
Automated Verification of Idempotence for Stateful Serverless Applications

Haoran Ding1, Zhaoguo Wang1, Zhuohao Shen1, Rong Chen1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
Serverless computing has become a popular cloud computing
paradigm. By default, when a serverless function fails, the
serverless platform re-executes the function to tolerate the fail-
ure. However, such a retry-based approach requires functions
to be idempotent, which means that functions should expose
the same behavior regardless of retries. This requirement is
challenging for developers, especially when functions are
stateful. Failures may cause functions to repeatedly read and
update shared states, potentially corrupting data consistency.

This paper presents Flux, the first toolkit that automati-
cally verifies the idempotence of serverless applications. It
proposes a new correctness definition, idempotence consis-
tency, which stipulates that a serverless function’s retry is
transparent to users. To verify idempotence consistency, Flux
defines a novel property, idempotence simulation, which de-
composes the proof for a concurrent serverless application
into the reasoning of individual functions. Furthermore, Flux
extends existing verification techniques to realize automated
reasoning, enabling Flux to identify idempotence-violating
operations and fix them with existing log-based methods.

We demonstrate the efficacy of Flux with 27 representa-
tive serverless applications. Flux has successfully identified
previously unknown issues in 12 applications. Developers
have confirmed 8 issues. Compared to state-of-the-art sys-
tems (namely Beldi and Boki) that log every operation, Flux
achieves up to 6× lower latency and 10× higher peak through-
put, as it logs only the identified idempotence-violating ones.

1 Introduction
A serverless application typically comprises a collection of
functions, which may be stateful. For example, they may com-
municate with each other through a shared database. Major
serverless platforms generally support the stateful model, such
as AWS [17], Microsoft [59], and Google [36]. Platforms gen-
erally employ a retry-based fault tolerance mechanism for
stateful applications — they automatically retry a function in
case of an unexpected error [18, 35, 57].

However, this mechanism mandates developers to write

idempotent applications that produce consistent results irre-
spective of the number of retries. In a sequential system that
invokes functions sequentially, developers can reason about
each function independently. However, a concurrent system
can invoke functions simultaneously. Therefore, developers
must consider all possible interleavings of concurrent func-
tions, making it challenging to write idempotent applications.

This paper presents Flux, the first toolkit that automatically
verifies the idempotence of concurrent serverless applications.
Building such a toolkit posed several challenges. First, a for-
mal idempotence definition for concurrent systems is desired
but currently missing. Second, automated verification requires
examining all possible interleavings of concurrent serverless
functions with arbitrary failures, which is prohibitively ex-
pensive. Third, for non-idempotent applications, the toolkit
should accurately identify the code that corrupts idempotence,
enabling developers to fix the issues.

To overcome the first challenge, we propose a novel idem-
potence definition for concurrent systems — idempotence con-
sistency. A serverless application is idempotence-consistent if,
for any observable behavior of an execution with retries, there
exists another execution without retries that can produce the
same behavior. Achieving idempotence consistency makes
clients unaware of retries during execution (Section 3). Un-
like alternative idempotence conditions, such as exactly-once
execution [45, 73], idempotence consistency offers greater
flexibility. An idempotence-consistent application does not
necessarily ensure exactly-once execution of all database op-
erations.

To tackle the second challenge, we propose idempotence
simulation to realize compositional proof, which enables prov-
ing the idempotence consistency of an application by veri-
fying each function individually. For each function, Flux
verifies that every possible execution with retries has a corre-
sponding retry-free execution that can simulate it (Section 4).
Existing work [66] can realize automated verification in a
sequential system by comparing the execution results when
retries happen with the results without retries. However, in
a concurrent system, verification requires modeling the con-

current environment to account for the side effects of run-
ning multiple functions concurrently. Unfortunately, existing
modeling approaches are not fully automated as they ask
developers for hints, such as invariants [40, 60] and rely con-
ditions [47, 53]. In contrast, Flux automates the generation of
rely conditions and other hints. Additionally, Flux proposes
failure reduction to avoid enumerating all failure cases.

To help fix idempotence issues, Flux can identify
idempotence-violating operations whose re-execution cor-
rupts idempotence consistency. Developers can use logs to
ensure exactly-once execution semantics for these operations
rather than all operations via existing mechanisms [45, 73].

We evaluate Flux on 27 representative serverless applica-
tions with 79 functions. These applications are from vari-
ous sources, such as the AWS serverless application reposi-
tory [3], a GitHub repository (10.9k stars) [9], popular server-
less benchmarks [8, 10], and applications commonly used
in papers about serverless computing [5, 6]. Flux success-
fully identifies previously unknown idempotence issues in 12
applications. Compared to state-of-the-art systems (namely
Beldi [73] and Boki [45]) that log all operations, Flux achieves
up to 6× lower latency and 10× higher peak throughput, as it
logs only identified idempotence-violating operations.

Nevertheless, Flux still has several limitations. First, al-
though we design it for stateful serverless functions, its as-
sumption that states only include data in NoSQL databases
restricts its applicability to storage systems of other types.
We need to model the semantics of other storage systems care-
fully. Second, our verification method is sound but incom-
plete since Flux cannot handle certain serverless functions,
such as functions having certain types of unbounded loops.
Last, Flux currently supports only Java applications since we
build Flux based on a symbolic execution engine for Java
applications [61]. Despite these limitations, we believe that
Flux takes an important step towards enabling verification for
idempotence consistency of serverless functions.

2 Motivation and Our Approach
Why Need Idempotence? The concept of idempotence is
crucial for applications that rely on retry-based methods to
tolerate failures. Without idempotence, re-executing failed
computations may result in unexpected side effects, causing
severe correctness issues [42, 48, 64, 67]. With the emergence
of serverless computing, idempotence has become a signif-
icant requirement for serverless applications. However, this
requirement poses a challenge when serverless functions run
concurrently and are stateful, placing a substantial burden on
using serverless platforms [44, 69, 73].

We use an example in Figure 1 to illustrate why re-
executing a non-idempotent application can cause issues. This
is an example derived from a real-world e-commerce web
application, Spree [68]. The payment function atomically
checks the customer’s balance and deducts the price with a
discount rate using a conditional update API (line 4). This

1 void payment(productId , userId, price) {
2 discount := get("Discount", productId);
3 total := price * discount;
4 success := cond_update("Balance", userId,
5 inc(-total), gte(total));
6 receiptId := generateId(userId, productId ,
7 localTime());
8 if(success)
9 put("Receipt", receiptId , total);

10 }
11

12 void adaptDiscount(productId , percent) {
13 if(!isValid(percent))
14 return;
15 discount := 1.0 - percent/100.0;
16 put("Discount", productId , discount);
17 }

Figure 1: A simplified e-commerce serverless application with two
functions. When balance in the database is greater than or equal to
total (gte(total) is true), cond_update (line 4) decreases balance by
total (inc(-total)) and returns true. Otherwise, it returns false. The
generateId function (line 6) returns a receipt identifier. The isValid
function (line 13) returns true iff percent is between 0 and 100.

CrashAPI

Argument Response Retry

Payment

Time

get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

get

productId

0.6

put

receiptId

put

productId

0.6

6

Figure 2: The concurrent execution of payment and adaptDiscount
in Figure 1.

method needs to create a receipt accordingly (line 9). Mean-
while, the adaptDiscount function changes the discount for a
specific product, which the seller typically invokes.

Suppose a failure occurs after payment deducts the price
from the customer’s balance at line 4 but before it creates a
new receipt at line 9. Consider the sequential execution of
payment without concurrency. If the platform re-executes this
function after the failure, the function will deduct the price
twice from the customer’s balance. One possible solution to
ensure idempotence is to log the conditional update operation.
Additionally, it is necessary to log the execution of generateId ,
as localTime returns different values on retry. These logs can
ensure that the function will not re-execute update (line 4)
and generateId (line 6) on retry, which will always return the
same value as the first execution. The solution is enough to
provide idempotence under the sequential scenario.

However, the above solution does not work when payment
runs concurrently with adaptDiscount . For example, suppose
adaptDiscount changes the discount after payment fails at
line 4 but before its re-execution. Then, payment would have
deducted the price with the old discount but created a new
receipt with the new discount, which poses an inconsistency
between the customer’s balance and the corresponding re-
ceipt. Figure 2 shows the specific interleaving. Flux aims
to automatically find the correct logging strategy under both

Payment get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

productId

0.6

put

receiptId

Time

8

(a) The execution with a retry when logging all operations of payment .

Payment

Time

get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

receiptId

put

productId

0.6

put

receiptId

8 8

(b) The execution with a retry when logging all operations of payment except
for the put .

Payment get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

receiptId

put

productId

0.6

Time

8

(c) The normal execution without retries and logging operations.

Figure 3: Three different concurrent executions of the functions in
Figure 1. The legend is the same as that in Figure 2.

sequential and concurrent scenarios via verification.

Idempotence Condition. Some recent efforts have focused
on the retry-based fault tolerance mechanism for serverless
applications [44, 45, 69, 73]. Although they optimize run-
times or libraries of serverless computing, they overlook
the definition of idempotence. For example, Beldi [73] and
Boki [45], which contribute novel distributed logging mech-
anisms, equate idempotence with executing each database
operation exactly once. They achieve this by logging every
operation to ensure that functions execute each operation only
once. However, repeating some operations does not compro-
mise idempotence. For instance, as shown in Figure 3b, log-
ging all operations except for put on receipt can still ensure
idempotence, as payment will always write the same value
into the receipt on retry as it did in its first execution. However,
as illustrated in Figure 3a, Beldi and Boki need to log every
operation, which is over-restricted and incurs unnecessary per-
formance costs. This logging strategy misses the opportunity
to maximize performance while ensuring idempotence.

When defining idempotence for serverless applications,
we should consider what kind of execution with retries is
acceptable. The intuitive requirement is that clients should
be unaware of retries. This requirement enables us to define
acceptable execution with retries in terms of normal execution

without retries. For instance, the executions with a retry in
Figure 3b and Figure 3a are both acceptable because they are
equivalent to the normal execution in Figure 3c. However,
the execution in Figure 2 is unacceptable because we cannot
find an equivalent normal execution for it. The normal con-
current execution of payment with adaptDiscount will never
deduct “8” from the balance but record “6” in the receipt.
Therefore, determining whether an application is idempotent
requires checking whether any possible execution with retries
is acceptable.

Verification of Idempotence. Several frameworks for veri-
fying storage systems also prove the idempotence of recovery
functions [23, 24, 27, 28, 66]. Specifically, the resulting state
of the recovery should be consistent even if the system fails
during recovery and retries the recovery function many times.
The work based on Crash Hoare Logic [23,24,27,28] verifies
idempotence by proving that the crash condition of the recov-
ery function always implies its precondition. Developers need
to specify both pre and crash conditions manually. The push-
button verification approach [66] frees developers from such
a proof burden by automatically verifying recovery functions
with SMT solvers. However, all such methods assume that the
recovery procedure is sequential. Verifying the idempotence
of concurrent functions is still missing.

To prove the idempotence of concurrent functions, we use
compositional proof techniques. The fundamental idea is to
break down the verification of an application’s idempotence
into verifying each function individually. However, the main
challenge is defining the property that needs verification for
each function, which can facilitate compositional proof. Be-
sides, modeling the behavior of other concurrent function
instances also poses a challenge. Existing methods typically
use invariants [60] or rely conditions [47, 53] to model the
concurrent environment. Invariants describe the properties
of the system state that persist during concurrent execution,
while rely conditions depict how other concurrent functions
can change the system state. Unfortunately, developers must
explicitly specify all of them. We need to infer invariants or
rely conditions automatically for automated verification.

Our Approach. To define idempotence, we propose a new
consistency model called idempotence consistency (Section 3).
An execution with retries is acceptable if there exists an-
other normal execution without retries that can exhibit the
same observable behavior (e.g., Figure 3b). An application
is idempotence-consistent if all possible executions with re-
tries are acceptable. To verify idempotence consistency, we
propose idempotence simulation (Section 4), which extends
traditional forward simulation [55] and enables compositional
proof for idempotence consistency. Specifically, the verifica-
tion process tries to find a mapping from each step during the
execution with retries to n steps during the execution without
retries such that the single step and the n steps exhibit the
same observable behavior.

Verifier (§3-5)F

Application

Func without idempotence issues Func with idempotence issues Func with logging

F F Advisor (§6)

+ Candidate Scheme F

Serverless Platform (e.g., AWS, Azure, GCP)

[F]

Logging Mechanism
(e.g., Beldi, Boki)

[F]FF

F

F

+ SchemeF

FLUX

Figure 4: The architecture of Flux.

1 bool retry := random();
2 if(retry)
3 {
4 reset_local_state();
5 goto BEGIN;
6 }

Figure 5: The pseudocode simulating random failures and retries of
a function f . BEGIN is a label at the beginning of f .

