
Fast and Accurate Optimizer for Query Processing
over Knowledge Graphs

Jingqi Wu, Rong Chen, Yubin Xia
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai Artificial Intelligence Laboratory

Abstract

This paper presents Gpl, a fast and accurate optimizer for
query processing over knowledge graphs. Gpl is novel in
three ways. First, Gpl proposes a type-centric approach
to enhance the accuracy of cardinality estimation promi-
nently, which naturally embeds the correlation of multiple
query conditions into the existing type system of knowl-
edge graphs. Second, to predict execution time accurately,
Gpl constructs a specialized cost model for graph explo-
ration scheme and tunes the coefficients with target hard-
ware platform and graph data. Third, Gpl further uses a
budget-aware strategy for plan enumeration with a greedy
heuristic to boost the overall performance (i.e., optimiza-
tion time and execution time) for various workloads. Eval-
uations with representative knowledge graphs and query
benchmarks show that Gpl can select optimal plans for 33
of 39 queries and only incurs less than 5% slowdown on
average compared to optimal results. In contrast, the state-
of-the-art optimizer and manually tuned results will cause
100% and 36% slowdown, respectively.

CCS Concepts:

• Information systems→ Query optimization.

Keywords: Query optimization; knowledge graphs

ACM Reference Format:
Jingqi Wu, Rong Chen, Yubin Xia. 2021. Fast and Accurate Opti-
mizer for Query Processing over Knowledge Graphs. In ACM Sym-
posium on Cloud Computing (SoCC ’21), November 1–4, 2021, Seat-
tle, WA, USA. ACM, New York, NY, USA, 14 pages. h�ps://doi.org/10.
1145/3472883.3486991

1 Introduction

In recent years, there has been a significant interest in
building large-scale graph stores and querying systems for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00

h�ps://doi.org/10.1145/3472883.3486991

knowledge graphs [8, 13, 18, 24, 25, 28, 36–38, 40, 41]. The
query optimizer is used to find the best possible query plan
such that the execution time (i.e., query latency) is minimal,
which is crucial for query performance. Although query op-
timization is a well-studied area in the database community,
the schema-free nature of graph data [27, 34] and the emerg-
ing graph-exploration scheme for query processing [36, 40]
introduce new challenges for query optimization.
In this paper, we first investigate the three main compo-

nents of the classical query optimizer architecture, as shown
in Figure 1, to reveal the major issues and challenges on
the accuracy and performance of prior state-of-the-art ap-
proaches [18, 32, 40]. For cardinality estimation, the cor-
relation among all query conditions (e.g., variable vertices
and/or edges) is crucial to the accuracy. Thus, statistical syn-
opses and estimation based on the assumption of indepen-
dence would incur significant errors on estimated results.
For cost model, it is hard to attach the mature join-centric
cost model to emerging exploration-based query processing.
Further, the linear combination of computation and com-
munication cost is not competent to predict execution time
(wall-clock time) accurately. For plan enumeration, with sig-
nificant performance improvement by leveraging advanced
software and hardware techniques [36] (e.g., graph explo-
ration and RDMA), the cost to enumerate the whole plan
space (optimization time) may become a non-trivial part of
the overall query time, especially for selective (short-lived)
queries.
To remedy these issues, we introduce three key designs

and demonstrate the viability and efficacy of them in Gpl,
a fast and accurate optimizer for query processing over
knowledge graphs.

Type-centric estimation. Based on the observation that
vertices with the same type commonly have a similar combi-
nation of edges, Gpl embeds the correlation of query condi-
tions explored so far into the existing type system.1 Gpl first
uses the correlation statistics of types and edges as the sta-
tistical synopses and then estimates the cardinality (i.e., the
number of bindings) for each directed exploration of condi-
tions in the query plan by using two kinds of mechanisms:
expansion and pruning.

1The type in RDF (h�ps://www.w3.org/TR/rdf-schema) and the label in prop-

erty graph (h�ps://neo4j.com/docs/ge�ing-started/current/graphdb-concepts).

https://doi.org/10.1145/3472883.3486991
https://doi.org/10.1145/3472883.3486991
https://doi.org/10.1145/3472883.3486991
https://www.w3.org/TR/rdf-schema
https://neo4j.com/docs/getting-started/current/graphdb-concepts

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

Graph

cost

card

plan

Optimizer

Cardinality

Estimation

Cost

Model

Plan Enumeration

Hardware

Profile

SELECT ?X ..
WHERE {

TP1
TP2
.. }

T ?X ?Y ?Z
TP1 TP2 TP3

Query
Optimal
Plan

CPU

Memory

Network

Statistical

Synopses

Hardware

Platform

Figure 1. The classical query optimizer architecture.

Exploration-oriented cost model. We first construct a
specialized cost model aiming at graph exploration with
various query conditions, and then design a tool (built-in
queries) to one-off tune coefficients of the model on the tar-
get hardware platform and graph data. Further, we observe
that predicting cost based on the estimation results (i.e., car-
dinalities) could be seen as coarse-grained query process-
ing over knowledge graphs. Thus,Gplmimics the execution
of graph query to accurately predict the execution time by
feeding the estimation results to the specialized cost model
for exploring query conditions one by one.

Budget-aware enumeration. In response to demand from
workload heterogeneity in time and differentiated enumer-
ation strategies, Gpl proposes a new budget-aware enumer-
ation scheme to optimize all kinds of graph queries with-
out advance knowledge of execution time. Due to the im-
portance of the enumeration order, Gpl adopts a depth-first
enumeration with a greedy heuristic to select the next ex-
ploration.

We have implementedGpl based onWukong [36], a state-
of-the-art graph store and execution engine for RDF knowl-
edge graphs and SPARQL queries. We evaluated Gpl on an
8-node cluster using common SPARQL query benchmarks
over a set of synthetic and real-life RDF datasets. The ex-
perimental results show that Gpl can select optimal plans
for 33 of 39 queries and only incurs less than 5% slowdown
on average (geometric mean) compared to optimal results.
In contrast, state-of-the-art approaches (Trinity.RDF [40])
andmanually tuned results (Wukong [36]) will cause a 100%
and 36% slowdown, respectively. Gpl can further provide a
very close prediction on execution time (the median of q-
error [26] is 1.44). In addition, our budget-aware enumer-
ation scheme can reduce optimization time by 75% (from
0.17ms to 0.04ms), at the expense of a slight increase in exe-
cution time (from 0.32ms to 0.38ms).

In summary, the contributions of this paper are:

• An in-depth analysis of three key components of the
query optimizer to reveal the main issues and chal-
lenges on the accuracy and performance for traditional
approaches;
• A new query optimizer with three new techniques that
targets the schema-free nature of graph data and the
emerging graph-exploration scheme;

2700

UNI:University

DEP:Department

ty:type so:suborg

ut:undertake

10 90

100 200

10

20

2700

270ut

100 200

300

RG

PRO

LAB DEP

UNIINS

so
soso

ut
ut

INS:Institute

LAB:Laboratory

Ins1

RG1

INS

so so

so

so

ut

ut
ut

so

Dep3

ty

ty

UNI

ty

PRO

Sample Summary

ty

ty

ty
ty

ty

LAB

Pro1
Pro5

Pro9

Uni1

Uni5

Lab4

Lab8

#edges

#vertices

RG:Research Group

PRO:Project

so

ty..
..

..

Figure 2. A sample RDF knowledge graph (G) and its summary.

The summary contains the schema (i.e., ontology) and the number

of vertices and edges for each type and predicate.

• A prototype implementation and an evaluation that
shows high accuracy and good performance of Gpl.

The source code of Gpl, including all benchmarks, is
available at h�ps://github.com/SJTU-IPADS/wukong.

2 Background

2.1 Graph Model and Query Language

Many graphmodels and declarative query languages [1, 4, 6,
15, 19, 20, 23, 28, 35] are developed to meet the increasing de-
mands to store and query knowledge graphs with high per-
formance and sufficient expressiveness. In this paper, with-
out loss of generality, we use RDF [2] and SPARQL [1],
the representative graph model and query language recom-
mended by W3C, to reveal the major issues of prior ap-
proaches and demonstrate the efficacy of our design.
The RDF dataset is a graph (aka RDF knowledge

graph) composed of triples, where a triple is formed by
〈subject,predicate,object〉 and can be regarded as a di-
rected edge (predicate) connecting two vertices (from subject

to object).
Figure 2 illustrates a part of the sample graph (G) and the

summary of the whole graph. There are three categories
of edges linking six types of vertices. SPARQL is the stan-
dard query language for RDF datasets. The major part of
the SPARQL query is as follows:

Q := SELECT RD WHERE GP

where GP is a group of triple patterns, and RD is a re-

sult description. Each triple pattern (TP) is of the form
〈subject,predicate,object〉, where each of the subject, pred-
icate, and object may denote either a variable (e.g., ?X) or a
literal (e.g., Lab8). RD contains a subset of variables in GP.
Given an RDF graph, the SPARQL query searches on the

graph for a set of subgraphs, each ofwhichmatches all triple
patterns (i.e., query conditions) by binding pattern variables
to values in the graph. For example, the query Q in Figure 3
asks for all projects (?Z) that were undertaken (ut) by a lab-
oratory (LAB), which is a sub-organization (so) of an insti-
tute (INS). The possible binding over the part of graph G in
Figure 2 is only Pro5. The graph exploration is proposed as

https://github.com/SJTU-IPADS/wukong

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

?X ?Y ?Z

INS

ty ty

Query

Graph

so

LAB

utSELECT ?Z WHERE {

?X type INS .

?Y suborg ?X .

?Y type LAB .

?Z undertake ?Y . }

TP1:

TP2:

TP3:

TP4:

Figure 3. A sample SPARQL query (Q).

