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Abstract—Trusted execution environment (TEE) promises
strong security guarantee with hardware extensions for security-
sensitive tasks. Due to its numerous benefits, TEE has gained
widespread adoption, and extended from CPU-only TEEs to
FPGA and GPU TEE systems. However, existing TEE systems
exhibit inadequate and inefficient support for an emerging (and
significant) processing unit, NPU. For instance, commercial TEE
systems resort to coarse-grained and static protection approaches
for NPUs, resulting in notable performance degradation (10%–
20%), limited (or no) multitasking capabilities, and suboptimal
resource utilization. In this paper, we present a secure NPU ar-
chitecture, known as sNPU, which aims to mitigate vulnerabilities
inherent to the design of NPU architectures. First, sNPU proposes
NPU Guarder to enhance the NPU’s access control. Second, sNPU
defines new attack surfaces leveraging in-NPU structures like
scratchpad and NoC, and designs NPU Isolator to guarantee
the isolation of scratchpad and NoC routing. Third, our system
introduces a trusted software module called NPU Monitor to
minimize the software TCB. Our prototype, evaluated on FPGA,
demonstrates that sNPU significantly mitigates the runtime costs
associated with security checking (from upto 20% to 0%) while
incurring less than 1% resource costs.

I. INTRODUCTION

Trusted Execution Environment (TEE) is a trending topic

in modern hardware-assisted security architectures. We have

witnessed a plethora of TEE designs implemented across

various Instruction Set Architectures (ISA), including Intel

SGX [18] and TDX [42], AMD SEV [90], ARM TrustZone [4]

and CCA [8], and RISC-V Penglai [26] and Keystone [54].

TEE provides an trusted execution environment with isolated

hardware resources for secure tasks. Due to hardware security

guarantees, attackers outside the TEE are incapable to com-

promise the secret in secure tasks.

Besides, with the evolution of AI applications such as

LLM [11], [82], autonomous driving, and image recogni-

tion, there is a growing trend of offloading ML tasks to

domain-specific accelerators known as Neural Processing

Units (NPUs). To accelerate AI workloads, NPUs leverage

specialized hardware structures such as matrix computation

units (MCUs), scratchpads, and Networks-on-Chip (NoC).

Due to the high demand for AI applications on mobile devices,

current mobile chips [6], [15], [24], [28], [60], [86], [101],

1The two authors contributed equally to this work and should be considered
co-first authors.

[107] also have integrated NPU cores within the SoC for

improved energy efficiency and performance.

However, the integration of NPUs in SoCs introduces new

attack surfaces that need to be considered in TEE systems.

These attack surfaces can be categorized into three aspects:

(1) Using a compromised NPU to attack CPU-side resources:

NPUs in mobile devices typically have access permissions to

the CPU-side secure memory, which contains sensitive data

such as personal facial features. If the NPU is compromised,

a malicious NPU task can steal these secrets, posing a threat to

CPU-side resources. (2) Internal attacks on the NPU: Modern

NPUs support concurrent execution for multiple tasks [17],

[30], [49], [50], [53], [112]. However, the concurrent execution

introduces a risk of stealing confidential models or data

by leveraging internal NPU resources like scratchpad and

NoC. Meanwhile, another team also disclosed a vulnerability

leveraging the in-NPU structure called LeftoverLocals [98]

at the same time. This vulnerability exploits the accelerator’s

local memory (scratchpad), to extract secret information from

the model being processed. LeftoverLocals has been confirmed

to affect platforms of Apple, AMD, and Qualcomm, indicating

a widespread risk across various hardware implementations.

(3) Using the CPU to attack the NPU: CPU-side tasks can

exploit NPU instructions or vulnerabilities [69]–[72] in the

NPU driver to attack NPU-side tasks. To address these security

concerns, a comprehensive TEE which combines both the CPU

and NPU becomes crucial.

Some prior works have proposed coarse-grained and static

TEE designs for CPU-NPU systems. One approach is tem-

porarily designating the entire NPU as a secure device and

migrating the whole NPU driver into the TEE. However, this

solution results in severe underutilization of NPU resources,

and a large TCB due to the complexity of the software stack.

Other NPU TEEs [37], [38], [57], [58], [95] focus on the

memory encryption and integrity protection. These approaches

mainly consider physical attacks on DRAM (e.g., freezing

memory), but lack protection for in-NPU structures, as the

data inside NPU remains plaintext. Besides, TEE systems

on other accelerators like GPU [21], [40], [45], [67], [80],

[106] mainly focus on the protection for GPU global memory,

CPU-GPU connection, etc. However, directly applying these

mechanisms from GPU TEE to integrated NPUs is not enough.

708

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00057

20
24

 A
C

M
/IE

EE
 5

1s
t A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n 
C

om
pu

te
r A

rc
hi

te
ct

ur
e 

(I
SC

A
) |

 9
79

-8
-3

50
3-

26
58

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

C
A

59
07

7.
20

24
.0

00
57

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 07,2024 at 01:44:37 UTC from IEEE Xplore.  Restrictions apply. 



First, isolation mechanisms like IOMMU adopted in the GPU

TEE are not efficient for integrated NPUs, as NPU requires

larger memory bandwidth. Second, NPU has specialized hard-

ware structures like scratchpads and NoCs, which bring new

attack surfaces. Therefore, an NPU TEE should address po-

tential attacks mentioned above and meet two fundamental

requirements: minimizing runtime performance overhead and

achieving higher resource utilization.

In this paper, we present sNPU, a TEE system for integrated

NPUs, which addresses above NPU-related attacks through

three novel designs. First, to defend against attacks leverag-

ing the NPU’s external behavior (e.g., memory access), we

introduce a tile-based memory translation and checking unit,

specifically designed to accommodate the characteristics of

NPU memory access pattern. This design incurs (almost) zero

runtime overhead while saving the checking energy. Second,

to address the new attack surface utilizing in-NPU structures

like scratchpad and NoC, sNPU leverages the observation

that scratchpad has no association with the main memory,

and can employ a more fine-grained and dynamic isolation

mechanism for it. Meanwhile, sNPU also incorporates an NoC

isolation mechanism with the offline route checking, ensuring

the integrity of the NoC network. Third, to minimize potential

attacks from the malicious software in the CPU side, sNPU

reduces the software TCB of NPU stack. sNPU introduces

an NPU Monitor within the secure world solely for essential

security checks. Meanwhile, other software components like

the AI framework and NPU driver can remain untrusted.

We have implemented a prototype of sNPU with Chip-

yard [5], which is a customized RISC-V SoC generator in-

cluding the CPU, NPU (e.g., Gemmini [29] and NVDLA [79])

and other components in SoC. We have extended the security

features of sNPU in the Gemmini with the NoC extension. To

establish a comprehensive TEE system, we integrate the sNPU

with the CPU side TEE, which divides hardware resources into

the normal and secure worlds. Evaluation results show that the

design of sNPU has no impact on NPU runtime performance

(e.g., DMA, Scratchpad, and NoC) across various AI models.