Figure 4 shows the components of Flux. First, develop-
ers provide the source code of a serverless application for
Flux. Then, Flux checks each function individually to reason
about idempotence simulation (Section 5). If all functions
pass verification, the application is idempotence-consistent.
If not, advisor identifies operations that corrupt idempotence
consistency based on the results of the verifier (Section 6).
Developers can use existing logging mechanisms to ensure
exactly-once semantics of such operations. Compared with
logging all operations pessimistically, Flux guarantees idem-
potence while reducing unnecessary protection overhead.

3 Idempotence Consistency
Idempotence consistency requires that each execution with
retries should have the same observable behavior as another
execution without retries. To formally define idempotence
consistency, Flux uses an automaton to model the concurrent
execution of functions. An automaton includes system states
and a set of steps. Each step (S,e,S′) represents a state transi-
tion from state S to S′, which triggers an event e observable to
clients (e.g., a function invocation). Note that some steps may
not produce events because they are not observable to clients.

System State. The system state consists of the shared state
and the local state of each function instance. In scenarios
where functions use a NoSQL database, the shared state D
constitutes a collection of key-value pairs stored persistently
in databases. Given an instance executing a function, its local
state includes the invocation arguments, the local variables,
the return value, and the next program statement to execute.
The start system state only contains the shared state because
the platform has not invoked any functions at the beginning.

Event. An automaton may produce an event during each
state transition, which is observable to clients. In the con-
text of serverless functions, Flux considers three types of
events: function invocation events, function response events,
and third-party service events. When creating a new instance
fid(args) to run the serverless function f , the automaton pro-

duces an invocation event (fid , inv(args)). When the instance
fid finishes its execution and successfully responds to clients
with the value v, it produces a response event (fid ,resp(),v).
When the serverless function requests a third-party service
s, it produces a third-party service event (ids,args,ret). The
args and ret represent parameters and return values, respec-
tively. An automaton produces such events when a service
has side effects, which developers must explicitly specify.

Client-Observable Behavior. The client-observable behav-
ior of an execution includes all events generated during the
execution and the final shared state observable by clients. The
events include function invocation, response, and third-party
service events. We use ⟨H,D⟩ to denote the client-observable
behavior, where H represents the event sequence generated by
the automaton throughout the execution, and D is the shared
state reached after the execution.

Given a function set F , to model the execution of functions
in F under failure, we rely on the following failure model and
star operator.

Failure Model. Flux assumes that failure can occur at any
time during the execution of an instance. The failure of indi-
vidual instances does not affect the persistent shared state or
individual local states of other instances. Furthermore, when
the platform retries an instance, it retains the same identifier
and arguments, generating no invocation events.

Star Operator. Given a function f , f∗ denotes a function
synthesized by inserting a code fragment after every statement.
When random failures and retries occur during a function’s
execution, the platform will re-initialize the local state and
re-execute the function from the first statement (without retry
events). The code fragment (Figure 5) simulates random fail-
ures by resetting the local state and simulates retries by jump-
ing to the beginning of f . F∗ is a function set synthesized by
applying the star operator to each function in F .

Based on the above concepts, Flux is able to define idempo-
tence consistency as the relationship between two automata. It
means that F allows all possible client-observable behaviors
for the automaton of F∗.

Definition 1 (Idempotence Consistency) For any start sys-
tem state S and any step sequence of the automaton executing
F∗ from S, if the step sequence results in the client-observable
behavior ⟨H,D⟩, then there always exists another step se-
quence of the automaton executing F from S such that it also
results in ⟨H,D⟩.
4 Proof Strategy
Using compositional proof techniques [52–54, 76], Flux auto-
matically verifies the idempotence consistency of serverless
applications. The fundamental idea is to simplify the proof
of a concurrent program by reasoning about each of its com-
ponents separately. Several existing approaches utilize com-
positional proof to verify the correctness of concurrent pro-
grams, such as RGSim [53], AtomFS [76], and Armada [54].

However, the primary difference between Flux and existing
approaches is that existing approaches require human experts
to aid the proof, such as manually specifying the correctness
definition or modeling program behavior under concurrency.
Flux, on the other hand, performs entirely automated verifica-
tion without human intervention.

Preliminary. Flux adopts compositional proof techniques,
verifying a concurrent program by checking each component
individually rather than enumerating all possible interleavings.
For instance, when verifying a concurrent stack implemen-
tation [52], programmers only need to separately consider
the correctness of push and pop functions under concurrency.
To perform compositional proof, programmers first need to
manually specify each component’s expected behavior (e.g.,
specifications for push and pop functions). Second, program-
mers should carefully craft the pre- and post-conditions of
each statement, which are propositions describing the system
state before and after executing the statement. The verifi-
cation goal is that when the start system state satisfies the
pre-condition of the first statement, the system state after exe-
cuting the component must satisfy the post-condition of the
last statement under concurrency. Note that other concurrent
threads can simultaneously modify the system state. There-
fore, to consider all possible execution results, pre- and post-
conditions must cover all possible system states before and
after executing a statement. Developers need to prove that the
pre- and post-conditions are stable under concurrency, which
means they always hold irrespective of how other concurrent
functions simultaneously modify the system state. Finally, to
verify the stability of pre- and post-conditions, programmers
must manually define a rely condition R, which describes
the state transition made by other concurrent threads. R is
a relation of system states. Each (S, S’) in R indicates that
other concurrent threads might change the current state S to
S’. In the example of the stack, the rely condition specifies
the impact of concurrent push and pop operations on the
global linked list that represents the stack. We can define it as
{(ℓ,ℓ′) ∣ ((∃v.ℓ′ = PUSH(ℓ,v))∨ (ℓ′ = POP(ℓ)))}. ℓ repre-
sents the state of the linked list, while ℓ

′ is the new state after
applying the operations of PUSH(ℓ,v) or POP(ℓ).

4.1 Idempotence Simulation
Instead of manually crafting the specification, Flux introduces
a new correctness definition — idempotence simulation. A
serverless function f satisfies idempotence simulation if there
exists a forward simulation [55] between f∗ and f under
the same rely condition R. The forward simulation means
that from the same start shared state with the same invoca-
tion argument, each step of executing f∗ has zero or multiple
corresponding steps of executing f that can simulate it. If a
step s of f∗ changes the shared state D to D′ and produces
an event e, a step sequence s1 . . .si of f can simulate it if
and only if carrying out these steps sequentially from D also
reaches D′ and produces e. Note that idempotence simulation

does not only consider the shared state reached by executing
the current instance but also D reached by executing other
concurrent instances according to R. Flux differs from pre-
vious verification frameworks [23, 24, 27, 28, 66] that focus
on the idempotence of sequential functions by considering
intermediate states. This difference is significant because, in a
concurrent setting, these intermediate states may be externally
observable.

Given a function set F , Flux decomposes the proof of idem-
potence consistency into reasoning about the idempotence
simulation of every function f in F based on the following
theorem. f∗ ⊑R f means that for any start shared state and in-
vocation argument, there exists a forward simulation between
f∗ and f under the same rely condition R.

Theorem 1 Given a function set F , if each function f in F
satisfies idempotence simulation, then F satisfies idempotence
consistency, denoted as the predicate idem(F).

(∀ f ∈ F.∃R. f∗ ⊑R f)→ idem(F).

Appendix A presents the formal proof of Theorem 1. We
only illustrate its intuition as follows. Existing work [53]
based on rely conditions has proposed methods to prove that
the specification can exhibit all possible observable behaviors
of the implementation. When proving idempotence consis-
tency, we observe that we can treat F∗ as the implementation
and F as its specification. Then we can utilize the composi-
tional proof technique in the existing work to verify idem-
potence consistency. An important fact is that the steps of
implementation consist of the steps from each component,
while the specification of the implementation consists of the
specification of each component. Therefore, the existing work
first proves that for each component and its specification, each
step of the component has zero or multiple steps of the speci-
fication that can simulate it under the rely condition R. Then
the verifier can compose the proof for each component to
imply that each step of the implementation always exhibits
the observable behavior allowed by its specification. In the
scenario of idempotence consistency, we treat each serverless
function f∗ as the component. Then we can treat f as the
specification for f∗. Based on the observation, Flux defines
idempotence simulation as the forward simulation between
f∗ and f , which can imply idempotence consistency.

4.2 Automated Concurrency Reasoning
To verify the program with compositional proof, existing ap-
proaches [52–54,76] require programmers to manually define
the pre- and post-condition of each statement, as well as the
rely condition for concurrent state transitions. The cause of
the need for manual effort is that different definitions of cor-
rectness usually require different pre-, post-, and rely condi-
tions. Programmers need to deeply understand the definition
of correctness to find and specify the appropriate conditions.

However, idempotence consistency presents a unified cor-
rectness definition for stateful serverless functions, establish-

ing an opportunity to generate pre-, post- and rely conditions
automatically. These conditions capture the potential concur-
rent accesses to the shared database state and describe the
state transition on each access. Flux accomplishes this with
symbolic execution. To reduce the complexity of analysis,
Flux models the semantics of each API as a sequence of
atomic read operations or atomic write operations on a set
of key-value pairs, as most serverless platforms use NoSQL
databases with key-value interfaces [16, 34, 58]. Then, it can
symbolically execute all functions and check the parameters
of issued database operations to analyze the data in the shared
state that functions can access. Section 5 will depict more
details.

Flux identifies three types of rely conditions.

• Read-only: all concurrent accesses to a specific key-value
pair are read operations. Flux formalizes this type of rely
condition as (D[k]= v, D[k]= v), which means before and
after the access, the value (v) indexed by k in the database
keeps unchanged.

• Arbitrary update: functions could update the data in the
database to arbitrary values. Flux formalizes this type of
rely condition as (∃v1.D[k] = v1, ∃v2.D[k] = v2).

• Constant update: functions will update the specific key-
value pair to only a constant value. Flux formalizes this
type of rely condition as (∃v1.D[k]= v1, D[k]= c), where
c is the constant value.

Flux constructs pre- and post-conditions in the Floyd-Hoare
style (“{P}C{Q}”). C is the next program statement to exe-
cute. P is the pre-condition before executing C, while Q is the
post-condition after the execution. If C is the first statement of
the function, then P is true. Flux adopts the following rules to
automatically generate the pre- and post-conditions according
to the semantics of C and different rely conditions:

• {P}put(k,c){P∧(D[k]=c)}: if the rely condition specifies
that all concurrent updates are constant updates with a con-
stant value of c, then D[k] will always be c after executing
put(k,c).

• {P}v := get(k){P∧(D[k]=v)}: if the rely condition speci-
fies that all concurrent accesses to k are read operations,
then the value of D[k] should be exactly v which is the
return value of the get operation in C.

• {P}if(P1(v)){P∧P1(D[k])}: suppose C is a branch state-
ment based on P1(v), and v is the value read from the
database, indexed by k. The post-condition is P∧P1(D[k])
if D[k] satisfies one of the following requirements accord-
ing to rely condition: 1) D[k] is read-only; 2) functions
can update D[k] to a constant value c such that P1(c) is
true.

• {P}C{P}: in the other cases, the post-condition is the same
as the pre-condition, which is stable.

4.3 Unbounded Loop
Another challenge in automated verification involves deal-
ing with functions that contain unbounded loops. A loop is
unbounded when its maximum number of iterations is not con-
stant. Existing approaches require that programmers manually
specify loop invariants to handle unbounded loops. However,
previous works have shown that finding a proper loop invari-
ant is challenging [19, 33]. Flux reasons about unbounded
loops without requiring loop invariants. The following para-
graphs provide the details in two cases:

Case 1. The operations in the unbounded loop do not mod-
ify the shared state in the database. For this case, Flux treats
the entire unbounded loop as an uninterpreted function [12],
which is a symbolic function and may return arbitrary values.
Specifically, Flux derives a new function g from the original
function f by replacing the unbounded loop with an uninter-
preted function. Then, Flux directly reasons the idempotence
simulation for g instead of f .

Case 2. The operations in the unbounded loop may mod-
ify the shared state. Flux addresses this type of unbounded
loop with Theorem 2, which requires that the parameters of
the write operations in such unbounded loops must remain
the same between normal execution and retry. For conve-
nience, Flux represents a function with an unbounded loop
as {C1;L;C2}, where L is the unbounded loop, C1 denotes
all code before the loop, and C2 denotes all code after the
loop. BL denotes the loop body of L. We present the theorem
as follows. Appendix C provides the formal proof and an
example of applying the theorem.

Theorem 2 Given a function f with the unbounded loop in
case 2, f satisfies idempotence simulation if the number of
iterations of the loop L remains unchanged on retry, and C1,
C2 and BL can satisfy the following requirements: 1) They all
satisfy idempotence simulation; 2) Their inputs do not change
on retry; 3) They will not affect the shared state on retry once
the function has successfully executed them.

