction. In our workload, each database node is
associated with 8 warehouses.

5.1.3 Setup. We ran all experiments on a cluster of Amazon EC2
m5.2xlarge instances, each with eight 3.1 GHz virtual CPUs,
32GB of RAM, and 10Gbps network bandwidth. We configure the
number of database and storage nodes to saturate database nodes’ pro-
cessors. By default, we use 6/8 database nodes, 1/1 timestamp server,
and 4/6 logical storage nodes for TPC-C/FDB-Micro. When enabling
replication, each logical storage node consists of 3 physical replicas.

5.2 Comparison to Systems with Remote Storage

Throughput. Figure 4 shows that, on TPC-C, Hackwrench and
Hackwrench-nofast outperform OCC+Caching by up to 9.0× and
6.8×, and outperform FDB by up to 35.8× and 27.8×. They perform
better than OCC+Caching due to batched transaction commit and
allowing uncommitted read. 88% of TPC-C transactions (45%

4A single-server transaction’s execution and commit can be completed in one server
without waiting for any network delay.
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Figure 4: Comparison of systems with remote storage on TPC-C. The
multi-warehouse NewOrder transaction percentage is calculated from the
remote access probability.
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Figure 5: Design breakdown on TPC-C. The designs are applied
incrementally based on OCC. "+Caching": adding local caches. “+Batching”:
supporting batching. “+RU”: permitting uncommitted reads across batches.
“+Repair”: using repair. “+Fast”: enabling fast-path optimization.
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Figure 6: Partial order and total order timestamps comparison.
NewOrder and 43% Payment) read or write the same tuple in each
warehouse and contention on this per-warehouse tuple limits parallel
execution. While Hackwrench and Hackwrench-nofast allow trans-
actions to access tuples that are not globally committed, improving
parallelism. In addition, they repair transactions instead of aborting
them. For Hackwrench, the fast-path optimization enables the storage
node to commit the batches without waiting for network messages.
FDB performs worst because it does not cache data and issues a
remote request for each read. Additionally, FDB does not allow its
client process to batch transactions and thus limits parallelism. Except
for FDB, the performance of all systems drops as the remote access
probability increases. It is because FDB does not use caching (which
reduces the chances of stale reads) and relatively low throughput.
Latency. Table 2 shows the zero-load latencies of different systems
on standard TPC-C. When transactions are batched, Hackwrench and
Hackwrench-nofast exhibit a little higher latency than OCC+Caching.
This is due to time spent forming batches, and indeed, when batch
size is 1, Hackwrench and Hackwrench-nofast have lower latency
than OCC+Caching. As expected, we find that FDB has the highest
latency because it does not cache data. Although OCC also does not
use caching, it reads multiple tuples in one network round trip and
thus has lower latency than FDB.

5.3 Factor analysis

Design breakdown. Figure 5 uses TPC-C to measure the impact of
each of Hackwrench’s design decisions. We use OCC as the baseline.
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Figure 8: Scalability (TPC-C).
Caching improves performance by 76.7% ∼ 80.5%. Batching and
uncommitted reads (“+RU”) improve performance by 7.1× for the
𝑟 = 0% case, but significantly degrade performance for 𝑟 > 1%, be-
cause increasing 𝑟 introduces remote conflicts, leading to aborts. Fur-
thermore, this configuration is also susceptible to batch-level aborts
and cascading aborts, where one aborted transaction in a batch can
lead to future batches being aborted, further degrading performance.

The timestamp server and database-side repair mitigate these
effects. Repair largely mitigates overheads from cascading aborts,
allowing the resulting system (“+Repair”, or Hackwrench-nofast) to
fully exploit the performance benefits of the previous design choices.
Finally, the fast-path optimization (“+Fast”, or Hackwrench) allows
the storage nodes to commit batches without waiting for network
round-trip, improving performance by 26.5%∼ 108.9% compared
to “+Repair”. These improvements grow with larger 𝑟 .
Cost of tracking and using dependency. Hackwrench uses runtime
dependency tracking for fine-grained re-execution. We measured
the space utilization for Hackwrench’s dependency tracking on
standard TPC-C. An average TPC-C transaction uses 586 bytes for
dependency tracking and spends 4.1𝜇s checking for repairs.
Partial order vs total order timestamp. Figure 6 uses TPC-C to mea-
sure the impact of Hackwrench’s partially ordered timestamps against
FDB’s totally ordered timestamp [65]. Partial ordering improves
performance significantly when remote access probabilities are low.
This is because a design with total order requires database nodes
to broadcast any transaction batch to all logical storage nodes for
progress, on the other hand with partial ordering we only need to send
transaction batches to relevant storage nodes, reducing overheads.
Network I/O cost. Figure 7 shows the breakdown of Hackwrench’s
average message (or request) payloads on standard TPC-C. The
Commit requests contain the entire delta of write set (§ 3.6). Note
that the fast path does not send Commit requests, because storage
nodes can commit fast-path transactions without coordination. The
average payload for Prepare requests increases from 38.9kB to
58.0kB (by 49.1%) when fast-path optimization is used. Read set and
write set payloads remain unchanged, while commit timestamps and
transaction input payloads increase from 0.5kB and 4.1kB to 1.7kB
and 12.4kB, respectively. This is because each participating storage
node must replicate all commit timestamps and transaction inputs in
a batch, not just the relevant portions. As storage nodes repair trans-
actions in the fast path, the tracked dependency (9.6kB) must be sent.
Latency for determining the commit order. Hackwrench requires a
network round-trip to determine commit order, in TPC-C, we mea-
sured this to be 0.28ms on average.