Additionally, security extensions in sNPU do not compromise

NPU resource utilization for both secure and non-secure tasks.

The extra hardware cost of these extensions is also minimal,

estimated at less than 1%.

II. BACKGROUND AND RELATED WORK

A. Trusted Execution Environment (TEE)

TEE has been widely used in the contemporary computer

architecture. CPU vendors have introduced their own TEE

architectures, such as Intel SGX and TDX [18], [42], ARM

TrustZone and CCA [4], [8], AMD SEV [90], RISC-V Penglai,

CURE, and Keystone [9], [26], [54], and others [10], [19],

[27], [89], [116]. In mobile systems, TrustZone serves as a

mainstream implementation of TEE. It leverages the concept

of secure partition, which effectively segregates hardware

resources into different partitions, such as the normal world

and the secure world. In this architectural design, no trust is

placed in any software executing within the normal world,

including untrusted operating systems and applications. A

privileged software monitor (such as ARM EL3 or RISC-V

M mode) oversees the secure partition, managing all hardware

resources. Our paper builds upon this TEE design, extending

its scope to include the NPU, thus, trusted AI workloads can

harness secure hardware resources within the secure partition,

including the CPU, NPU, and memory.

There are several other TEE designs like Enclave (e.g.,

SGX) and CVM (e.g., SEV, CCA, TDX). SGX provides a

user-level TEE abstraction called Enclave. It can work together

with untrusted user applications but possess strong isolation

from them. Untrusted applications and kernels are unable to

access the private memory of an Enclave. SEV, TDX, and

CCA represent the CVM design, they leverage the secure

processor or the lightweight CVM module to control all

security-sensitive resources for VMs. Therefore, CVM can

distrust the hypervisor (or VMM). Although Enclave and

CVM provide more flexible TEE abstractions, the underlying

mechanism still relies on the secure partition — Enclave and

CVM also need to define which hardware resource is secure

or not. Extending our NPU TEE design to incorporate Enclave

or CVM remains an area for future work.

B. Neural Processing Unit (NPU)

NPUs [15], [24], [28], [29], [47], [60], [79], [101], [107]

are specialized hardware accelerators that excel at perform-

ing neural network computations efficiently. In contrast to

general-purpose processors, NPUs are specifically optimized

to meet the unique requirements of neural networks. They

offer capabilities such as massive parallelism, high-speed

data processing and matrix computation. These features are

essential for handling intensive computations involved in deep

learning algorithms.

To meet these requirements, NPU adopts several special

hardware structures. One key unit for the modern NPU is the

matrix calculation unit (MCU) like tube [13], [14], [60], [91],

systolic array [29], [35], [77], etc. With these matrix units,

NPU can execute the matrix calculation like multiplication and

convolution within one operation. Some NPUs also have other

dedicated units for some specialized operations like sparse

matrix calculation, activation function, etc.

Besides the matrix unit, NPUs often adopt a near data

computing (NDC) architecture [29], [65], [73], [79] to mini-

mize data retrieval overhead. For example, weights in neural

networks are pre-stored in the SRAM/scratchpad near the

matrix unit, allowing for quick access during computations.

This reduces latency and energy consumption by eliminating

the need to retrieve weights from main memory for each

task. NDC optimizes data flow and improves computational

efficiency by minimizing memory access bottlenecks.

Furthermore, NPUs also leverage multi-core architectures

with a Network-on-Chip (NoC) network [35], [50], [65],

[91], [117] to further parallelize data computation. The NoC

network allows for direct data transfer among NPU cores

without the need for additional memory load/store instructions.
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Developers can map different layers of neural network into the

different NPU cores and gain the performance benefits.

Integrated NPU v.s. Discrete NPU: An integrated NPU [15],

[24], [28], [29], [47], [60], [76], [79], [101], [107] refers

to a specialized hardware component that is built directly

into an SoC (or processor). In this configuration, the NPU

is tightly integrated with other components of the chip. On

the other hand, a discrete NPU is a standalone hardware

component that is separate from the main SoC. Compared

with the discrete NPU, the integrated NPU has three main

benefits: First, integrated NPUs can share the system cache

with a unified address space, eliminating the need for addi-

tional memory transfers or encryption between the CPU and

discrete NPU. Second, the integrated NPU can achieve better

bandwidth and lower latency for accessing the system memory,

enhancing overall performance. Third, the integrated design of

NPUs significantly reduces energy consumption and chip size

compared to discrete NPUs. Therefore, almost all mobile SoC

adopts an integrated NPU design, facilitating the flourishing

of AI workloads running on local devices. This paper focuses

on integrated NPUs, and our techniques can also be applied

to discrete NPUs.

Fig. 1. Overall FLOPS utilization of different inference workloads.

C. Multi-tasking Requirements for NPUs

Low NPU utilization for a single ML workload: The

latest NPUs [3], [32], [47] have adopted powerful computing

capability (>100 TFLOPs) as well as large memory capacity

(>100MB SRAM and >50GB HBM), which facilitate the sup-

port of multitasking requirements. We analyze the NPU utiliza-

tion when running different ML workloads on the TPU [47],

[112], as shown in Figure 1. Most ML workloads utilize less

than 50% of the computational resource available in the TPU

core. This underutilization is primarily attributed to temporal

idleness of MCU and the inefficient use of memory bandwidth.

To optimize the NPU’s utilization, recent studies [49], [50],

[112] have proposed the simultaneous execution of multiple

ML tasks on a single NPU, ensuring that the service-level

agreements (SLAs) of tasks are not compromised.

Simultaneous execution of both secure and non-secure
tasks: The simultaneous execution of secure and non-secure

tasks has become a topic of heightened interest, particularly

within mobile devices [30] and autonomous vehicles [31]. For

instance, developers may need to concurrently run a confi-

dential model alongside other models that have been devel-

oped by potentially untrusted entities. Currently, smartphone

vendors [94] tend to address this requirement by statically

partitioning the computational resources of the NPU, like

dedicating one NPU core to secure tasks while allocating an-

other core for non-secure tasks. Furthermore, the simultaneous

execution of secure and non-secure tasks is also evident in

the field of autonomous driving. Here, secure tasks such as

the occupancy network may be executed simultaneously with

non-secure tasks, such as in-vehicle entertainment.

D. Limitation of Current NPU TEEs

The hardware-assisted security for NPU is still an emerging

topic, and current solutions face limitations in achieving fine-

grained isolation for in-NPU resources and multi-task sup-

porting (both secure and non-secure). ITX [105] proposes

confidential computing for AI accelerators. However, ITX

specifically targets the Graphcore Intelligence Processing Unit

(IPU), which is a separate AI accelerator located on the main

board. The main focus of ITX is on establishing attestation

between users and ITX, as well as secure transfer of secret data

and models. TNPU [57] and other NPU TEEs [37], [38], [58],

[95] focus on the memory encryption and integrity protection,

and minimize overhead using the specific memory access

pattern in NPU. In our work, we concentrate on the isolation

of in-NPU structures like the scratchpad and NoC. The data

in these structures remain plaintext even when using memory

encryption, as introduced in prior works. In a multitasking

scenario, a non-secure task may run concurrently with a

secure task and potentially steal the secret model from the

scratchpad [97], [98]. Therefore, our design is complementary

to encryption-based NPU TEEs.