4.4 Failure Reduction
The platform may re-execute a function an arbitrary number
of times. It is impossible to verify idempotence simulation if
we enumerate all possible failure cases, which yields infinite
possible executions. Instead, we prove that it is sufficient to
verify a function only by examining the executions satisfying
two conditions, as stated in the following theorem.

Theorem 3 For any function set F , if each function f ∈ F
satisfies idempotence simulation under the following two
conditions: 1) failure happens only after statements modifying
the shared state, and 2) failure occurs at most once, then each
function f ∈ F also satisfies idempotence simulation under
arbitrary failure and retries.

This result (i.e., failure reduction) mitigates the challenge
of proving idempotence simulation with infinite failure. It

1 bool retry := random();
2 if(retry && hasretried < LIMIT)
3 {
4 reset_local_state();
5 hasretried++;
6 goto BEGIN;
7 }

Figure 6: The pseudocode simulating random failures and retries of
f n.

transforms the problem of examining executions with infi-
nite failure into the problem of reasoning about executions
with finite failure. Moreover, it maintains the soundness of
the verification, signifying that Flux does not overlook any
idempotence issues.

The intuition behind the first condition is that a statement
that does not modify the shared state lacks side effects if a
failure occurs after it. Because the failure effectively renders
the result of the statement invisible to clients and the following
code. Therefore, when the failure occurs, it appears as if the
function instance never executed the statement.

The second condition is correct and ensures soundness. We
formalize its correctness based on the following concepts.
Given a function f , f n denotes the function whose number
of re-execution is not more than n times (n ≥ 0). We can
construct f n by inserting the code fragment in Figure 6 after
every statement of f . The global variable hasretried is initially
zero, which indicates the number of retries that have occurred.
We can simulate n retries for f n by setting the constant LIMIT
to n. The correctness of the second condition follows from the
following theorem. Appendix B presents the formal proof.

Theorem 4 Given a function f in F , if the execution of f
can simulate f 1 under concurrency, then for any n ≥ 1, the
execution of f can simulate f n under concurrency.

(∃R. f 1
⊑R f)→ (∀n ≥ 1.∃R. f n

⊑R f).

Compared to Yggdrasil [66], which assumes that failure
happens only once when verifying the idempotence of se-
quential recovery procedures, Flux targets a different setting
— concurrent vs. sequential. Yggdrasil proves that if the ex-
ecution with one retry produces the same system state and
return value as the retry-free execution, then the execution
with arbitrary times of retries also produces the same system
state and return value. This approach ignores intermediate
system states. It only considers the system state and return
value when the function finishes because intermediate system
states for sequential functions are not observable to clients.
However, under concurrency, we should consider intermediate
system states. We need to define and prove failure reduction
based on simulation relation ⊑R.

5 Implementation
Flux builds a verifier to automatically verify idempotence sim-
ulation for each function based on failure reduction. It models
the execution of a function with symbolic traces generated by

symbolic execution. Each trace represents a feasible execution
path and records the path condition, events, and database oper-
ations. The verifier can only handle Java applications because
Flux builds the verifier by extending a symbolic execution
engine for Java [61]. However, our definition and verification
method for idempotence consistency is not specific to any
particular programming language.

When functions invoke third-party services, Flux mandates
that developers explicitly indicate whether these services have
side effects. In particular, developers provide a vector of ser-
vice names and a corresponding bit vector, where each bit
indicates whether the corresponding service has side effects.
For instance, developers should annotate the random function
with a “0” since it has no side effects, whereas developers
should annotate the print function with a “1”.

Next, Flux handles unbounded loops by first converting
functions into abstract syntax trees (ASTs) and identifying
unbounded loops within them. Then, Flux replaces each un-
bounded loop that does not modify the shared state with an
uninterpreted function. It further identifies all variables mod-
ified within the loop and assigns the return value of the un-
interpreted function to these variables. For each unbounded
loop that modifies the shared state, Flux partitions the code
into three parts via ASTs and checks them (Section 4.3).

Algorithm 1: Workflow of the Verifier
1 Input: A function set F, a function f ∈ F, a string vector

services of the names of services, and a bit vector bv
indicating whether each service has side effects.

2 Output: The verification result of f.
3 Verify(F, f, services, bv):
4 R := GenRelyCond(F)
5 T := TracesNoRetry(f ,R,services,bv)
6 Tr := TracesWithRetry(f ,R,services,bv)
7 foreach ⟨tr , pcr⟩ ∈ Tr:
8 if ¬HasSimulatedTrace(⟨tr , pcr⟩,T) then
9 return false

10 return true
11 HasSimulatedTrace(⟨tr , pcr⟩, Traces):
12 foreach ⟨t, pc⟩ ∈ Traces:
13 if CheckSimulation(tr , pcr , t, pc) then
14 return true
15 return false

Algorithm 1 shows the verification algorithm. The goal is
to prove the simulation relation between f 1 defined in Sec-
tion 4.4 and f . First, GenRelyCond generates the rely con-
dition R by symbolically executing all functions in F . Based
on R, TracesNoRetry generates all possible symbolic traces
T for f via another symbolic execution. TracesWithRetry
returns all possible symbolic traces Tr for f 1. Then, for every
trace tr ∈ Tr, HasSimulatedTrace checks whether there exists
a trace in T that can simulate tr. The initial path condition
of symbolic execution is true, which does not contain any
constraints on database states and function arguments. There-
fore, if Flux can find a retry-free trace for each trace tr, the
retry-free trace is feasible, and the idempotence simulation
holds for any possible database states and arguments.

5.1 Generating Symbolic Traces
Each trace is an ordered list with a path condition. Every list
element includes the following fields: step id, event, database
operation, and the post-condition after the step. The step id
identifies the atomic step causing state transition. The event
produced by the step has a type, some arguments, and a return
value, which are symbolic expressions or constants. Flux
considers three types of events for the execution of a serverless
function: function invocation, function response, and third-
party services with side effects. Developers specify whether
a third-party service has side effects via the bit vector bv in
Algorithm 1 (line 3). The fields of the operation include
the type (optype), the argument (oparg), and the result of
the operation (opret), where oparg and opret are symbolic
expressions or constants. As described in Section 4.2, Flux
models the semantics of each API as a sequence of read or
write operations. Post-conditions can help model the return
value of read operations. For example, D[k]=c implies that
the results of the subsequent read operations on k must be
c. Flux adds these propositions about return values of read
operations to the path condition.

GenRelyCond(F) symbolically executes all functions in F
and returns the rely condition R. As illustrated in Section 4.2,
Flux identifies three kinds of data. If an operation modifies
the data indexed by a symbolic key, Flux assumes that the
operation can change arbitrary data in the database. If an oper-
ation writes a symbolic value into the data, Flux uses the path
condition to infer whether it is a constant or an arbitrary value.
Users can also annotate that some variables in a serverless
function are unique. That means other concurrent instances
cannot access the data indexed by these unique variables. For
example, developers can annotate receiptId in Figure 1 to
be unique to indicate that other concurrent instances cannot
write the receipt created by the current instance.

5.2 Checking Idempotence Simulation

Algorithm 2: Checking Idempotence Simulation
1 CheckSimulation(tr, pcr, t, pc):
2 premise := pcr ∧ pc
3 pass := CheckWithPremise(tr , t, premise)
4 return pass
5
6 CheckWithPremise(tr, t, premise):
7 if tr .empty() then
8 return true
9 step := tr .subtrace(0,1)

10 foreach n from 0 to t.size()−1:
11 nsteps := t.subtrace(0,n)
12 pass := CheckStep(step,nsteps, premise)
13 if !pass then
14 continue
15 next_premise := UpdatePremise(step,nsteps, premise)
16 next_tr := tr .subtrace(1, tr .size())
17 next_t := t.subtrace(n, t.size())
18 pass := CheckWithPremise(next_tr ,next_t,next_premise)
19 if pass then
20 return true
21 return false

CheckSimulation in Algorithm 2 determines if two traces,

tr from f 1 and t from f , satisfy the idempotence simulation.
Their associated path conditions are pcr and pc. Specifically,
CheckSimulation tries to construct a mapping from every step
in tr to n (n ≥ 0) steps in t such that the n steps can simulate
the single step. The existence of such a step mapping can
imply idempotence simulation.

CheckWithPremise recursively checks all possible step
mappings. It first uses CheckStep (Line 12) to check if the n
steps in t (nsteps) can simulate the first step in tr (step). If the
check fails, it increases n to enumerate other possible map-
pings. Otherwise, it continues to check the subsequent steps
in tr in a recursive way (Line 18). To reason the simulation
between step and nsteps, CheckStep requires that the write
operations in step and nsteps result in the same database state.
It means that every write operation in nsteps should have
the same parameters as the write operation in step under the
proposition of premise, where premise is the conjunction of
the path conditions associated with t and tr. Specifically, two
symbolic parameters, p1 and p2, are equivalent under premise
if premise → (p1 = p2) is true. Flux leverages an SMT solver
to check this first-order logic formula. If step does not record
any write operations, nsteps should also contain no write op-
erations. Besides, when step has an event, such as invoking
a third-party service with side effects and function response,
Flux requires that nsteps contains the same event. After the
check succeeds, Flux updates premise with UpdatePremise ,
which maintains the relations among symbolic variables. Up-
datePremise has three parameters, including step , nsteps , and
premise. If operations in step and nsteps read the data in-
dexed by the same key in databases, UpdatePremise adds a
proposition to premise that these operations return the same
value. Otherwise, it does nothing.

Algorithm 2 enumerates all possible mappings, which in-
troduces heavy verification burdens. Flux proposes a heuristic
algorithm based on the observation that f 1 and f are almost
the same, except that the platform may re-execute f 1. Thus,
for each step s1

i of f 1 before the retry, Flux tries to map it
to the ith step si of f . For each step s1

j of f 1 after the retry,
if f 1 has executed s1

j before the retry, then Flux maps it to a
nop step, a step that does nothing. Otherwise, it maps s1

j to
a step sk in f such that sk can simulate s1

j . This only con-
structs and checks one mapping instead of enumerating all
possible mappings, which may miss the correct mapping. If
the constructed mapping does not work, Flux will randomly
sample other mappings to reduce false positives. However,
the method causes no false positives in the evaluation.

Example. After logging all operations except for the put
operation, the payment function will have no idempotence
issues. We also need to log generateId , which always returns
the same value on retry. First, GenRelyCond(F) returns a rely
condition that other concurrent function instances can arbi-
trarily change balance and discount in the database because

R

productId

discount2

R W

userId

balance2

userId

balance2-
discount2*price

W

receiptId

discount2*price

tr : W

receiptId

discount2*price

R R W Wt :

productId

discount1

userId

balance1

userId

balance1-
discount1*price

receiptId

discount1*price

PC(t) : balance1 >= discount1*price PC(tr) : balance2 >= discount2*price

W R Key

Value
ReadWrite Retry

Time Order Step Mapping

Figure 7: The example of verifying payment in Figure 1 when
logging all database operations except for put (line 9). Variables,
such as discount1 , have symbolic values. PC(t) is the path condition
of the trace t.

the function writes them by symbolic values. Second, Fig-
ure 7 shows that tr is a symbolic trace produced by retrying
payment1 after it generates receiptId , while t is a symbolic
trace produced without retries. Since Flux models update
(line 4) as a read and a write operation executed atomically,
there is no arrow between them. The post-conditions in traces
are true. Third, Algorithm 2 finds a proper mapping from
every step in tr to n steps in t and returns true. According
to the heuristic algorithm in the previous paragraph, there
are three steps in tr before the retry. Flux maps each of them
to one step in t, accordingly. For instance, the first step in tr
corresponds to executing get (line 2). Flux maps it to the first
step in t, corresponding to the execution of get (line 2). The
last step in tr corresponds to the put (line 9) executed in the
first execution of payment1. Thus, Flux maps this step to a
nop step. The first step in t can simulate the first step in tr
because they do not modify the database state and produce no
events. Since the start database states of the two steps are the
same, the return values of their read operations are the same,
which means discount1=discount2 . The second step in t can
simulate the second step in tr because they change balance
to the same value with no events. Due to a similar reason,
the third step in t can simulate the third step in tr. Because
of logging, get on retry in tr still returns discount2 in the
first execution, while update on retry in tr does nothing and
returns true. The generateId function also returns the same
identifier. Flux can use a nop step to simulate the last step in
tr because it is a useless write that does not change the data
in the receipt. Since the function has no return value, we omit
the function response event. Other traces of payment under
retry can also pass the verification. Therefore, payment with
these logs has no idempotence issues.