PL1

TP1

TP2

TP3

TP4

TP1

TP2

TP4

TP3
PL2o

r
d
e
r

o
r
d
e
r4

1 3

2

4

2

1

3

Figure 4. Two sample plans (PL1 and PL2).

a new primitive to process SPARQL queries for knowledge
graphs [8, 36, 40], which starts from a set of vertices and
explores bindings via edges by matching every triple pat-
tern. Note that the execution order of triple patterns (i.e.,
plan) will only impact the performance (much), not the re-
sult of the query. Therefore, the RDF system normally relies
on the query optimizer to enumerate the valid execution or-
ders to find an optimal query plan (i.e., minimal execution
time) from semantically equivalent plan alternatives, such
as PL1 and PL2 in Figure 4. For each plan, the optimizer first
estimates the cardinality (e.g., the number of intermediate
results) based on the statistical synopses of RDF data, and
then predicts the cost (e.g., a relative score) based on the
cost model for a given hardware setting (see Figure 1).

2.2 Query Optimization

Inspired by traditional optimizers for relational databases,
Trinity.RDF [40] proposes the original optimizer for
SPARQL queries on graph-exploration systems, which mod-
els a query plan as a graph traversal and finds an order of
triple patterns explored with minimal cost.2 The optimizer
uses the number of intermediate results for graph explo-
ration (i.e., the number of paths) as the cardinality, and em-
ploys dynamic programming for plan enumeration with a
proportional cost model.
Specifically, the RDF-specific statistical synopses mainly

contain two types of statistics associated with predicates

for graph exploration. First, the optimizer precomputes the
number of distinct subjects (Cs (p)), objects (Co (p)), and
triples (C(p)) for each predicate (p). Note that a specific type
T is also considered as a predicate tyT, so C(tyT) and Cs (tyT)

are the same, namely the number of subjects with the type
T. Second, the correlation (Cor (p1,p2,D)) between predicate
pairs (p1 and p2) is estimated to denote the number of dis-
tinct vertices with both two predicates according to D (the
combination of the directions of two predicates). Figure 5
illustrates a part of the statistics on the sample graph (G). so
and ut are correlated predicates.
The optimizer assumes the cardinality of a query Q as

the sum of the cardinality of triple patterns (〈TP1, . . . , TPn〉)

2The traditional scan-join RDF systems, like RDF-3X [32] and TriAD [18],

store RDF graph as a set of triples in relational tables and leverage scan-

join operations to process SPARQL queries. The query optimizer [18, 32]

enumerates planswith different orders of join operations on triple patterns.

? INS

10

? LAB

200

? ?
ut

300

so

?

? ?

? LAB
ty

20

?
ut

? INS

10

? LAB

200

?
300

?

?
3000

?

ty

ty

so

so

ut

so

ty

ty

300 300

100 3000

Predicate Stat. Correlation Stat.

200

10

Cor(so,tyLAB,)
C(so)

Co(so) Cs(so)

Figure 5. A part of statistics over the sample graph (G), adopted by

predicate-based query optimizer (e.g., Trinity.RDF).

? ?INS
soty

? LAB?
tyso

? ?LAB
utty

? ?INS
soty

? ??
utso

? LAB?
tyut

Estimated = 10 + 300 + 20 + 2 = 332

True = 10 + 300 + 200 + 20 = 530

Estimated = 10 + 300 + 30 + 2 = 342

True = 10 + 300 + 30 + 20 = 360

Plan1 Plan2

10 x
3000

x
10 100

= 300

300 x
200

x
3000

= 20

20 x
20

x
200

= 2

10

200

200

300

300

10 x
3000

x
10 100

= 300

300 x
300

x
3000

= 30

30 x
20

x
300

= 2

10

300

300

200

200

?INS
ty

10 = 10 ?INS
ty

10 = 10x
10

10
x

10

10
TP1:

TP2:

TP3:

TP4:

TP1:

TP2:

TP4:

TP3:

Figure 6. A case of cardinality estimation for the sample query (Q),

adopted by predicate-based query optimizer (e.g., Trinity.RDF [40]).

The true cardinality (True) is calculated as the sum of intermediate

results for each triple pattern according to the execution order of two

sample plans (PL1 and PL2).

explored in a specific order (plan), where the cardinality of
triple pattern with the predicate p is estimated as the num-
ber of intermediate results (|R(TP)|).

Card(Q) =
∑n

i=1
|R(TPi)|

Given the number of bindings for subjects |B(s)| in the ex-
ploration (assume the direction is from subject to object),
|R(TP)| and |B(o)| (the number of bindings for objects) can
be formalized as

|R(TP)|= |B(s)|
C(p)

Cs (p)
, |B(o)|= |B(s)|

Co (p)

Cs (p)

Further, the number of bindings (|B(v)|) is affected by the
number of bindings for the correlated triple pattern already
explored (|B′(v)|). For exploring triples with the predicate
p2 from the triples with the predicate p1, the number of new
bindings (|B(v)|) can be estimated as

|B(v)| = |B′(v)|
Cor (p1,p2,D)

C(p1)

For example, as shown in Figure 6, the cardinality of explor-
ing the triple pattern TP3 (〈?Y, type, LAB〉) in PL1 is 20, where
the number of bindings (|B(s)|) for ?Y is 300 and the corre-
lation statistic Cor (so, tyLAB,←→) is 200. C(so), C(tyLAB), and
Cs (tyLAB) are 3000, 200, and 200 respectively. Consequently,
the estimated cardinality of PL1 is 332, the sum of cardinali-
ties for all triple patterns (TP1=10, TP2=300, TP3=20, TP4=2).
The cardinality of every triple pattern is fed into the

cost model, which is a linear combination of computation
cost and communication cost. The computation cost is esti-
mated as the number of intermediate results (|R(TP)|), while
the communication cost is estimated as the shipping results
(|B(v)|).

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

10
6

10
7

10
8

10
9

10
6

10
7

10
8

10
9

T
ru

e

Estimated

Trinity.RDF (emulated)

10
7

10
8

10
9

 0 500 1000 1500 2000 2500

10
3

10
4

10
5

C
o
s
t

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

Query Plans

True Cardinality
Execution Time

Figure 7. The comparison of (a) estimated cardinality vs. true car-

dinality and (b) true cardinality vs. execution time by using all of

plans (2496) for Q1 over LUBM-2560. Trinity.RDF’s optimizer [40] is

not available, and we reimplement it on Wukong [36].

Finally, a bottom-up dynamic programming (DP) algo-
rithm is used in plan enumeration to determine the order
of triple patterns that yields the minimal cost. At each DP
step, the optimizer calculates the cost of the partial plan con-
sidered so far and prunes if the current branch cannot gain
the minimal cost anymore.

3 Analysis of Query Optimization

This section presents an analysis on the accuracy and per-
formance issues of state-of-the-art optimization approaches
for query processing over knowledge graphs.

Cardinality estimation. The main drawback of the exist-
ing approach is to simply assume the independence among
triple patterns and only consider at most two correlated
predicates (like tyLAB and so). However, we observe that the
correlation among all triple patterns is crucial to the accuracy

of cardinality estimation. For example, as shown in Figure 6,
the estimated cardinalities of both two plans in Figure 4, PL1
and PL2, are incorrect. Specifically, according to the statis-
tical synopses, there are 3000 vertices (subjects) that have
the predicate so, while only 200 of them also have the pred-
icate tyLAB. Thus, for TP3 in PL1, given 300 vertices (?Y) with
the predicate so, the number of bindings with the predicate
tyLAB is estimated as 20. However, another dependent pred-
icate tyINS in this query (TP1) is overlooked. In fact, for the
sub-organization (so) of INS, the probability of being a LAB

is 200
300

, rather than 200
3000

. PL2 has the same problem but in a
different order. As a result, this drawback penalizes differ-
ent plans for a single query in varying degrees and even
reverses the relative results of PL1 and PL2 (see Figure 6).
Figure 7(a) illustrates the true and the estimated cardinality
for different plans of a query (Q1) on LUBM-2560 [5].3 The
straight diagonal line denotes the ideal results (namely the
true cardinality is equal to the estimated cardinality), while
the deviation for the existing approach [40] is extremely se-
rious.
Besides, in the extreme, the combination of multiple pred-

icates may lead to an empty result, namely the contradictory
query. For example, if the predicate (tyINS) in TP1 is replaced

3Detailed experimental setup can be found in §5.

LABty

LABty?Y

?Y

LABty

LABty?Y

?Y so

?Y LABty

LABty?Y

?Y ty

?Y

RG

SELECT ?Z WHERE {

?X type INS .

?Y suborg ?X .

?Y type LAB .

?Z undertake ?Y . }

TP1

TP2

TP3

TP4

Case-1

Q

Case-2 Case-3

Cardinality=2

pruning
pruning

Case-1 2 2 2

Case-2 3 2 2

Case-3 3 3 2

EXPL MATCH CARD

Figure 8. Three cases of the result for TP3 with the same cardinal-

ity but different costs. The red cross denotes the path is pruned due

to an unmatched predicate (ty vs. so) or vertex (LAB vs. RG). EXPL

and MATCH denote the number of predicates (edges) and subjects/ob-

jects (vertices) that will be explored and matched. CARD denotes the

number of intermediate results (cardinality).

by tyUNI, the query will not retrieve any binding. How-
ever, the existing approach cannot detect such contradictory
queries when the correlation involves more than two predi-
cates, so it would waste time on unnecessary query process-
ing.
More importantly, there is a fundamental problem of ap-

proaches that estimates the cardinality based on the corre-
lated predicates. A straightforward solution is to maintain
more statistics for three or more correlated predicates. How-
ever, the size of statistics would rapidly increase beyond
the memory capacity, and it is impossible to precompute
all the dependencies between multiple predicates due to the
schema-free nature of graph data. For datasets with numer-
ous predicates, like DBPSB [3], it fails to maintain the corre-
lation statistics even for just two correlated predicates (see
Table 5).