The industry currently adopts a coarse-grained NPU TEE

design, we called TrustZone NPU. For example, a smartphone

vendor extends the sMMU of the NPU with the TrustZone

extension. Specifically, an additional secure bit is used in

the sMMU to indicate whether the corresponding NPU is a

secure device or not. However, this design only allows for

switching the entire NPU into the secure world and does

not support fine-grained and dynamic isolation for in-NPU

resources. Furthermore, the TrustZone NPU design requires

migrating the entire NPU driver into the TEEOS with a

larger TCB and clearing all sensitive NPU context during

mode switching. Due to the limitations mentioned above,

the TrustZone NPU experiences poor resource utilization and

performance, as demonstrated in our evaluation (see in §VI-B

and §VI-C).

In this paper, we present a novel TEE system tailored for

integrated NPUs. Our design achieves strong and (almost)

zero-cost isolation for NPU-specific hardware structures such

as scratchpad and NoC. By providing fine-grained isolation

within the NPU, our design enables the concurrent execution

of multiple neural network tasks, both secure and non-secure,

within the same NPU. Furthermore, the isolation mechanism

ensures that resource utilization is not compromised, allowing

the NPU driver to adopt arbitrary allocation strategies based

on task requirements. In summary, we introduce a fine-grained

and dynamic isolation mechanism specifically designed for
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integrated NPUs, while supporting multi-tasking and maxi-

mizing resource utilization.

III. DESIGN OVERVIEW

A. Goals

• Utilization: Modern NPUs support the concurrent execution

of multi-networks to enhance resource utilization. Therefore,

our design should also support the multi-tasking for both se-

cure and non-secure tasks, and achieve fine-grained resource

isolation.

• Security: Our design should consider the security of the

NPU from three aspects. First, malicious users cannot

leverage NPU to access the sensitive data in the system.

Second, non-secure ML tasks cannot steal the secret model

or data of secure ML tasks in the NPU. Third, attackers

cannot leverage the NPU software running in the CPU side

to attack ML tasks running in the NPU.

• Performance: Our design should not impact the perfor-

mance of non-secure NPU tasks, and almost zero-cost for

secure tasks.

B. Threat Model
The TCB of our system contains: the secure hardware

(i.e., secure CPU core, sNPU hardware extension, memory

protection engine, etc.), the most privileged mode monitor

(e.g., EL3 in ARM, M mode in RISC-V) and software running

in the secure world. We do not place trust in hardware and

software components in the normal world like the NPU driver,

scheduler and ML framework, etc. Moreover, we do not trust

the NPU compiler as it is known to be fragile [97].
We also assume that both secure and non-secure tasks can

run simultaneously to satisfy the demands of multi-tasking

and SLA (service-level agreement) requirements. As NPU

resources might be shared both spatially and temporally by

these concurrent NPU tasks, a secure task must be wary of

attacks from other tasks operating on the same NPU that

exploit vulnerabilities in the NPU’s internal structures. For

instance, a confidential ML task must guard against model

leakage through the NPU’s SRAM [98].
sNPU does not consider the side channel attacks and

physical attacks like freezing memory, bus snooping, etc.

These attacks have been well studied in prior researches [37],

[44], [56], [61], [81], [93], [95], [108], and our sNPU design

complements these previous efforts.

IV. DETAILED DESIGN

We introduce sNPU, a comprehensive and secure NPU

architecture designed to mitigate attacks and vulnerabilities

targeting both NPU hardware and software. sNPU consists of

three essential components: NPU Guarder, NPU Isolator, and

NPU Monitor. NPU Guarder serves as a lightweight memory

translation/access guard, effectively preventing unauthorized

access attempts from the NPU. NPU Isolator focuses on

lightweight inner resource isolation mechanisms tailored to

NPU-specific architectures like scratchpad and NoC. NPU

Monitor is a lightweight trusted software module dedicated

to perform essential security checks.

A. NPU Guarder: Memory Access Guarder for NPU

CPU

System bus

System Cache

DRAM Periphery

DMA

IOMMU

SoC

CPU

System bus

DRAM Periphery

MMU

NPU

SoC

System bus

DRAM Periphery

DMA
NPUSoC

DMA
Controller

CPU

MMU

Cache

Type-1: IOMMU-based NPU Type-2: MMU-based NPU Type-3: CPU-coupled NPU

System Cache System Cache

NPU

NPU memory access flow

2

1

Fig. 2. Different types of integrated NPUs: Type-1 NPU leverages an
integrated DMA engine to retrieve the data. Type-2 NPU relies on a system
DMA engine for data copy, and then uses ld/st instructions. Type-3 NPU
reuses the memory access capability in the CPU side.

Challenges of current NPU access control: Access control

is not new but encounters several new challenges for inte-

grated NPUs. First, integrated NPUs have different memory

access paths, which may complicate the design of a unified

access controller. Second, the NPU also requires a higher

memory bandwidth, which needs a more efficient checking

logic. Figure 2 illustrates different types of integrated NPUs,

including IOMMU-based NPUs [51], [78], [79], [101], MMU-

based NPUs [21], [86], and CPU-coupled NPUs [29]. The

first two types of NPUs are MMIO devices, with one utilizing

DMA for system memory access and the other employing ld/st

instructions. The third type is coupled with the CPU core,

allowing it to access the CPU cache. To prevent arbitrary mem-

ory access, some NPUs (Type-1 and Type-2) utilize a separate

IOMMU/MMU to restrict NPU access, while others (Type-3)

rely on the access checking mechanism on the CPU side. There

is no unified memory access controller for integrated NPUs,

which increases design complexity. Besides, IOMMU/MMU

mechanisms introduce non-negligible overhead for NPUs due

to page table walking, TLB ping-pong, etc. This overhead

can result up to 15% to 20% performance loss for real-world

applications [29].

Input data chunks Output data chunks

Tile 2

Tile 4

Tile 1 Tile 2

Tile 3 Tile 4
Input

Weight

Output
Tile 1

NPU Reserved Memory

SRAM

Code Input 1 Input 2 Input 3 Weight Output 1 Output 2

Output TileWeightInput Tile

312

Fig. 3. The memory access patterns of NPU: During a single NPU
calculation, only limited tiles of data are required or generated.

NPU memory access pattern: Unlike general-purpose units,

the NPU is a domain-specific accelerator designed specifically

for ML tasks. ML tasks typically involve multiple layers, each
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consisting of numerous matrix computations complemented by

activation functions. For a single task, NPUs require limited

types of data sets: the input data, weight (including bias) as

well as the output result, as shown in Figure 3.