Soundness and Completeness. The verifier is sound and
incomplete. Soundness means the verifier will not overlook
any idempotence issues, which the theorems in Section 4 can
imply. Incompleteness means some idempotence-consistent

1 void unsupportedLoop(key, n) {
2 value := get("Data", key);
3 while(value % n != 0) {
4 put("Data", key, value + 1);
5 value := get("Data", key);
6 }
7 }

Figure 8: An example of an unbounded loop unsupported by Flux.

applications cannot pass the verification. Note that although
the verifier is incomplete, it can still ensure idempotence con-
sistency and reduce the performance overhead of logging.
The verifier is incomplete and will introduce false positives
in the following cases. First, an application is idempotence-
consistent, but individual functions do not satisfy idempo-
tence simulation. For example, an application incorporates
two functions, f1 and f2. They blindly write different values
to the same record Ra, while no functions will read it. Con-
sider the interleaving of f1.write(Ra, 1) → f2.write(Ra, 0) →
f1.retry() → f1.write(Ra, 1). In this example, functions flip
Ra’s value twice due to the retry. Nevertheless, since no func-
tions read the record Ra, clients will not observe that two flips
occur. Idempotence consistency still holds. However, Flux
will consider these two writes as non-idempotent because
they fail to follow idempotence simulation and will log each
of them; Second, an application contains unbounded loops
with write operations such that the parameters of issued write
operations can be different between normal execution and
retry. For example, the unbounded loop in Figure 8 uses the
data read from the database to be the parameters of write
operations and the loop condition. As a result, the param-
eters of write operations and the number of loop iterations
may change on retry, which does not satisfy the requirements
of Theorem 2. Section 4.3 depicts two specific types of un-
bounded loops that can be handled by Flux. Third, when
examining the idempotence simulation of a function f , Flux
constructs a step mapping using a heuristic approach instead
of enumerating all potential mappings. The heuristic runs un-
der the assumption that if f fails before a specific operation
op, f will execute op on retry. When the assumption does
not hold, the heuristic may not work, and Flux may miss cor-
rect mappings. Last, Flux does not generate all possible rely,
pre- and post-conditions, which may impede the verification
capability of idempotence simulation.

6 Advisor
Advisor identifies idempotence-violating operations based
on a brute-force algorithm and a heuristic algorithm. The
brute-force algorithm first enumerates all possible operation
sets. Second, for every set, it invokes the verifier to prove
the function after ensuring exactly-once execution of each
operation in the set via logs. Flux models the exactly-once
execution of an operation by adjusting the generated traces
rather than modifying functions. Specifically, it deletes each
trace element that records a retried write operation in the set.

Table 1: An example of executing the heuristic algorithm of advisor.

get 0 1 1
update 1 0 1
put 1 1 0

Verify(F, f) False False True

Furthermore, it appends a formula to the path condition for
each retried read operation in the set, indicating that the re-
tried operation returns the same result as the initial execution.
Third, among all operation sets that enable the function to
pass the verification, Flux selects the set that incurs the least
performance cost. Flux estimates the performance cost via
the evaluation results derived from the adopted logging mech-
anism. This algorithm enumerates O(2n) possible operation
sets, where n is the number of operations.

To reduce the complexity, we propose a heuristic algorithm
checking only O(n) sets. Initially, Flux logs all operations
in the function. Then Flux gradually removes the logs of
operations one by one. If the function can pass the verification
after removing a log, advisor will permanently remove the
log. Otherwise, the operation is idempotence-violating, and
advisor preserves the log. Table 1 shows how to apply the
heuristic to payment in Figure 1. Assume that advisor has
logged generateId . “0” denotes that advisor logs the operation.
“1” denotes that advisor does not log the operation. Advisor
first removes the log of get (get=0) but Verify(F , f) returns
f alse. Therefore, advisor preserves the log for idempotence.
Due to the same reason, advisor does not remove the log of
update . Last, Verify(F , f) indicates removing the log of put
does not break the idempotence. Therefore, advisor does not
log it.

The incompleteness of the verifier may result in advisor
being unable to detect certain redundant logs. Nonetheless,
Flux can still diminish logging overhead for functions while
ensuring idempotence consistency. Specifically, for an un-
bounded loop that the verifier cannot handle, advisor logs all
operations before and within the loop except for read opera-
tions on read-only data. Then advisor directly addresses the
code after the unbounded loop.

7 Evaluation
We aim to answer the following questions: 1) How effec-
tive is the verifier? 2) How long does it take for advisor to
identify idempotence-violating operations? 3) How much per-
formance benefit does Flux bring?

7.1 Experimental Setup
We evaluate the execution time of the verifier and advisor on
a desktop running Ubuntu 18.04, which has an Intel Core i7-
8700 processor and 15GB DRAM. Additionally, we evaluate
the performance of serverless applications on multiple AWS
servers.

We compare our system with Beldi [73] and Boki [45],

which logs all operations. Although some other systems [44,
69] also guarantee idempotence for serverless applications,
we focus on comparing with Beldi and Boki because they
are state-of-the-art. It is worth noting that while Flux aims
to provide idempotence consistency, Beldi and Boki go fur-
ther by ensuring transactional properties as well. To ensure
fairness in our comparison, we do not utilize the transaction
mechanisms provided by Beldi and Boki, as our focus is on
idempotence assurance alone. Therefore, the advantage that
Flux may have over Beldi and Boki in terms of performance
does not result from its lack of guarantee for transactional
properties.

We store the data of applications in DynamoDB [15]. We
run Beldi on AWS Lambda [16] with 1GB DRAM for each in-
stance and collect performance results via AWS CloudWatch.
Boki provides its own serverless platform. We deploy Boki ac-
cording to the evaluation environment in its paper [45]. Boki’s
serverless platform can report the latencies of functions but
cannot report their throughputs precisely.

We use wrk2 [1] as the load generator, which runs on an
m5.2xlarge instance for Beldi and a c5d.xlarge instance for
Boki. We adapt representative applications from the AWS
serverless applications repository [3], a GitHub repository
(10.9k stars) [9], popular benchmarks [8, 10, 29], and appli-
cations commonly used in papers about serverless comput-
ing [5, 6]. They have covered diverse real-world scenarios
of serverless computing, such as image processing and web
applications. We choose the applications with at least 1,000
deployments in AWS serverless application repository [3].
We skip some applications since they are micro-benchmarks
or stateless (no database operations). Table 2 summarizes the
characteristics of these applications. Type-I applications sat-
isfy idempotence consistency, while Type-II applications do
not. Although most applications in Table 2 have fewer than
a thousand lines of code, they remain representative because
serverless platforms typically impose restrictions on code size
and running time [2, 4, 7]. For instance, existing work [75]
that adapts web applications to serverless platforms needs to
largely reduce the application’s code size.

Flux’s approach is orthogonal to specific programming
languages. However, its implementation depends on a Java
symbolic execution engine [61] for program analysis. We
manually port applications to Go with the same semantics for
a fair performance comparison with Beldi and Boki, which
target Go applications. We choose to implement a verifier
for applications in Java rather than Go because Java is a
more frequently utilized language in developing serverless
applications than Go [11].

7.2 Verification Efficacy
Table 2 shows that the verifier identifies all 12 applications
with idempotence issues. All issues are previously unknown.
Developers have confirmed 8 issues among them. The ver-
ifier works for all applications except SPECjbb, which has

Table 2: The characteristics of 27 serverless applications. The applications with † have unbounded loops. LoC indicates lines of Java code.
C/S indicates whether functions run sequentially (S) or concurrently (C). #F, #I, and #N indicate the number of functions, functions without
idempotence issues, and functions with issues. #R/#W and #S indicate the number of read/write operations and idempotence-violating
operations. VTime, ATime(H), and ATime(B) indicate the execution time (in seconds) of the verifier, advisor using the heuristic algorithm,
and advisor using the brute-force algorithm.

Type Application LoC C/S Selected #F #I #N #R #W #S VTime ATime(H) ATime(B)

I (15)

Data Analysis [10] † 356 S ✓ 7 7 0 4 3 0 5.45
Image-Processing [10] 435 S 5 5 0 0 4 0 3.24
Mapreduce [8] † 250 S 3 3 0 3 1 0 2.06
FaaSImage [8] 193 S 1 1 0 1 9 0 104.31
Video [8] † 40 S 1 1 0 1 1 0 2.19
Image-Resizer [9] 92 S 1 1 0 1 1 0 2.40
Replicator [9] 59 S ✓ 1 1 0 1 1 0 2.40
Receive-Email-Body [9] 58 S 1 1 0 1 0 0 0.74
Fetch-And-Store [9] 66 S 1 1 0 0 1 0 1.49
FFmpeg [9] † 49 S 1 1 0 1 - - 2.23
DynamoDB-backup [9] † 26 S 1 1 0 1 - - 2.44
Lambda-Image-Resizer [3] 123 S 1 1 0 1 0 0 1.12
Uploader [3] 101 S ✓ 1 1 0 2 1 0 1.95
FFmpeg-Lambda-Layer [3] 86 S 1 1 0 1 1 0 2.30
Image-magick [3] 86 S 1 1 0 1 1 0 2.49

II (12)

SPECjbb2015 [29] † 1,861 C ✓ 9 5 4 - - - Timeout 6.23 11.87
Alexa [10] † 89 C ✓ 10 9 1 1 1 1 2.13 2.60 4.25
Hotel [5] † 714 C ✓ 10 8 2 7 5 3 2.26 17.70 68.94
Media [5] 486 C 7 6 1 1 7 7 14.79 86.04 344.77
Pynamodb-S3-URL [9] 224 C 6 2 4 6 9 9 9.91 22.85 69.71
Rest-API [9] 135 C 4 1 3 2 2 3 4.90 5.98 23.72
GraphQL [9] 80 C ✓ 1 0 1 1 1 1 2.07 4.34 12.17
Mongodb-Atlas [9] 83 S 1 0 1 0 1 1 2.28 14.25 72.67
Express [9] 76 C 1 0 1 1 1 1 1.90 1.92 4.28
Flask [9] 34 C 1 0 1 1 1 1 2.31 2.80 3.64
Save [3] 62 S 1 0 1 0 1 1 2.14 5.61 12.57
HttpEP [3] 105 C ✓ 1 0 1 1 3 3 2.42 11.73 44.5

unbounded loops unsupported by the verifier. However, all
functions in SPECjbb that cannot be verified have idempo-
tence issues. Thus, the verifier does not introduce false posi-
tives for SPESjbb. Nonetheless, it is worth noting that false
positives are still possible for other applications.

The 21 non-idempotent functions detected by Flux in 12
applications result in various bug patterns and outcomes due
to incorrectly repeated write operations on retry. First, the
database state is inconsistent with user expectations. For
instance, the idempotence violation in SPECjbb causes du-
plicate balance deductions. Second, the value responded to
clients is inconsistent with the database state. An example is
an IoT application called Alexa, where a function successfully
modifies device configuration but returns “failed” instead of
“success” to clients. Third, a single write operation may update
multiple records on retry, resulting in duplicated records with
identical content. For example, the PlaceOrder function in the
Hotel benchmark always places a new order with a random
identifier on each retry, resulting in duplicate records. Last,
concurrent functions may observe the inconsistent shared
state. An example is the Media benchmark, which relies on
a counter in the database to perform synchronization among
concurrent functions. However, the ComposeReview function
will falsely increase the counter due to retry, leading to false
synchronization among concurrent instances.

To test the scalability of the verifier, we run micro-
benchmarks with increasing verification complexity. When
the number of branches in a single function increases, the
verification time increases exponentially, as the number of
traces also increases exponentially. Verifying a function with
16 branches takes 1441.48 seconds. When we increase the
number of database operations, functions, or LoC, the verifica-
tion time increases linearly because the number of generated
traces increases linearly. Figure 15 in Appendix D presents
more details. Note that the verification time does not affect
the execution time of applications.

7.3 Performance of Advisor

For the second question, Table 2 shows the execution time
of advisor with two different algorithms. Compared to the
brute-force algorithm, the heuristic algorithm achieves up
to 4× smaller search space, which cuts down 80.39% of the
execution time of advisor. Although the heuristic algorithm
does not guarantee finding the minimum operation set, the
evaluation shows that it finds the same set as the brute-force
algorithm in practice. Although SPECjbb2015 has unbounded
loops unsupported by the verifier, advisor can still handle it
with the method described in Section 6.

10
1

10
2

10
3

10
4

 1
Data Analysis Replicator SPECjbb Uploader Alexa Hotel GraphQL HttpEP

L
a

te
n

c
y
 (

m
s
)

Raw Flux Beldi

1
7
.2

2

7
.8

2

8
2
.9

2

3
.6

3

1
6
.1

2 4
8
.1

6

4
.0

1

1
9
8
.9

4

1
7
.2

2

7
.8

2

1
9
5
.1

3

3
.6

3

1
7
.5

2 5
0
.7

9

4
.2

7

1
9
9
.5

0

5
1
.5

8

3
8
.6

2 2
0
2
.8

1

2
1
.9

0

5
3
.3

5

1
1
9
.6

1

2
3
.6

4

3
3
9
.2

2

4
3
.7

9

1
5
.4

0

2
8
8
.5

9

1
1
.4

6

3
5
.6

7

8
9
.8

7

1
2
.7

2

2
5
0
.4

4

4
3
.7

9

1
5
.4

0

2
9
4
.7

9

1
1
.4

6

5
6
.3

9

1
4
0
.8

8

4
3
.1

7

2
6
7
.8

2

1
0
9
.8

5

8
3
.6

5

6
6
4
.1

1

4
6
.4

2 9
9
.2

3

2
6
5
.9

2

5
3
.7

9

4
0
8
.6

4

Figure 9: The median (box) and 99% tail latency (whisker) of Raw,
Flux, and Beldi for eight applications. The y-axis is in the log scale.