Cost model. The cost model for (structured) relational
databases has been well-studied, which thoroughly consid-
ers different join operations (e.g., hash and merge join) and
the cost of data transferring by network connections. Un-
fortunately, it is quite difficult or impossible to attach a join-

centric cost model to the exploration-based query processing

directly. The initial cost model [40] briefly uses a linear com-
bination of computation cost (the number of intermediate
results) and communication cost (the number of shipping
bindings).
To reveal the importance and necessity of an appropriate

cost model, Figure 7(b) compares the cost derived from the
true cardinality and the execution time for the same plan.
For brevity, we run the query (Q1) on LUBM-2560 using a
single machine to eliminate communication cost. It is ob-
vious that the cardinality alone is not sufficient to predict
the execution time exactly. As an example, Figure 8 illus-
trates three exploration cases for TP3 with the same cardi-
nality (CARD=2) but different computation costs (exploring
and matching predicates and subjects/objects). In fact, there

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Table 1. A comparison of execution and optimization time (in mil-

lisecond) for different queries on WSDTS. #TP and #PLAN denote the

number of triple patterns and plans. EXE and PLAN denote the execu-

tion time and the optimization time. The numbers in red denote that

the optimization time is comparable to the execution time.

#TP #PLAN
TriAD Trinity.RDF

EXE PLAN EXE PLAN

F1 6 1260 3.93 0.34 0.199 0.131

F2 8 97440 18.07 1.25 0.590 0.438

F3 6 1440 15.57 0.34 0.723 0.025

F4 9 705600 6.95 2.53 0.675 0.861

F5 6 1440 34.12 0.32 0.075 0.040

C1 8 13320 16.17 0.60 1.346 0.143

C2 10 127800 35.77 0.95 2.513 1.402

C3 6 5040 44.59 0.51 39.54 0.173

are still many other types of triple patterns for graph ex-
ploration. Hence, it is imperative and challenging to model
graph exploration for predicting the cost accurately.
More importantly, existing approaches focus on compar-

ing the relative cost among different plans of one same
query, instead of predicting the wall-clock time, which is
a more challenging task but also has more value. For exam-
ple, based on the wall-clock time, the optimizer can make
a tradeoff between accuracy (execution time) and perfor-
mance (optimization time) for various queries.

Plan enumeration. The optimization time (PLAN) has not
received much attention since it is negligible compared
to the execution time (EXE) in traditional scan-join sys-
tems like TriAD [18] (see Table 1). However, with signif-
icant performance improvement by leveraging advanced
software and hardware techniques [36] (e.g., graph explo-
ration scheme and fast RDMA-enable networks), the opti-
mization time may occupy a notable fraction of the end-to-
end query time (e.g., see Trinity.RDF [40] in Table 1).
More importantly, the optimization time has nothing to

do with the execution time but with the complexity of the
query (i.e., the number of triple patterns). Hence, we face
a dilemma that the long-lived query (e.g., C3) demands the

best possible plan by thorough optimizing, while the short-

lived query (e.g., F4) demands an acceptable plan by efficient

optimizing. Unfortunately, prior work [18, 36, 40] uses a
“one size fits all” enumeration scheme to handle all kinds of
queries, which would sacrifice the end-to-end performance.
To make matters worse, the execution time of graph queries
is not polarized (either long-lived or short-lived) and is rel-
ative to the optimization time, like C1 and C2. Thus, a rule-
basedmechanismwith simple heuristics is far from enough.

4 Designs

4.1 Type-centric Estimation

Observations. To overcome the fundamental problem of
traditional approaches that estimate the cardinality based

Table 2. The similarity of vertices with types in different datasets.

#P, #T, and #VT denote the number of predicates, types, and vertices

with at least one type. Similarity denotes the percentage of vertices

with a similar combination of predicates as other vertices of its type.

Note that we consider a different combination of types as a new type.

Dataset #P #T #VT Similarity

LUBM-2560 17 14 52,272,182 96.29%

WSDTS 86 39 10,234,195 72.28%

DBPSB 14,128 54,736 707,641 74.95%

on the correlated predicates, the query optimizer needs to
find an efficient way to embed the lineage of correlated triple

patterns explored so far and pass it on to the next graph ex-

ploration. Fortunately, the predicate type is a perfect candi-
date. W3C has provided a set of unified vocabularies (as part
of the RDF standard) to encode the rich semantics, where
the predicate type (short for rdf:type) provides a classifica-
tion of vertices of an RDF graph into different groups. We
observe that vertices with the same type commonly have a

similar combination of predicates. For example, in Figure 2,
all institutes (INS) has two predicates: so and tyINS. Table 2
shows the percentage of vertices with a similar combination
of predicates as other vertices of its type for three synthetic
and real-life datasets [3, 5, 7]. Therefore, we argue that the
combination of predicates in triple patterns can be used to
deduce the type of bindings, which may have multiple candi-
dates with different probabilities. Further, the combination
of the type of current bindings and the predicate in the next
triple pattern can also be used to deduce the number and
the type of next bindings. Moreover, if the predicate type ap-
pears in certain triple patterns of the query, which is com-
mon (e.g., Q in Figure 3), it will directly improve the over-
all accuracy of the cardinality estimation. It is worth noting
that this observation could be generalized beyond RDF/S-
PARQL systems. For example, the property graph also has a
similar type system, namely the label of vertex and edge.

RG

100 200

LAB DEP

2700
?

so
?

3000

INS

10 90

UNI?
so

?

100

RG

100 200

LAB

so
INS

ty
?

300

PRO

10

ut
RG

ty
?

10

PRO

20

ut
LAB

ty
?

20

?

?

?

Type-formation Stat. Type-derivation Stat.

Cs(so):

Co(so):

Exps(tyINS,so):

Exps(tyRG,ut):

Exps(tyLAB,ut):

ty
?INS INS

10
Cs(tyINS): 10

[1] [2]

[1]

[1]

[1] [2] [3]

[1] [2]

[1]

P(tyINS):

{so}

Figure 9. A part of type-based statistics over sample graph (G).

Type-based statistical synopses. Based on the above ob-
servation, it makes sense that the type-centric approach
uses the correlation statistics of types and predicates as the
statistical synopses. Two kinds of type-based statistics are
precomputed during loading graph data.

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

Table 3. A summary of notations in the type-centric estimation.

Notation Description

T Type of bindings

p Predicate of the triple or the triple pattern

TPk The kth triple pattern

|B | Number of bindings

|R | Cardinality of the triple pattern explored

Type-formation statistics: For each predicate p, Gpl pre-

computes the type-formation array for the subjects and ob-
jects, namelyCs (p) andCo (p), which returns the type compo-
sition and the number of subjects/objects. For each type (T),
besides Cs (T), Gpl further collects the combination of pred-
icates (P (T)). In Figure 9, Cs (so) returns an array of the type
composition and the number of sub-organizations (subjects).
The total number is 3000, including 100 research groups
(tyRG), 200 laboratories (tyLAB), and 2, 700 departments (tyDEP).
Further, Cs (tyINS) and P (tyINS) return the number of institu-
tions (10) and the collection of predicates ({so}), respectively.

Type-derivation statistics: For each pair of correlated pred-

icate and type, Gpl precomputes the type-derivation array
for exploring triples with the predicate (p) from subjects/ob-
jects with the type (T), namely Exps (T,p)/Expo (T,p), which
returns the type composition and the number of triples. In
Figure 9, Exps (tyINS, so) returns an array of the type compo-
sition and the number of triples for all institutes. There are
300 triples in total, including 100 from research groups (tyRG)
and 200 from laboratories (tyLAB).

Type-centric cardinality estimation. Gpl still uses the
number of intermediate results of graph exploration (i.e., the
number of paths) as the cardinality and estimates the cardi-
nality for each directed exploration of triple patterns in the
plan. Table 3 summarizes the notations in our type-centric
approach. There are two kinds of graph exploration: expan-
sion and pruning.

Expansion: The triple pattern is explored from the known

(i.e., a specific literal/type or a variable has been explored)
to the unknown (i.e., a variable has not been explored), like
TP1 and TP2 in PL1. Thus, given the number and the type of
the known bindings (|B′ | and T ′), the number and the type
of the unknown bindings (|B | and T) explored by a certain
predicate (p) can be formalized as

m∑

j=1

|B(T j)| = |B′(T ′)|

∑m
j=1

Expv (T
′
,p)[j]

Cs (T ′)

where T j denotes the jth type of the new bindings, which
havem types. v denotes the target of directed exploration,
which is either s (subject) or o (object). Hence, Expv (T

′
,p)[j]

denotes the total number of new bindings with the jth type
by exploring triples with the predicate (p) from subjects/ob-
jects with the type (T ′). For example, as shown in Figure 10,

the number and the type of bindings explored by
←−−
TP1 in PL1

are 10 and tyINS. According to Expo (tyINS, so) and Cs (tyINS) in
Figure 9, the intermediate result of TP2 contains two types
of bindings, including 100 research groups (tyRG) and 200

laboratories (tyLAB).
Suppose the kth triple pattern explores from the corre-

lated bindings already explored by a previous triple pattern
(TPk ′ , 0≤k

′
<k). Based on the above equation, the cardinality

of the kth triple pattern (|Re (TPk)|), is the sum of bindings
explored from all types of previous bindings along with the
predicate pk , which can be formalized as

|Re (TPk)| =
nk′∑

i=1

(
|Bk ′ (T

i
k ′
)|

∑mi

j=1
Expv (T

i
k ′
,pk)[j]