5.4 Scalability

Next, we evaluate Hackwrench’s and Hackwrench-nofast’s scalability
on standard TPC-C. Our results in Figure 8 show that both are
scalable: Hackwrench’s 15-database throughput is 771.4k Txns/s (for

𝑟 = 1%) and 624.2k Txns/s (for 𝑟 = 5%), achieving 10.0× and 7.8×
the throughput of a single database node which does not incur any
cross-node conflict. Meanwhile, Hackwrench-nofast’s 15-database
throughput is 496.0k Txns/s (for 𝑟 = 1%) and 376.8k Txns/s (for
𝑟 = 5%), achieving 9.7× and 8.5× the single-database throughput.
In our experiment, we found that because we use segment-level
timestamps and batching, the timestamp server was not a scalability
bottleneck. We evaluate timestamp server peak throughput in § 5.6.

5.5 Comparison to Systems with Co-located Storage

The COCO implementation only supports TPC-C NewOrder and
Payment transactions [40], therefore we use a mixture of 50%
NewOrder and 50% Payment transactions to compare against COCO
and Calvin. We ran all systems on 19 m5.2xlarge instances and used
48 warehouses. Our results in Figure 9(a) show that Hackwrench and
Hackwrench-nofast outperform the other systems because they use
batching and uncommitted reads, and can thus support a larger num-
ber of ongoing transactions. In Table 3 we provide a breakdown of all
systems’ throughput, and CPU time in Figure 9(b). In these results, a
‘thread’ refers to threads used for transaction execution. Hackwrench
and Hackwrench-nofast have higher per-thread throughput than both
COCO variants. Further, COCO-remote and COCO-colocated spent
only 0.36% and 1.95% of CPU time executing transactions, and the
CPUs idle for the majority of the time. This is because, COCO does
not batch validation and uses one transaction per thread, and COCO’s
threads sleep for one microsecond before retrying aborted transac-
tions. By contrast, Hackwrench and Hackwrench-nofast use 41.0%
and 31.5% of CPU time for execution, because batching and uncom-
mitted reads allow us to avoid idling. Since Calvin executes each
transaction on all server replicas, it has 7 (⌈19/3⌉ = 7) (replicated)
database nodes in total. It uses 9.17% CPU time for execution, and
19.9% and 26.7% of CPU time for data serialization and synchroniza-
tion in its TPC-C benchmark implementation. The execution time
ratio (between different systems) is not the same as the per-thread
throughput ratio because transaction execution latency varies across
systems. Hackwrench’s throughput is 9.27× COCO-remote’s, 3.9×
COCO-colocated’s, and 5.7× Calvin’s throughput.

Our comparison with Sundial uses the default TPC-C mix, but
disables replication. In this case, all systems use 11 m5.2xlarge in-
stances and 48 warehouses. Our results in Figure 10(a) show that
Sundial-colocated has the highest throughput for 𝑟 = 1% because
in this case 77.3% of the transactions are single-server transactions
that benefit from its co-located architecture. However, because Sun-
dial does not use batching, uncommitted reads or TPC-C’s one-shot
property, its performance declines quicker than Hackwrench as 𝑟
increases. Sundial outperforms Hackwrench-nofast for 𝑟 = 20% as
53.4% transactions are single-server. On the other hand, Hackwrench-
nofast outperforms Sundial-remote for all 𝑟 . Table 4 and Figure 10(b)
show detailed throughput and CPU breakdowns. Like COCO, Sundial
also allows one ongoing transaction on each thread and sleeps before
retrying aborted transactions, thus leading to high CPU idle times.
For transaction execution, Hackwrench and Hackwrench-nofast con-
sume 52.4% and 37.9% of CPU time, respectively. By comparison,
Sundial-remote and Sundial-colocated consume 7.0% and 15.1%.
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Figure 10: Performance on standard TPC-C without replication (11 nodes). The legends have been explained in Figure 9.