 0

 400

 800

 1200

 1600

 2000

 0 800 1600 2400 3200

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(a) Data Analysis

 0

 100

 200

 300

 400

 0 100 200 300 400

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(b) Replicator

 0

 600

 1200

 1800

 2400

 3000

 0 1000 2000 3000 4000

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(c) Uploader

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(d) Alexa

 0

 300

 600

 900

 1200

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(e) Hotel

 0

 600

 1200

 1800

 2400

 3000

 0 800 1600 2400 3200

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(f) GraphQL

 0

 150

 300

 450

 600

 0 150 300 450 600

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(g) HttpEP

 0

 200

 400

 600

 0 200 400 600 800

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(h) SPECjbb

Figure 10: The throughput of each serverless application under
different configurations with increasing request rates.

7.4 Performance of the Applications
To answer the third question, we run applications under
four configurations: Raw, Flux, Boki, and Beldi. Raw means
running applications without any logs, which may be non-
idempotent. Flux uses existing mechanisms to log operations
identified by advisor. Wrk2 runs for 7 minutes to generate
random requests. We will show the results of 8 represen-
tative applications marked by ✓in Table 2. Since Type-I
applications are idempotence-consistent, Flux removes all
logging operations. For Type-II applications, Flux reduces up
to 99.47% of logging operations during execution compared
to Beldi and Boki.

7.4.1 Flux vs. Beldi

Latency. Figure 9 shows the results on AWS Lambda. Flux
poses no logging overhead over Raw for Type-I applications.
Compared with Beldi, which logs all operations, Flux brings
2.5× ∼ 6× performance improvement. For Type-II applica-
tions, Flux can avoid logging some operations. As a result, it

10
1

10
2

 1
Data Analysis Replicator Uploader Hotel GraphQL HttpEP

L
a

te
n

c
y
 (

m
s
)

Flux Boki

4
.0

2

6
.5

1

3
.8

1

2
2

.6
5

5
.9

0 2
6

.3
0

1
0

.7
5

1
4

.7
2

8
.3

8 2
4

.6
5

7
.3

3 2
8

.3
2

2
2

.6
6

1
2

.0
0

8
.7

3

3
2

.6
2

1
2

.1
1

3
3

.2
5

4
0

.8
9

2
0

.9
4

1
6

.1
8

6
3

.7
0

1
4

.6
2

4
4

.2
6

Figure 11: The median (box) and 99% tail latency (whisker) of Flux
and Boki for six applications at 1 RPS.

achieves up to 5.5× performance improvement over Beldi.

Throughput. Figure 10 shows that Flux achieves the same
peak throughput on Type-I applications as Raw and up to
7.36× higher peak throughput than Beldi. For Type-II appli-
cations, Flux can avoid part of logging operations. Therefore,
it has up to 80% higher peak throughput than Beldi, except for
HttpEP. For HttpEP, Flux has 10× higher peak throughput
than Beldi because Flux avoids logging a scan operation that
can return massive data, which reduces much overhead under
concurrency.

7.4.2 Flux vs. Boki

Boki [45] is another system to provide idempotence for
serverless applications. The comparison can also demonstrate
that Flux is general enough to be independent on a specific
serverless platform. Because of Boki’s limitations, it does not
guarantee idempotence for read-modify-write database opera-
tions [13]. Thus, we do not evaluate Alexa and SPECjbb2015
on Boki.

Figure 11 shows that at 1 RPS, Flux reduces the median
latency by up to 62.6% compared to Boki. The performance
of Boki is better than Beldi because Boki designs a more
efficient logging mechanism. Under high concurrency, the
logging mechanism of Boki introduces more overhead. We
further evaluate the latency at 800 RPS. Flux reduces the
median latency by up to 82.5% and the p99 latency by up to
69.0% for Type-I applications compared to Boki because Flux
introduces no logs. For Type-II applications, Flux reduces the
median latency by up to 88.4% and the p99 latency by up to
72.4%. Flux achieves 8.7× lower median latency than Boki
on HttpEP because Flux avoids logging an expensive “scan”.

7.4.3 Performance of the Java Applications

Since Beldi and Boki only support Go applications, we com-
pare the performance of Java applications on AWS Lambda
under the configurations of Flux and Raw. We implement
the logging mechanism via transactions [73]. At 1 RPS, Flux
achieves a tail latency up to 22.6% higher than Raw due to
the additional logging overhead. However, despite better per-
formance, Raw cannot guarantee idempotence consistency
and may cause incorrect execution results.

8 Related Work
Verification of Idempotence. Table 3 summarizes the ma-
jor differences between Flux and prior works that can verify

Table 3: Main differences between Flux and prior works. FSCQ-based works use a method akin to FSCQ [28] to prove the idempotence.
Partial protection means ensuring idempotence consistency while reducing unnecessary logs.

Definition of Idempotence Verification Method of Idempotence Protection

Support
Concurrency

Target Serverless
Applications

Verification
Targets

Support
Concurrency

Automated
Verification

Unbounded
Loop

Partial
Protection

Flux ✓ ✓ Implementation ✓ ✓ ✓(Partially) ✓
Ramalingam et al. [62] ✓ ✗ Protocol ✓ ✗ – ✗
Jangda et al. [44] ✓ ✓ Protocol ✓ ✗ – ✗
Yggdrasil [66] ✗ ✗ Implementation ✗ ✓ ✗ –
FSCQ-Based
Works [23–25, 27, 28] ✗ ✗ Implementation ✗ ✗ ✓ –

idempotence. Jangda et al. [44] formalizes the semantics of
serverless computing and ensures idempotence with trans-
actions. There are two main differences between Jangda et
al. and Flux. For the idempotence definition, idempotence
consistency is more relaxed than the idempotence provided
by Jangda et al., as it allows more concurrent schedulings.
Jangda et al. tries to model serverless computing with naive
semantics to conceal the low-level details of serverless func-
tion execution, such as concurrency and warm-start. It re-
quires the platform to process concurrent requests in the same
way as processing a single request at a time without con-
currency or retries. Consequently, it necessitates atomicity,
serializability, and exactly-once execution. Besides, Jangda
et al. focuses on verifying protocols instead of source code.
To ensure idempotence, it protects the entire function with
serializable transactions and uses logs to ensure that the trans-
action only commits once. However, using transactions is not
optimal since some applications may not require transaction
semantics, resulting in redundant protection and performance
cost.

FSCQ [28] and DFSCQ [27] verify the crash safety of
file systems via Crash Hoare Logic (CHL). CHL requires
developers to manually write pre-conditions, post-conditions,
and crash conditions to specify crash safety. Under crash,
CHL proves that the program state always satisfies crash
conditions after a crash happens at any time. It defines the
idempotence of a recovery program to be that crash condi-
tions imply pre-conditions. Perennial [23], GoJournal [24],
and DaisyNFS [25] achieve significant progress in the verifi-
cation of concurrent crash-safe systems. They adopt a similar
approach as FSCQ to verify the idempotence of a recovery
program. Thus, they cannot realize automated verification.
Different from them, Flux focuses on automated verification
without human effort.

Recent SMT-based verification approaches [26,39,66] have
solved many issues of the automated verification of storage
systems. Yggdrasil proposes a new correctness definition for
sequential file systems — crash refinement. It means that
for any disk state produced by the implementation with crash
recovery, the specification can also produce the same disk
state. The definition is amenable to automated verification.
Yggdrasil also verifies the idempotence of recovery functions.

Unfortunately, it verifies sequential functions rather than con-
current functions. Others [26, 39] also verify sequential func-
tions.

Ramalingam et al. [62] formally defines idempotence in
the general distributed setting, proving that logging each oper-
ation can guarantee this property. It has two main differences
from Flux. First, for the definition of idempotence, both Rama-
lingam et al. and Flux require that any execution with retries
has the same observable behavior as another normal execu-
tion. However, Ramalingam et al. targets a general distributed
setting. The observable behavior only includes function invo-
cation and response. In contrast, Flux also considers database
states. As a result, for stateful serverless applications, Ra-
malingam et al.’s definition may allow inconsistent database
states on retry as long as functions do not return database
states to clients. This anomaly is critical if clients directly
access database states for analysis or other purposes. In con-
trast, Flux’s definition prohibits inconsistent database states
and can prevent such anomalies. Second, for verification and
protection, Ramalingam et al. manually proves the protocol
of logging each operation and presents a compiler that au-
tomatically logs each operation. Flux focuses on verifying
the implementation of applications and its advisor only logs
necessary operations.

Crash-Only Software. Previous work [20] comprehen-
sively analyzes the requirements for crash-only software, a
program that can crash safely and recover quickly via retries.
Our work can assist in revising these requirements. Specifi-
cally, serverless applications fulfill most of these requirements,
such as explicit boundaries around what is retried and dedi-
cated storage for non-volatile data. However, our work only
mandates that all functions satisfy idempotence consistency
instead of necessitating that every request is idempotent, as
stated in previous work [20]. This distinction results in fun-
damental differences in several aspects. First, idempotence
pertains to a single component, while idempotence consis-
tency pertains to the entire application comprised of multiple
components. Second, while idempotence requires a function’s
execution result to remain the same despite retries, idempo-
tence consistency only requires the existence of an execution
without retries for each execution with retries such that they
produce the same result. For example, a read-only function

may not satisfy idempotence because concurrent modifica-
tions to the database state can result in different return values
with and without retries. However, read-only functions do
not violate idempotence consistency. In addition to serverless
functions, other applications with “imperfectly crash-only”
code can also refer to the requirements revised based on Flux.

Research on Serverless Computing. Some systems [44,
45, 62, 69, 73] focus on ensuring idempotence via runtime
mechanisms. Different from them, Flux focuses on verify-
ing idempotence consistency. Furthermore, combining them
with Flux can ensure idempotence efficiently. Some other sys-
tems [21, 30–32, 46, 49, 51, 56, 63, 65, 71, 72, 74] target other
things, such as startup time.

Consistency Model. There are many consistency mod-
els [14], which define the permitted execution order under
concurrency. Idempotence consistency specifies the expected
behavior of concurrent systems when failure happens, which
is the main difference from existing consistency models.

9 Discussion
Serverless Applications vs. Other Applications. Idempo-
tence [43] is a property that is important not only for server-
less applications but also for programs that use retry-based
fault tolerance approaches, such as RPC-based distributed
systems [41,50], AI systems [38], and even some intermittent
systems [70]. Thus, it is worth considering whether we can
apply Flux to programs beyond serverless applications. The
answer is yes and no.

One of the key contributions of Flux is formally defin-
ing idempotence consistency, which is general enough for
various scenarios. For instance, different RPC handlers in dis-
tributed systems may concurrently manipulate shared states.
Repeated state updates due to failures and retries could impair
data consistency under concurrency. Specifically, we success-
fully detect an issue in HDFS according to the definition
of idempotence consistency, which the community has con-
firmed [41]. When the system retries NameNode RPC of
ClientProtocol.truncate , it may truncate a file multiple times,
which will potentially cause data loss if another RPC simul-
taneously updates the same file. However, this issue will not
happen under sequential execution.

However, using Flux’s method to verify other systems poses
many challenges. First, the automated verification algorithm
mainly focuses on serverless applications. We need to re-
design it for other scenarios. For example, Flux presumes
that shared states are solely key-value pairs stored in NoSQL
databases. However, shared states could be file descriptors,
shared variables, or global configurations in distributed sys-
tems. Programmers must reinterpret them across various sce-
narios. Additionally, Flux automatically constructs pre-, post-,
and rely conditions based on the NoSQL interface assumption,
necessitating a re-examination of the construction algorithm
based on other modeling methods of states. Second, Flux’s

implementation targets serverless applications. For example,
Flux currently only supports Java programs and DynamoDB,
which are commonly used by serverless applications. Engi-
neering effort is necessary to support other languages and
storage services. Furthermore, advisor in Flux relies on ex-
isting logging mechanisms for serverless applications to fix
idempotence issues. Therefore, the new scenario should also
provide mechanisms to ensure exactly-once execution of oper-
ations on shared states. Failure to do so limits Flux’s potential
to identify and fix idempotence issues via advisor.