Cs (T
i
k ′
)

)
(1)

=
nk∑

i=1

|Bk (T
i
k
)|

where T i
k ′

denotes the ith type of the bindings explored
by the k ′th triple pattern. nk denotes the number of types
for the bindings explored by the kth triple pattern, and
nk = {m1 ∪ . . .∪mnk′ }. For example, as shown in Figure 10,
the cardinality of TP3 in PL2 is 30, the total number of the
bindings explored from 100 research groups (tyRG) and 200

laboratories (tyLAB) separately.
Further, to estimate the cardinality of the first triple pat-

tern (TP1), T0 and |B0(T0)| in Equation (1) would be the type
and the number of bindings for the exploration point, which
could be a literal (e.g., Lab8) or a variable (e.g., ?X). For a lit-
eral, the number of bindings is 1, and the type could be re-
trieved from graph data directly. For a variable, the type and
the number of bindings for the exploration point could be
retrieved from the type-formation statistics with the predi-
cate of the first triple pattern, but in the opposite direction
(C¬v (p1)). For a special case, the first triple pattern defines

the type of bindings (e.g.,
←−−
TP1 in PL1), so that the type and

the number of bindings could be retrieved from the type-
formation statistics (Cs (T1)).

|B0(T0)| =

{
1 a literal (e.g.,

−−→
TP1: 〈Lab8, so, ?X〉)

C¬v (p1) a variable (e.g.,
−−→
TP1: 〈?Y, so, ?X〉)

|Re (TP1)| = Cs (T1) a type (e.g.,
←−−
TP1: 〈?Y, ty, LAB〉)

Pruning: The triple pattern is explored from the known to

the known (i.e., a specific literal/type or a variable already

explored), like
−−→
TP3 in PL1. Thus, we first explore the triple

pattern as expansion by Equation (1), and then can estimate
the cardinality as the product of the explored bindings and
the probability of success matching the knowns.
To match a specific literal (e.g., Lab8), the bindings must

first match the type of literal (tyL), and then the probability
is 1

Cs (tyL)
. Similarly, to match a variable already explored by

the k ′th triple pattern (0≤k ′<k), the bindings also must first
match a certain type of the known bindings (T i

k ′
), and then

the probability is 1
Cs (T

i
k′
)
. Finally, for a special case, the triple

pattern limits the type of bindings (Tk), thus the cardinality

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Estimated = 10 + 300 + 200 + 20 = 530

True = 10 + 300 + 200 + 20 = 530

Estimated = 10 + 300 + 30 + 20 = 360

True = 10 + 300 + 30 + 20 = 360

INS 10

RG

LAB

200LAB

20PRO

so

?X

100
200
tyLAB

ut

?Y

?Z

?Y

INS

?X

INS

INS

?X

LAB

?Y

INS

?X

INS 10

RG

LAB

10PRO

so

?X

100
200

tyLAB

ut

?Y

?Z

INS

?X

INS

RG

?Y

INS

?X

20PROLABINS

20PRO

?Z

LAB

?Y

INS

?X

10 = 10

300 = 10 x (100/10

+200/10)

= 100 + 200

30 = 100 x (10/100)

+ 200 x (20/200)

= 10 + 20

20 = 20

10 = 10

300 = 10 x (100/10

+200/10)

= 100 + 200

20 = 200 x (20/200)

200 = 200

Plan1 Plan2

TP1:

TP2:

TP3:

TP4:

TP1:

TP2:

TP4:

TP3:

Figure 10. A case of type-centric cardinality estimation for the

sample query (Q). The true cardinality (True) is calculated as the

sum of intermediate results for each triple pattern according to the

execution order of two sample plans (PL1 and PL2).

is exactly equal to the number of correlated bindings so far
with the given type (|Bk−1(Tk)|).

|Rp (TPk)| =

|Bk (tyL) |
Cs (tyL)

a literal (e.g.,
←−−
TPk : 〈Lab8, so, ?X〉)

∑nk′
i=1

(
|Bk (T

i
k′
) |

Cs (T
i
k′
)

)
a variable (e.g.,

−−→
TPk : 〈?Y, so, ?X〉)

|B
k−1

(T
k
)| a type (e.g.,

−−→
TPk : 〈?Y, ty, LAB〉)

Figure 10 shows the cardinality estimation for the query
Q with two plans by using the type-centric approach. In

both plans,
←−−
TP1,
←−−
TP2, and

←−−
TP4 are expansion triple patterns,

while TP3 is a pruning triple pattern. Compared to the
predicate-based approach, which just considers the corre-
lation between at most two predicates, the type-centric ap-
proach can estimate the cardinality more accurately, thanks
to embedding the correlations into the types and passing

them on through graph exploration. For example,
−−→
TP3 is se-

verely under-estimated in Figure 6, since the estimation in-
volves the correlation among three predicates, so, tyLAB, and
tyINS. In contrast, the estimated cardinality is exactly equal
to the true cardinality for both two plans in Figure 10.

No type and multiple types. Due to the schema-free na-
ture of graph data, it is possible that some vertices have no
associated types, especially in real-life datasets (e.g., about
87% vertices in DBPSB [3]). Still, based on the observation
that the same type of vertices commonly has a similar com-

bination of predicates, Gpl will assign new virtual types to
them according to the combination of their predicates. On
the other hand, some vertices might have multiple specified
types.Gplwill also assign new virtual types to them accord-
ing to the combination of their types. The virtual type will
be treated as normal, except that the bindings with this vir-
tual type will not be pruned if the target type is contained in
the virtual type. Finally, Gpl will limit the total number of
virtual types to reduce the memory consumption and esti-
mation cost, and assign a generic type GType to all vertices
with rare virtual types. The generic type uses the median
results of virtual types removed in statistical synopse.

Execution

Engine

Cost

Model

Q:TP1...TPN

Intermediate Results

PREDICTED

Execution
Time

ACTUAL

Execution
Time

Estimation Table

Graph
Data

Coefficients

Hardware Platform

Built-in
Queries

bootstrap

runtime

Meta

Figure 11. A comparison of query processing and query planning.

Variable predicate. In rare cases, the predicate in the triple
pattern is a variable, like 〈Lab8, ?P, ?X〉. If so, at least one of
the subject and the object in the triple pattern is known (i.e.,
a specific literal/type or a variable already explored). Thus,
Gpl could retrieve all candidates of the variable predicate
according to the type of the known (e.g., P (tyINS) in Figure 9),
and extend the triple pattern into multiple triple patterns
with the known predicate. Finally, Gpl would estimate all
of them and merge the results.

Contradictory queries. The contradictory combination of
query conditions (triple patterns) does induce an empty re-
sult and only wastes time and resources if without early
detection and treatment by the query optimizer. Gpl uses
the type-centric estimation to detect contradictory queries
evenwhen the contradictory correlation involvesmore than
two triple patterns, which are not detectable by traditional
predicate-based approaches [8, 18, 32, 40]. For example, Q3
of LUBM [5] is a typical contradictory query, as it retrieves
the undergraduate students that have obtained a degree
from the university. Previous systems executed the query
and retrieved an empty result as expected since the contra-
dictory correlation involves three predicates.4 Differently,
Gpl embeds the lineage of correlated triple patterns ex-
plored so far into the types and passes them on to the next.
Thus, Gpl can detect a contradictory query safely (no false
positive5) when the total number of bindings becomes zero
during exploration. To our knowledge,Gpl is the first graph
query optimizer that can recognize contradictory queries
and avoid running them.

4.2 Exploration-oriented Cost Model

Observations. We observe that predicting cost based on the

estimation table could be seen as coarse-grained query pro-

cessing over knowledge graphs. First, the type-centric ap-
proach provides much more detailed estimations for each
exploration (i.e., estimation table), which could be seen as
a brief summary of intermediate results from actual query
processing. Second, the cost model should be extracted from

4Q3 contains three triple patterns below: 〈?Y, rdf:type, ub:University〉, 〈?X,

ub:undergraduateDegreeFrom, ?Y〉, 〈?X, rdf:type, ub:UndergraduateStudent〉.
5Note that Gpl assumes the dataset no longer changes after the statistical

synopses are collected. Currently, Gpl simply disables the optimization for

dynamic knowledge graphs.

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

Algorithm 1: Pseudo-code of exploring triple patterns.

Input: lit, literal in the triple pattern.

kvar/uvar, known/unknown variable in the triple pattern.
−→
p , predicate in the triple pattern with direction.

Output: result, results after exploring the triple pattern.

⊲ expansion triple pattern (known-to-unknow)

1:Function L2U(lit,
−→
p , uvar) ⊲ literal-to-unknown

2: ucol = GetCol(uvar)

3: vals = GetTriples(lit,
−→
p)

4: for val in vals do ⊲ explored

5: row[ucol] = val

6: result.Append(row)

7:Function K2U(kvar,
−→
p , uvar) ⊲ known-to-unknown

8: kcol = GetCol(kvar)

9: ucol = GetCol(uvar)

10: for row in result do ⊲ initiated

11: vals = GetTriples(row[kcol],
−→
p)

12: for val in vals do ⊲ explored

13: row[ucol] = val

14: new.Append(row)

15: result.Swap(new)

⊲ pruning triple pattern (known-to-known)

16:Function K2L(kvar,
−→
p , lit) ⊲ known-to-literal

17: kcol = GetCol(kvar)

18: for row in result do ⊲ initiated

19: vals = GetTriples(row[kcol],
−→
p)

20: for val in vals do ⊲ explored

21: if lit == val then

22: new.Append(row) ⊲ matched

23: result.Swap(new)

24:Function K2K(kvar1,
−→
p , kvar2) ⊲ known-to-known

25: kcol1 = GetCol(kvar1)

26: kcol2 = GetCol(kvar2)

27: for row in result do ⊲ initiated

28: vals = GetTriples(row[kcol1],
−→
p)

29: for val in vals do ⊲ explored

30: if row[kcol2] == val then

31: new.Append(row) ⊲ matched

32: result.Swap(new)

graph query processing (i.e., the exploration of triple pat-
terns) with the characteristics of hardware and graph data.
Figure 11 illustrates an overview and comparison of query
processing and cost prediction. Inspired by symbolic execu-
tion [14], we mimic the execution of graph query by feeding
the estimation table to a specialized costmodel for exploring
triple patterns one-by-one. Thus, to predict execution time
(wall-clock time) accurately, we should construct a subtle
cost model targeting graph exploration and tune the coeffi-
cients with target hardware platform and graph data.