Systems Per-thread Tput # threads / DB # DB Total Tput
Hackwrench 10708 8 6 514.0k
Hackwrench-nofast 7710 8 6 370.1k
COCO-colocated 1911 5 19 181.5k
COCO-remote 542 5 19 51.5k
Calvin 4079 4 7 114.2k

Table 3: Throughput breakdown for Figure 9(a), 𝑟 =1%.

Systems Per-thread Tput # threads / DB # DB Total Tput
Hackwrench 8709 8 6 418.0k
Hackwrench-nofast 5628 8 6 270.1k
Sundial-colocated 6562 6 11 433.1k
Sundial-remote 2693 6 11 177.7k

Table 4: Throughput breakdown for Figure 10(a), 𝑟 =1%.

5.6 FDB-Micro

Impact of Contention and Distributed Transactions. In Figure 11
we show results from FDB-Micro when in a low-contention workload
and high-contention workload, while varying the percentage of
distributed transactions. In the low-contention case, Hackwrench
and Hackwrench-nofast have similar performance. COCO-colocated
has the performance for small 𝑑 ≤ 20%, because a significant
fraction of transactions run on a single-server. COCO-colocated’s
performance drops as we increase 𝑑, and eventually is the same as
that of COCO-remote. Under high contention, the performance gap
between Hackwrench and Hackwrench-nofast increases because
more batches are repaired (4.4% ∼ 27.8% v.s. 53.4% ∼ 99.7%).
OCC+Caching throughput also drops significantly because of
frequent aborts due to its use of 2PL with NO_WAIT for local
conflicts, and policy of reading committed data. When 𝑑 = 100%,
the average performance gap between COCO-colocated and
COCO-remote is 56.6%, because COCO-remote must send network
messages for local conflicts. Our FDB-Micro implementation for
Calvin does not impose noticeable serialization and synchronization
overheads. Instead, the single thread used by each server to schedule
transactions and maintain a total order becomes the bottleneck in
the low-contention setting. In the high-contention setting, Calvin
achieves 92.5% ∼ 98.7% of its low-contention throughput and has
performance comparable to Hackwrench-nofast, because it orders
transactions before execution, thus avoiding aborts due to contention.
Finally, FDB’s implementation of FDB-Micro retrieves all tuples
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Figure 11: FDB-micro performance with replication (27 nodes).
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Figure 12: FDB-micro performance without replication (15 nodes).
in a single network round trip, uses 12 database nodes, and thus
outperforms OCC+Caching (which uses 6 database nodes).

We evaluate Hackwrench and Sundial in Figure 12. When repli-
cation is disabled, Hackwrench’s and Hackwrench-nofast’s perfor-
mance increases because CPU time for replication is saved and the
number of database nodes remains unchanged. The performance
trends of Sundial are similar to those of COCO.
Impact of Batching. Figure 13 varies Hackwrench’s batch size from
1 to 160 on FDB-micro. In both contention levels, increasing batch
sizes allow Hackwrench to support a higher offered load, though
this does come at the cost of increasing latency. As the batch size
increases, the zero-load latency also increases (e.g., from 0.56ms
to 3.83ms under low contention). When contention is low, peak
throughput improves by 1.95× (from 362.3k to 1.06M Txns/s). In the
high-contention case, the peak throughput improves by 81.7% (from
324.8k to 590.2k Txns/s), with a batch size of 40. The performance
decreases with larger batch sizes, as the possibility of remote conflicts
between batches also increases. We also measure cascading repairs
due to batching. We find that under high contention, the average
number of repaired transactions due to a remote grow from 2.23
repairs (batch size 1) to 441.4 (batch size 160).
Impact of Caching. Figure 14 controls the cache miss rate 𝑐 for
each data access on FDB-micro. As 𝑐 decreases, Hackwrench’s
performance improves by up to 2.1×. Hackwrench and Hackwrench-
nofast perform similarly as the contention is low. By contrast,
OCC+Caching can only improve performance by up to 87.3%. These
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Figure 13: Impact of batching on FDB-micro (low contention,𝑑 =10%).
“BS” stands for batch size.
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results show that batching with fine-grained re-execution is crucial
in reaping the benefits of caching.
Peak Performance of the Timestamp Server. We measured the
timestamp server’s throughput using a simulated FDB-micro work-
load, where database nodes send requests to the timestamp server
without executing transactions or commit logic. Figure 15 shows
that the timestamp server’s peak throughput is 11.2M Txns/s when
the batch size is 20. Peak throughput reduces as batch sizes increase
because larger batches are more likely to contend with each other.