NPUs utilize Direct Memory Access (DMA) [109] to fetch

data from the system DRAM/HBM into the in-NPU SRAM

(i.e., scratchpad). The NPU driver employs a specific mem-

ory allocator to manage these DMA buffers (NPU reserved

memory). For instance, Android/Linux introduces the ION

heap [21], [63], NVIDIA Tegra utilizes NVMA [78] and

Qualcomm MSM employs PMEM [62] as memory alloca-

tors designed for NPU’s memory, separate from the system

memory. To reserve the contiguous DMA buffer, NPU drivers

either pin the memory during system boot or use Contiguous

Memory Allocator (CMA) [102]. Before offloading tasks to

the NPU, the NPU driver needs to allocate several chunks in

the NPU-reserved memory, and the NPU will further partition

each chunk into several tiles. During execution, the NPU

initiates computational sequences by loading weights from

the system memory into the SRAM. Subsequently, it retrieves

input values either directly from the system memory or from

the SRAM that retains the output result from the preceding

layer’s computation. Upon completing the calculation, the

NPU stores the output result back to the system memory. In

summary, the NPU only needs to load and store limited tiles

of data (input, weight, and output) during one calculation, and

the VA to PA mappings are consistent for each tile (belongs

to a data chunk). This memory access and allocation pattern

can be leveraged to overcome the challenge of NPU’s memory

access control.

va[size] -> pa[size]

pa[size] -> perm

[pa, pa+size]

perm | [pa, pa+size]

DMA Engine

Normal data

Secure data

Scratchpad

MCU

NPU

Normal memory

DRAM

Input Weight Output

Translation_reg1:

va[size] -> pa[size]

va[size] -> pa[size]

Translation_reg2:

Translation_reg3:

Fig. 4. Lightweight address translation and checking in the NPU core.

NPU Guarder: Figure 4 illustrates our NPU Guarder design,

a lightweight memory access controller leveraging the specific

memory access pattern in NPUs. It has two main benefits

compared with MMU or IOMMU: (1) it has a lightweight

design without checking overhead, and (2) it can be integrated

inside the NPU.

First, to eliminate the runtime overhead of traditional

paging-based memory access control, NPU Guarder employs

coarse-grained memory checking and fine-grained translation

mechanisms. For memory checking, it utilizes a checking

register that records the access permission of a contiguous

memory region, as sensitive data in the mobile system is

typically stored in a pre-allocated secure memory region (e.g.,

TrustZone secure memory area). As for the address translation,

NPU Guarder provides fine-grained translation registers in the

tile level (e.g., input tile and output tile). Each translation

register maps a specific region from virtual address to the

corresponding physical address. Unlike the checking register,

which is rarely modified, the translation registers may be

updated before the NPU calculation (if needed).

Second, NPU Guarder integrates these checking and transla-

tion registers inside the NPU core, positioned before the DMA

engine. Compared with a standalone module (e.g., IOMMU),

the integration design reduces the complexity in the SoC.

Furthermore, since the memory checking and translation are

performed at the DMA-request level rather than the memory-

packet level, NPU Guarder can save additional energy com-

pared to IOMMU. When a DMA request is received, the DMA

engine divides it into multiple fixed-size memory packets (e.g.,

64 bytes). Therefore, NPU Guarder only checks for one time

(and saves energy), while IOMMU needs to check O(N) times

at the memory-packet level.

B. NPU Isolator: Inner Resource Isolation for NPU

Specialized hardware structures in NPU: To optimize AI

workloads, NPUs incorporate specialized hardware structures

such as scratchpads and NoCs (Network on Chip). The scratch-

pad is a high-speed, low-latency SRAM that requires explicit

management by the programmer. As NPU needs a larger

memory bandwidth, the scratchpad/SRAM has been widely

used in modern NPU [32], [41], [47], [66] to accelerate AI

workloads [20], [33]. Unlike caches, the scratchpad holds

data that can only be accessed by its index (not the global

address), without any association with the system memory.

It does not include mechanisms like hits or misses, and it

does not maintain the memory coherence. The NoC is the

on-chip network that connects multiple NPU cores. NoC

is indispensable for the multi-core NPUs [32], [47], [50],

[66], [92], as it enables scalable computing resources while

addressing the issue of unscalable memory bandwidth through

interconnection. Most NoC networks utilize a package-based

protocol [115]. A package typically consists of a head flit,

several body flits, and a tail flit. The head flit contains route

information, specifying the path between the source and target

cores (e.g., x:+4, y:+2) [65], [85].

Scratchpad and NoC are specialized structures in the NPU

to accelerate AI workloads, but they also introduce new

vulnerabilities.

Lack of protecion for the scratchpad: As scratchpad is ex-

plicitly managed by the programmer, a compromised compiler

or NPU driver can easily issue attacks on it. For example, the

NPU driver can allocate a scratchpad entry which is already

used by another task, and the NPU compiler can forcibly read

the content in the scratchpad without write before. A recently

disclosed vulnerability: LeftoverLocal [97] allows recovery of

data from accelerator’s local memory (scratchpad) created by

the victim process. A real-world PoC has been developed, that

attacker can listen into another user’s interactive LLM session

(e.g., llama.cpp). Due to the lack of underlying hardware
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Fig. 5. Existing protection mechanisms for hierarchical memory system:
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isolation support, LeftoverLocals has a widespread impact

on various platforms, includes Apple, Qualcomm, AMD, and

Imagination GPUs.

We have conducted a detailed research on existing memory

protection mechanisms, but these mechanisms are not suitable

for the scratchpad structure. Figure 5 illustrates the existing

protection mechanisms for cache and memory. For instance,

CAT [44] and page coloring [108] are employed to mitigate

cache side channel attacks. Paging, tag memory [23], and

segment mechanisms [111] are used for memory isolation.

However, these mechanisms usually introduce non-trivial over-

head, which are not suitable for the scratchpad due to its high-

bandwidth requirement.

ID ID
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Fig. 6. Different isolation mechanisms for scratchpads: Figure (a)
illustrates the static scratchpad partition. Figure (b) demonstrates the ID-based
and fine-grained scratchpad isolation.

TABLE I
DIFFERENT ISOLATION MECHANISMS FOR SCRATCHPAD.