Cost model. The emerging graph-exploration scheme for
query processing demands a specialized model. The execu-
tion of the query will explore triple patterns over graph data
one by one according to the plan. Thus, it is imperative
to model different kinds of triple patterns carefully. Algo-
rithm 1 lists the pseudo-code of exploring different kinds
of triple patterns. For expansion triple patterns, both L2U

and K2U iterate over every known binding (initiated) and ex-
plore new bindings (explored) by GetTriples6 with a given
predicate and direction (−→p). For pruning triple patterns, af-
ter exploration, both K2K and K2L further prune bindings by
matching them to the known (matched). Note that the triple
pattern with either a literal or a type shares the same func-
tion (i.e., L2U and K2L). For example, the triple patterns in
PL1 will invoke L2U, K2U, K2L, and K2U in order.
The cost of a query is the sum of the cost of triple patterns,

which is predicted by feeding the number of bindings to the
computation and communication models.

Computation: The cost model in the computation part for

each triple pattern can be formalized as

Costcomp (TP) = λ
I
|I | + λ

E
|E | + λ

M
|M | + λ

C

where |I | denotes the number of bindings initiated before
exploring the triple pattern. |E | and |M | denote the number
of bindings explored and matched respectively, after explor-
ing the triple pattern. The different coefficients (λ

I
, λ

E
, λ

M
,

and λ
C
) are one-off tuned with target hardware platform

and graph data for different kinds of triple patterns.
Following the equations for expansion and pruning triple

patterns, for the kth triple pattern, |I |, |E |, and |M | are esti-
mated by |Bk ′(Tk ′)|, |Bk (Tk)|, and |Rp (TPk)| respectively. For

example, the three parameters are 300, 300, and 200 for
−−→
TP3

in PL1 (see Figure 10).
Further, considering parallel query execution of the

exploration-based scheme, exploring edges is completely in-
dependent and can be fully parallelized on multiple threads
and machines by evenly partitioning the exploration points.
Thus, the computation time decreases almost linearly with
the number of cores (N) involving query processing.

Communication: For distributed execution on S machines,
the cost model in the network communication part for each
triple pattern can be formalized as

Costcomm (TPk) =

{
(S − 1) · (fw (

|Ik |
S) + fw (

|Mk |
S)) migrating exec

(S − 1) · fr (
|Ek |
|Ik |

) · (
|Ik |
S +

|Ek |
S) migrating data

where fw and fr denote the network cost functions with a
parameter of payload size for writing and reading remote
data, respectively.|Ik | and |Ek | denote the number of bind-
ings before and after exploring the kth triple pattern, and
|Mk | denotes the number of bindings matched eventually.

6We assume GetTriples and GetCol in Algorithm 1 are provided by the

underlying graph store [36, 40].

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

1

10
1

10
2

10
3

10
4

10
5

16 256 4K 64K 1M

L
a

te
n

c
y
 (

µ
s
)

Size of Payload (Bytes)

RDMA read

RDMA write

1

10
1

10
2

10
3

10
4

10
5

16 256 4K 64K 1M

L
a

te
n

c
y
 (

µ
s
)

Size of Payload (Bytes)

TCP messaging

Figure 12. The network cost functions (fw and fr) using one-

sided RDMA and TCP messaging with the increase of payload.

The communication cost can be represented as the prod-
uct of the total number and the unit cost of network oper-
ations. There are two ways to implement distributed exe-
cution: migrating execution (fork-join mode) and migrating
data (in-place mode) [36]. Suppose graph data is randomly
assigned to S machines and the query will also evenly ac-
cess graph data (i.e., 1

S
). By migrating execution, the explo-

ration points (|Ik |) should be sent to the remote machine
hosting the bindings before exploring the triple pattern, and
the matched points (|Mk |) should be retrieved from the re-
mote machine afterwards. Thus, the local machine will send
1
S
of bindings to each remote machine for S − 1 times. By

migrating data, the bindings explored should be retrieved
from the machine hosting the bindings during exploring the

triple pattern, |Ik |
S

times for the vertices and |Ek |
S

times for

the edges. The average size of payload is |Ek |
|Ik |

.

Profiling coefficients. Unlike prior work [18, 40], Gpl ex-
pects to predict execution time (wall-clock time) instead
of the relative cost. Thus, we built a tool to one-off tune
the coefficients (namely λ

I
, λ

E
, λ

M
, and λ

C
) for the com-

putation model directly on the target hardware platform
and graph data. In the bootstrap, the graph store will first
load, partition, and store graph data, and then precompute
type-centric statistical synopses for estimation. During this
period, Gpl will collect a representative dataset based on
the statistics (e.g., types and predicates) to cover the graph
data. To tune the coefficients,Gpl designs several query tem-
plates based on different kinds of triple patterns and repeat-
edly runs them on the target hardware platformwith param-
eters selected from the dataset randomly. Further, for the
network functions (fw and fr) in the communication model,
Gpl measures and stores the latency with the increase of
payload sizes (power of 2), as shown in Figure 12. To pre-
dict the cost, the actual payload size is rounded to the near-
est power of 2. Note that the coefficients of the cost model
cannot shared by different datasets and hardware platforms,
while the cost of profiling coefficients is low (see §5.6).

4.3 Budget-aware Enumeration

Observations. Prior work [18, 36, 38, 40] has reported that
the heterogeneity in graph queries can result in large ex-
ecution time differences. As shown in Table 1, the perfor-
mance gap can even reach more than 7,000× (490ms and
0.069ms for Q7 and Q5 on LUBM-2560 accordingly). We

Algorithm 2: Pseudo-code of selecting the best possible plan

within the budget of optimization time.

Input: Q, SPARQL query.

RATIO, ratio of optimization time to execution time.

1:Function Optimize(Q, RATIO)

2: start = Now()

3: 〈selected_plan, least〉 ← { NULL, MAXTIME }

4: repeat

5: plan = Enumerate(Q)

6: if plan is NULL then break

7: time = Cost(Estimate(plan))

8: if time < least then

9: 〈selected_plan, least〉 ← { plan, time }

10: budget = least × RATIO

11: until budget > (Now() - start)

12: return 〈selected_plan, least〉

observe that workload heterogeneity in time requires differ-

entiated enumeration strategies. For long-lived queries (e.g.,
second-level), the accuracy of optimization is most impor-
tant, so it is essential to find the best possible plan by exhaus-
tive enumeration. For short-lived queries (e.g., millisecond-
level), the optimization time may dominate the end-to-end
query time, so it is better to balance the optimization time
and execution time by using fast enumeration with an ac-
ceptable plan. Fortunately, the new cost model can predict
wall-clock time of query processing, which opens an oppor-
tunity to directly compare the (actual) optimization time
and the (predicted) execution time during query optimiza-
tion.

Budget-aware strategy. In response to workload hetero-
geneity, Gpl adopts budget-aware enumeration to optimize
all kinds of queries without the advance knowledge of the
execution and optimization time. Algorithm 2 outlines the
enumeration strategy with a user-defined budget for an in-
put query Q. The time budget is the ratio (i.e., RATIO) of
the expected optimization time to the predicted execution
time. For every valid query plan,Gpl first predicts execution
time (cost) based on the cost model (Line 7), and updates the
minimal cost (least) and the selected plan (selected_plan)
in current enumerated plans (Line 9) if necessary. Further,
the time budget could be calculated from the current mini-
mal cost (Line 10). Note that the time budget adapts to the
change of current minimal cost so that it can work well for
various queries. The optimization terminates when exhaust-
ing all plans (Line 6) or the time budget (Line 11).
Moreover, the user could offer an initial ratio (e.g., 5%),

and then Gpl refines it adaptively according to the work-
load. More specifically, Gpl would decrease it if the optimal
plan has been found before exhausting the time budget and
increase it if not. Gpl could enumerate all plans to find miss-
ing optimal plans in the background for sampled queries
(e.g., 1%). We leave this as future work.

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

Gpl adopts a depth-first search (DFS) to enumerate
candidate plans, rather than traditional breadth-first ap-
proach [18, 28, 32, 40], in order to obtain the first predicted
execution time as soon as possible. Then Gpl can calculate
the time budget earlier. As a result, the enumeration order
(i.e., the order of triple patterns) becomes particularly impor-
tant when not all query plans are estimated, namely short-
lived queries. This is because the predicted execution time
based on a worse plan may significantly lengthen the time
budget and waste more time on query optimization.

Greedy selection.Gpl proposes a greedy heuristic to select
the next triple pattern for DFS-based plan enumeration, aim-
ing to find a better plan (i.e., shorter execution time) earlier.
Gpl first estimates the cost of all valid triple patterns as the
next exploration and then greedily selects the triple pattern
with minimal cost. The predicted costs of all triple patterns
will be buffered and reused for predicting other plans.

5 Evaluation

5.1 Experimental Setup

Hardware configuration. All evaluations were conducted
on a rack-scale cluster with 8 machines. Each machine has
two 12-core processors and 128GB DRAM. We dedicate one
processor to run up to 10 worker threads, and use a sin-
gle thread to generate requests and perform query optimiza-
tion.