Idempotence Consistency vs. Atomicity. Although atom-
icity is vital for fault tolerance, Flux does not guarantee it.
Atomicity is not mandatory for some applications to sustain
fault tolerance, as they may permit other functions to see par-
tial updates. Furthermore, it is essential to emphasize that
Flux is orthogonal to approaches that ensure atomicity. An
application that necessitates atomicity can still utilize Flux
to guarantee idempotence consistency and minimize logging
overhead.

Although Flux does not verify atomicity and some other
transactional properties, extending our approach to verify
these properties is an intriguing research direction. Some
verifiers [22–25, 37, 53, 54, 76] target transactional proper-
ties but may not consider retries. After ensuring idempotence
consistency based on Flux, we can prove the transactional
properties of functions without considering failures and re-
tries. Therefore, we can combine Flux and these verifiers by
ensuring idempotence consistency via Flux and then proving
other properties with these verifiers.

Automated Verification vs. Interactive Verification. We
adopt symbolic execution engines to develop Flux, which
requires less manual effort than using interactive theorem
provers. [37]. Additionally, although interactive theorem
provers can handle unbounded loops by crafting loop invari-
ants, finding proper loop invariants is notoriously difficult.

10 Conclusion
This paper presents Flux, the first toolkit that can automat-
ically verify and help ensure the idempotence consistency
of serverless applications. It guarantees idempotence consis-
tency via logs while reducing unnecessary logging overhead.

Acknowledgment
We sincerely thank the anonymous reviewers for their valu-
able comments. We are especially grateful to our shep-
herd, George Candea, whose reviews and suggestions largely
improved our work. This work is supported by the Na-
tional Natural Science Foundation of China (No. 62132014
and 62272304), the Fundamental Research Funds for the
Central Universities, and the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
20ZR1428100). Zhaoguo Wang (zhaoguowang@sjtu.edu
.cn) is the corresponding author.

zhaoguowang@sjtu.edu.cn
zhaoguowang@sjtu.edu.cn

References
[1] A Constant Throughput, Correct Latency Recording

Variant of wrk. https://github.com/giltene
/wrk2.

[2] AWS Lambda Enables Functions That Can Run up to
15 minutes. https://aws.amazon.com/about-aws
/whats-new/2018/10/aws-lambda-supports-f
unctions-that-can-run-up-to-15-minutes/?
nc1=h_ls,.

[3] AWS Serverless Application Repository. https://se
rverlessrepo.aws.amazon.com/applications.

[4] Azure Functions Hosting Options. https://docs.m
icrosoft.com/en-us/azure/azure-functions
/functions-scale,.

[5] Beldi. https://github.com/eniac/Beldi.

[6] Benchmark Workloads of Boki. https://github.c
om/ut-osa/boki-benchmarks.

[7] Cloud Functions Execution Environment. https://cl
oud.google.com/functions/docs/concepts/e
xec,.

[8] Functionbench. https://github.com/kmu-bigda
ta/serverless-faas-workbench.

[9] Serverless Examples. https://github.com/serve
rless/examples.

[10] Serverlessbench. https://serverlessbench.syst
ems/en-us/.

[11] State of Serverless. https://www.datadoghq.com/
state-of-serverless/.

[12] Uninterpreted Functions and Constants. https://mi
crosoft.github.io/z3guide/docs/logic/Uni
nterpreted-functions-and-constants.

[13] Working with Items and Attributes - Amazon Dy-
namoDB. https://docs.aws.amazon.com/am
azondynamodb/latest/developerguide/Worki
ngWithItems.html#WorkingWithItems.Atomic
Counters.

[14] Marcos K. Aguilera and Douglas B. Terry. The Many
Faces of Consistency. IEEE Data Eng. Bull., 39:3–13,
2016.

[15] Amazon. AWS Dynamodb. https://aws.amazon.c
om/dynamodb/.

[16] Amazon. AWS Lambda. https://aws.amazon.com
/lambda/.

[17] Amazon. Build a CRUD API with Lambda and Dy-
namoDB. https://docs.aws.amazon.com/apig
ateway/latest/developerguide/http-api-dyn
amo-db.html.

[18] Amazon. Make a Lambda Function Idempotent. https:
//aws.amazon.com/premiumsupport/knowledg
e-center/lambda-function-idempotent/,.

[19] Andreas Blass and Yuri Gurevich. Inadequacy of Com-
putable Loop Invariants. ACM Trans. Comput. Logic,
2(1):1–11, jan 2001.

[20] George Candea and Armando Fox. Crash-Only Soft-
ware. In 9th Workshop on Hot Topics in Operating
Systems, Lihue, HI, May 2003. USENIX Association.

[21] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro
Fonseca. From Warm to Hot Starts: Leveraging Run-
times for the Serverless Era. In Proceedings of the Work-
shop on Hot Topics in Operating Systems, page 58–64,
New York, NY, USA, 2021. Association for Computing
Machinery.

[22] Tej Chajed, Frans Kaashoek, Butler Lampson, and Nick-
olai Zeldovich. Verifying Concurrent Software Using
Movers in CSPEC. In 13th USENIX Symposium on
Operating Systems Design and Implementation, pages
306–322, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[23] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying Concurrent, Crash-Safe
Systems with Perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, Hun-
stville, ON, Canada, October 2019.

[24] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJour-
nal: A Verified, Concurrent, Crash-safe Journaling Sys-
tem. In 15th USENIX Symposium on Operating Systems
Design and Implementation, pages 423–439. USENIX
Association, July 2021.

[25] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
DaisyNFS Concurrent and Crash-safe File System With
Sequential Reasoning. In 16th USENIX Symposium on
Operating Systems Design and Implementation, pages
447–463, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[26] Yun-Sheng Chang, Yao Hsiao, Tzu-Chi Lin, Che-Wei
Tsao, Chun-Feng Wu, Yuan-Hao Chang, Hsiang-Shang
Ko, and Yu-Fang Chen. Determinizing Crash Behav-
ior with a Verified Snapshot-Consistent Flash Transla-
tion Layer. In 14th USENIX Symposium on Operat-

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://serverlessrepo.aws.amazon.com/applications
https://serverlessrepo.aws.amazon.com/applications
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/eniac/Beldi
https://github.com/ut-osa/boki-benchmarks
https://github.com/ut-osa/boki-benchmarks
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/serverless/examples
https://github.com/serverless/examples
https://serverlessbench.systems/en-us/
https://serverlessbench.systems/en-us/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

ing Systems Design and Implementation, pages 81–97.
USENIX Association, November 2020.

[27] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay undefinedleri, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying a High-
Performance Crash-Safe File System Using a Tree Spec-
ification. In Proceedings of the 26th Symposium on Op-
erating Systems Principles, pages 270–286, New York,
NY, USA, 2017. Association for Computing Machinery.

[28] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing Crash Hoare Logic for Certifying the FSCQ File
System. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, pages 18–37, New York, NY,
USA, 2015. Association for Computing Machinery.

[29] Standard Performance Evaluation Corporation. Specjbb
2015. https://www.spec.org/jbb2015/.

[30] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless Computing on
Heterogeneous Computers. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 797–813, New York, NY, USA, 2022. Association
for Computing Machinery.

[31] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-Millisecond Startup for Serverless Com-
puting with Initialization-Less Booting. In Proceedings
of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 467–481, New York, NY, USA,
2020. Association for Computing Machinery.

[32] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping Serverless Computing Alive with Greedy-Dual
Caching, pages 386–400. Association for Computing
Machinery, New York, NY, USA, 2021.

[33] Carlo A. Furia, Bertrand Meyer, and Sergey Velder.
Loop Invariants: Analysis, Classification, and Examples.
ACM Comput. Surv., 46(3), jan 2014.

[34] Google. Google Cloud Functions. https://cloud.
google.com/functions/.

[35] Google. Retrying Event-Driven Functions. https:
//cloud.google.com/functions/docs/bestpr
actices/retries,.

[36] Google. Stateful Serverless on Google Cloud with
Cloudstate and Akka Serverless. https://cloud.
google.com/blog/topics/developers-practit
ioners/stateful-serverless-on-google-clo
ud-with-cloudstate-and-akka-serverless.

[37] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. Certikos: An Extensible Architecture for
Building Certified Concurrent OS Kernels. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 653–669, Savannah, GA, Novem-
ber 2016. USENIX Association.

[38] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale Preemption for Concurrent
GPU-accelerated DNN Inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 539–558, Carlsbad, CA, July 2022.
USENIX Association.

[39] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage Sys-
tems are Distributed Systems (So Verify Them That
Way!). In 14th USENIX Symposium on Operating
Systems Design and Implementation, pages 99–115.
USENIX Association, November 2020.

[40] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving Practical Dis-
tributed Systems Correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 1–
17, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[41] Apache HDFS. HDFS-16322. https://issues.apa
che.org/jira/browse/HDFS-16322.

[42] Hadoop HDFS. HDFS-7926. https://issues.apa
che.org/jira/browse/HDFS-7926.

[43] Pat Helland. Idempotence Is Not a Medical Condition:
An Essential Property for Reliable Systems. Queue,
10(4):30–46, apr 2012.

[44] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Ar-
jun Guha. Formal Foundations of Serverless Computing.
Proc. ACM Program. Lang., 3, October 2019.

[45] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 691–707, New York, NY, USA, 2021.
Association for Computing Machinery.

[46] Zhipeng Jia and Emmett Witchel. Nightcore: Effi-
cient and Scalable Serverless Computing for Latency-
Sensitive, Interactive Microservices, pages 152–166. As-
sociation for Computing Machinery, New York, NY,
USA, 2021.

[47] C. B. Jones. Tentative Steps toward a Development
Method for Interfering Programs. ACM Trans. Program.
Lang. Syst., 5(4):596–619, oct 1983.

https://www.spec.org/jbb2015/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://issues.apache.org/jira/browse/HDFS-16322
https://issues.apache.org/jira/browse/HDFS-16322
https://issues.apache.org/jira/browse/HDFS-7926
https://issues.apache.org/jira/browse/HDFS-7926

[48] Kafka. Kafka-5169. https://issues.apache.org/
jira/browse/KAFKA-5169.

[49] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-as-a-
Service Workflows. In 2021 USENIX Annual Technical
Conference, pages 805–820. USENIX Association, July
2021.

[50] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency, pages 71–86.
Association for Computing Machinery, New York, NY,
USA, 2015.

[51] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan
Cheng, Wenli Zheng, and Minyi Guo. FaasFlow: Enable
Efficient Workflow Execution for Function-as-a-Service.
In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 782–796, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[52] Hongjin Liang and Xinyu Feng. Modular Verification
of Linearizability with Non-Fixed Linearization Points.
SIGPLAN Not., 48(6):459–470, jun 2013.

[53] Hongjin Liang, Xinyu Feng, and Ming Fu. A Rely-
Guarantee-Based Simulation for Verifying Concurrent
Program Transformations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 455–468, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[54] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-Effort Veri-
fication of High-Performance Concurrent Programs. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 197–210, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[55] Nancy Lynch and Frits Vaandrager. Forward and Back-
ward Simulations. Inf. Comput., 128(1):1–25, jul 1996.

[56] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. Orion and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 303–320, Carlsbad, CA, July 2022.
USENIX Association.

[57] Microsoft. Designing Azure Functions for Identical
Input. https://docs.microsoft.com/en-us/az
ure/azure-functions/functions-idempotent,.

[58] Microsoft. Microsoft Azure Functions. https://azur
e.microsoft.com/en-us/services/functions/.

[59] Microsoft. What are Durable Functions. https://do
cs.microsoft.com/en-us/azure/azure-funct
ions/durable/durable-functions-overview?
tabs=csharp.

[60] Peter W. OHearn. Resources, Concurrency, and Local
Reasoning. Theor. Comput. Sci., 375(1-3):271–307, apr
2007.

[61] Java Pathfinder. Java Pathfinder. https://github.c
om/javapathfinder/.

[62] Ganesan Ramalingam and Kapil Vaswani. Fault Tol-
erance via Idempotence. In Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 249–262, New
York, NY, USA, 2013. Association for Computing Ma-
chinery.

[63] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
Breaker: Warming Serverless Functions Better with
Heterogeneity. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
753–767, New York, NY, USA, 2022. Association for
Computing Machinery.

[64] Serverlessbench. Issue with Exactly-once Execution
Semantic of Alexa. https://github.com/SJTU-I
PADS/ServerlessBench/issues/6.

[65] Wonseok Shin, Wook-Hee Kim, and Changwoo Min.
Fireworks: A Fast, Efficient, and Safe Serverless Frame-
work Using VM-level post-JIT Snapshot. In Proceed-
ings of the Seventeenth European Conference on Com-
puter Systems, page 663–677, New York, NY, USA,
2022. Association for Computing Machinery.

[66] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-Button Verification of File Systems
via Crash Refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation, pages
1–16, Savannah, GA, November 2016. USENIX Asso-
ciation.