6 Related Work
Transactions with co-located computation and storage. Beyond
COCO [40] and Sundial [63] discussed in § 5.1.1, several other
systems execute transaction on storage nodes [15–17, 30, 40, 43, 49].
Spanner, CockroackDB, and MySQL cluster use two-phase locking
during transaction execution followed by 2PC. Granola [17],
H-Store [28, 30], and Rococo [41] leverage transactions’ one-shot
property to execute independent stored procedure fragments at
remote partitions. Compared to Hackwrench, these systems commit
transactions one at a time and have to wait for remote reads. By
contrast, Hackwrench uses caching, speculatively executes trans-
actions without communication, and then commits them in a batch.
Speculative 2PC [29] lets transactions read distributed transactions’
uncommitted data without waiting for the global commit decision.
A distributed transaction’s abort causes all dependent transactions
to abort. Hackwrench avoids the cascading aborts using lightweight
dependency tracking and fine-grained re-execution.
Transactions with separate computation and storage nodes.
Beyond FoundationDB, which we discussed in § 5.1.1, several other
systems use separate machines for transaction execution and data stor-
age [4, 19, 65, 66]. Some designs [6–9, 11, 57] use a distributed shared-
log as the storage layer. Sinfonia [4] supports mini-transactions with
client-side caching and uses a modified OCC protocol. However, it
aborts invalid transactions due to cache staleness or conflicts. AWS
Aurora [53, 54] extends the storage nodes to support log processing,
allowing database nodes to broadcast redo logs to storage nodes
for parallel processing. Both single-master Aurora and Deuteron-
omy [33] cache data at the single database node and batch transaction
commit. Single-master PolarDB [12] leverages PolarFS as the storage
layer but does not cache data. Multi-master Aurora [32] supports read-
write transaction processing at multiple database nodes, while little
has been published about its design, existing documentation advises

users not to simultaneously modify the same tuple from different
database nodes. Hackwrench does not impose such a limitation.
Mitigating aborts in distributed databases. Many systems aim
to reduce or eliminate conflict-induced aborts in distributed trans-
actions. Granola [17] uses timestamps obtained from loosely syn-
chronized clocks to serialize transactions and eliminate aborts for
one-shot transactions with no inter-fragment dependencies. Determin-
istic databases [20, 21, 35–37, 39, 49, 50] eliminate aborts by ordering
transactions before execution, but require tightly coupling compute
and storage because the storage layer is responsible for enforcing
transaction order which impacts execution logic. Rococo [41] and
Janus [42] avoid aborts by deferring execution until the serialization
order is determined. Callas [59] and Tebaldi [46] partition transac-
tions into groups, allowing different concurrency controls (e.g., 2PL or
OCC) to be used across groups to reduce aborts. Callas [59] also intro-
duces runtime pipelining for the high-contention workload. However,
runtime pipelining requires remote synchronization for each transac-
tion, which would limit the benefits of caching and batching. ACC [48]
and CormCC [47] partition data and select appropriate concurrency
controls for each partition. Finally, other works have suggested co-
locating hot data [64] or prioritizing distributed transactions [27], and
these approaches are orthogonal to Hackwrench’s techniques.
Mitigating aborts in single-machine databases. Transaction
healing [58] and Transaction Repair [18] use repair to reduce OCC
abort cost in single-node databases. Adapting the idea of repair to the
distributed setting is challenging, and to the best of our knowledge,
Hackwrench is the first to apply repair in a distributed setting. Many
recent proposals also aim to reduce abort rates or blocking time in
single-machine databases. IC3 [56] proposes a static analysis-based
approach to eliminate unnecessary aborts; Plor [14] uses pessimistic
locking and optimistic reads to reduce tail latency for contended work-
loads; Bamboo [27] reduces the blocking time by “retiring” row locks
after the last writes and allowing dirty reads, at the price of additional
costs for dependency tracking and cascading aborts; and MOCC [55]
avoids OCC validation failures by selectively using read locks for
reads likely to cause read-write conflicts. Hackwrench can adapt
these protocols to coordinate the local execution at database nodes.

7 Conclusion
We describe Hackwrench, a design for distributed databases
which uses best-effort caching and batched validation/commit
to execute transactions at multiple database nodes with remote
storage. Hackwrench uses fine-grained repair to mitigate the harmful
effect of increased transaction invalidation due to stale cache reads
and batched validation. Our evaluations with TPC-C show that
Hackwrench can achieve much higher throughput than an OCC
implementation, FoundationDB, Calvin, COCO, and Sundial.
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