Isolation mechanism Sharing Model Metric
Temporal Spatial Utilization Performance SLA

Partition Yes Yes Low Low Good
Flush (coarse-grained) Yes No Low Good Poor
Flush (fined-grained) Yes No Low Low Good

sNPU Yes Yes High Good Good

Strawman solution: Table I presents a comparison of various

isolation mechanisms for the scratchpad. Flushing all contents

in the scratchpad before task scheduling is a straightforward

approach but comes with several inherent limitations. For

instance, flushing is not just zeroing out the contents in the

scratchpad but needs to save and restore the task’s context

before scheduling. The current scheduling granularity for in-

tegrated NPUs is at the op-kernel level [12], [68], and the NPU

must perform fine-grained heterogeneous computing with the

CPU, due to the limited operators. However, this fine-grained

flushing granularity can cause a significant performance over-

head (larger than 25% in our evaluation and other works

[112]). What’s more, flushing only works when the scratchpad

is temporally shared among different tasks, while current ML

tasks tend to assume that scratchpads are spatially shared

to achieve better performance. Even when considering only

time-sharing, the granularity of flushing becomes a trade-off

between performance and compliance with the service-level

agreement (SLA) [25], [110] of ML tasks. Frequent flushing

will cause a considerable performance overhead as mentioned

before, whereas flushing at a coarser granularity might fail to

meet SLA requirements with low resource utilization (NPU

is waiting for the CPU computing). This dilemma has been

corroborated by multiple studies [49], [50], [112].

Another straightforward solution is to partition scratchpads

into several regions, as shown in Figure 6(a). The partition

mechanism has already been employed in CPU and GPU

TEEs, like ARM TrustZone [4], NVIDIA MIG [80]. However,

such mechanism suffers from fragmentation issues, making

it difficult to adjust the isolation boundary [59] at runtime.

Moreover, partition also introduces a non-trivial overhead in

real-world NPU tasks due to the low resource utilization (see

in §VI-C).

ID-based scratchpad isolation: In NPU Isolator, we propose

an ID-based isolation mechanism specifically for scratchpads,

as shown in Figure 6(b). The key insight is that there is

no address association between the scratchpad entry and
system memory, allowing us to store data in any scratchpad

entries. Therefore, scratchpad can adopt a more fine-grained

and dynamic isolation mechanism than cache and memory.

We first add ID states for NPU cores and scratchpads, with

the value 1 for secure and 0 for non-secure. Setting the ID

state of the NPU core can only be done through a secure

instruction. As for scratchpads, we define two access rules:

(1) For exclusive scratchpad: we prohibit any read operations

from a NPU core to a scratchpad entry that has a different

ID state, while we do allow a NPU core forcibly writing data

to a scratchpad entry, and update the scratchpad ID state to

the NPU core’s automatically. (2) For shared scratchpad: we

prohibit non-secure NPU cores from accessing (both read and

write) secure scratchpad entries, otherwise, a secure NPU core

forcibly sets the accessed scratchpad’s ID state to secure. A

dedicated secure instruction is used to reset the scratchpad

state from secure to non-secure. By enforcing these rules,

we can achieve fine-grained and dynamic isolation for each

scratchpad entry, and decouple the allocation strategy from its

security check. It allows the NPU driver to reuse any allocation
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strategies to achieve better scratchpad utilization. Furthermore,

since each scratchpad entry has a large payload (e.g., ≥128b),

the resource overhead of one-bit ID state is negligible (<1%).
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Pool
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PoolML Model

NPU NoC
Modify the

NoC routing

Attacker's
Task

Fig. 7. NoC attacks: Tamper with the NoC route to hijack the data flow of
the victim’s NPU task.

Lack of the NoC isolation and integrity protection: In ad-

dition to protecting the scratchpad, NPU Isolator also ensures

the isolation and integrity of the NoC network. NPUs can

accelerate ML tasks by orchestrating different levels of the

ML model across multiple NPU cores, allowing to transfer

the intermediate result through the NoC network directly. It

significantly reduces the overhead of storing and reloading

data from memory. However, this usage of the NoC network

introduces a new attack surface by breaking the route integrity,

as depicted in Figure 7. Route integrity cannot be protected in

the same way as code integrity adopted in the CPU TEE. For

instance, if the NPU scheduler is compromised, it can schedule

a malicious task to a wrong NPU core. Thus the attacker can

either intercept secret intermediate results transmitted from the

source core, or send malicious NoC packets to the victim core.

By tampering with the route integrity of the NoC network,

attackers can manipulate the entire ML tasks.
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Fig. 8. NoC protection: Peephole mechanism along with the code and route
integrity guarantees.

NoC isolation: To defend against above attacks on the

NoC network, NPU Isolator introduces a lightweight NoC

authentication mechanism called peephole with the offline

route integrity check, as shown in Figure 8. The peephole

mechanism generates an identity for the NoC packet (head flit)

at the source core, which travels in the NoC network. When

the target core receives this NoC packet, the peephole in target

core authenticates this NoC request based on its identity. The

NPU core’s ID state can be used as an effective identity in the

peephole mechanism. For example, the packet originating from

a secure NPU core includes a secure bit as its identity. If the

target core is a normal NPU core, the authentication process

fails and this NoC request will be rejected. Otherwise, a secure

NPU core will accept this request and receive the following

packet (body flits).

Route integrity: Peephole mechanism provides isolation in

the NoC network, however, to ensure a comprehensive NoC

protection, we also need to consider the route integrity for

ML tasks running on the multiple NPU cores. Besides the

code integrity check which calculates the hash of ML task’s

code and compares it with the expected measurement, the route

integrity check ensures the actual NoC routing aligns with the

user’s expectation. For instance, in the case of secure ML tasks

requiring a 2× 2 NoC network, a malicious NPU driver may

allocate 1×4 NPU cores for these tasks, which may cause ML

tasks interacting with two unexpected NPU cores during the

execution. Therefore, before loading ML tasks to the multiple

NPU cores, we need to verify whether the actual allocation of

NPU cores matches the expected NoC configuration defined

in the secure tasks. We will introduce more details in §IV-C.

C. NPU Monitor: Trusted Software Module for NPU

The NPU encompasses a large software stack consisting

of various components such as the AI framework (e.g.,

TensorFlow [1], PyTorch [83]), compiler (e.g., TVM [12],

CANN [88]), and NPU driver. Inclusion of the entire software

stack within the TCB can introduce potential vulnerabilities

and security risks. To mitigate this, we adhere to the design

principle [99] of decoupling security from strategy, and only

move a small monitor into the secure world. This monitor is

responsible for performing security checks, managing critical

resources, and acting as a bridge between the secure CPU and

NPU.

Fig. 9. A comprehensive TEE system including CPU, NPU and memory.

Interaction between NPU and CPU: Figure 9 illustrates the

entire TEE system, comprising the CPU, NPU, and memory.

There are two common methods for interaction between the

NPU and CPU: the Memory-Mapped I/O (MMIO) interface

and specific instructions (e.g., matrix extensions [7], [43],

[74], [76] or RoCC [16]). To establish a complete trusted
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environment, sNPU restricts the CPU-NPU interactions to

only allow the secure CPU to interact with the secure NPU.

Specifically, the secure context (e.g., ID states and checking

registers) can only be set by the secure CPU, utilizing new

instructions dedicated to the sNPU design.
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Fig. 10. NPU Monitor: A lightweight trusted software module responsible
for critical security checks for secure NPU tasks.