[67] Spark. Spark-6133. https://issues.apache.org/
jira/browse/SPARK-6133.

[68] Spree. Spree. https://spreecommerce.org/.

https://issues.apache.org/jira/browse/KAFKA-5169
https://issues.apache.org/jira/browse/KAFKA-5169
https://docs.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://docs.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://github.com/javapathfinder/
https://github.com/javapathfinder/
https://github.com/SJTU-IPADS/ServerlessBench/issues/6
https://github.com/SJTU-IPADS/ServerlessBench/issues/6
https://issues.apache.org/jira/browse/SPARK-6133
https://issues.apache.org/jira/browse/SPARK-6133
https://spreecommerce.org/

[69] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Jose M.
Faleiro. A Fault-Tolerance Shim for Serverless Comput-
ing. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems, New York, NY, USA, 2020.
Association for Computing Machinery.

[70] Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/o
Dependent Idempotence Bugs in Intermittent Systems.
Proc. ACM Program. Lang., 3, oct 2019.

[71] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking, Anal-
ysis, and Optimization of Serverless Function Snapshots.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 559–572, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[72] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
InFless: A Native Serverless System for Low-Latency,
High-Throughput Inference. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 768–781, New York, NY, USA, 2022. Association
for Computing Machinery.

[73] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-Tolerant and
Transactional Stateful Serverless Workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, pages 1187–1204. USENIX Associa-
tion, November 2020.

[74] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and Cheaper Serverless
Computing on Harvested Resources. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, pages 724–739, New York, NY, USA,
2021. Association for Computing Machinery.

[75] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang,
Zhaoguo Wang, and Haibo Chen. BeeHive: Sub-Second
Elasticity for Web Services with Semi-FaaS Execution.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 74–87,
New York, NY, USA, 2023. Association for Computing
Machinery.

[76] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu,
and Haibo Chen. Using Concurrent Relational Logic
with Helpers for Verifying the AtomFS File System. In

Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, pages 259–274, New York, NY,
USA, 2019. Association for Computing Machinery.

Appendix A Proof of Theorem 1
In this section, we prove that it is sufficient to verify the idem-
potence consistency of a function set F by proving that each
function f ∈F satisfies idempotence simulation, which is The-
orem 1 in the paper. Since our verification approach adopts
existing compositional proof techniques in RGSim [53], our
formal proof is similar to the proof in that paper.

Let’s start by introducing some important concepts. When
we have two functions running concurrently, we can con-
sider them as one unit and denote their local state using the
symbol σ1 ∥ σ2, where σ1 represents the local state of the
first function and σ2 represents the local state of the second
function. Using this notation, we can represent the overall
system state as ⟨σ1 ∥ σ2,D⟩ when two functions run concur-
rently. We use ⟨σ1 ∥ σ2,D⟩ α

⟶ ⟨σ′1 ∥ σ2,D
′⟩ to denote that

the system can take one step and change the system state
from ⟨σ1 ∥ σ2,D⟩ to ⟨σ′1 ∥ σ2,D

′⟩, producing an event α (if
any). During each execution cycle, the system can either ad-
vance the first function by one step or advance the second
function by one step. It means that if there exists σ

′
1 and

D′ such that ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, then we can imply that

⟨σ1 ∥ σ2,D⟩ α
⟶ ⟨σ′1 ∥ σ2,D

′⟩. Similarly, if there exists σ
′
2

and D′ such that ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, then we can imply that

⟨σ1 ∥ σ2,D⟩ α
⟶ ⟨σ1 ∥ σ

′
2,D

′⟩.
⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩ denotes that the concurrent

execution of two functions with the local state Σ1 and Σ2 can
simulate the concurrent execution of another two functions
with the local state σ1 and σ2 under the rely condition R.
Here is the detailed definition of the simulation relation. We
use ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩ to denote that the system can take
n (0 ≤ n) steps to change the system state from ⟨Σ1,D⟩ to
⟨Σ′1,D′⟩, producing an event α (if any).

• For any local state σ
′
1 and database state D′, if ⟨σ1,D⟩ α

⟶

⟨σ′1,D′⟩, then there exists a local state Σ
′
1 such that ⟨Σ1,D⟩

α

⟹ ⟨Σ′1,D′⟩. If α is a response event, then ⟨σ2,D
′⟩ ⊑R

⟨Σ2,D
′⟩. Otherwise, ⟨σ′1 ∥ σ2,D

′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D
′⟩. This

condition represents the requirement for the simulation
relation when the system advances the first function by one
step.

• For any local state σ
′
2 and database state D′, if ⟨σ2,D⟩ α

⟶

⟨σ′2,D′⟩, then there exists a local state Σ
′
2 such that ⟨Σ2,D⟩

α

⟹ ⟨Σ′2,D′⟩. If α is a response event, then ⟨σ1,D
′⟩ ⊑R

⟨Σ1,D
′⟩. Otherwise, ⟨σ1 ∥ σ

′
2,D

′⟩ ⊑R ⟨Σ1 ∥ Σ
′
2,D

′⟩. This
condition represents the requirement for the simulation
relation when the system advances the first function by one
step, which is similar to the first requirement.

• If (D,D′) ∈ R, then ⟨σ1 ∥ σ2,D
′⟩ ⊑R ⟨Σ1 ∥ Σ2,D

′⟩.

We can extend the above definition to more than two func-
tions.

To prove Theorem 1, we first prove the following two lem-
mas based on the above definitions.

Lemma 1 Assume there are four functions f1, f2, g1, and g2.
Suppose that the execution of g1 can simulate the execution
of f1 under the rely condition R, while the execution of g2
can simulate the execution of f2 under the rely condition R.
Then we can imply that the concurrent execution of g1 and
g2 can simulate the concurrent execution of f1 and f2 under
the rely condition R. We use σ1, σ2, Σ1, and Σ2 to represent
the local states of f1, f2, g1, and g2, respectively.

∀σ1,Σ1,σ2,Σ2,D.

((⟨σ1,D⟩ ⊑R ⟨Σ1,D⟩)∧ (⟨σ2,D⟩ ⊑R ⟨Σ2,D⟩))→
(⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩)

Proof

The premises include

⟨σ1,D⟩ ⊑R ⟨Σ1,D⟩, (1)

and
⟨σ2,D⟩ ⊑R ⟨Σ2,D⟩. (2)

The conclusion is

⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩. (3)

Below we prove the conclusion by co-induction on ⊑R. Ac-
cording to the definition of ⊑R described above, the execution
of two functions belongs to one of the following five cases.

• ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, where α is not a response event.

According to the definition of ⊑R, we need to prove that
there exists Σ

′
1 such that ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩ and ⟨σ′1 ∥
σ2,D

′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D
′⟩.

From Equation (1), there exists Σ
′
1 such that

⟨Σ1,D⟩ α
⟹ ⟨Σ′1,D′⟩, (4)

and
⟨σ′1,D′⟩ ⊑R ⟨Σ′1,D′⟩. (5)

Since (D,D′) ∈ R, from Equation (2), we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (6)

From both Equation (5) and Equation (6) we know

⟨σ′1 ∥ σ2,D
′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D

′⟩. (7)

• ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, where α is not a response event. The

proof is similar to the first case.

• ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, where α is a response event.

According to the definition of ⊑R, we need to prove
that there exists Σ

′
1 such that ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩, and
⟨σ2,D

′⟩ ⊑R ⟨Σ2,D
′⟩.

From Equation (1), there exists Σ
′
1 such that

⟨Σ1,D⟩ α
⟹ ⟨Σ′1,D′⟩. (8)

Since (D,D′) ∈ R, we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (9)

• ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, where α is a response event. The

proof is similar to the third case.

• (D,D′) ∈ R, which means that other concurrent functions
change the database state from D to D′.

According to the definition of ⊑R, we need to prove that
⟨σ1 ∥ σ2,D

′⟩ ⊑R ⟨Σ1 ∥ Σ2,D
′⟩.

From (D,D′) ∈ R and Equation (1), we know

⟨σ1,D
′⟩ ⊑R ⟨Σ1,D

′⟩. (10)

From (D,D′) ∈ R and Equation (2), we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (11)

From both Equation (10) and Equation (11), we know

⟨σ1 ∥ σ2,D
′⟩ ⊑R ⟨Σ1 ∥ Σ2,D

′⟩. (12)

Therefore, the conclusion Equation (3) is true. □

Then we prove the following lemma.

Lemma 2 We use AF to denote an automaton running func-
tions in a function set F . For any function set F and automaton
AF , if every function in F satisfies idempotence simulation,
then the following fact holds: from the same initial database
state, every time the automaton AF∗ takes one step, AF can
take n steps (n ≥ 0) such that they reach the same database
state and produce the same event (if any).

Proof

The premise is that every function f ∈ F satisfies idempo-
tence simulation:

∀ f ∈ F.

(∀D,arg.⟨init(f∗,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩),
(13)

where init(f ,arg) denotes the initial local state of running the
function f with the argument arg, and we omit the existential
quantifier on R. The conclusion is that the execution of F can
simulate the execution of F∗.

We prove the conclusion by classifying every step taken by
AF∗ into three cases.

• AF∗ creates a function instance to run a function f∗. Then,
AF can create an instance with the same identifier to run f
with the same invocation arguments. Both of them do not
change the database state and produce the same invocation
event. Note that we treat f and f∗ as the same in invocation
events since their only difference is whether to be retried.

• A function instance takes one step. From Equation (13) and
Lemma 1, we know that for any functions f1, f2, . . . ∈ F ,
function arguments arg1, . . ., and shared state D,

⟨init(f∗1 ,arg1) ∥ . . . ,D⟩ ⊑R ⟨init(f1,arg1) ∥ . . . ,D⟩. (14)

From Equation (14), we know that for any intermediate
local states (σ f1 , . . .) and database state D′ during executing
functions,

⟨σ f ∗1 ∥ . . . ,D′⟩ ⊑R ⟨σ f1 ∥ . . . ,D′⟩. (15)

According to the definition of ⊑R, Equation (15) implies
that every time a function instance in AF∗ takes one step,
another function instance in AF can always take k (0 ≤ k)
steps to result in the same database state and the same event
(if any).

• AF∗ retries an instance. Then AF takes no steps such that it
produces the same database state and no event. The proof
is similar to the second case.

Then, the conclusion is true. □

Finally, we can prove Theorem 1 in the paper.

Theorem 5 Given a function set F , if every function f ∈ F
satisfies idempotence simulation, then F satisfies idempotence
consistency.

Proof

The premise is that every function f ∈ F satisfies idempo-
tence simulation.

∀ f ∈ F.

(∀D,arg.⟨init(f∗,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩).
(16)

The conclusion is that F satisfies idempotence consistency
(Definition 1).

From Lemma 2 and Equation (16), we imply that the execu-
tion of F can simulate the execution of F∗. That means every
time AF∗ takes one step, AF can take n (n ≥ 0) steps such that
they reach the same database state and produce the same event
(if any). Therefore, if some execution of AF∗ can result in the
client-observable behavior ⟨H,D⟩, then there exists another
execution of AF that can also result in ⟨H,D⟩. The conclusion
is proved. □

Appendix B Proof of Failure Reduction
In this section, we prove Theorem 4 in the paper, which proves
the second condition in Theorem 3. The first condition in
Theorem 3 is intuitive. Thus, we omit its formal proof in this
section. We first prove two lemmas and then prove Theorem 4
based on them.

Lemma 3 If the execution of f can simulate f 1, then for any
n ≥ 1, the execution of f n−1 can simulate f n. The definition
of f 1, f n, and f n−1 are in Section 4.4.

(∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩)→

(∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩).

Proof

The premise is

∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (17)

We want to prove for all n ≥ 1,

∀D,arg.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩. (18)

We prove it by induction on n.

Base case: When n = 1, Equation (18) is true, because it is
equivalent to the premise Equation (17).

Inductive step: Suppose Equation (18) is true when n = k
(k ≥ 1).

∀D,arg.⟨init(f k
,arg),D⟩ ⊑R ⟨init(f k−1

,arg),D⟩. (19)

Then when n = k+1, we want to prove

∀D,arg.⟨init(f k+1
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (20)

According to the definition of ⊑R, we need to map every single
step during the execution of f k+1 to s (s ≥ 0) steps during
the execution of f k. We can construct the mapping in the
following way. f k+1 and f k are almost the same, except that
the platform retries them for different times. Then before the
first retry, we map every single step when executing f k+1 to a
single step of f k. That means f k+1 and f k always execute the
same statement. This mapping can satisfy the requirements
of ⊑R.

