
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Bridging the Gap between Relational OLTP and
Graph-based OLAP

Sijie Shen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong
University and Alibaba Group; Zihang Yao and Lin Shi, Institute of Parallel and

Distributed Systems, Shanghai Jiao Tong University; Lei Wang, Longbin Lai,
Qian Tao, and Li Su, Alibaba Group; Rong Chen, Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong University and Shanghai AI Laboratory; Wenyuan Yu,
Alibaba Group; Haibo Chen and Binyu Zang, Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong University; Jingren Zhou, Alibaba Group
https://www.usenix.org/conference/atc23/presentation/shen

Bridging the Gap between Relational OLTP and Graph-based OLAP

Sijie Shen1,2, Zihang Yao1, Lin Shi1, Lei Wang2, Longbin Lai2, Qian Tao2, Li Su2,

Rong Chen1,3, Wenyuan Yu2, Haibo Chen1, Binyu Zang1, and Jingren Zhou2

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2Alibaba Group

3Shanghai AI Laboratory

ABSTRACT

Recently, many applications have required the ability to per-
form dynamic graph analytical processing (GAP) tasks on
the datasets generated by relational OLTP in real time. To
meet the two key requirements of performance and fresh-
ness, this paper presents GART, an in-memory system that
extends hybrid transactional/analytical processing (HTAP)
systems to support GAP, resulting in hybrid transactional
and graph analytical processing (HTGAP). GART fulfills two
unique goals that are not encountered by HTAP systems.
First, to adapt to rich workloads flexibility, GART proposes
transparent data model conversion by graph extraction inter-
faces, which define rules for relational-graph mapping. Sec-
ond, to ensure GAP performance, GART proposes an effi-
cient dynamic graph storage with good locality that stems
from key insights into HTGAP workloads, including (1) an
efficient and mutable compressed sparse row (CSR) repre-
sentation to guarantee the locality of edge scan, (2) a coarse-
grained multi-version concurrency control (MVCC) scheme
to reduce the temporal and spatial overhead of versioning,
and (3) a flexible property storage to efficiently run differ-
ent GAP workloads. Evaluations show that GART performs
several orders of magnitude better than existing solutions
in terms of freshness or performance. Meanwhile, for GAP
workloads on the LDBC SNB dataset, GART outperforms the
state-of-the-art general-purpose dynamic graph storage (i.e.,
LiveGraph) by up to 4.4×.

1 INTRODUCTION

Graphs, due to their natural ability to model intricate rela-
tions among entities [12, 61], have been intensively adopted
to model business data. Correspondingly, graph analytical

processing (GAP) techniques are being developed to better
understand graph data and are widely applied in many fields,
such as recommendation systems [70, 74], supply-chain anal-
ysis [46], and fraud detection [29, 56]. As business data
is constantly generated and updated, there calls for an ur-
gent need for dynamic GAP workloads on real-time datasets.
In many traditional business scenarios, data is usually up-
dated by online transaction processing (OLTP) in relational
databases [26, 47, 82].

OLTP
System

User behavior
Network event
Transaction

Performance

100803 101

BALP_ID B_ID

CLIENT

101 BANK1

B_ID NAME

BANK

4520.0802 50.0

AGEPAYP_ID BAL

PERSON

3070.0807 20.0
...

DATA
Warehouse

E T L

Offline Data

Bal 50.0

Attr Value

Age 45
Pay 20.0

How Credit

Attr Value

Bal 20.0

Attr Value

Age 30
Pay 70.0

807

804

802

803

101Name BANK1

Attr Value

GAP

!

Online Data

"

Suspect
Merchant

Middleman
Bank Client

Trans

TX

Freshness

$P_ID1 P_ID2

TRANSACTION

100802 803 Credit

HOW

100803 804 APP
...

100807 802 APP

Fig. 1. A comparison of solutions for dynamic graph analytical

processing (GAP) on transactional datasets and their limitations.

Solutions: graph processing on offline data (!) or online data (").

Real-world Example. In Fig. 1, we demonstrate a simpli-
fied online credit card fraud detection task in e-commerce
platforms [56], in which a suspect attempts to obtain short-
term credit from a credit card via illegal transactions. To
achieve this, the suspect (802) makes sham purchases paid
by a credit card from a conspired merchant (803). The mer-
chant, after receiving the money from the bank (101), trans-
fers the money through a series of middlemen (804, . . . , 807)
with other fraudulent transactions back to the suspect (802).
In this scenario, the OLTP system maintains four tables
(PERSON, TRANSACTION, CLIENT, and BANK), from which
one can create a graph showing relationships of transactions
among normal users, suspects, merchants, and middlemen.
Whenever a new tuple occurs in the TRANSACTION table, the
graph should be updated correspondingly. As soon as an up-
coming transaction generates a cycle in the graph, an alarm
should be triggered instantly to block the transaction for fur-

USENIX Association 2023 USENIX Annual Technical Conference 181

ther investigation. Therefore, an underlying detection system
for such frauds should meet two key requirements simultane-
ously.

Performance. The performance degradation of both rela-
tional transaction and graph analytical workloads should be
minimal compared to running them separately on specific
systems. Thereby, both the transaction and detection should
be completed before the user perceives any lag.
Freshness. The time gap between transactions committed on
OLTP systems and their accessibility on detection systems
should be minimal to prevent fraud on time. Recent stud-
ies [10, 56] show extreme requirements of 20-millisecond
freshness for fraud detection or system monitoring.

In response, several solutions have been proposed to sup-
port such workloads. Unfortunately, none of them can simul-
taneously meet the requirements, as shown in Fig. 1.

Solution !: graph processing on offline data. To achieve
better GAP performance, this solution utilizes existing graph-
specific systems (particularly for static graphs in many cases)
[22, 31, 67, 76, 86], such as GraphScope [29], to handle GAP
workloads efficiently. Since data is separately maintained in
OLTP and graph-specific systems, an offline data migration
with an ETL (Extract-Transform-Load) process is required.
However, such a process is often expensive and slow, and re-
sults in a high lag between the transactional data in OLTP
systems and the extracted graph data in graph-specific sys-
tems [82], which deteriorates the freshness guarantee.

Solution ": graph processing on online data. Some OLTP
systems [34, 37, 55, 84] attempt to translate graph-related op-
erations into relational operations. However, prior work [21,
73] has found this solution causes performance degradation
of GAP up to several orders of magnitude due to costly join
operations and huge redundant intermediate data. On the
other hand, graph databases [6, 7, 27] use a native graph rep-
resentation to ensure the efficiency of GAP workloads and
directly commit transactions on graphs. However, due to the
more complicated management (e.g., maintaining adjacency
lists instead of inserting a row) in graph databases to fulfill
transactions [87], the performance of transactions in graph
databases is significantly slower than the relational counter-
parts, which is also demonstrated in our experimental study
(§6.2). Further, legacy business logic was usually designed
and implemented on relational OLTP systems, and it is in-
evitable to process a costly migration to the graph databases.

The tradeoff between performance and freshness is still
an open problem for dynamic GAP workloads. Fortu-
nately, hybrid transactional/analytical processing (HTAP) is
a new trend that processes OLTP and online analytical pro-
cessing (OLAP) simultaneously in the same system. The
state-of-the-art HTAP systems usually leverage a loosely-
coupled design to guarantee both performance and fresh-
ness [19, 38, 45, 50, 65, 82], which gives an opportunity
for dynamic GAP workloads. Analogously, we term dy-

namic GAP workloads on transactional datasets as hybrid

transactional/graph-analytical processing (HTGAP).

Our approach. This paper presents GART, an in-memory
HTGAP system extended from HTAP systems that can be
deployed to bridge an existing relational OLTP system with
a graph-specific system for requirements of performance and
freshness. GART performs GAP workloads over the graph-
specific system with little performance degradation. It reuses
transaction logs to replay graph data online for freshness in-
stead of offline data migration. Unlike the prior HTAP sys-
tems with only the relational model, GART also has to sup-
port the graph data model for GAP. Therefore, there are two
unique goals not encountered by HTAP systems.

First, to adapt to rich workloads flexibly, GART needs
to convert relational data to graph data transparently. Thus,
some concise yet expressive interfaces should be proposed to
the database administrator (DBA) for data conversion from
the relational model to the graph model. To fulfill this goal,
we propose a collection of graph extraction interfaces to de-
fine rules of relational-graph mapping in a newly designed
component called RGMapping. We demonstrate that the in-
terfaces are expressive enough to help GART automatically
extract property graphs from relational data sources such as
transactions.

Second, to guarantee performance, the dynamic graph stor-
age should support both read and write operations efficiently.
Existing general-purpose dynamic graph storages [26, 33,
87] support complex updates from transactions but provide
sub-optimal GAP performance due to poor data locality and
expensive concurrency control. Thus, based on observed
characteristics of HTGAP workloads, we propose a new effi-
cient dynamic graph storage for HTGAP with three key com-
ponents: 1) an efficient and mutable CSR representation that
guarantees the locality of edge scan when updating graph
topology data; 2) a coarse-grained MVCC scheme that re-
duces the temporal and spatial overhead of versioning; 3) a
flexible property storage that allows running different GAP
workloads on snapshots generated based on their access pat-
terns.

We implement GART by extending VEGITO [65], a state-
of-the-art in-memory HTAP system. The extensions include
graph extraction interfaces, the dynamic property graph stor-
age, and integrating a unified graph computation system
(GraphScope [29]). To demonstrate the efficacy of GART,
we have conducted a set of experiments using two popular
benchmarks (i.e., LDBC SNB [4] and TPC-C [71]), as well
as diverse graph datasets. Our experimental results show that
GART outperforms Solution ! and Solution " by several or-
ders of magnitude in freshness and performance, respectively.
Meanwhile, GART outperforms the state-of-the-art general-
purpose dynamic graph storage (i.e., LiveGraph [87]) by up
to 4.4× for GAP workloads on the LDBC SNB dataset.

Contributions. We extend HTAP systems to support

182 2023 USENIX Annual Technical Conference USENIX Association

TP
Worker

AP
Worker

Log
Replayer

kt v op ts
Txn log

Log Queue

TX AP

Relational Relational
OLAP NodesOLTP Nodes

Fig. 2. The overview of HTAP systems based on a loosely-coupled

design. Transaction (Txn) log: table ID (t), primary key (k), value

(v), operation type (op), and timestamp (ts).