NPU Monitor: The NPU Monitor plays a critical role in en-

suring the confidentiality and integrity of multiple secure ML

tasks. It consists of several shim modules: the context setter,

trusted allocator, code verifier, and secure loader. Notably, the

NPU Monitor only works for secure ML tasks. While for non-

secure tasks, we do not apply any software checks and rely

only on the hardware mechanisms to guarantee the isolation

between secure and non-secure tasks.

Context setter is responsible for setting the NPU secure con-

text, which includes NPU’s ID state, checking and translation

registers for secure tasks. The NPU context determines the

hardware resources that the NPU can access, such as system

memory and scratchpad.

Trusted allocator is responsible for allocating memory

buffers in the reserved secure memory like input/output data

and model of secure tasks. It also checks that there is no

overlap for the scratchpad.

Code verifier first loads the code and sensitive model of the

secure task into the secure task queue. It then calculates and

verifies the measurement of the task code against the user’s

expectation.

Secure loader first guarantees the route integrity of the

ML task. Unlike traditional CPU TEEs, a ML task may

utilize multiple NPU cores connected with the NoC network.

Secure loader verifies whether scheduled NPU cores match

the topology of the expected NoC network. After verifying

the route integrity, secure loader uploads the ML task into

corresponding NPU cores.

In addition to the shim modules, there are two auxiliary

components for NPU Monitor: the trampoline and the secure

task queue. The trampoline serves as the intermediary (for data

transferring) between the non-secure NPU driver and NPU

Monitor, while secure task queue stores secure NPU tasks for

scheduling.

Secure boot: The secure boot flow of sNPU is similar to prior

works [4], [21], [57]. During the machine boot, the secure

CPU verifies a minimal code of the trusted loader, which then

loads and verifies the trusted firmware [84], [104]. The trusted

firmware further loads and verifies software in the trusted

world, such as TEEOS [103] and NPU Monitor, before loading

the software running in the normal world. The Root-of-Trust

for this secure boot chain remains in the SoC.

V. IMPLEMENTATION

NPU Guarder: Figure 11 depicts the microarchitecture of

the NPU Guarder, emphasizing the key distinctions between

the original design. In the NPU Guarder, a secure controller

configures both checking and translation registers. The check-

ing register comprises two primary fields: memory range and

its authority (read, write, etc.). This tile-based mechanism

is particularly well-suited for handling contiguous data, a

common scenario in NPU. The translation register maintains

a range mapping from physical addresses to virtual addresses.

When a DMA request arrives, it translates the requested virtual

address to the corresponding physical address according to the

translation register. Subsequently, the physical address under-

goes the permission check, and only authenticated requests are

proceed to the DMA engine.
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Fig. 11. Microarchitecture of NPU Guarder: It will translate and check
the access permission for each DMA request.

NPU Isolator: The NPU Isolator contains two parts, the

scratchpad isolation and NoC isolation. To achieve dynamic

isolation for scratchpad, we only make slight extensions to

the scratchpad interface and wordline. In addition to regular

data, each scratchpad line now includes additional bits for

the ID state. Considering that each wordline contains a large

data block (128 bits for input/output scratchpad and 512 bits

for accumulation scratchpad), the increase of one to two bits

is negligible. In the local scratchpad, write operations are

unrestricted and will overwrite the ID state. However, read

operations are only allowed when the ID state of the wordline

matches the state of the NPU. For the global scratchpad, both

read and write operations are restricted, forbidding normal

NPU cores from accessing secure wordline.

To support the peephole-based isolation for NoC, we re-

design the router controller. Each NPU core possesses its

own router controller, comprising send and receive engines,
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as shown in Figure 12. When the send engine receives a

sending request, the router transitions from an idle state to

a peephole state and generates the corresponding authenti-

cation ID. Subsequently, it triggers an authentication request

to the destination core and awaits the return packet. If the

authentication check passes, the router proceeds to transmit

the entire data to the destination core. The receive engine has

a mirrored working flow. Upon receiving the authentication

request, the router verifies the authentication ID and waits

for the subsequent data packet. Once all data is received and

written to the scratchpad, the router transitions back to the idle

state. Notably, authentication occurs only once. After verified,

the router map locks, preventing other cores from using this

channel.
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Fig. 12. Secure protocol of sNPU router controller.

NPU Monitor: We have implemented the NPU Monitor

within a secure domain using PMP protection [96] in RISC-V

CPUs. The primary code in the NPU Monitor is the crypto-

graphic functions likes model decryption and code integrity

measurement. Besides, we also develop a trusted allocator

which can efficiently allocate memory slots of specific sizes

(e.g., scratchpad size) in the secure memory. The context

setter and secure loader guarantees the correctness of the

NPU secure context and NoC route, respectively. To facilitate

communication with software in the non-secure domain, we

have designed a trampoline protocol that includes the function

ID, arguments, and shared memory.

VI. EVALUATION

A. Experimental Setup

We implement the hardware prototype of sNPU on top of

Chipyard [5], which is a customized RISC-V SoC generator

designed for evaluating full-system hardware. The microar-

chitecture of the NPU design refers to Gemmini [29] and

AuRORA [50], a systolic-array-based DNN accelerator. We

have incorporated all security extensions of sNPU into the

Gemmini, and further implement an in-body send/receive

engine and router module to support NoC-based multi-core

NPUs. For the CPU side TEE, our implementation is based

on the Penglai [26], a RISC-V TEE system. We have extended

the existing Penglai TEE by dividing all hardware resources

into normal and secure worlds. This division ensures strong

isolation for hardware resources between these two worlds,

enhancing the security of the whole system. We evaluate the

sNPU performance by running end-to-end DNN workloads

using FireSim [48], a cycle-exact, FPGA-accelerated RTL

simulator. The configuration is shown in Table II.

In our evaluations, we choose six different state-of-

the-art DNN inference models including GoogleNet [100],

AlexNet [52], YOLO-lite [39], MobileNet [36], ResNet [34],

and Bert [22]. These DNNs include neural networks for

mainstream computer vision (CV) and natural language pro-

cessing (NLP), with different model sizes, DNN kernel types,

computational and memory requirements.

Prerequisite: In our evaluation, we exclude the offline over-

head, such as the task copy and model decryption. These

operations can be performed in advance and do not impact

the runtime performance. Furthermore, the modern mobile

SoC [51], [94] supports to transfer the device’s data (e.g.,

camera) directly to the secure memory. Thus, there is no

additional copy for loading the sensitive input data. In this

paper, we mainly focus on the runtime performance analysis

between the sNPU with other Comparative systems.

Comparative Systems:
• Normal NPU: Normal NPU refers to the baseline in our

evaluation without any secure protection mechanisms.

• TrustZone NPU: TrustZone is the most widely used TEE

system in mobile devices. To support an isolated NPU core

in TrustZone, current SoC vendors have enhanced the NPU’s

sMMU/IOMMU with the TrustZone extension (S/NS bit),

and migrated the whole NPU driver inside the secure world.