When the first retry of f k+1 happens, we ask f k to be also
retried. Assume the database state immediately before the
retry is D1. The executions of f k+1 and f k from D1 after the
first retry are equivalent to the executions of f k and f k−1 from
D1 before the first retry, respectively. This is because after the
first retry, the platform will retry f k+1 for k times and retry
f k for k−1 times. From Equation (19), we know that

∀arg.⟨init(f k
,arg),D1⟩ ⊑R ⟨init(f k−1

,arg),D1⟩. (21)

Then there exists a step mapping from every step of f k+1 to
steps of f k after the first retry, which satisfies the requirements
of ⊑R. Therefore, Equation (18) is true for n = k+1.

Conclusion: By the principle of induction, Equation (18) is
true for any n ≥ 1. □

Lemma 4 For any i, j,k ≥ 0, if the execution of f k can sim-
ulate f j and the execution of f j can simulate f i, then the
execution of f k can simulate f i.

∀i, j,k.

((∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f j

,arg),D⟩)∧
(∀D,arg.⟨init(f j

,arg),D⟩ ⊑R ⟨init(f k
,arg),D⟩))

→ (∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩).

Proof

This lemma is similar to the transitivity of forward simula-
tion. The premises include

∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f j

,arg),D⟩, (22)

and

∀D,arg.⟨init(f j
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (23)

The conclusion is

∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (24)

We use σi, σ j, and σk to denote the local state when execut-
ing f i, f j, and f k, respectively. We will prove the conclusion
Equation (24) by co-induction. According to the definition of
⊑R, every step taken during executing f i belongs to one of
the following three cases.

• ⟨σi,D⟩ α
⟶ ⟨σ′i,D′⟩, where α is not a response event.

According to the definition of ⊑R, we need to prove
that there exists σ

′
k such that ⟨σk,D⟩ α

⟹⟨σ′k,D′⟩ and
⟨σ′i,D′⟩ ⊑R ⟨σ′k,D′⟩.
From Equation (22), we know that there exists σ

′
j such that

⟨σ j,D⟩ α
⟹⟨σ′j,D′⟩, (25)

and
⟨σ′i,D′⟩ ⊑R ⟨σ′j,D′⟩. (26)

From Equation (23) and Equation (25), we know there
exists σ

′
k such that

⟨σk,D⟩ α
⟹⟨σ′k,D′⟩, (27)

and
⟨σ′j,D′⟩ ⊑R ⟨σ′k,D′⟩. (28)

From Equation (26) and Equation (28), we know that

⟨σ′i,D′⟩ ⊑R ⟨σ′k,D′⟩. (29)

• ⟨σi,D⟩ α
⟶ ⟨σ′i,D′⟩, where α is a response event.

According to the definition of ⊑R, we need to prove that
there exists σ

′
k such that ⟨σk,D⟩ α

⟹⟨σ′k,D′⟩.
From Equation (22), we know that there exists σ

′
j such that

⟨σ j,D⟩ α
⟹⟨σ′j,D′⟩. (30)

From Equation (23) and Equation (30), we know there
exists σ

′
k such that

⟨σk,D⟩ α
⟹⟨σ′k,D′⟩. (31)

• ⟨D,D′⟩ ∈ R, which means that other concurrent functions
change the database state from D to D′.

According to the definition of ⊑R, we need to prove that
⟨σi,D

′⟩ ⊑R ⟨σk,D
′⟩.

From Equation (22), we know

⟨σi,D
′⟩ ⊑R ⟨σ j,D

′⟩. (32)

From Equation (23), we know

⟨σ j,D
′⟩ ⊑R ⟨σk,D

′⟩. (33)

From Equation (32) and Equation (33), we know

⟨σi,D
′⟩ ⊑R ⟨σk,D

′⟩. (34)

Thus, we have proved the conclusion Equation (24). □

Finally, we can prove Theorem 4 in the paper based on the
above two lemmas.

Theorem 6 Given a function f , if each execution with one
retry under concurrency has a corresponding retry-free execu-
tion that can simulate it, then each execution with arbitrary
times of retries also has a corresponding retry-free execution
that can simulate it.

(∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩)→

(∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩).

Proof

The premise is

∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (35)

The conclusion is

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (36)

From Lemma 3 and the premise Equation (35), we know

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩.
(37)

From Lemma 4 and Equation (37), we know

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f 0

,arg),D⟩. (38)

Since f 0 is equivalent to f , Equation (38) is equivalent to the
conclusion Equation (36). The conclusion is true. □

1 int f(input)
2 {
3 output = f1(input);
4 return f2(output);
5 }

Figure 12: A function composed of two sub-functions called f1 and
f2.

Appendix C Proof of Theorem 2
This section proves Theorem 2 in Section 4.3 of the pa-

per. We first define and prove sequential compositionality of
idempotence simulation.

Definition 2 Given a function f and the rely condition R,
f satisfies strong idempotence simulation means that: 1) f
satisfies idempotence simulation under R; and 2) after the
platform successfully executes f without retries for one time,
retrying f again will not modify the shared state.

Particularly, the second condition is equivalent to the third
requirement in Theorem 2 of paper: it will not affect the
shared state on retry once it has been successfully executed.

Lemma 5 Given any two functions f1 and f2, if f1 satisfies
strong idempotence simulation, f2 satisfies idempotence sim-
ulation, and the input of f2 remains unchanged on retry, then
the function f in Figure 12 composed of f1 and f2 also satis-
fies idempotence simulation.

Proof According to Theorem 3, we prove the simulation rela-
tion between f 1 and f . Note that f 1 is defined in Section 4.4,
which is different from f1. Then we classify the location
where retry occurs during the execution of f 1 into three cases
and prove that under all these cases, executing f without re-
tries could exhibit all possible client-observable behaviors
produced by executing f 1. Then we can prove that f satisfies
idempotence simulation.

• Retry happens during the execution of f1. Then the execu-
tion of f 1 consists of three main parts:
(P1) the execution of f1 before retry;
(P2) the normal execution of f1 after retry;
(P3) the normal execution of f2.
Since f1 satisfies idempotence simulation, a normal execu-
tion of f1 without retries could exhibit all client-observable
behaviors of (P1) and (P2). In this case, a normal execution
of f without retries can simulate the execution of f 1.

• Retry happens between f1 and f2. This execution exhibits
the same client-observable behavior as another execution
where retry happens immediately before the “return” state-
ment in f1. The proof is the same as the first case.

• Retry happens during the execution of f2. Then the execu-
tion of f 1 consists of four main parts:
(P1) the first normal execution of f1 without retries;

1 int f(int input)
2 {
3 int output1 = f1(input);
4 int output2 = f2(output1);
5 ...;
6 return fn(outputn);
7 }

Figure 13: A function composed of n sub-functions called f1, . . .,
and fn.

(P2) the execution of f2 before retry;
(P3) the second normal execution of f1 without retries;
(P4) the normal execution of f2 without retries.
Since f1 satisfies strong idempotence simulation, the sec-
ond normal execution of f1 will not modify the shared state
and return the same value as the input for the f2. There-
fore, this kind of execution of f 1 exhibits the same client-
observable behavior as the execution composed of (P1),
(P2), and (P4). Since f2 satisfies idempotence simulation,
there exists another normal execution of f2 that exhibits the
same client-observable behavior as the execution of (P2)
and (P4). Thus, the execution of f 1 described in this case
exhibits the same client-observable behavior as another
normal execution of f without retries.

In conclusion, for any execution of f 1, there always exists a
normal execution of f that exhibits the same client-observable
behavior under concurrency. According to Theorem 4, f sat-
isfies idempotence simulation. □

Then we extend sequential compositionality to a function
composed of arbitrary number of code fragments.

Lemma 6 For any positive integer n ≥ 2 and any function f
in the form of Figure 13, if each fi (1 ≤ i < n) satisfies strong
idempotence simulation, fn satisfies idempotence simulation,
and the input of each fi remains unchanged on retry, then f
satisfies idempotence simulation.

Proof We prove it by induction on n (n ≥ 2). The premise is
Lemma 5.

Base case. When n = 2, the conclusion is true, because it is
equivalent to the premise.

Inductive step. Assume the conclusion is true when n = k.
We prove that the conclusion is also true when n= (k+1). We
can treat the code fragment containing the first k sub-functions
as a function g. Since the conclusion is true when n = k, the
function g satisfies idempotence simulation. f consists of
two sub-functions called g and fk+1, both of which satisfy
idempotence simulation. From Lemma 5, we can imply that
f satisfies idempotence simulation.

Conclusion. By the principle of induction, f satisfies idem-
potence simulation for any n ≥ 2. □

Based on Lemma 6, we prove that our method of addressing
unbounded loops with write operations is sound, which is

1 void checkCoupons(coupons, time) {
2 // C1
3 if(coupons.size == 0)
4 return;
5 // L
6 for(int j = 0; j < coupons.size(); j++) {
7 coupon := get("Coupon", coupons[j].couponId);
8 if(isExpired(coupon.date, time)) {
9 coupon.expired := true;

10 put("Coupon", coupons[j].couponId , coupon);
11 }
12 }
13 // C2
14 return;
15 }

Figure 14: An example of unbounded loop with write operations.

Theorem 2 in the paper. For convenience, we represent a
function with an unbounded loop as {C1;L;C2}, where L is the
unbounded loop, C1 is all code preceding L, and C2 denotes
all code following the loop. BL is the loop body of L.

Theorem 7 Given a function f with the unbounded loop in
case 2, f satisfies idempotence simulation if the number of
iterations of the loop L remains unchanged on retry, and C1,
C2 and BL can satisfy the following requirements: 1) They all
satisfy idempotence simulation; 2) Their inputs do not change
on retry; 3) They will not affect the shared state on retry once
the function has successfully executed them.

Proof Since the number of loop iterations is the same on
retry, the execution of f comprises the execution of C1, the
execution of an unbounded number of BL, and the execution
of C2. We can prove that f satisfies idempotence simulation
based on Lemma 6. Although the number of loop iterations is
unbounded, the loop body executed by each iteration is the
same. Therefore, we just need to prove that C1, BL, and C2
satisfy the requirements in Lemma 6. The requirements have
been ensured by the premise of Theorem 7. Therefore, the
conclusion is true and f satisfies idempotence simulation. □

We use an example to show how to use this theorem to per-
form the verification. In Figure 14, the checkCoupons func-
tion uses an unbounded loop to check whether coupons have
expired. Obviously, C1 and C2 in checkCoupons satisfy all
requirements in Theorem 2. The number of the loop iterations
is the size of coupons which will be the same on retry. Thus,
to prove the idempotence simulation of checkCoupons, we
only need to focus on the loop body BL (line 7-11). First, Flux
can prove that BL satisfies the idempotence simulation; Then,
it uses static analysis to find that BL’s input is coupons that
keeps consistent on retry. Third, once it successfully updates
expire to be true for a specific coupon , the value will remain
unchanged as checkCoupons always updates it to be true on
retry. According to the theorem, we have that checkCoupons
satisfies the idempotence simulation.

 0

 500

 1000

 1500

 0 2 4 6 8 10 12 14 16

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Branches

(a) The verification time of a single function with ten database opera-
tions and different numbers of branches.

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Database Operations

(b) The verification time of a single function with different numbers
of database operations. The function has one execution path. Lines of
code also increase linearly when the number of database operations
increases linearly.

 0

 200

 400

 600

 0 2 4 6 8 10 12 14 16 18 20

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Functions in an Application

(c) The verification time of an application with different numbers of
functions.

Figure 15: The verification time for different numbers of branch
statements, database operations, and functions.

Appendix D Scalability of the Verifier

We have created micro-benchmarks to evaluate the scalability
of the verifier. Figure 15a shows that when the number of
branches in a single function increases, the verification time
increases exponentially, as the number of traces also increases
exponentially. Besides, Figure 15b shows that when the num-
ber of database operations in a single function increases, the
verification time increases linearly. This is because the num-
ber of generated traces increases linearly. Note that because
these micro-benchmarks mainly contain database operations,
LoC also increases linearly when the number of database op-
erations increases. Thus, Figure 15b also demonstrates that
when the LoC of a single function increases, the verifica-
tion time increases linearly. Additionally, we evaluate the
verification time for an application with different numbers

of functions. Each function has one execution path and two
hundred database operations. Figure 15c shows that the veri-
fication time increases linearly when the number of functions
in an application increases linearly. Because the number of
traces increases linearly.

	Introduction
	Motivation and Our Approach
	Idempotence Consistency
	Proof Strategy
	Idempotence Simulation
	Automated Concurrency Reasoning
	Unbounded Loop
	Failure Reduction

	Implementation
	Generating Symbolic Traces
	Checking Idempotence Simulation

	Advisor
	Evaluation
	Experimental Setup
	Verification Efficacy
	Performance of Advisor
	Performance of the Applications
	Flux vs. Beldi
	Flux vs. Boki
	Performance of the Java Applications

	Related Work
	Discussion
	Conclusion
	Proof of theo:proof:comp
	Proof of Failure Reduction
	Proof of theo:proof:loopcase2
	Scalability of the Verifier