HTGAP by incorporating relational-graph mapping and a
dynamic graph storage into existing computation engines. In
summary, the contributions of this paper are:
◦ The first to extend HTAP architecture for HTGAP work-

loads with guarantees of performance and freshness (§3)
that proposes expressive interfaces of relational-graph
mapping for transparent data model conversion (§4).

◦ A new dynamic graph storage for efficient HTGAP work-
loads, which is optimized for data locality and concur-
rency control based on our key insights into HTGAP (§5).

◦ A prototype implementation (GART) that integrates exist-
ing HTAP and GAP systems, as well as a set of evaluations
that confirm the efficacy of GART for HTGAP workloads
with diverse applications and datasets (§6).

2 OPPORTUNITY: HTAP

Hybrid transactional/analytical processing (HTAP) is a new
trend that bridges the gap between OLTP and OLAP for real-
time analytics on datasets updated by transactions and is al-
ready being used in many scenarios [17, 53, 85].

The loosely-coupled design is a common choice of state-
of-the-art HTAP systems, which dedicate OLTP and OLAP
to different physical resources with specific storage types
(see Fig. 2). Thereby, it is comparable in performance to spe-
cific execution engines and can synchronize data with trans-
action logs to guarantee freshness [38, 45, 50, 65, 82]. Specif-
ically, logs of the OLTP node are used to update the extra
column store on the backup (OLAP node), which is more ap-
propriate for OLAP workloads; the log replayer applies logs
in real time on the OLAP node. The log from the OLTP sys-
tem (Txn log in Fig. 2) contains the necessary information
for data replaying, such as the identifier of data updates (ta-
ble ID and primary key), the after-image or delta of the tu-
ple (value), and the temporal meta-data (version number or
timestamp) [23, 52, 63, 66, 78]. Reusing logs for HTAP can
avoid costly operations for change data capture (CDC).

HTAP systems usually utilize batch-based log replaying
for freshness and consistency on the OLAP storage [45, 50,
65]. An efficient design [65] divides time into consecutive
and non-overlapping epochs. The epoch is automatically in-
creased in a fixed interval, such as several milliseconds, that
can trade off between freshness and performance. During

TP
Worker

GAP
Worker

Log
Replayer

kt v op ts
Txn log

Log Queue

TX GAP

Relational Graph

Topology Property

OLAP NodesOLTP Nodes

R-G
Mapping

§4

Dynamic GStore

§5

Fig. 3. The architecture of GART. The components in the dashed

box are newly designed for HTGAP.

each epoch, logs can be replayed in parallel. When an epoch
ends, it guarantees all the logs within the epoch have been re-
played. Each epoch is specified by an epoch number, which
is incremented when entering a new epoch. The system main-
tains a write epoch number (i.e., wepoch) to represent the
epoch when the logs are being replayed. The latest stable
epoch number that OLAP users can read is latest_repoch.

Opportunity. We observe that the guarantees of HTAP sys-
tems on both performance and freshness can benefit the dy-
namic GAP workloads. HTAP systems can be extended to
process transactions and GAP workloads simultaneously on
different storages. Specifically, for performance, HTAP sys-
tems provide specific storages and execution engines for hy-
brid workloads, which can fully reuse the effort on specific
systems for OLTP and GAP. For freshness, logs in HTAP
systems contain the updates of relational data, which can be
synchronously applied to the graph data in real time without
costly operations such as bulk loading, CDC and ETL.

However, to the best of our knowledge, none of the HTAP
systems enable native GAP workloads on a dynamic graph
storage. To achieve this, HTAP systems need to support con-
version between the relational model and graph data model
and an efficient dynamic graph storage for HTGAP.

3 OVERVIEW OF GART

Inspired by the loosely-coupled design of HTAP systems [38,
65, 82], we propose GART, an in-memory HTGAP system
that extends HTAP systems by retrofitting the log replayer
and the storage for GAP workloads, as shown in Fig. 3. It
should be noted that GART can reuse the execution engines
of existing OLTP and graph-specific systems.

Architecture and workflow. In GART, transactions are com-
mitted in the OLTP nodes and generate logs, like prior HTAP
systems [38, 65, 82]. To support rich workloads flexibly
and efficiently, GART conducts data model conversion. Re-
lational data in logs need to be converted to graph data and
stored in a dynamic graph storage (GStore) of OLAP nodes.
GART allows the DBA, who is responsible for defining
the database schema, to define the relational-graph mapping
through the RGMapping component. RGMapping guides the
log replayer to convert the relational data in logs to the up-
dates on graph data.

USENIX Association 2023 USENIX Annual Technical Conference 183

GART devises a new dynamic graph storage for real-time
graph updates and different GAP workloads. Graph data con-
sists of a topology and properties. The topology contains ver-
tices and edges (i.e., an ordered pair of vertices), and the
properties are a set of attributes for each vertex or edge. The
storage always provides consistent snapshots of graph data
(identified by an epoch) derived from relational data. Similar
to HTAP systems (§2), the log replayer updates the storage
with the epoch number wepoch. GAP workloads can read a
fresh snapshot or earlier using an epoch number that does
not exceed latest_repoch.

GART follows a loosely-coupled design, which can be de-
ployed as a single-machine system or a distributed system
that separates OLTP and GAP components (the dashed box
in Fig. 3) on different machines for better performance isola-
tion. For the distributed deployment, a crash of the GAP com-
ponent will not stall the execution of the OLTP component.
The graph data can be recovered from the relational data ac-
cording to persistent RGMapping data. When the OLTP com-
ponent fails, the existing fault-tolerance mechanism in HTAP
systems still works [65], which is orthogonal to our work. In
addition, we focus on in-memory processing that can buffer
hot data in real-time GAP tasks and meet the freshness and
performance requirements. GART is independent of whether
the OLTP system is in-memory or not.

To support HTGAP workloads, GART should fulfill two
unique design goals never encountered in prior work.
Goal 1: Transparent data model conversion (§4). In HTAP
systems, the conversion does not change the data model and
only depends on the schema of relational data (e.g., from row
store to column store [38, 65]). However, the conversion be-
tween different data models for HTGAP workloads requires
more semantic information. For example, it needs the map-
ping between relational tables and vertex/edge types, and the
mapping between relational attributes and vertex/edge prop-
erties. Prior work [37, 55, 72] uses interface extension rather
than data conversion, such as graph extensions on relational
databases, which demands users to manually rewrite transac-
tions or change log formats.

Goal 2: Efficient dynamic graph storage (§5). For the HT-
GAP system, write operations (from the log replayer) and
read operations (from the GAP worker) are executed con-
currently on the graph storage. The performance of both is
important. Although many general-purpose dynamic graph
storage systems [30, 32, 54, 87] have existed, their read per-
formance for GAP workloads is sub-optimal due to neglect
of HTGAP characteristics. The locality of read operations
is sacrificed to guarantee the write performance and transac-
tion semantics. First, adjacency-list-based topology storages
ignore the locality of edge scan. Second, fine-grained ver-
sioning is expensive and breaks both the spatial and tempo-
ral locality. Third, property storages based on a column store
cannot guarantee the locality of access patterns among differ-
ent GAP workloads.

def_vertex(Person,PERSON)
def_edge(Trans,Person,Person,P_ID1,P_ID2)
add_eprop(Trans,how,HOW)

Relational
OLTP

Graph-based
OLAP

E-R ModelRelational
Model

Models for Relational Data
Property Graph

Model

TRANSFER(P_ID1,P_ID2,HOW,..):
 INSERT INTO `TRANSACTION`
 VALUES (P_ID1,P_ID2,HOW,..)

FRAUDDETECTION:
 g.V().has(‘Person’)
 .findCycle(‘Trans’)

User User

DBA

RGMapping

Fig. 4. An example of data manipulation and graph extraction in-

terfaces provided by GART using the dataset in Fig. 1.

4 RELATIONAL-GRAPH MAPPING

To convert relational data to graph data automatically, it is
necessary to provide a relational-graph mapping mechanism.
GART uses the property graph model and provides the in-
terfaces with the intuition from the entity-relationship (E-

R) model. The property graph model [11] has been widely
adopted to model graph-structured data. As shown in the
lower left corner of Fig. 1, a property graph model defines
a directed graph topology in which a vertex represents an
entity and an edge from a source vertex to a target vertex
represents a relationship. Each vertex (resp. edge) belongs to
a vertex (resp. edge) type and has a property with attributes
(Attr-Value pairs).

4.1 System Interfaces

The conversion from relational data to graph data needs ad-
ditional semantic information. An intuitive solution is to di-
rectly add graph information to the transactions, such as
graph extensions for relational databases [48, 55, 69], so that
additional information can be added to the log. However, this
solution has to extend the interface of the OLTP engine and
change the log format; it implies that transactions must also
be rewritten manually. Instead, GART decouples the interface
into two groups, which are exposed to the user and the DBA,
as shown in Fig. 4.

Data manipulation interfaces. GART integrates specific
execution engines for OLTP and GAP workloads and re-
tains their user interfaces. Therefore, existing transactions
and graph queries can run directly on GART. As the exam-
ple in Fig. 4 shows, users can execute a transaction called
TRANSFER to transfer money. Meanwhile, users can run a
query called FRAUDDETECTION to find all cycles on the graph
consisting of Person vertices and Trans edges.

Graph extraction interfaces. The interfaces of the RGMap-

ping component define the relational-graph mapping, which
guides the log replayer to perform data conversion automati-
cally. Fig. 5 lists two kinds of graph extraction interfaces.

Interfaces for adding vertices. In GART, each vertex type
corresponds to one table in the relational model, and each

184 2023 USENIX Annual Technical Conference USENIX Association

def_vertex(vtype,table)
add_vprop(vtype,vprop,attr)

Definition for vertices

def_edge(etype,src_vtype,dst_vtype,pk) # 1-to-m
def_edge(etype,src_vtype,dst_vtype,src_pk,dst_pk) # m-to-m
add_eprop(etype,eprop,attr)

Definition for edges

Fig. 5. The graph extraction interfaces provided by GART. Argu-

ments from the graph model and the relational model are shown in

red and blue, respectively.

property of vertices corresponds to one attribute in the table.
The interfaces def_vertex and def_vprop are used to add new en-
tities and construct the corresponding vertices. Specifically,
def_vertex defines a type of vertices (vtype) according to the
corresponding table (table). The attributes (attr) of the table
can be further mapped to the properties (vprop) of vertices
through the interface add_vprop.
Interfaces for adding edges. A relationship in the relational
model can be added as a directed edge through the interface
def_edge, where etype, src_vtype and dst_vtype correspond to
the edge type, the type of source and destination vertices of
this type of edges, respectively. To distinguish between dif-
ferent relationship types, RGMapping provides two def_edge

for 1-to-m relationships (also 1-to-1 relationships) and m-to-
m relationships, respectively. The difference between them
lies in whether the interface requires the primary keys (pk) of
one table or both tables as inputs. Furthermore, add_eprop is
used to add the edge property (eprop).