Comparing targets. To compare accuracy and perfor-
mance of Gpl against state-of-the-art approaches, the fol-
lowing comparing targets are used: 1) TriAD [18] is a state-
of-the-art join-centric system, which adopts a well-tuned
optimizer for RDF graph and SPARQL queries. We use it
to show the efficiency of exploration-based query process-
ing and its query optimization. 2) OPT stands for the opti-
mal query plan with minimal execution time, which was ob-
tained by repeatedly evaluating a query with all of the valid
plans, varying from tens to thousands (e.g., Q1 of LUBM has
2,496 plans). We use it to show the accuracy of query op-
timization. 3) Manual represents the query plans adopted
by Wukong’s originally-published results [36], which were
manually selected by tuning results with simple heuristics.7

We compare against it to show the necessity of cost-based
query optimization. 4) Trinity.RDF [40] is an exploration-
based RDF store with an initial query optimizer for graph
exploration. We re-implemented it on Wukong [36] since
the source code is not available. We compare against it to
show the efficacy of our approach in Gpl.

Benchmarks. We use two synthetic and one real-life
knowledge graphs, as shown in Table 4. The syn-
thetic datasets include the Leigh University Benchmark
(LUBM) [5] and the Waterloo SPARQL Diversity Test Suite
(WSDTS) [7], which simulate the knowledge graphs in the

7h�ps://github.com/SJTU-IPADS/wukong/tree/master/scripts/sparql_query

Table 4. A summary of RDF datasets. #Tr, #S, #O, and #P denote

the number of triples, subjects, objects and predicates, respectively.

(†) The size of datasets in raw NT format.

Dataset #Tr #S #O #P (†)Size

LUBM-2560 352 M 55 M 41 M 17 27G

LUBM-10240 1,410 M 222 M 165 M 17 108G

WSDTS 109 M 5.2 M 9.8 M 86 15.6G

DBPSB 15 M 0.3 M 5.2 M 14,128 <2G

education and retail domains, respectively. For LUBM, we
generate two datasets with different sizes (up to 1.4 billion
triples) and use the queries published in Atre et al. [12],
which were widely used by prior work [12, 18, 24, 36, 38, 40,
41]. WSDTS publishes a total of 20 queries in four categories
(Linear, Star, SnowFlake-shaped, and Complex), which al-
lows evaluating Gpl with diverse queries. The real-life
dataset is the DBpedia’s SPARQL Benchmark (DBPSB) [3]
derived from the DBpedia knowledge base.We choose 5 rep-
resentative queries provided by its official website like prior
work [36, 38].

5.2 Overall Performance and Accuracy

We first make a comprehensive study on the query perfor-
mance to compare the prediction accuracy of different opti-
mization approaches. We report the average results of one
hundred runs and confirm the query plans selected carefully.
Table 5 gives a complete execution time (i.e., query latency)
comparison between Gpl and other setups using four differ-
ent datasets and queries. Note that, for Wukong, we can ob-
tain the optimal plan (OPT) by repeatedly running a query
with all of the valid plans, while it failed for TriAD as it is
not very stable for repeated execution.
For LUBM, Gpl can select optimal plans for query pro-

cessing on a single machine (i.e., LUBM-2560) and incur
zero performance overhead (vs. OPT), thanks to the type-
centric estimation. Further, Gpl can recognize the contra-
dictory query (Q3) during query optimization and avoid ac-
tual query processing. Strictly speaking, Gpl can even out-
perform the optimal results (OPT). On the contrary, the
predicate-based approach (Trinity.RDF) cannot select opti-
mal plans for the queries that involve the correlation be-
tween more than two predicates (Q1, Q3, and Q7). It incurs
about 30% performance slowdown of the average (geomet-
ric mean) query latency (up to 240% for Q7). The manually
tuned results (Manual) cannot guarantee the optimal results
either, due to a relatively large plan space (Q7), resulting
in roughly 29% slowdown. For distributed query processing
(i.e., LUBM-10240), the cost of network traffic reduces the
accuracy of optimization. Fortunately, the impact of Gpl on
performance slowdown is trivial (1.6%), compared to Trin-
ity.RDF (79%) and Manual (39%). Because Gpl can precisely
estimate the size of data transferred and model the commu-
nication cost.

https://github.com/SJTU-IPADS/wukong/tree/master/scripts/sparql_query

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Table 5. A comparison of optimal and selected performance (in mil-

liseconds) on various datasets and queries. The numbers in blue de-

note the optimal results, and GM denotes geometric mean. Gpl can

detect and skip the execution of contradictory queries (†).

#TP TriAD
Wukong

OPT Manual Trinity.RDF GPL

LUBM-2560: #T=352M and #P=17 (1 machine)

Q1 6 588 301 523 478 301

Q2 2 148 93 93 93 93

Q3 6 347 255 255 303 †(255)0
Q4 5 3.0 0.031 0.031 0.031 0.031

Q5 2 2.1 0.023 0.023 0.023 0.023

Q6 4 28.8 0.092 0.092 0.092 0.092

Q7 6 2,317 144 498 490 144

GM 74.5 4.89 6.32 6.38 4.89

LUBM-10240: #T=1,410M and #P=17 (8 machines)

Q1 6 3,188 72 284 99 72

Q2 2 789 48 48 814 48

Q3 6 1,279 70 128 70 †(70)0
Q4 5 3.0 0.327 0.327 0.327 0.327

Q5 2 1.8 0.073 0.073 0.073 0.073

Q6 4 98.4 0.299 0.302 0.488 0.299

Q7 6 12,509 208 292 321 232

GM 215.2 6.21 8.65 11.13 6.31

WSDTS: #T=109M and #P=86 (1 machine)

L1 3 2.78 0.039 0.039 0.039 0.039

L2 3 4.07 0.829 0.829 4.218 0.829

L3 2 1.85 0.035 0.035 0.035 0.035

L4 2 1.74 0.444 0.570 0.566 0.444

L5 3 2.84 1.356 1.356 5.471 5.493

S1 9 12.23 0.044 0.044 0.045 0.044

S2 4 4.12 1.082 1.105 1.082 1.082

S3 4 2.09 0.285 0.346 0.285 †(0.285)0
S4 4 2.59 0.200 0.200 0.205 0.200

S5 4 3.41 0.373 0.588 1.427 †(0.373)0
S6 3 1.83 0.047 0.047 0.190 0.047

S7 3 1.38 0.031 0.031 0.031 †(0.031)0

F1 6 3.93 0.199 0.204 0.199 0.199

F2 8 18.07 0.432 0.933 0.590 0.432

F3 6 15.57 0.440 0.814 0.723 0.440

F4 9 6.95 0.442 1.343 0.675 0.442

F5 6 34.12 0.064 0.077 0.075 0.064

C1 8 16.17 0.801 0.836 1.346 0.861

C2 10 35.77 1.118 1.875 2.513 1.118

C3 6 44.59 31.48 62.44 39.54 31.48

GM 5.76 0.298 0.380 0.467 0.321

DBPSB: #T=15M and #P=14,128 (1 machine)

D1 2 6.07 1.610 1.724 Failed 1.724

D2 3 2.61 0.023 0.023 Failed 0.023

D3 3 3.03 0.026 0.026 Failed 0.026

D4 5 4.74 0.285 5.444 Failed 0.311

D5 3 2.53 0.176 0.176 Failed 0.191

GM 3.56 0.137 0.251 -- 0.144

ForWSDTS,Gpl can also select optimal plans for all kinds
of queries, except L5 and C1 that deviate from statistical syn-
opses. Thus, compared to OPT, it only causes a trivial slow-
down of 8%, even aside from contradictory queries (S3, S5,
and S7). However, the slowdown of Trinity.RDF exceeds 57%

10
6

10
7

10
8

10
9

10
6

10
7

10
8

10
9

T
ru

e

Estimated

Trinity.RDF (emulated)

GPL
10

6

10
7

10
8

10
9

10
10

10
6

10
7

10
8

10
9

10
10

T
ru

e

Estimated

Trinity.RDF (emulated)

GPL

Figure 13. A comparison of cardinality estimation btw. Gpl and

Trinity.RDF using Q1 on (a) LUBM-2560 and (b) LUBM-10240.

since it selects sub-optimal plans for 14 of 20 queries. Man-
ual still increases execution time by 28% on average, even
with enormous efforts.

For DBPSB, due to large amounts of predicates (14,128)
in the real-life dataset, the predicate-based approach (Trin-
ity.RDF) fails to maintain the correlation statistics and find
proper query plans, due to lengthy preparation time and
large memory consumption. Yet, Gpl still works well with
the schema-free graph data and achieves near-optimal per-
formance (5% slowdown). D4 is a typical case that manual
optimization may select an extremely poor plan (19× slow-
down) due to a relatively large plan space. Hence, the query
optimizer is critical to improve the performance and allevi-
ate the burdens on programmers.

