
1 Proof

This section gives the formal proof of Janus. Before giving the proof we first provide some prerequisites:

Definition 1. Start timestamp / End timestamp of a transaction T: the value of T.startTS and T.endTS

Definition 2. Timestamp of an object x: the end timestamp of the latest transaction who updates x.

Definition 3. Concurrent transactions: Any two transactions, Ti and T j, are concurrent transactions, if Ti’s start timestamp
is smaller than T j’s end timestamp and T j’s start timestamp is smaller than Ti’s end timestamp

Definition 4. Snapshot Write: Assume transaction Ti writes an object x. The write is Snapshot Write if there is no concur-
rent transaction which also writes object x.

Definition 5. Snapshot Read: Assume transaction Ti reads an object x. The read is Snapshot Read if:

1. Ti’s start timestamp is greater than or equal to x’s timestamp

2. Do not exist a transaction T j which also writes object x and its end timestamp is greater than x’s current timestamp1,
but not greater than Ti’s start timestamp.

According to the specification of Snapshot Isolation [1], To prove Janusprovides Snapshot Isolation we need to prove follow-
ing theorm:

Theorem: In Janus, each transactional read is a Snapshot Read and each transactional write is a Snapshot Write.

Proof. Following is the formal proof. We first prove each write in Janusis Snapshot Write, then prove each read is Snapshot

Read. The line number in the proof is related to the pseudocode in Algorithm 1.

1. All writes are Snapshot Write.

Assume two transaction Ti and T j update the same object x, we prove that Ti’s end timestamp is not greater than T j’s start
timestamp or an inverse.

1.1 Ti and T j update x exclusively.

1.1.1 To write an object, the transaction needs to acquire the lock
by line 26.

1.1.2 A transaction releases the acquired locks at the end of the transaction.
by line 58.

1.1.3 Q.E.D.
by 1.1.1, 1.1.2

1.2 If Ti updates x before T j, then Ti’s end timestamp is not greater than T j’s start timestamp.

1.2.1 CASE 1. T j sets start timestamp (line 4) after Ti updates global timestamp.
by OBVIOUS.

1.2.2 CASE 2. T j sets start timestamp before Ti updates global timestamp.

1.2.2.1 T j can not start write back phase if an ative transaction’s start timestamp is smaller than its end timestamp
by lines 52 - 54

1.2.2.2 T j releases all its locks at the end of write back phase
by line 58

1.2.2.3 T j can not release x’s lock until Ti aborts or commits
by 1.2.2, 1.2.2.1, 1.2.2.2

1.2.2.4 Ti aborts itself if it failed to acquire a lock
by lines 26, 27

1current timestamp means the timestamp of x when Ti performs the read

2



Q.E.D.
by 1.2.2.3, 1.2.2.4

Q.E.D.
by 1.2.1, 1.2.2

1.3 Q.E.D.
by 1.1, 1.2

2. All reads are Snapshot Read.

Assume a transaction Ti reads an object x and x’s timestamp is TSx when Ti performs its read.

2.1 Ti’s start timestamp is greater than or equal to x’s timestamp (TSx)

2.1.1 CASE 1: Ti’s Read function returns x’s current copy (lines 10, 18)

2.1.1.1 After Ti starts, a transaction T j whose end timestamp is larger than Ti’s start timestamp can not update
x’s current copy until Ti become inactive (commit or abort).
by 1.2.2.1

2.1.1.2 Q.E.D.
by 2.1.1.1

2.1.2 CASE 2: Ti’s Read function returns x’s next copy (lines 13, 16)

2.1.2.1 The content of next copy is updated by wtx transaction read at line 11

2.1.2.1.1 A transaction assign a real number to its end timestamp after it finishes all updates
by OBVIOUS

2.1.2.1.2 Ti is able to read the next copy only if the transaction wtx is itself or its end timestamp is assigned
by line 12, 15

2.1.2.1.3 next can not be reclaimed until Ti commits
by RCU garbage collection

2.1.2.1.4 Q.E.D.
by 2.1.2.1.1, 2.1.2.1.2, 2.1.2.1.3

2.1.2.2 Q.E.D.
by 2.1.2.1, line 15

2.1.3 Q.E.D.
by 2.1.1, 2.1.2

2.2 Assume a transaction T j which updates x and its end timestamp is not greater than Ti’s start timestamp, prove T j’s end
timestamp can not be greater than TSx.

2.2.1 Ti gets its start timestamp (line 4) after T j calculates its end timestamp with the global timestamp (line 45)
by Assumption

2.2.2 Ti reads x after T j calculates the end timestamp
by 2.2.1

2.2.3 CASE 1: Ti reads x before T j writes back its update to x (line 58)

2.2.3.1 the next reference read by Ti at line 8 is the copy of x in T j’s log

2.2.3.1.1 T j linkes its copy to x’s next before its commit phase
by OBVIOUS

Q.E.D.
by 2.2.2, 2.2.3.1.1

2.2.3.2 Ti can not read the next until T j’s end timestamp is visible by Ti

2.2.3.2.1 If Ti observes inCritical is false (line 46), the end timestamp updated at line 45 is visible to Ti.
by Intel specification (Write-write do not reorder).

2.2.3.2.2 Ti needs to wait for inCritical to become false before read T j’s end timestamp (line 14-15).

3



2.2.3.2.3 Q.E.D.
by 2.2.3.2.1, 2.2.3.2.2

2.2.3.2 TS j’s end timestamp is equalto TSx

by 2.2.3.1, Assumption

Q.E.D.
by 2.2.3.2

2.2.4 CASE 2: Ti reads x after T j writes back its update to x (line 58)

2.2.4.1 The timestamp of x is monotonically increasing
by 1.1, 1.2

2.2.4.2 The copy of x read by Ti is updated by T j or later transactions
by TM_Read function

2.2.4.3 Q.E.D.
by 2.2.4, 2.2.4.1, 2.2.4.2

Q.E.D.
by 2.2.2, 2.2.3, 2.2.4

4



References

[1] Atul Adya. Weak consistency: a generalized theory and
optimistic implementations for distributed transactions.

1999.

5


	Proof