The graph extraction interfaces make the OLTP engine
and log formats unchanged. Moreover, unlike data manipu-
lation interfaces, graph extraction interfaces are used only
when defining the graph schema instead of used in each re-
quest. DBAs can define the RGMapping for a fixed data
model just once according to workloads. For complex data
models, DBAs can use automatic E-R model generation
tools [1, 5] as a guide according to the relational schema,
even if they have less knowledge about the workloads.

4.2 Expressiveness of RGMapping

We next show that graph extraction interfaces are expressive
enough to map relational data to a property graph modeled
by the same E-R model.

The E-R model has shown its powerful expressive capabil-
ity in describing relationships and has been widely adopted
in defining relational data [20, 28]. Generally speaking, the
E-R model contains a set of entities with attributes, which
usually represent objects in the physical world, and describes
the relationships between entities. Intuitively, for any E-R

model, there exists a unique property graph schema that rep-

resents the E-R model [59]. Entities and relationships can be
mapped to vertex types and edge types of the property graph
model, respectively, and use properties to store attributes.
The interfaces also help DBAs extract a subgraph from the
property graph. Note that edges in graphs are binary (2-ary)
relations. An n-ary relationship of order greater than two can

edge scan

0
2

1

3
new

added

Vertex array:

Edge array:

VID: 10 2 3

2 1 3 221

3
10 2 3

3

(a) CSR

20 3 5

21 2 1 3 2

(b) Adjacency List

Fig. 6. Two typical representations of an example dynamic graph

topology, namely (a) CSR and (b) adjacency list.

be mapped as a type of vertices with n associated edges.
Back to the example in Fig. 1 and Fig. 4, assume that

a mapping scheme between the E-R model and the rela-
tional model has been defined (lower left dashed rectangles
in Fig. 4). There is an entity called Person and a relationship
called Trans that exists between instances of the Person entity
in the E-R model. The DBA can utilize the interfaces (the
middle part in Fig. 4) to define a property graph model that
contains one type of vertices (Person) and one type of edges
(Trans), which are derived by the entity Person and relation-
ship Trans, respectively. Meanwhile, there is a property (How)
on Trans derived from the HOW attribute.

RGMapping can map changes to relational data to prop-
erty graphs on-the-fly. Depending on whether the data in-
volves entity tables or relationship tables, the log replayer
converts them to vertices or edges, respectively. Users can
customize the extracted graphs partially so that the graphs
extracted do not have to exactly match the E-R model.

5 DYNAMIC GRAPH STORAGE

The graph storage of GART stores the graph topology and
properties and provides two kinds of operations: read for
GAP workloads (e.g., edge scan) and write for the log re-
player (e.g., insert and delete). For the graph topology, com-
pressed sparse row (CSR), a compact graph representation,
is widely adopted by (static) graph systems [29, 43, 73, 77],
as shown in Fig. 6(a). However, CSR is also notoriously
inefficient for dynamic workloads on the graph (e.g., edge
insertion and deletions). Therefore, dynamic graph storage
systems [30, 32, 33, 41, 54, 87] commonly use adjacency
lists (based on linked lists or vectors) to store the graph
topology (see Fig. 6(b)). For vertex (resp. edge) properties,
a columnar storage is usually employed to efficiently read
the same property for all vertices (resp. edges) with the same
type [29, 55]. In addition, the dynamic graph storage also
needs to record the version of vertex/edge/property updates
for MVCC [30, 87].

The above traditional design has several performance is-
sues for HTGAP workloads. First, using adjacency lists suf-
fers from poor locality when sequentially scanning edges of
all vertices, which is a common yet costly operation in GAP.
A cache miss may occur when scanning the edges of an ad-
jacent vertex. For example, transactions may insert edges
randomly, resulting in unordered memory allocation for new
edges of different vertices. Second, using fine-grained ver-
sioning for each vertex or edge update imposes a significant
performance penalty for GAP workloads, since checking the

USENIX Association 2023 USENIX Annual Technical Conference 185

version for each read operation breaks both spatial and tem-
poral locality and introduces additional overhead. Third, the
existing property storages cannot guarantee locality flexibly
for different access patterns among GAP workloads.

Key insights. Some unique characteristics of HTGAP work-
loads open opportunities to exploit the locality of a dynamic
graph storage. Note that we term the time gap as the inter-
val between a transaction committing an update and a graph
query reading it. First, the time gap in HTGAP (typically a

dozen milliseconds, which is equal to the freshness of GART

shown in Table 2) is sufficient to update a compact structure

like CSR. Thus, GART can still use a CSR-like storage for
the graph topology instead of adjacency lists to improve the
locality of edge scan. Second, the GAP latency is almost

always much longer than the time gap. It implies that as-
signing versions to each update (fine-grained MVCC) is not
necessary for GAP workloads. Thus, GART can use coarse-
grained MVCC (i.e., at epoch granularity) to reduce memory
and computation overhead, even though the committed up-
dates cannot be read immediately. Third, the access pattern

of each GAP workload is usually fixed and easily detectable.
Given an HTGAP workload, fixed correlations between dif-
ferent attributes can be found by parsing the requests. For
example, some attributes (e.g., balance and payment) may
always be updated or read together. Therefore, GART can al-
low users to decide how to store different properties.

General idea. Based on the insights, we devise a new dy-
namic graph storage for HTGAP workloads. Fig. 7 illustrates
the main structure of the dynamic graph storage for one type
of vertex and edge. For the graph topology, a variant of CSR
is proposed to exploit locality of edge scan, where the edge
array is divided into multiple edge segments for dynamic up-
dates. Using edge segments offers a tradeoff between read
and write performance and allows the structure to be updated
in batches. The vertex array is indexed by vertex ID (VID)
and contains the links to the edges (neighbors) of each vertex.
To reduce the overhead of edge insertion, the edges of each
vertex are further divided into multiple edge blocks. Each ver-
tex stores a pointer (tail) to the last edge block in the vertex
array (not shown in Fig. 7 due to space constraints). To en-
able MVCC at epoch granularity, each vertex maintains an
epoch table, which links to the edges inserted in the same
epoch. It avoids attaching versions to each edge as in fine-
grained MVCC. Similar to CSR, the epoch table stores the
logical offset of the first edge for each (read) epoch num-
ber. In addition, vertex (resp. edge) properties are stored in
property blocks within the vertex array (resp. edge segment).
Each property block is a column store for one property or a
group of correlative properties (column-family), which is in-
dexed by the corresponding vertex (resp. edge) offset in the
vertex array (resp. edge segment). Finally, a new interface is
provided for combining correlative properties into a column
family following access patterns of HTGAP workloads.

0 1 32

0 2 5
40 3

0
2

0
3

Vertex
Array

Epoch
Table

…

free slots.
Edge Segment 1

hdr 71 2 3 hdr 9 ! 46hdr 4

Edge Segment 0

free slots Block 0 . . .
Property Block

free slots Block 0 "#"#"

Property Block

read epoch
logical offset

VID:

prev

Edge Block

Edge
Segement

Property
Block Block 0 (property 0,1) Block 1 (property 2)

. . .

Fig. 7. The key structure of the dynamic graph storage in GART for

one type of vertex and edge.

5.1 Efficient and Mutable CSR

GART devises an efficient and mutable CSR that guarantees
high performance in both scans and updates on the graph
topology, providing data locality similar to an immutable
CSR. Each edge segment has a fixed initial size (e.g., 16KB)
and stores edges (i.e., neighboring vertex IDs) of a fixed num-
ber of vertices (e.g., 4,096). The free slots are reserved for
new edge blocks. Each vertex has a group of edge blocks,
and new edges will be inserted into the tail edge block.

Fig. 7 shows an example where each segment stores the
edges of two vertices (e.g., vertex 0 and 1). Initially, edges of
the same vertex are stored consecutively in an edge block, so
there is no overlap between edges of different vertices in an
edge segment. As edges are continuously inserted, a vertex
will allocate new edge blocks, which form a linked list (e.g.,
vertex 0). Each edge block has a header block (hdr) to store
the meta-data of edges, such as the block size, the number of
valid edges, and the pointer (prev) to the previous edge block
of the same vertex.

Edge scan. Given a read epoch number, GART first uses the
tail pointer and the epoch table of the vertex to find edges
of that epoch within its edge blocks, and then scans edges
forward based on the prev pointer stored in the header block
(hdr). Note that each edge block only needs to be addressed
once, which has little performance impact. In the beginning,
GART can provide data locality comparable to vanilla CSR.
However, after inserting numerous edges for different ver-
tices, the edge blocks of a vertex will form a long linked list,
leading to performance degradation in edge scan. To mitigate
this issue, GART compacts an edge segment periodically or
when the segment is close to full. After compaction, all edge
blocks of the same vertex will be merged into one edge block
(e.g., the first edge block of vertex 0).

Insertion. For a new vertex, GART atomically inserts it into
a free slot of the vertex array and initializes an empty epoch
table for it. When inserting an edge (e.g., from vertex 1 to
vertex 4), the destination vertex ID will be directly inserted

186 2023 USENIX Annual Technical Conference USENIX Association

into the tail edge block of the source vertex, if the edge block
is not full (e.g., vertex 1 in Fig. 7). Otherwise, a new tail
edge block of double the size is first allocated from the free
slot of the edge segment, and then the edge is inserted into
it. To reduce fragmentation, when the size of the tail edge
block is smaller than a threshold, all edges will be moved
to the newly allocated edge block to further improve data
locality; the original edge block will be skipped. When an
edge segment is full, a new segment of double the size is
allocated, and all edges in the original segment are moved to
the new one.