Table 6. The q-error for cardinality estimation. The closer the q-

error is to 1, and the more accurate the optimizer is

LUBM-2560 Median 90th 95th MAX

Trinity.RDF 1.785 12.928 18.755 255.952

Gpl 1.001 1.002 1.002 1.004

5.3 Cardinality Estimation

We compare the estimated cardinality between Trinity.RDF
and Gpl using all plans (2496) of Q1 on LUBM datasets.
The sum of the intermediate results in each exploration
is recorded as the true cardinality. As shown in Figure 13,
the estimated cardinality in Trinity.RDF extremely deviates
from the ideal result (a straight diagonal line), where the
estimated and true cardinality are equal. The main reason
is that it assumes the independence among triple patterns
and only considers at most two correlated predicates. In con-
trary, the estimated cardinality of Gpl is very close to the
ideal result on both two datasets, which confirms the bene-
fits of the type-centric approach. It can embed the correla-
tion of multiple predicates into the type system of knowl-
edge graphs to support accurate predictions.
We further use q-error [26] to measure the accuracy of

cardinality estimation across different approaches, which
denotes the factor by which an estimated cardinality differs
from the true one. For example, q-error should be 10 for both
the estimates as 5 or 500 if the true is 50. Table 6 shows the
median (50th), 90th, 95th and max (100th) percentiles of the
q-error for the cardinality estimation using all plans ofQ1 on
LUBM-2560. Gpl can achieve negligible errors thanks to the

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

0.001

0.01

0.1

1

10

100

1000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

L
1

L
2

L
3

L
4

L
5

S
1

S
2

S
3

S
4

S
5

S
6

S
7

F
1

F
2

F
3

F
4

F
5

C
1

C
2

C
3

D
1

D
2

D
3

D
4

D
5

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
e

c
)

LUBM-2560 LUBM-10240 WSDTS DBPSB

Actual Predicted

Figure 14. A comparison between actual and predicted execution

time for different datasets.

type-centric approach. The max q-error is still quite close to
the optimal value. In contrast, Trinity.RDF produces a very
high q-error (up to 256× deviation).

5.4 Cost Model

To study the accuracy of the cost model for predicting ex-
ecution time, we directly compare the predicted and actual
execution time for all datasets and queries. Note that the
actual execution time is the median of one hundred runs,
and the optimization of detecting contradictory query is dis-
abled. As shown in Figure 14, except for selecting optimal
plans, Gpl can further provide a close prediction on exe-
cution time, where the median of q-error is 1.44. On the
contrary, it is hard or even impossible to predict execution
time by using prior optimizers [18, 40] or manual optimiza-
tion [24, 36]. Moreover, we observe that the accuracy of the
cost model is more sensitive to the type of queries, instead
of the actual execution time. For example, the deviation on
the linear queries (e.g., L5 in WSDTS) is relatively large.

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

A
c
tu

a
l
(m

s
)

Predicated (ms)

Q1

Q2

Q3

Q7

using threads
from 1 to 10

LUBM 2560

10
-3

10
-1

10
1

10
3

10
5

10
-3

10
-1

10
1

10
3

10
5

A
c
tu

a
l
(m

s
)

Predicated (ms)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

using machines
 from 2 to 8

LUBM 10240

Figure 15. A comparison btw. actual and predicted execution time

for LUBM with different numbers of (a) threads and (b) machines.

Multi-threads and multi-machines.We further evaluate
the accuracy of the cost model when using multiple threads
and machines. Figure 15(a) shows the results of long-lived
(non-
selective) queries with multithreading. Note that the short-
lived (selective) query always uses a single thread per
machine in Wukong [36]. Since exploring edges is com-
pletely independent and can be fully parallelized on mul-
tiple threads, Gpl retains the accuracy with the increase
of threads and ensures the median of q-error to 1.32. Fig-
ure 15(b) further shows the results with different numbers

Table 7. A comparison of the overall query time in milliseconds

(TOTAL), consisting of the execution time (EXE) and the optimization

time (PLAN), for WSDTS with and without budget-based enumera-

tion. The numbers in red denote the increase of execution time, and

the numbers in blue denote the decrease of optimization time.

#TP
w/o Budget w/ Budget

EXE PLAN TOTAL EXE PLAN TOTAL

WSDTS: #T=109M and #P=86 (1 machine)

L1 3 0.039 0.049 0.088 0.039 0.026 0.065

L2 3 0.829 0.017 0.846 0.829 0.010 0.839

L3 2 0.035 0.016 0.051 0.035 0.007 0.042

L4 2 0.444 0.024 0.468 0.444 0.024 0.468

L5 3 5.493 0.021 5.514 5.503 0.011 5.514

S1 9 0.044 1.714 1.758 0.044 0.106 0.150

S2 4 1.082 0.060 1.142 1.082 0.060 1.142

S3 4 0.285 0.094 0.379 0.285 0.017 0.302

S4 4 0.200 0.062 0.262 0.200 0.026 0.226

S5 4 0.373 0.054 0.427 0.373 0.015 0.388

S6 3 0.047 0.015 0.062 0.047 0.009 0.056

S7 3 0.031 0.020 0.051 0.031 0.003 0.034

F1 6 0.199 1.395 1.594 0.236 0.072 0.308

F2 8 0.432 1.551 1.983 0.592 0.137 0.729

F3 6 0.440 0.447 0.887 0.566 0.077 0.643

F4 9 0.442 0.716 1.158 0.818 0.155 0.973

F5 6 0.064 0.254 0.318 0.077 0.071 0.148

C1 8 0.861 1.056 1.917 0.861 0.168 1.029

C2 10 1.118 7.832 8.950 7.480 0.090 7.570

C3 6 31.48 2.690 34.17 31.48 2.690 34.17

GM 0.321 0.166 0.725 0.381 0.041 0.470

of machines. Gpl can still predict the execution time accu-
rately for distributed execution, thanks to the communica-
tion part of the cost model. The median of q-error sightly
increases to 1.82.

5.5 Plan Enumeration

Gpl uses budget-aware enumeration to make a tradeoff
between accuracy (execution time) and performance (op-
timization time). As shown in Table 7, Gpl can achieve
the best query performance by exhausting all plans (w/o
Budget). While using a fixed ratio (5% of predicted exe-
cution time), Gpl can further reduce optimization time by
close to 75% (from 0.166 to 0.041), at the expense of a slight
increase in execution time (about 19%), on average (geomet-
ric mean). Consequently, the budget-aware enumeration re-
duces the overall query latency by 35% (up to 91%), from
0.725 to 0.470. This is mainly because the time budget can
be automatically adjusted with predicted execution time so
far, so that it works well for all queries.

5.6 Preprocessing Cost

Different to the predicate-based approach (e.g., Trinity.RDF)
that focuses on the correlation of pairwise predicates (PxP,
see Figure 5), Gpl uses type-centric cardinality estimation

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Table 8. A summary of preprocessing overhead during startup for

different datasets using Trinity.RDF and Gpl. Stat.Time/Size de-

notes the time to precompute statistical synopses and the size of them.

Tune.Time denotes the time to one-off tune coefficients of cost model.

(†) The actual number of types, including virtual types, is 1,302 and

194,212 for WSDTS and DBPSB, before using the generic type.

LUBM-2560 LUBM-10240 WSDTS DBPSB

Startup Time 35m 41m 8m 5m

#Predicates 17 17 86 14,128

#Types 14 14 †69 †1,423

Trinity.RDF:

Stat.Time 206s 684s 20s Failed

Stat.Size 4KB 7KB 23KB Failed

Gpl:

Stat.Time 342s 1,175s 128s 185s

Stat.Size 6KB 13KB 40KB 3MB

Tune.Time 7.3s 15.0s 4.7s 3.0s

that relies on type-based statistical synopses (PxTxP, see Fig-
ure 9). As shown in Table 8, the preprocessing overhead of
Gpl is higher than that of Trinity.RDF as expected. Fortu-
nately, the preprocessing overhead is negligible compared
to the startup time. For example, Gpl takes 432 seconds to
precompute 6KB statistical synopses during 35 minutes of
startup for LUBM-2560. Further, Gpl introduces a generic
type GType to limit the overhead for datasets with massive
predicates and types. For DBPSB, Gpl can reduce the num-
ber of types from 194,212 to 1,423 and make it practical to
generate statistical synopses (185 seconds). On the contrary,
Trinity.RDF is failed to support DBPSB.

In addition, Gpl only takes several seconds to one-
off profiles coefficients of the cost model during startup
(Tune.Time), like 7.3 seconds for LUBM-2560. The trivial
cost is worthwhile because it enables accurate prediction
of execution time. Note that Gpl leverages the generic type
GType to make it practical for the dataset with a very large
number of types (e.g., DBPSB).

6 Related Work

Several systems [21, 28, 37] are built atop RDBMSs to store
knowledge graphs and handle queries with mature, rela-
tional optimizers. RDF-3X [32] focuses on join ordering op-
timization using a bottom-up strategy and uses extra statis-
tics to optimize for frequent paths. TriAD [18] additionally
tunes the cost model to be suitable for distributed execution
and applies optimizer for both summary and data graph.
There is an increasing interest in using native graph

model to store and query knowledge graphs [8, 16, 36,
38, 40]. Trinity.RDF [40] proposes the initial optimizer for
exploration-based query processing, and uses a predicate-
based scheme to capture the correlation between at most
two triple patterns. SPARTex [8] also adopts a correlation
method between pairwise predicates in cardinality estima-
tion. Initially, Wukong [36] selects query plans manually

by tuning results with some simple heuristics. However,
for a query with relatively large plan space, the manu-
ally tuned approach may still choose sub-optimal plans
and cause lengthy execution time. Our initial attempt [39]
demonstrates the potential of type-centric estimation for
graph query optimizer with some preliminary results. To
our knowledge, Gpl is the first query optimizer for knowl-
edge graphs that proposes exploration-based cost model
and budget-aware enumeration. Kaskade [16] can also iden-
tify infeasible plans based on some constraints and prune
the search space of query plans for enumeration, which may
decrease the optimization time. However, its execution en-
gine (Neo4j) still needs to run the query using a feasible
view. Differently, Gpl can detect the contradictory query
and skip the execution since the result must be empty, even
if the query has feasible plans.
Most previous works assumed independence among join

or exploration patterns and only have very simple cost mod-
els. Leis et al. [26] investigated the quality of industrial-
strength optimizers for databases. The results also show
that simple assumptions like uniformity and independence
in most optimizers are frequently wrong and may lead to
sub-optimal plans. Thus, prior work [17, 31] also proposes
characteristic sets (a set of predicates of a subject/object)
to improve cardinality estimation for star-shaped SPARQL
queries, which can be considered a limited version of type-
based statistical synopses. There are also several efforts to
match one vertex of query at a time, namely joining mul-
tiple edges connecting the vertex at once [9, 11]. Further,
recent work has developed query optimizers that integrate
both binary and multi-way joins [29]. It would be interest-
ing to integrate this idea into our type-centric approach.We
leave this as future work.
Hasan and Gandon [22] use machine learning to learn

SPARQL query performance from previously executed
queries. Papailiou et al. [33] integrate workload-adaptive
caching with a DP-based planner [30] to generate superior
join execution plans for SPARQL queries. Alotaibi et al. [10]
aim to improve the overall query performance for domain-
specific knowledge graphs by optimizing graph schemas.
Currently, Gpl does not consider the impact of various
workloads and datasets, which will be part of our future
work.