In the evaluation, we add extra protection mechanisms (e.g.,

flush-reload and partitioning) for internal scratchpads on the

TrustZone NPU to meet the multi-tasking requirement.

• sNPU: sNPU incorporates the NPU Guarder and Isolator as

additional security modules. We will compare the efficiency

of sNPU’s isolation mechanisms with previously mentioned

methods.

TABLE II
SOC CONFIGURATIONS USED IN THE EVALUATION

Parameter Value

Systolic array dimension (per tile) 16
Scratchpad size (per tile) 256KB

# of accelerator tiles 10
Shared L2 size 2MB

Shared L2 banks 8
DRAM bandwidth 16GB/s

Frequency 1GHz

B. Protected Memory Access for sNPU

We first evaluate how different memory access controls,

such as using enhanced IOMMU (adopted in TrustZone NPU)

and NPU Guarder (adopted by the sNPU), would impact

the end-to-end performance, as shown in Figure 13-(a). We

evaluate the performance of IOMMU with different numbers

of IOTLB entries. For instance, “IOTLB-4” indicates the

presence of four IOTLB entries. The evaluation results show
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(a) Performance comparison

(b) Checking times comparison
Fig. 13. The normalized performance and checking times of ML
workloads with different access control methods.

that IOMMU will introduce a non-negligible slowdown for

DNN inference throughput compared to the NPU Guarder

design. This is because IOMMU has some inherent perfor-

mance overheads, such as IOTLB miss, page walking, and

IOTLB flush. While increasing the number of IOTLB entries

can mitigate these issues to some extent, the performance still

experiences a loss of nearly 10% on real NN workloads even

with 32 IOTLB entries due to the ping-pong scenario [50].

If considering four entries with less hardware overhead, the

loss will be up to nearly 20%. In contrast, sNPU leverages

translation/checking registers to perform tile-based translation

and permission check. Hence, sNPU does not suffer from the

aforementioned performance loss.

Besides the performance overhead, IOMMU also faces

additional energy cost (as high as 10% [55], [114]), especially

in low-power scenarios. Current mobile SoC [51], [94] pro-

vides a low-power mode for NPU to perform long-running

background ML tasks (e.g., eye and gesture detection).We

conduct a further analysis of the request number, which is an

indicator of energy cost, between IOMMU and NPU Guarder.

In the case of IOMMU, IOTLB entries are matched for

each memory transaction, regardless of whether transaction

addresses are continuous or not. In contrast, our translation

and checking registers can accommodate a continuous block

of addresses, requiring only one access request. As illustrated

in Figure 13-(b), using tile-based translation registers only

needs approximately 5% of the translation requests compared

to IOMMU. Therefore, the power consumption overhead for

the NPU Guarder module is negligible.

C. ID-based Scratchpad Isolation

The current NPU leverages the scratchpad to store the

model’s input, weight, and other intermediate results, which

may be revealed by multiple NPU tasks. sNPU propose ID-

based dynamic isolation for both local and global scratchpad,

and we compare the performance of this mechanism with

the aforementioned strawman solutions adopted in the current

TrustZone NPU. The first strawman solution is flushing the

content in the scratchpad before scheduling another NPU task

on the same core. Notably, flushing is not a fully secure

mechanism (see in §IV-B), which only works for the exclusive

scratchpad (no spatial sharing) and assumes the attacker will

not execute any tasks before the flush command.

Fig. 14. The normalized performance of ML workloads under the
different flushing granularities.

Even in the scenario of temporal sharing, flushing can

still result in performance overhead. We evaluate the end-to-

end execution time of ML workloads under different flush-

ing granularities, as shown in Figure 14. We choose three

granularities here: tile, layer, and five layers. To guarantee

correctness, flushing does not simply zero out the scratchpad

but needs to save the execution context and restore it at the

next scheduling. The evaluation result shows that fine-grained

flushing granularity will bring a non-negligible overhead:

about 25% slowdown under the tile granularity. Coarse-grained

flushing has minor overhead but is hard to satisfy the SLA

of ML workloads, as high-priority tasks cannot preempt low-

priority tasks in time [49], [50], [112].

The second strawman solution is static partition, where the

on-chip scratchpads are segmented into a trusted part and an

untrusted part. We set different proportions of trusted and

untrusted parts: one-quarter, one-half, and three-quarters. To

evaluate the performance of partition for real world appli-

cations, we separate six workloads into three groups, with

each group consisting of two workloads. One workload is

assigned to run in the trusted world, while another runs in

the untrusted world. Both workloads run in parallel on their

respective NPU cores but use shared scratchpads. Figure 15

illustrates the normalized execution time of each workload

in three groups compared to their individual execution time.

The left columns in each group illustrate the performance

of the secure workloads, while the right columns represent

the non-secure workloads. The different colors indicate the

different proportions of scratchpad partition. For example,

the purple columns (the leftmost and rightmost columns in

each group) indicate that three-quarters of the scratchpad is

allocated to trusted workloads, while the remaining is allocated

to untrusted workloads.

In contrast to static partition, our ID-based isolation mech-

anism allows a dynamic and fine-grained separation of the

shared scratchpad based on different policies. The red columns

(middle columns in each group) represent our mechanism

with the total-best strategy (minimizing the end-to-end latency

for both workloads). Diverse workloads exhibit varying be-

haviors upon the size of scratchpads, and the NPU driver
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Fig. 15. Multi-task performance under static partition v.s. ID-based dynamic partition.

may assign different proportions of scratchpad for different

workloads. Yololite and mobilenet demonstrate insensitivity

to the scratchpad size, due to their well-orchestrated compute

and memory interleave pipeline. However, the performance of

alexnet and bert fluctuate violently according to the different

sizes of scratchpad. When combining these different work-

loads together, a static partition strategy cannot be universally

applicable to all cases.

In summary, our ID-based dynamic isolation mechanism for

scratchpad offers a more flexible and adaptive solution, allow-

ing for higher utilization of scratchpads while accommodating

the varying needs of different ML workloads.

D. NoC Isolation

We evaluate the overhead of NoC isolation with a peep-

hole and other mechanisms on the multi-core NPU. A naive

isolation mechanism for inter-core communication is to lever-

age the dedicated shared memory (i.e., software NoC). For

instance, storing the intermediate data in the shared memory

and then reloading it from another NPU core. During this pro-

cedure, we restrict the access permission of the shared memory

to prohibit any unauthorized access. However, this memory-

based communication becomes the bottleneck for NPU tasks.

Modern NPU utilizes the direct NoC network (bypassing

memory) to improve the data transmission between multi-

cores, thus significantly enhancing overall chip performance

by mitigating the memory-wall problem. We add the peep-

hole mechanism on this NoC network, which guarantees the

identity for NoC packets and rejects any malicious requests.

Fig. 16. NoC micro-test: NPU data transfer cost with different NoC methods.