The write conflicts when concurrently inserting edges to
the same vertex are resolved by per-vertex locks. Moreover,
to resolve the conflicts when allocating edge blocks for dif-
ferent vertices on a full segment, the log replayer should lock
the segment after checking for free space. Specifically, if the
segment still has free space, the segment is locked in a shared
manner; if the segment is full, the log replayer should exclu-
sively lock the segment first and then allocates a new one.

Deletion. When deleting a vertex (resp. edge), a delete flag
is appended to the vertex array (resp. edge block), which
records the offset of the deleted vertex (resp. edge). When
encountering the delete flag, the deleted vertex (resp. edge)
will be skipped during scanning the graph topology. Further-
more, garbage collection (GC) will physically delete the ver-
tices and edges and free up space in the background.

Discussion: structure parameters. We have tuned parame-
ters including: (1) the number of vertices managed by each
segment, (2) the initial size of edge blocks and segments, and
(3) the resize factor of edge blocks (or segments) when they
are full. Increasing (1) results in higher latencies for inserts,
but it improves read performance. To balance read and write
performance, we set (1) to 4096. The default values of (2)
and (3) have minimal impact on read performance. We have
adjusted these values to minimize the allocation of edge seg-
ments and optimize memory usage.

5.2 Coarse-grained MVCC

GART employs a coarse-grained MVCC scheme to reduce
the temporal and spatial overhead of fine-grained MVCC.
The scheme is based on the key observation that GAP work-
loads usually run longer at low concurrency than transac-
tions. Thus, GART can enable MVCC at epoch granularity.
In particular, the edge storage needs to adapt to the epoch in-
stead of a fine-grained version for each edge. For each vertex,
the epoch number of edges increases with the logical offsets.
Since edges are append-only in edge blocks, edges with the
same epoch number are consecutive. Therefore, GART can
use an epoch number for a batch of edges.

Specifically, each vertex maintains an epoch table to store
the offset in the edge segment for each epoch. As the exam-
ple shown in Fig. 7, the 3rd to 5th edges of vertex 0 (offsets
2–4) are all inserted at epoch 3. At epoch 4, the GAP worker

VID: 802

804

45

AGE

27

(2,0)

26
20.0

PAY

10.0

(1,0)

55.0803
50.0

BAL

25.0

(0,0)

30.0

!f_id,c_id)

45

AGE

27

(2,0)

26
20.0

PAY

10.0

(0,1)

55.0
50.0

BAL

25.0

(0,0)

30.0

attr_merge(BAL,PAY,e=5)

attribute

column
family

Fig. 8. An example of the flexible property storage.

will read all edges with the logical offset less than 5 at vertex
0. Since the logical offset of each epoch is immutable, GART

can scan edges sequentially as if on a static graph. This de-
sign avoids checking versions for each edge and maintains
the compact edge storage like in CSR.

When the log replayer inserts an edge with the epoch num-
ber, it will check whether the epoch number exists in the
epoch table of the source vertex. The transaction protocol
guarantees that the new epoch number must be greater than
all existing epoch numbers [65]. If the epoch number does
not exist, a new epoch number and the offset will be ap-
pended to the epoch table atomically.

The epoch table is stored as a ring buffer, since older snap-
shots are more likely to never be read again. For the corner
cases where the oldest epoch number is still in use, GART

uses a classical allocation amortization technique, similar to
the C++ STL vector, to extend the ring buffer.

5.3 Flexible Property Storage

The storage model of properties influences the performance
of read operations over properties. However, there exists no
efficient property storage model for all GAP workloads. To
support different GAP workloads in a more efficient way,
GART presents a flexible property storage that allows sys-
tem users to define the storage model according to applica-
tion memory access patterns. Initially, GART utilizes a col-
umn store to store property data, which stores the same prop-
erty (attribute) of the same type of vertices/edges continu-
ously and is friendly to workloads that scan one or several
attributes sequentially and independently.

To improve the property scan performance under different
scenarios, users can combine several high-related attributes
into a column family with the attr_merge interface ahead of

time, as shown in Fig. 8. The Person vertex consists of three
attributes: Bal, Pay, and Age. The meta-data of each attribute
maintains the column family index (f_id) and the column in-
dex in the column family (c_id). The initial f_ids are different
due to the pure column store.

As time goes on, the access patterns to some attributes may
have certain correlations. Users can use the attr_merge inter-
face to merge some attributes into the same column family
on-the-fly, and generate a snapshot with a read epoch num-
ber. For example, if the attributes Bal and Pay are accessed to-
gether in a long-term GAP workload, users can merge them
into a column family with read epoch 5. GART needs to gen-
erate a new version of the meta-data of these two attributes
with epoch number 5, and copy them into a column family in
the background. Then, the workload is processed on the new

USENIX Association 2023 USENIX Annual Technical Conference 187

Table 1: Datasets used in evaluation, including TPC-C (ware-

house=20) [71] (CH), SNB-SF-10 [4] (SB), Wiki [36] (WK), R-

MAT [18] (RM), UK-2005 [16] (UK), and Twitter-2010 [42] (TT).

Graphs CH SB WK RM UK TT

|V | 700K 7.5M 5.7M 5.0M 39.5M 41.7M
|E| 6.0M 8.8M 130M 300M 936M 1.47B

snapshot, which can also avoid some pre-processing tasks
(e.g., the projection phase of GNN workloads to obtain re-
quired properties). We leave the automatic plan generation
and attribute merging as future work.

6 EVALUATION

We have implemented GART by extending VEGITO [65], a
state-of-the-art in-memory HTAP system. VEGITO adopts
DrTM+H [79] as the OLTP engine and supports tens-of-
millisecond freshness with millions of transactions per sec-
ond. This makes the HTGAP system design more challeng-
ing than in the case of low OLTP throughput. The extensions
include the log replayer with relational-graph mapping and a
new dynamic graph storage. We further integrated an open-
sourced one-stop graph processing engine GraphScope [29]
into GART, in order to support diverse GAP workloads.

6.1 Experimental Setup

Testbed. All evaluations are conducted on two dual-socket
machines. Each machine has two 12-core Intel Xeon E5-
2650 CPUs, 256 GB DRAM, and two 56 Gbps InfiniBand
(IB) NICs via PCIe 3.0 connected to a Mellanox 40 Gbps IB
Switch. Since the latency of GAP tasks is much higher than
that of OLTP tasks, we end the execution of OLTP tasks af-
ter several rounds of GAP tasks to ensure the time of OLTP
and GAP is similar in HTGAP workloads. Unless otherwise
noted, we dedicate one machine for OLTP requests (OLTP
server) and the other for GAP requests (GAP server). On the
OLTP server, we pin 20 cores for OLTP worker threads and
1 core for the OLTP client thread. On the GAP server, we
pin 12 cores for GAP worker threads, 10 cores for log re-
player threads, and 1 core for the GAP client thread. The sin-
gle core for clients is sufficient for request generation. We set
the epoch interval to 15 milliseconds. For edge segment com-
paction (§5.1), we choose a strategy of compaction at edge
insertion instead of periodic compaction, which can reduce
repeated compaction when the OLTP throughput is high.

Benchmarks. Considering that there is no standard HTGAP
benchmark, we first retrofit LDBC Social Network Bench-
mark (SNB) [4] and TPC-C [71] as two new HTGAP bench-
marks and further select several typical graph datasets as our
micro-benchmarks. The graphs are summarized in Table 1.

LDBC SNB is a GAP benchmark that contains a social net-
work graph and different types of GAP workloads. We select
to load 50% of edges and insert another 50% of edges for

transactions. We set the scale factor (SF) of the dataset to 10
(about 8.4 GB) on each server.

TPC-C is a standard OLTP benchmark that contains rela-
tional datasets and five kinds of transactions. We extract two
bipartite graphs (ORDER-ORDERLINE and CUSTOMER-ITEM

graphs) from relational tables by mapping rows in entity ta-
bles as vertices and adding edges based on relationship tables.
We deploy 20 warehouses on each server.

On the graphs of LDBC SNB and TPC-C, we choose three
types of GAP workloads as prior work [29]:

◦ Graph analytics (GA): three representative graph algo-
rithms from LDBC Graphalytics Benchmark [3], includ-
ing PageRank (PR), Connected Components (CC), and
Single Source Shortest Path (SSSP).

◦ Graph traversal (GT) [81]: three scan-dominated queries
from LDBC SNB [4], including one interactive query (IS-
3) and two business intelligence (BI) queries (BI-2 and
BI-3). These queries access both the graph topology and
properties.

◦ Graph neural network (GNN) [75, 83]: inference on three
popular models, including Graph Convolution Network
(GCN) [40], GraphSage (GSG) [35], and Simple Graph
Convolution (SGC) [62].1

Comparing targets. To show the efficacy of the loosely-
coupled design for HTGAP, we mainly focus on the perfor-
mance of OLTP and GAP, and the freshness in GART against
two different solutions (see §1). For Solution !, we connect
DrTM+H with GraphScope [29] (DH+GS), where transac-
tions are served by DrTM+H (the same OLTP engine of
GART), and transactional data are periodically loaded into
GraphScope, a state-of-the-art GAP engine. For Solution ",
we evaluate Neo4j [6], a popular graph database that supports
both transactions and GAP.2

To study the efficiency of our dynamic graph storage, we
integrated LiveGraph [87], a state-of-the-art transactional
graph storage, into GART (G/LG). LiveGraph uses a highly
optimized adjacency list format (similar to Fig. 6(b)) to store
the graph topology and a row store with fine-grained MVCC
to store properties. GART’s graph storage and LiveGraph
provide the same interfaces. Therefore, GART outperforms
G/LG solely due to three design choices of our graph stor-
age. Note that all systems, except Neo4j, use the same OLTP
and GAP engines, namely DrTM+H and GraphScope, with
the same configurations (e.g., the number of worker threads)
for fairness. Although we try our best to run HTGAP work-
loads on Neo4j and DH+GS, they still cannot support TPC-

1We run graph analytics and graph neural network workloads directly on
the CUSTOMER-ITEM graph in the TPC-C dataset and PERSON-POST graph
in the LDBC SNB dataset. Graph traversal queries from LDBC SNB are
tightly coupled with its dataset. We rewrite queries on the TPC-C dataset
and ensure that they have the same computation patterns as LDBC SNB.

2We also evaluated TigerGraph [24] as an alternative solution. However,
TigerGraph’s timestamp only provides second-level accuracy, which lim-
its its ability to evaluate freshness with sub-second precision.