7 Conclusion

This paper presents Gpl, a fast and accurate optimizer
for query processing over knowledge graphs with three
key designs, including type-centric cardinality estimation,
exploration-oriented cost model, and budget-aware plan
enumeration. Our evaluation confirms the efficacy of our
new approach compared to the state-of-the-art optimizers
and manually tuned results. Further, Gpl can predict execu-
tion time accurately and detect contradictory queries with-
out running the queries.

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA J. Wu, R. Chen, Y. Xia

Acknowledgments

We sincerely thank our shepherd Rebecca Taft and the
anonymous reviewers for their insightful suggestions. We
also thank Youyang Yao for implementing the initial version
of Gpl, and Kai Zeng for sharing his experience to design
and implement optimizer for Trinity.RDF. This work is sup-
ported in part by the National Key Research &Development
Program of China (No. 2020AAA0108500) and the National
Natural Science Foundation of China (No. 61772335). Corre-
sponding author: Rong Chen (rongchen@sjtu.edu.cn).

References
[1] 2013. SPARQL 1.1 Query Language. h�ps://www.w3.org/TR/

sparql11-query/.

[2] 2014. Resource Description Framework (RDF). h�ps://www.w3.org/

RDF/.

[3] 2021. DBpedia’s SPARQL Benchmark. h�p://aksw.org/Projects/

DBPSB.

[4] 2021. Neo4j Cypher Query Language. h�ps://neo4j.com/developer/

cypher-query-language/.

[5] 2021. SWAT Projects - the Lehigh University Benchmark (LUBM).

h�p://swat.cse.lehigh.edu/projects/lubm/.

[6] 2021. TigerGraph GSQL Query Language. h�ps://www.tigergraph.

com/gsql/.

[7] 2021. Waterloo SPARQL Diversity Test Suite (WSDTS). h�ps://dsg.

uwaterloo.ca/watdiv/.

[8] Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, and Panos Kalnis.

2017. Combining vertex-centric graph processing with sparql for

large-scale rdf data analytics. IEEE Transactions on Parallel and Dis-

tributed Systems 28, 12 (2017), 3374–3388.

[9] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli,

Kunle Olukotun, and Christopher Ré. 2017. EmptyHeaded: A Rela-

tional Engine for Graph Processing. ACM Trans. Database Syst. 42, 4,

Article 20 (2017).

[10] Rana Alotaibi, Chuan Lei, Abdul Quamar, Vasilis Efthymiou, and

Fatma Ozcan. 2021. Property Graph Schema Optimization for

Domain-Specific Knowledge Graphs. In Proc. ICDE. 924–935.

[11] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas

Joglekar. 2018. Distributed Evaluation of Subgraph Queries Us-

ing Worstcase Optimal Low Memory Dataflows. arXiv preprint

arXiv:1802.03760 (2018).

[12] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler.

2010. Matrix "Bit" Loaded: A Scalable Lightweight Join Query Proces-

sor for RDF Data. In Proc. WWW.

[13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Pe-

ter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,

Harry Li, MarkMarchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,

and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data

Store for the Social Graph. In Proc. Usenix ATC. 49–60.

[14] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs. In Proc. OSDI, Vol. 8. 209–224.

[15] Mariano P Consens and Alberto O Mendelzon. 1990. GraphLog: a

Visual Formalism for Real Life Recursion. In Proc. PODS. 404–416.

[16] J. F. da Trindade, K. Karanasos, C. Curino, S. Madden, and J. Shun.

2020. Kaskade: Graph Views for Efficient Graph Analytics. In Proc.

ICDE. 193–204.

[17] Andrey Gubichev and Thomas Neumann. 2014. Exploiting the Query

Structure for Efficient Join Ordering in SPARQL Queries. In Proc.

EDBT. 439–450.
[18] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin

Theobald. 2014. TriAD: A Distributed Shared-nothing RDF Engine

Based on Asynchronous Message Passing. In Proc. SIGMOD.

[19] Ralf Hartmut Güting. 1994. GraphDB: Modeling and Querying

Graphs in Databases. In Proc. VLDB, Vol. 94. 12–15.

[20] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, and Dirk

Van Gucht. 1994. A Graph-oriented Object Database Model. IEEE

Transactions on Knowledge & Data Engineering 4 (1994), 572–586.

[21] Stephen Harris and Nigel Shadbolt. 2005. SPARQL Query Processing

with Conventional Relational Database Systems. In Proc. WISE. 235–

244.

[22] Rakebul Hasan and Fabien Gandon. 2014. A Machine Learning Ap-

proach to SPARQL Query Performance Prediction. In Proc. WI-IAT.

266–273.

[23] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-Time: Query Lan-

guage and Access Methods for Graph Databases. In Proc. SIGMOD.

405–418.

[24] Fuad Jamour, Ibrahim Abdelaziz, Yuanzhao Chen, and Panos Kalnis.

2019. Matrix Algebra Framework for Portable, Scalable and Efficient

Query Engines for RDF Graphs. In Proc. EuroSys.

[25] Pradeep Kumar and H. Howie Huang. 2016. G-Store: High-

Performance Graph Store for Trillion-Edge Processing. In Proc. SC.

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons

Kemper, and Thomas Neumann. 2015. How Good Are Query Opti-

mizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215.

[27] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. 2007. Chal-

lenges in Parallel Graph Processing. PPL 17, 01 (2007), 5–20.

[28] Hongbin Ma, Bin Shao, Yanghua Xiao, Liang Jeff Chen, and Haixun

Wang. 2016. G-SQL: Fast Query Processing via Graph Exploration.

Proc. VLDB Endow. 9, 12 (Aug. 2016), 900–911.

[29] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph

Queries by Combining Binary and Worst-case Optimal Joins. arXiv

preprint arXiv:1903.02076 (2019).

[30] Guido Moerkotte and Thomas Neumann. 2008. Dynamic Program-

ming Strikes Back. In Proc. SIGMOD. 539–552.

[31] Thomas Neumann and Guido Moerkotte. 2011. Characteristic Sets:

Accurate Cardinality Estimation for RDF Queries with Multiple Joins.

In Proc. ICDE. 984–994.

[32] Thomas Neumann and GerhardWeikum. 2008. RDF-3X: A RISC-style

Engine for RDF. Proc. VLDB Endow. (2008).

[33] Nikolaos Papailiou, Dimitrios Tsoumakos, Panagiotis Karras, and

Nectarios Koziris. 2015. Graph-Aware, Workload-Adaptive SPARQL

Query Caching. In Proc. SIGMOD.

[34] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and

Tamer Özsu. 2017. The Ubiquity of Large Graphs and Surprising Chal-

lenges of Graph Processing. Proc. VLDB Endow. 11, 4 (Dec. 2017).

[35] Lei Sheng, Z Meral Ozsoyoglu, and Gultekin Ozsoyoglu. 1999. A

Graph Query Language and its Query Processing. In Proc. ICDE. 572–

581.

[36] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016.

Fast and Concurrent RDF Queries with RDMA-based Distributed

Graph Exploration. In Proc. OSDI.

[37] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsiet-

sidis, Gang Hu, and Guotong Xie. 2015. SQLGraph: An Efficient

Relational-Based Property Graph Store. In Proc. SIGMOD.

[38] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen. 2018. Fast

and Concurrent RDF Queries using RDMA-assisted GPU Graph Ex-

ploration. In Proc. Usenix ATC.

[39] Youyang Yao, Jiaqi Li, and Rong Chen. 2018. Analysis and Improve-

ment of Optimizer for Query Processing on Graph Store. In Proc. AP-

Sys. 6.

[40] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan

Wang. 2013. A Distributed Graph Engine for Web Scale RDF Data. In

Proc. VLDB.

[41] Yunhao Zhang, Rong Chen, and Haibo Chen. 2017. Sub-millisecond

Stateful Stream Querying over Fast-evolving Linked Data. In Proc.

rongchen@sjtu.edu.cn
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
http://aksw.org/Projects/DBPSB
http://aksw.org/Projects/DBPSB
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://swat.cse.lehigh.edu/projects/lubm/
https://www.tigergraph.com/gsql/
https://www.tigergraph.com/gsql/
https://dsg.uwaterloo.ca/watdiv/
https://dsg.uwaterloo.ca/watdiv/

Fast and Accurate Optimizer for �ery Processing over Knowledge Graphs SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

SOSP.

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Model and Query Language
	2.2 Query Optimization

	3 Analysis of Query Optimization
	4 Designs
	4.1 Type-centric Estimation
	4.2 Exploration-oriented Cost Model
	4.3 Budget-aware Enumeration

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance and Accuracy
	5.3 Cardinality Estimation
	5.4 Cost Model
	5.5 Plan Enumeration
	5.6 Preprocessing Cost

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