Figure 16 illustrates micro-test results between using the

software NoC (using shared memory), unauthorized NoC,

and NoC with peephole. The “transaction size” refers to the

number of scratchpad lines to be transferred. Micro-test only

considers the ideal situation for software NoC, which hypothe-

sizes that only NPU requests access for main memory. Even in

this ideal situation, we observe that our peephole mechanism

can nearly reduce latency by two-thirds, leading to a triple

improvement in bandwidth compared with memory sharing.

Moreover, peephole has no performance loss compared to the

unauthorized NoC, as the authentication only occurs in the

first head flit without extra clock.

Fig. 17. NoC application test: Multi-core performance of ML workloads
with different NoC methods.

In order to test the performance of peephole mechanism

for NoC in real-world scenarios, we analyze the workloads

shown in Figure 17. Notably, the end-to-end performance

of NN workloads is tightly coupled to mapping strategies,

which are orthogonal to the main focus of our work. For

testing purposes, we just use a feasible mapping strategy,

but further improvements can be achieved with a chore-

ographed mapping approach. Figure 17 illustrates the overall

performance (normalized by unauthorized NoC) of different

workloads, utilizing software NoC and peephole-based NoC

for data transferring. By leveraging peephole-based NoC, we

observe a nearly 20% reduction in overall execution time for

different ML workloads compared to the software NoC (using

shared memory), as it eliminates the redundant memory copies

between NPU cores and memory.

E. Hardware Cost Analysis

Fig. 18. Hardware resource cost: Additional FPGA resource with different
NPU protection mechanisms.

We synthesize sNPU on the FPGA and compared its hard-

ware resource with a baseline NPU and TrustZone NPU.

Figure 18 illustrates the additional resources required by the

sNPU in terms of LUTs, RAMs, and FFs. We evaluate the dif-

ferent configurations for sNPU: S Reg (translation/checking
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registers), S Spad (ID-based scratchpad isolation), and S NoC

(secure NoC with the peephole), while the TrustZone NPU

only adopts the IOMMU for access control. Our evaluation

shows that sNPU incurs minimal hardware resource overhead.

It requires only an additional 1% of RAM resources (S Spad),

with negligible impact on LUTs and FFs compared to the

baseline NPU. Furthermore, when comparing sNPU with

TrustZone NPU, IOMMU involves complex IO page table

walking which consumes more hardware resources.

F. TCB Size Analysis
sNPU design only introduces a small software TCB size

with the NPU Monitor, as mentioned in section §IV-C. The

NPU Monitor code consists of only 12,854 LoC, while the

cryptographic code accounts for 10,781 LoC. The second

largest function code is the trusted allocator, which encom-

passes 1,564 LoC. Comparing with the entire NPU software

stack including the ML framework (e.g., 330,597 LoC for

TensorFlow [1], 309,366 LoC for ONNX [68]) and NPU driver

(e.g., 631,063 LoC for NVDLA [79]), the total TCB size for

NPU Monitor is minor.

VII. DISCUSSION

Multiple Secure Domains: The sNPU design is flexible and

can be extended to support multiple secure domains. However,

the paper focuses on two hardware domains (secure and

normal) as it aligns with current mobile system architectures

like TrustZone. Increasing the ID-bits for each NPU core

allows for more secure domains, but it comes with the trade-

off of increased hardware resource usage, particularly in the

scratchpad. It’s essential to balance the desired number of

secure domains with the associated hardware costs.
Besides the hardware-defined domain, sIOPMP also sup-

ports multiple software-defined domains within a single

hardware-defined domain. The NPU monitor can check and

isolate NPU resources and system memory between different

secure ML tasks. While the software-defined domain intro-

duces some checking overhead, it does not impact ML tasks

running outside the secure domain.

Memory Encryption: Current NPU TEEs also employ mem-

ory encryption [2], [37], [57], [75], [95], [113] to protect

against physical attacks. All NPU’s data in the DRAM is

ciphertext, with the encryption and integrity protection. When

the data is loaded into the NPU cache or scratchpad, a

memory encryption engine decrypts the data to plaintext. Some

prior works have designed a specialized integrity scheme that

are tailored to the access patterns of NPUs. sNPU, on the

other hand, primarily focuses on the isolation of in-NPU

structures such as the scratchpad and NoC, which remain

unprotected even when using DRAM encryption. Therefore,

sNPU complements the encrypted NPU TEEs by addressing

attacks targeting the inner structure in multitasking scenarios.

Using a compromised NPU to attack CPU-side resources:
The integration of NPU within the SoC often entails the

sharing of hardware resources with the CPU, such as uni-

fied memory and system cache (if existent). A compromised

NPU could potentially execute attacks on the data and code

residing within these shared resources. For instance, a recently

disclosed vulnerability [64] illustrates that by exploiting the

unified memory between the CPU and GPU, attackers may

achieve kernel code execution despite the presence of Mem-

ory Tagging Extensions (MTE). In response to this security

challenge, the sNPU introduces the NPU Guarder, which is

designed to strictly regulate the access behavior of the NPU

(e.g., prohibiting the NPU from accessing sensitive data and

code owned by the CPU).

Compared with other TEE designs for ML accelera-
tors: Prior studies proposed alternative TEE designs for ML

accelerators, focusing on the trusted I/O bus, minimizing

the software TCB, and implementing memory encryption.

CRONUS [46] proposes a software-based TEE architecture

named MicroTEE, which partitions a monolithic enclave into

multiple micro enclaves. Each micro enclave encapsulates

one specific type of computation within a heterogeneous

computing task. CRONUS primarily emphasizes fault isolation

for TEEs and a software-based design applicable to various

hardware accelerators. AccShield [87] is designed to establish

a hybrid TEE between the CPU and TPU. It provides strong

end-to-end confidentiality and integrity protection, particularly

for the untrusted PCI-e connection. Securing the PCI-e channel

is crucial for discrete accelerators. Other GPU TEEs [9], [45],

[106] focus on customizing the trusted I/O bus and MMIO

interfaces, which restrict the GPU control from the normal

world. The sNPU, on the other hand, mainly focuses on

the isolation of inner structures in ML accelerators such as

scratchpads and NoC. Moreover, unlike other TEE designs that

concentrate on discrete accelerators, the sNPU is targeted for

the integrated NPU, which shares a unified memory space with

the CPU. Therefore, protection like the secure PCIe channel

is orthogonal to our design.

VIII. CONCLUSION

This paper presents a comprehensive TEE design for in-

tegrated NPUs: sNPU. First, it achieves strong isolation and

mitigates the memory checking overhead for NPU using the

tile-based translation and checking. Second, it categorizes new

attack surfaces leveraging in-NPU resources like NoC and

scratchpad, and proposes fine-grained isolation mechanisms

specifically for these resources. Third, it minimizes the soft-

ware TCB of the NPU stack. We have implemented a prototype

in the FPGA, and evaluate it on a large variety of real-world

AI workloads.
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