188 2023 USENIX Annual Technical Conference USENIX Association

Table 2: A comparison of OLTP throughput (in transactions per

second), GAP latency (in milliseconds), and freshness (in millisec-

onds) using different workloads among GART, a combination of

DrTM+H and GraphScope for offline data processing (DH+GS),
Neo4j (not support GNN workloads), and GART w/ LiveGraph
(G/LG). Note that ↓ (resp. ↑) indicates low (resp. high) is better.

Workloads
LDBC SNB TPC-C

GART DH+GS Neo4j G/LG GART G/LG

OLTP ↑ 1837 K 1929 K 3.5 K 1836 K 245 K 212 K

GA ↓
PR 377 309 5323 1276 204 329
CC 362 312 4726 1137 210 300
SSSP 513 433 4668 1381 315 410

GT ↓
IS-3 17.9 16.9 2.0 18.0 14.2 14.6
BI-2 235 201 568 828 1884 2806
BI-3 292 266 573 1278 266 586

GNN ↓
GCN 1097 940 × 1834 623 636
GSG 1774 1443 × 2502 386 418
SGC 779 717 × 1237 184 257

Freshness ↓ 18 15683 5 25 18 25

C due to costly code transcription and graph extraction from
complex logs, respectively.

Coding effort. To extract graph data from relational data, we
only write about 10 LoCs for each benchmark (LDBC SNB
and TPC-C), thanks to graph extraction interfaces in GART

(§4.1). This is far less code than OLTP and GAP programs,
which can be inherited directly from existing specific sys-
tems. In contrast, we write 584 LoCs in DH+GS for loading
graph data and 70 LoCs in Neo4j for rewriting transactions.

6.2 Overall Performance

We first show the overall performance of all baselines for HT-
GAP workloads in Table 2. We use transaction throughput
as the evaluation metric for OLTP workloads, and computa-
tion latency (execution time) for GAP workloads. We also
evaluate the freshness of each system, namely, the maximum
time delay between an update was committed in OLTP and
this update is visible in GAP workloads [65]. In a nutshell,
among all baselines, only GART can simultaneously satisfy
the requirements of performance and freshness.

OLTP performance. For systems based on the loosely-
coupled design (GART, G/LG) and DH+GS, OLTP through-
put is not impacted by GAP workloads. The peak throughput
of GART can reach over 1,837,000 and 245,000 transactions
per second on datasets LDBC SNB and TPC-C, respectively.
GART performs 2-3 orders of magnitude better than Neo4j
(Solution "). Neo4j has the lowest OLTP performance as the
graph data model is less efficient than the relation model for
OLTP workloads. GART and G/LG show an OLTP through-
put reduction of only 5% compared to DrTM+H with offline
data processing (DH+GS). This result demonstrates that the

loosely-coupled design can support HTGAP without neces-
sarily sacrificing OLTP performance.

GAP performance. Among all baselines, DH+GS achieves
the best GAP performance, as its graph data is stored as
a static graph, which uses compact graph representation
without concurrency control (e.g., MVCC). However, its
freshness is extremely high. Neo4j performs much worse
than GART and G/LG due to its adjacency-list-based stor-
age [68, 87]. GART greatly outperforms G/LG except for the
IS-3 query, thanks to our dynamic graph storage which takes
the characteristic of HTGAP workloads into consideration
(breakdown details in §6.3). The IS-3 query only involves a
very limited graph data size, thus the overall execution time
is dominated by cross-language invocation overheads. The
backend and frontend engines of GraphScope are developed
with Rust and C++, respectively.

Freshness. The freshness of GART is about 18 ms, which
is much lower than most GAP latencies and is indepen-
dent of datasets. It is three orders of magnitude better than
DH+GS (Solution !). Similar to VEGITO [65], the freshness
of GART is only determined by the epoch interval (15 ms).
DH+GS has the worst freshness (more than 15 seconds),
which is unaffected by the ETL frequency and depends on
the graph data size. This is because the immutable graph
storage requires the entire graph to be reloaded whenever
changes are made. The freshness of G/LG is 25 ms due to the
lower write performance of the graph storage. The freshness
of Neo4j is only about 5 ms, as data is committed in place.

6.3 Breakdown Analysis on GAP Performance

From Table 2, we observe that GART achieves a large perfor-
mance improvement over other systems on graph analytics
and traversal workloads and a relatively small improvement
on GNN workloads. To gain a deeper understanding of the
dynamic graph storage in GART, we perform a detailed com-
parison with G/LG.

We split a single execution of a GAP query into three
parts: (P1) accessing the graph topology; (P2) getting prop-
erties from visited vertices or edges; and (P3) computation
over the graph topology and properties obtained from (P1)
and (P2) parts. Meanwhile, the performance gain of GART

mainly comes from three aspects: (A1) the efficient and mu-
table CSR with good locality of edge scan; (A2) the coarse-
grained MVCC that alleviates the costly versioning; and (A3)
the flexible property storage that adapts to access patterns.
Table 3 shows the results of a breakdown analysis of three
GAP workloads for the LDBC SNB dataset. Since G/LG

and GART have the same backend GAP engine, their perfor-
mance in part (P3) is nearly identical. Meanwhile, the design
differences between (A1) and (A2) affect the performance
of the (P1) part, while the performance of the (P2) part is
influenced by (A3).

Graph analytics. Table 2 shows the execution time of dif-

USENIX Association 2023 USENIX Annual Technical Conference 189

Table 3: Breakdown analysis of G/ LG and GART over three GAP

workloads (in milliseconds) using the LDBC dataset.

Storage Topo (S1) Prop (S2) Comp (S3) Total

PR
GART 107 (28%) 163 (44%) 107 (28%) 377
G/LG 658 (52%) 486 (38%) 132 (10%) 1276

BI-3
GART 10 (3%) 178 (61%) 104 (36%) 292
G/LG 40 (3%) 1115 (87%) 123 (10%) 1278

SGC
GART 36 (5%) 477 (61%) 266 (34%) 779
G/LG 236 (19%) 732 (59%) 269 (22%) 1237

ferent algorithms and excludes the time of storing outputs.
The latency of PageRank, CC, and SSSP on G/LG is 2.5×,
2.3×, and 2.0× higher than GART, respectively. The perfor-
mance gain of GART on graph analytics workloads is mainly
from the better performance of accessing the dynamic graph
topology due to (A1) and (A2), and the higher efficiency of
obtaining required properties thanks to (A3). For example, as
shown in Table 3, the end-to-end execution time of PageRank
is dominated by the graph traversal (edge scan) operations
(P1) and getting required properties (P2). GART’s graph stor-
age outperforms G/LG by 6.2× in (P1), with 82% of the im-
provement attributed to (A1). GART also outperforms G/LG

by 3.0× in (P2) due to (A3). Note that PageRank uses only
one property, so GART does not group it with others.

Graph traversal. For graph traversal workloads, GART’s la-
tency is 3.5× and 4.4× lower than G/LG’s for two BI queries
(BI-2 and BI-3) on the LDBC SNB dataset, while GART

performs almost as well as its competitor on the interactive
query (IS-3). The reason is that compared with BI queries,
the interactive query only involves a very limited graph data
size (vertices and edges as well as their properties), and our
optimized storage design cannot contribute much in such a
circumstance. Instead, the computations of two BI queries
rely on scanning one or several properties of a large num-
ber of vertices or edges, and (A1) to (A3) can benefit a lot.
Observe that given a BI query (BI-3), compared with G/LG,
GART performs 4.0× and 6.3× faster on accessing the graph
topology (P1) and obtaining required properties (P2) parts,
respectively (see Table 3).

Graph neural networks. On three GNN workloads, GART

outperforms G/LG by 1.3× on average. GNN workloads
need several/all properties of vertices/edges as raw features
to conduct GNN computation, and (A3) allows users to store
and get required properties in a more efficient way. As we
can see from Table 3, on SGC, GART is 1.5× faster than
G/LG in obtaining the required properties in (P2). Mean-
while, (A1) and (A2) make GART 6.6× faster than G/LG

in (P1). The performance improvements over the TPC-C
dataset are relatively small, because the CUSTOMER-ITEM

graph in dataset TPC-C is very dense, and the end-to-end
execution time of GNN workloads is dominated by the com-
plex computations over properties of vertices or edges (P3).

 0

 100

 200

 300

1 2 3 4 5 6 7 8 9 101112
0.0

1.0

2.0

3.0

O
LT

P
th

pt
 (K

 tx
ns

/s
)

Number of GAP threads

GART / OLTP
GART / GAP

 0

 100

 200

 300

1 2 3 4 5 6 7 8 9 10
0.0

1.0

2.0

3.0

G
AP

 la
te

nc
y

(s
)

Number of OLTP clients

GART / OLTP
GART / GAP

Fig. 9. Performance isolation on GART with the increase of (a)

GAP workloads and (b) OLTP clients, respectively.

6.4 Performance Isolation

To demonstrate the performance isolation in the HTGAP
workloads, we evaluate the OLTP and GAP performance
with the increase of GAP and OLTP clients. We use the TPC-
C benchmark as the OLTP workloads and execute PageR-
ank on the CUSTOMER-ITEM graph derived from the TPC-C
schema. We use the number of OLTP clients and the number
of worker threads for a single GAP request to control the
workloads.

In general, GART provides strong performance isolation
between OLTP and GAP workloads. Fig. 9(a) shows the per-
formance of OLTP and GAP workloads when we gradually
increase the number of GAP worker threads. The OLTP per-
formance degradation is trivial (1%), even if the GAP work-
loads are saturated. This is due to the physical isolation in
GART, as GAP workloads do not interfere with transactions.
On the other hand, when we increase the number of OLTP
clients, as shown in Fig. 9(b), the performance degradation
of GAP workloads is about 12%. This is because the number
of edge versions also increases, causing additional overhead
to check versions. At 5 clients, the OLTP server’s maximum
capacity is reached due to a fixed number of cores being al-
located for its use.

6.5 Graph Topology Storage

Edge scan is a common and costly operation in GAP work-
loads, such as PageRank and LPA. To study how the perfor-
mance of edge scan is affected by different graph topology
storages, we compare the following typical graph storages.

◦ CSR is a compact structure without the support of updates,
which is widely used by the static graph topology storages.

◦ LiveGraph [87] is a state-of-the-art dynamic graph stor-
age that uses adjacency lists and fine-grained MVCC.

◦ SegCSR is a CSR-like topology storage proposed by
GART, which uses segment-based design and coarse-
grained MVCC. Note that each edge segment has a 1 MB
initial size and manages 4,096 vertices.

◦ SegCSR/TS is similar to SegCSR, except that it uses fine-
grained MVCC as LiveGraph.

To simulate diverse workloads, we load graphs in two pat-
terns: (1) bulk load, i.e., edges are sorted by their source ver-
tices and loaded sequentially, and (2) random insertion, i.e.,
edges are loaded randomly to simulate the behavior in trans-

190 2023 USENIX Annual Technical Conference USENIX Association

 0

 0.6

 1.2

 1.8

CH SB WK RM UK TT

Sc
an

 th
pt

 (G
 e

dg
es

/s
) CSR

LiveGraph
SegCSR(=GART)
SegCSR/TS

 0

 0.6

 1.2

 1.8

CH SB WK RM UK TT

Sc
an

 th
pt

 (G
 e

dg
es

/s
) CSR

LiveGraph
SegCSR(=GART)
SegCSR/TS

Fig. 10. Comparison of single-version edge scan perf. for different

topology storages using (a) bulk load and (b) random insertion.

 0.01

 0.1

 1

 10

 100

 1000

CH SB WK RM UK TT

M
em

or
y

us
ag

e
(G

B)

CSR
LiveGraph

SegCSR(=GART)
SegCSR/TS

 0.01

 0.1

 1

 10

 100

 1000

CH SB WK RM UK TT

M
em

or
y

us
ag

e
(G

B)

CSR
LiveGraph

SegCSR(=GART)
SegCSR/TS

Fig. 11. Comparison of memory usage (in log scale) for different

topology storages using (a) bulk load and (b) random insertion.

actions. We scan edges of each vertex and evaluate edges
read per second as scan throughput.

Read-only workloads. We first evaluate the performance of
the single-version edge scan without version checking. As
shown in Fig. 10(a), with the bulk load, SegCSR exhibits
consistent performance behavior across various datasets. For
example, SegCSR only incurs a 35% slowdown compared
to CSR for WK, while LiveGraph incurs more than an 80%
slowdown. Compared with adjacency lists for each vertex
in LiveGraph, SegCSR has a better locality and fully ex-
ploits CPU prefetching as it associates the edges of many
vertices in a segment. Moreover, the edge scan through-
put of SegCSR is more than 2× that of SegCSR/TS since
SegCSR adopts a simpler data structure for edges. With ran-
dom insertion, the locality of LiveGraph suffers from mem-
ory allocation. As shown in Fig. 10(b), SegCSR outperforms
LiveGraph by up to 12.5× (from 4.7×) and only incurs about
a 30% slowdown compared to CSR.

The memory usage is shown in Fig. 11. Compared with
CSR, SegCSR requires about 3× memory of CSR for up-
dates, which is significantly less than that of LiveGraph
(8.8× of CSR). The coarse-grained MVCC helps SegCSR
reduce memory largely by using the epoch table for each
vertex instead of timestamps for each edge. Compared to
SegCSR/TS, SegCSR reduces memory usage by up to 3.8×.
The memory usage of SegCSR/TS is higher than that of
LiveGraph (typically less than 18%) due to the free slots in
the edge segments.

Read-write workloads. We further evaluate the perfor-
mance of the write and the multi-version edge scan. We scan
the edges in latest stable version via latest_repoch (§2) when
a dedicated number of edges have been inserted. For the bulk
load setting, we use the ORDER-ORDERLINE graph in TPC-C
and PERSON-POST graph in LDBC SNB. With the random in-

 0

 6

 12

 18

CH SB WK RM UK TT

W
rit

e
th

pt
 (M

 e
dg

es
/s

) LiveGraph
SegCSR(=GART)

SegCSR/TS

 0

 3

 6

 9

CH SB WK RM UK TT

W
rit

e
th

pt
 (M

 e
dg

es
/s

) LiveGraph
SegCSR(=GART)

SegCSR/TS

Fig. 12. Comparison of write throughput for different topology

storages using (a) bulk load and (b) random insertion.

 0

 25

 50

 75

 100

CH SB

Sc
an

 th
pt

 (M
 e

dg
es

/s
) LiveGraph

SegCSR/1V
SegCSR/TS
SegCSR(=GART)

 0

 25

 50

 75

 100

CH SB

Sc
an

 th
pt

 (M
 e

dg
es

/s
) LiveGraph

SegCSR/1V
SegCSR/TS
SegCSR(=GART)

Fig. 13. Comparison of multi-version edge scan perf. for different

topology storages using (a) bulk load and (b) random insertion.

sertion setting, we utilize a shuffled CUSTOMER-ORDER graph
in TPC-C and PERSON-POST graph in LDBC SNB.

As shown in Fig. 12, the write throughput of SegCSR is
about 2.2× and 2× of LiveGraph with the bulk load and ran-
dom insertion, respectively. According to the performance
of SegCSR/TS, about 70% of the performance improvement
is due to the fact that the coarse-grained MVCC of GART

writes the newly generated version (epoch) number to the
epoch table only once, instead of writing the version number
on every update. Moreover, writes of SegCSR do not per-
form costly GC-related operations, unlike with LiveGraph.
SegCSR will copy edges from an old segment with insuffi-
cient space to a new segment with a larger space. It intro-
duces high tail latency (more than 7,000× of ordinary edge
insertion latency on average) in edge insertion, but the fre-
quency of it being triggered is less than 0.01%.

As shown in Fig. 13(a), with the bulk load setting, read per-
formance of SegCSR outperforms LiveGraph by 2.5× due
to better locality and coarse-grained MVCC. It is very close
to the upper bound (single-version read performance, SegC-
SR/1V), while LiveGraph is about 37% of SegCSR/1V. To
show the efficiency of coarse-grained MVCC, SegCSR/TS
outperforms LiveGraph only by 1.7×. With the random in-
sertion setting shown in Fig. 13(b), SegCSR and SegCSR/TS
outperform LiveGraph by 3.1× and 2.3×, respectively. It in-
dicates that the coarse-grained MVCC in GART can largely
increase read performance for dynamic workloads.

6.6 Flexible Property Storage

To study the performance of the flexible property storage, we
compared it with two typical property storages: row store
(row) and column store (col). For the read (resp. write) per-
formance, we scan (resp.update) the properties of each ver-
tex using CUSTOMER vertices derived from TPC-C. We con-
trol the number of columns scanned and updated, and evalu-

USENIX Association 2023 USENIX Annual Technical Conference 191

0

100

200

300

400

1 2 4

R
ea

d
th

pt
 (M

 re
co

rd
s/

s)

Number of columns

Row Col Flexible

0

15

30

45

60

1 2 4

W
rit

e
th

pt
 (M

 re
co

rd
s/

s)

Number of columns

Row Col Flexible

Fig. 14. Comparison of (a) read throughput and (b) write through-

put for different property storages with different numbers of

columns read and written, respectively.

ate the number of processed vertices per second as read and
write throughput, respectively.

Fig. 14(a) reports the read throughput. The performance
of the row-based property storage is fixed as the number of
scanned columns increases since it needs to fetch at least one
cache line. However, the performance of column-based prop-
erty storage significantly drops due to cross-column access.
Compared with the row-based storage, the flexible property
storage achieves better performance, especially when scan-
ning a few columns. For example, the flexible property stor-
age achieves 5.9× read throughput when scanning only one
column. The write operations of the flexible property stor-
age also outperform existing storage models, as shown in
Fig. 14(b). It achieves a speedup of 1.2× and 4.4× compared
to row-based and column-based storages, respectively, when
writing four columns of properties.

Row-based storages and column-based storages have dif-
ferent performance behaviors for reads and writes. We find
that the read operation is light and dominated by the mem-
ory footprint, while the write operation is dominated by the
number of writes due to the overhead of memory copy and
atomic operations. The flexible property storage allows users
to combine attributes into a column family on-the-fly with
some overhead. In our experiments, it takes about 1.1 sec-
onds to create a property snapshot with 4 columns as a col-
umn family for 229 MB properties.

7 RELATED WORK

HTAP systems. HTAP systems have three main typical de-
sign choices. Dual systems [51, 57, 58, 82] combine two
specialized systems for OLTP and OLAP scenarios, while
single-layout systems [39, 60, 64] support HTAP workloads
from either an OLTP or an OLAP system. Dual-layout sys-
tems [9, 14, 15, 19, 44, 50] aim to build a single system with
different data layouts for the two scenarios. VEGITO [65] is
proposed to retrofit fault-tolerant backups to support hybrid
workloads, which arrives at a sweet spot for the performance-
freshness tradeoff. These works are developed for relational
data, while GART extends VEGITO to constantly maintain a
graph layout for transactional data from an OLTP system to
support dynamic graph analytical processing.

Graph databases. Graph databases [2, 6, 8, 27] support both
OLTP and GAP in a single system. In order to conduct effi-

cient graph updates, they typically adopt linked lists to store
adjacency lists, which downgrades the performance of edge
scan and the whole GAP workloads. LiveGraph [87] devises
the Transactional Edge Logs (TELs) based on adjacency lists
to support both efficient sequential scan and edge insertion.
Adding a CSR-based in-memory property graph representa-
tion in a relational database has been investigated by Oracle,
but without support for updates [13]. GART decouples OLTP
and GAP execution to make both workloads more efficient.

Dynamic graph systems. Prior work presents many general-
purpose dynamic graph systems [24, 30, 41]. Terrace [54]
uses PMA [25, 80], a dynamic memory array based on
tree-based index structures, to store edges of streaming
graphs. CSR++ [32] combines segmented vertex arrays and
vector-based adjacency lists for each vertex, which does not
guarantee the locality of edge scan from adjacent vertices
(see Fig. 6(b)). Moreover, CSR++ does not support multi-
versioning. Sortledton [33] provides a general-purpose and
transactional graph data structure based on adjacency lists.
Teseo [26] and LLAMA [49] are also CSR-like and guaran-
tee the locality of edge scan. While general-purpose dynamic
graph storages can replace GART’s storage in functions, they
may face performance issues. For example, GART could use
LLAMA [49] as the graph storage, but it would have to copy
data pages for each snapshot, which would be inefficient for
scenarios with high data generation rates or extreme fresh-
ness. Based on insights from HTGAP, the graph storage of
GART does not need to support full transactional semantics,
allowing for new designs and optimizations in the topology
storage. In addition, GART also provides the flexible prop-
erty storage for diverse GAP workloads.

8 CONCLUSION

This paper presents GART, the first hybrid transactional and
graph analytical processing (HTGAP) system based on a
loosely-coupled design. It proposes expressive interfaces for
transparent data conversion and an efficient dynamic graph
storage with good locality. Evaluations confirm its efficacy
and efficiency. The source code of GART, including all
benchmarks, is available at https://github.com/SJTU-
IPADS/vegito/tree/gart.

ACKNOWLEDGMENT

We sincerely thank our shepherd Jean-Pierre Lozi and the
anonymous reviewers for their insightful comments and feed-
back. This work was supported in part by the National Natu-
ral Science Foundation of China (No. 62272291, 61925206),
the Fundamental Research Funds for the Central Universi-
ties, the HighTech Support Program from Shanghai Commit-
tee of Science and Technology (No. 22511106200), and a re-
search grant from Alibaba Group through the Alibaba Inno-
vative Research Program. Corresponding author: Rong Chen
(rongchen@sjtu.edu.cn).

192 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/SJTU-IPADS/vegito/tree/gart
https://github.com/SJTU-IPADS/vegito/tree/gart
rongchen@sjtu.edu.cn

REFERENCES

[1] erwin Data Modeler. https://www.erwin.com/.

[2] JanusGraph. https://janusgraph.org/.

[3] LDBC Graphalytics. https://ldbcouncil.org/

benchmarks/graphalytics/.

[4] LDBC Social Network Benchmark (LDBC-SNB).
https://ldbcouncil.org/benchmarks/snb/.

[5] Navicat. https://navicat.com/.

[6] Neo4j. https://neo4j.com/.

[7] Neptune. https://aws.amazon.com/neptune/.

[8] OrientDB. http://orientdb.com/.

[9] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki.
H2O: A hands-free adaptive store. In Proceedings of the 2014

ACM SIGMOD International Conference on Management of

Data, SIGMOD ’14, page 1103–1114, 2014.

[10] Alibaba Cloud. Double 11 real-time monitoring system with
time series database. https://www.alibabacloud.

com/blog/594855, 2019.

[11] Renzo Angles. The property graph database model. In AMW,
2018.

[12] Renzo Angles and Claudio Gutierrez. Survey of graph
database models. ACM Computing Surveys (CSUR), 40(1):1–
39, 2008.

[13] Marco Arnaboldi, Jean-Pierre Lozi, Laurent Phillipe Daynes,
Vlad Ioan Haprian, Shasank Kisan Chavan, Kapp Hugo, and
Sungpack Hong. Parallel and efficient technique for building
and maintaining a main memory, CSR-based graph index in
an RDBMS, August 17 2021. US Patent 11,093,459.

[14] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging
the archipelago between row-stores and column-stores for hy-
brid workloads. In Proceedings of the 2016 International Con-

ference on Management of Data, pages 583–598, 2016.

[15] Martin Boissier. Reducing the footprint of main memory
HTAP systems: Removing, compressing, tiering, and ignor-
ing data. In Proceedings of the VLDB 2018 PhD Workshop,
2018.

[16] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebas-
tiano Vigna. UbiCrawler: A scalable fully distributed web
crawler. Software: Practice and Experience, 34(8):711–726,
2004.

[17] Shaosheng Cao, XinXing Yang, Cen Chen, Jun Zhou, Xiao-
long Li, and Yuan Qi. TitAnt: Online real-time transaction
fraud detection in Ant Financial. Proceedings of the VLDB

Endowment, 12(12):2082—-2093, August 2019.

[18] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos.
R-MAT: A recursive model for graph mining. In Proceedings

of the 2004 SIAM International Conference on Data Mining,
pages 442–446, 2004.

[19] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang,
Mingyi Zhang, Kui Wei, Lixun Cao, Dan Zou, Yang Liu, Lei
Zhang, Rui Shi, Wei Ding, Kai Wu, Shangyu Luo, Jason Sun,
and Yuming Liang. ByteHTAP: ByteDance’s HTAP system
with high data freshness and strong data consistency. Proc.

VLDB Endow., 15(12):3411–3424, 2022.

[20] Peter P. Chen. The entity-relationship model—toward a uni-
fied view of data. ACM Trans. Database Syst., 1(1):9–36,
1976.

[21] Rong Chen and Haibo Chen. Wukong: A distributed frame-
work for fast and concurrent graph querying. ACM SIGOPS

Operating Systems Review, 55(1):77–83, 2021.

[22] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Pow-
erLyra: Differentiated graph computation and partitioning on
skewed graphs. In Proceedings of the Tenth European Confer-

ence on Computer Systems, Eurosys ’15, pages 1–15, 2015.

[23] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo
Chen. Fast and general distributed transactions using RDMA
and HTM. In Proceedings of the Eleventh European Confer-

ence on Computer Systems, Eurosys ’16, page 26, 2016.

[24] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xue-
tian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao,
and Enhong Chen. Kineograph: Taking the pulse of a fast-
changing and connected world. In Proceedings of the 7th

ACM European Conference on Computer Systems, Eurosys
’12, page 85–98, 2012.

[25] Dean De Leo and Peter Boncz. Packed memory arrays -
rewired. In 2019 IEEE 35th International Conference on Data

Engineering (ICDE), pages 830–841, 2019.

[26] Dean De Leo and Peter Boncz. Teseo and the analysis of struc-
tural dynamic graphs. Proceedings of the VLDB Endowment,
14(6):1053–1066, 2021.

[27] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. Tiger-
Graph: A native MPP graph database. arXiv preprint

arXiv:1901.08248, 2019.

[28] Christian Fahrner and Gottfried Vossen. A survey of database
design transformations based on the entity-relationship model.
Data Knowl. Eng., 15(3):213–250, 1995.

[29] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao
Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, et al.
GraphScope: A unified engine for big graph processing. Pro-

ceedings of the VLDB Endowment, 14(12):2879–2892, 2021.

[30] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xi-
aowei Zhu, Wentao Han, and Wenguang Chen. RisGraph: A
real-time streaming system for evolving graphs to support sub-
millisecond per-update analysis at millions ops/s. In Proceed-

ings of the 2021 International Conference on Management of

Data, pages 513–527, 2021.

USENIX Association 2023 USENIX Annual Technical Conference 193

https://www.erwin.com/
https://janusgraph.org/
https://ldbcouncil.org/benchmarks/graphalytics/
https://ldbcouncil.org/benchmarks/graphalytics/
https://ldbcouncil.org/benchmarks/snb/
https://navicat.com/
https://neo4j.com/
https://aws.amazon.com/neptune/
http://orientdb.com/
https://www.alibabacloud.com/blog/594855
https://www.alibabacloud.com/blog/594855

[31] Matthias Fey and Jan E. Lenssen. Fast graph representation
learning with PyTorch Geometric. In Proceedings of the 7th

International Conference on Learning Representations, ICLR
’19, 2019.

[32] Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Irak-
lis Psaroudakis, Alexander Weld, Dalila Chiadmi, Sungpack
Hong, and Hassan Chafi. CSR++: A fast, scalable, update-
friendly graph data structure. In 24th International Con-

ference on Principles of Distributed Systems, OPODIS ’20,
2020.

[33] Per Fuchs, Domagoj Margan, and Jana Giceva. Sortledton: A
universal, transactional graph data structure. Proceedings of

the VLDB Endowment, 15(6):1173–1186, 2022.

[34] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. GraphX:
Graph processing in a distributed dataflow framework. In 11th

USENIX symposium on operating systems design and imple-

mentation, OSDI ’14, pages 599–613, 2014.

[35] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural

information processing systems, 30, 2017.

[36] Henry Haselgrove. Wikipedia page-to-page link database.
http://haselgrove.id.au/wikipedia.htm,
2010.

[37] Mohamed S Hassan, Tatiana Kuznetsova, Hyun Chai Jeong,
Walid G Aref, and Mohammad Sadoghi. Extending in-
memory relational database engines with native graph support.
In Proceedings of the 21st International Conference on Ex-

tending Database Technology, EDBT ’18, pages 25–36, 2018.

[38] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma,
Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang,
Wan Wei, Cong Liu, Jian Zhang, Jianjun Li, Xuelian Wu,
Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. TiDB: A Raft-based
HTAP database. Proc. VLDB Endow., 13(12):3072–3084, Au-
gust 2020.

[39] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor
Leis, and Henrik Mühe. HyPer: Adapting columnar main-
memory data management for transactional and query pro-
cessing. IEEE Data Eng. Bull., 35(1):46–51, 2012.

[40] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In International

Conference on Learning Representations, ICLR ’17, 2017.

[41] Pradeep Kumar and H Howie Huang. GraphOne: A data store
for real-time analytics on evolving graphs. ACM Transactions

on Storage (TOS), 15(4):1–40, 2020.

[42] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is Twitter, a social network or a news media?
In Proceedings of the 19th international conference on World

wide web, pages 591–600, 2010.

[43] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi:
Large-Scale graph computation on just a PC. In 10th USENIX

Symposium on Operating Systems Design and Implementa-

tion, OSDI ’12, pages 31–46, 2012.

[44] Per-Ake Larson, Adrian Birka, Eric N. Hanson, Weiyun
Huang, Michal Nowakiewicz, and Vassilis Papadimos. Real-
Time analytical processing with SQL Server. Proc. VLDB

Endow., 8(12):1740–1751, August 2015.

[45] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe
Kim, Sang Kyun Cha, and Wook-Shin Han. Parallel replica-
tion across formats in SAP HANA for scaling out mixed OLT-
P/OLAP workloads. Proc. VLDB Endow., 10(12):1598–1609,
August 2017.

[46] Chaojie Li, Wensen Jiang, Yin Yang, Shirui Pan, Gang Huang,
and Lijie Guo. Predicting best-selling new products in a major
promotion campaign through graph convolutional networks.
IEEE Transactions on Neural Networks and Learning Sys-

tems, 2022.

[47] Feifei Li. Cloud-native database systems at Alibaba: Opportu-
nities and challenges. Proceedings of the VLDB Endowment,
12(12):2263–2272, 2019.

[48] Hongbin Ma, Bin Shao, Yanghua Xiao, Liang Jeff Chen, and
Haixun Wang. G-SQL: Fast query processing via graph explo-
ration. Proceedings of the VLDB Endowment, 9(12):900–911,
2016.

[49] Peter Macko, Virendra J Marathe, Daniel W Margo, and
Margo I Seltzer. LLAMA: Efficient graph analytics using
large multiversioned arrays. In 2015 IEEE 31st International

Conference on Data Engineering, pages 363–374, 2015.

[50] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gus-
tavo Alonso. BatchDB: Efficient isolated execution of hybrid
OLTP+OLAP workloads for interactive applications. In Pro-

ceedings of the 2017 ACM International Conference on Man-

agement of Data, pages 37–50, 2017.

[51] Daniel Martin, Oliver Koeth, Johannes Kern, and Iliyana
Ivanova. Near real-time analytics with IBM DB2 analytics
accelerator. In Proceedings of the 16th International Confer-

ence on Extending Database Technology, EDBT ’13, pages
579–588, 2013.

[52] MySQL. MySQL internals manual: Chapter 20 the binary
log. https://dev.mysql.com/doc/internals/

en/binary-log.html.

[53] Sen Pan, Menghan Xu, Pei Yang, Lipeng Zhu, Aihua Zhou,
and Jing Jiang. Research on application scenarios of HTAP
in distribution network. In 2021 IEEE Sustainable Power and

Energy Conference (iSPEC), pages 3916–3920, 2021.

[54] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Bu-
luc. Terrace: A hierarchical graph container for skewed dy-
namic graphs. In Proceedings of the 2021 International Con-

ference on Management of Data, pages 1372–1385, 2021.

194 2023 USENIX Annual Technical Conference USENIX Association

http://haselgrove.id.au/wikipedia.htm
https://dev.mysql.com/doc/internals/en/binary-log.html
https://dev.mysql.com/doc/internals/en/binary-log.html

[55] Marcus Paradies, Cornelia Kinder, Jan Bross, Thomas Fischer,
Romans Kasperovics, and Hinnerk Gildhoff. GraphScript: Im-
plementing complex graph algorithms in SAP HANA. In Pro-

ceedings of The 16th International Symposium on Database

Programming Languages, pages 1–4, 2017.

[56] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying
Zhang, Xuemin Lin, and Jingren Zhou. Real-Time con-
strained cycle detection in large dynamic graphs. Proc. VLDB

Endow., 11(12):1876–1888, 2018.

[57] Jags Ramnarayan, Barzan Mozafari, Sumedh Wale, Sud-
hir Menon, Neeraj Kumar, Hemant Bhanawat, Soubhik
Chakraborty, Yogesh Mahajan, Rishitesh Mishra, and Kishor
Bachhav. SnappyData: A hybrid transactional analytical store
built on Spark. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16, page
2153–2156, 2016.

[58] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadio-
tis, and Anastasia Ailamaki. Adaptive HTAP through elastic
resource scheduling. In Proceedings of the 2020 ACM SIG-

MOD International Conference on Management of Data, SIG-
MOD ’20, page 2043–2054, 2020.

[59] Noa Roy-Hubara, Lior Rokach, Bracha Shapira, and Peretz
Shoval. Modeling graph database schema. IT Prof., 19(6):34–
43, 2017.

[60] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan
Bhattacharjee, and Mustafa Canim. L-Store: A real-time
OLTP and OLAP system. In Proceedings of the 21th Interna-

tional Conference on Extending Database Technology, EBDT
’18, 2018.

[61] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy
Lin, and M. Tamer Özsu. The ubiquity of large graphs and
surprising challenges of graph processing. Proc. VLDB En-

dow., 11(4):420–431, dec 2017.

[62] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. Modeling rela-
tional data with graph convolutional networks. In European

semantic web conference, pages 593–607, 2018.

[63] Alex Shamis, Matthew Renzelmann, Stanko Novakovic,
Georgios Chatzopoulos, Aleksandar Dragojević, Dushyanth
Narayanan, and Miguel Castro. Fast general distributed trans-
actions with Opacity. In Proceedings of the 2019 Interna-

tional Conference on Management of Data, SIGMOD ’19,
page 433–448, 2019.

[64] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dit-
trich. Accelerating analytical processing in MVCC using fine-
granular high-frequency virtual snapshotting. In Proceedings

of the 2018 International Conference on Management of Data,
pages 245–258, 2018.

[65] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang.
Retrofitting high availability mechanism to tame hybrid trans-
action/analytical processing. In 15th USENIX Symposium on

Operating Systems Design and Implementation, OSDI ’21,
pages 219–238, 2021.

[66] Sijie Shen, Xingda Wei, Rong Chen, Haibo Chen, and
Binyu Zang. DrTM+B: Replication-driven live reconfigu-
ration for fast and general distributed transaction process-
ing. IEEE Transactions on Parallel and Distributed Systems,
33(10):2628–2643, 2022.

[67] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei
Li. Fast and concurrent RDF queries with RDMA-based
distributed graph exploration. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Im-

plementation, OSDI ’16, pages 317–332, 2016.

[68] John Stegeman. Native vs. non-native graph database.
https://neo4j.com/blog/native-vs-non-

native-graph-technology/.

[69] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Ke-
mentsietsidis, Gang Hu, and Guo Tong Xie. SQLGraph: An
efficient relational-based property graph store. In Proceedings

of the 2015 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’15, 2015.

[70] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren
Zhou, and Xia Hu. Learning to hash with graph neural net-
works for recommender systems. In Proceedings of The Web

Conference 2020, pages 1988–1998, 2020.

[71] The Transaction Processing Council. TPC-C benchmark
v5.11. http://www.tpc.org/tpcc/.

[72] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid
Pirahesh, Sui Jun Tong, Wen Sun, Thomas Kolanko,
Md Shahidul Haque Apu, and Huijuan Peng. IBM DB2
Graph: Supporting synergistic and retrofittable graph queries
inside IBM DB2. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, pages 345–
359, 2020.

[73] Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín,
Nicholas P. Roth, Iraklis Psaroudakis, Arnaud Delamare,
Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jinsoo Lee,
Sungpack Hong, and Hassan Chafi. aDFS: An almost
depth-first-search distributed graph-querying system. In 2021

USENIX Annual Technical Conference, USENIX ATC ’21,
pages 209–224, 2021.

[74] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang
Zhao, and Dik Lun Lee. Billion-scale commodity embed-
ding for e-commerce recommendation in Alibaba. In Proceed-

ings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 839–848, 2018.

[75] Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,
Wenyuan Yu, Zihang Yao, and Jingren Zhou. FlexGraph: a
flexible and efficient distributed framework for GNN training.
In Proceedings of the Sixteenth European Conference on Com-

puter Systems, pages 67–82, 2021.

USENIX Association 2023 USENIX Annual Technical Conference 195

https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://neo4j.com/blog/native-vs-non-native-graph-technology/
http://www.tpc.org/tpcc/

[76] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li,
Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai,
Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and
Zheng Zhang. Deep Graph Library: A graph-centric, highly-
performant package for graph neural networks. arXiv preprint

arXiv:1909.01315, 2019.

[77] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John CS
Lui. GraphWalker: An I/O-efficient and resource-friendly
graph analytic system for fast and scalable random walks. In
2020 USENIX Annual Technical Conference, USENIX ATC
’20, pages 559–571, 2020.

[78] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhen-
han Gong, and Binyu Zang. Unifying timestamp with transac-
tion ordering for MVCC with decentralized scalar timestamp.
In Proceedings of 18th USENIX Symposium on Networked

Systems Design and Implementation, NSDI ’21, 2021.

[79] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen.
Deconstructing RDMA-enabled distributed transactions: Hy-
brid is better! In Proceedings of the 13th USENIX Symposium

on Operating Systems Design and Implementation, OSDI ’18,
pages 233–251, 2018.

[80] Brian Wheatman and Randal Burns. Streaming sparse graphs
using efficient dynamic sets. In 2021 IEEE International Con-

ference on Big Data (Big Data), pages 284–294, 2021.

[81] Xiating Xie, Xingda Wei, Rong Chen, and Haibo Chen. Pragh:
Locality-preserving graph traversal with split live migration.
In Proceedings of the 2019 USENIX Annual Technical Con-

ference, USENIX ATC ’19, pages 723–738, 2019.

[82] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan,
Kelvin Lau, Qiang Zeng, Xi Zhao, Jun Ma, Ziyang Chen,

Yuan Gao, Qilin Dong, Junxiong Zhou, Jeremy Wood, Goetz
Graefe, Jeff Naughton, and John Cieslewicz. F1 Lightning:
HTAP as a service. Proc. VLDB Endow., 13(12):3313–3325,
August 2020.

[83] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang
Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou. GNNLab:
A factored system for sample-based GNN training over GPUs.
In Proceedings of the Seventeenth European Conference on

Computer Systems, EuroSys ’22, pages 417–434, 2022.

[84] Kangfei Zhao and Jeffrey Xu Yu. All-in-One: Graph process-
ing in RDBMSs revisited. In Proceedings of the 2017 ACM

International Conference on Management of Data, SIGMOD
’17, page 1165–1180, 2017.

[85] Ai-Hua Zhou, Li-Peng Zhu, Meng-Han Xu, Sen Pan, Jun-
Feng Qiao, Hong-Bin Qiu, and Song Deng. Research on
mixed transaction analytical data management oriented to
data middle platform. In 2021 IEEE International Confer-

ence on Progress in Informatics and Computing (PIC), pages
308–312, 2021.

[86] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong
Ma. Gemini: A computation-centric distributed graph process-
ing system. In 12th USENIX Symposium on Operating Sys-

tems Design and Implementation, OSDI ’16, pages 301–316,
2016.

[87] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma,
Jiping Yu, Lei Xie, Ashraf Aboulnaga, and Wenguang Chen.
LiveGraph: A transactional graph storage system with purely
sequential adjacency list scans. Proceedings of the VLDB En-

dowment, 13(7):1020–1034, 2020.

196 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Opportunity: HTAP
	Overview of Gart
	Relational-Graph Mapping
	System Interfaces
	Expressiveness of RGMapping

	Dynamic Graph Storage
	Efficient and Mutable CSR
	Coarse-grained MVCC
	Flexible Property Storage

	Evaluation
	Experimental Setup
	Overall Performance
	Breakdown Analysis on GAP Performance
	Performance Isolation
	Graph Topology Storage
	Flexible Property Storage

	Related Work
	Conclusion

