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Abstract—Hardware transactional memory (HTM) is an emerging hardware feature. HTM simplifies the programming model of

concurrent programs while preserving high and scalable performance. With the commercial availability of HTM-capable processors,

HTM has recently been adopted to construct efficient concurrent index structures. However, with the expansion of data volume and

user amount, data management systems have to process workloads exhibiting high contention; meanwhile, according to our

experiments, the conventional HTM-base concurrent index structures fail to provide scalable performance under highly-contented

workloads. Such performance pathology strictly constrains the usage of HTM on data management systems. In this paper, we first

conduct a thorough analysis on HTM-based concurrent index structures, and uncover several reasons for excessive HTM aborts

incurred by both false and true conflicts under contention. Based on the analysis, we advocate Eunomia, a design pattern for

HTM-based concurrent index structure which contains several principles to improve HTM performance, including splitting HTM regions

with version-based concurrency control to reduce HTM working sets, partitioned data layout to reduce false conflicts, proactively

detecting and avoiding conflicting requests, and adaptive concurrency control strategy. To validate their effectiveness, we apply such

design principles to construct a scalable concurrent B+Tree and a skip list using HTM. Evaluation using key-value store and database

benchmarks on a 20-core HTM-capable multi-core machine shows that Eunomia leads to substantial speedup under high contention,

while incurring small overhead under low contention.

Index Terms—Hardware transactional memory, concurrent index structure, data conflicts

Ç

1 INTRODUCTION

THE emergence of hardware transactional memory
(HTM) [1] provides a new opportunity to construct effi-

cient concurrent data structures. HTM exploits cache coher-
ence mechanisms to protect the consistency of critical
sections, which may approach the performance of fine-
grained locking or even lock-free schemes while preserving
the simplicity of programming with coarse-grained locks.
For this reason, there have been plenty of efforts to design
concurrent index structures (e.g., skip list, search tree, hash
table) using HTM [2], [3], [4], which was shown to achieve
satisfying performance in data management systems.

However, due to the increased number of processor
cores [5], a skewed distribution of key accesses [6], or the
contention on shared entities in databases [7], data manage-
ment systems have to confront with highly-contented
workloads [7], [8], [9]. Yet, according to our experiments,
conventional HTM-based concurrent index structures fail to

deliver high performance and good scalability when work-
loads exhibit high contention. With such pathological per-
formance, the universality of HTM is severely constrained.

This paper attempts to answer a natural question: with
the assistance of HTM, can we construct a concurrent index
structure that delivers high and scalable performance even
under high contention? To answer this question, we first
present a detailed analysis of the performance of a recent
concurrent HTM-based B+Tree used as the index in several
in-memory data management systems [2], [3], [4]. Our anal-
ysis uncovers several key issues leading to non-scalable per-
formance under contention.

First, traditional HTM-based index structure protects the
consistency of operations in a large, monolithic HTM
region, whilst most data conflicts actually occur in some cer-
tain parts of the entire index structure. This leads to high
retry cost. Second, a wide variety of ordered index struc-
tures store records in a dense and consecutive manner,
which incurs severe false sharing problem under HTM due
to a coarse-grained (i.e., cache line) conflict checking. Third,
many index structures intrinsically contain pervasive
shared meta-data to maintain semantics, and accesses to
shared variables usually cause conflicts among transactions.
The above design defects are derived from some common
features of index structures, such as uneven distribution of
modifications and dense memory layout. These features of
index structures are the basis of our design pattern.

Based on the analysis of performance issues and data
structure features, we present Eunomia, a design pattern
that attempts to tackle the above issues with the following
design guidelines. First, based on the observation that
modifications distribute unevenly within concurrent index
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structures, we partition a monolithic HTM region into parts
according to the index phase and operation phase in such con-
current index structure; each part protects the atomicity of
different parts with HTM mechanism respectively. A ver-
sion-based scheme is designed to guarantee the overall con-
sistency at the boundary between different HTM regions.
With such scheme, most conflicts only cause retries within
the partitioned transaction pieces, instead of the entire
monolithic transaction. Second, to eliminate false conflicts
incurred by consecutive data layout and meta-data accesses,
Eunomia refactors the index structure in a partitioned way,
which dispatches concurrent requests to different segments.
Third, to throttle the conflicting requests, Eunomia adopts
an efficient mechanism, which anticipates potential conflicts
and avoids them accordingly. Finally, Eunomia adopts an
adaptive contention control mechanism, which can detect
various contention rates and achieve high performance
under both high and low contention.

We have applied these design guidelines to two repre-
sentative concurrent index structures: B+Tree and skip list.
Experimental results using the YCSB benchmark to evaluate
key-value store performance show that under high conten-
tion, Eunomia can yield 5X-11X speedup over conventional
HTM-based B+Tree and 4X-6X speedup over HTM-based
skip list. We also evaluate the performance of concurrent
index structures in a database system with TPC-C bench-
mark, and the results show that Eunomia yields substantial
speedup with database workloads.

In summary, this work makes the following
contributions.

� A comprehensive analysis of HTM-based concurrent
index structures under high contention.

� A design pattern with four design guidelines for
scalable concurrent HTM-based index structures.

� Applying the design pattern to two concrete index
structures, yielding high performance and scalability
with contended workloads.

The paper is organized as follows. Section 2 introduces
the background about HTM and concurrent index struc-
tures. In Section 3, we conduct a detailed analysis on the
pathological performance of HTM-based index structures
under high contention. Section 4 discusses common features
of concurrent index structures and presents Eunomia
design pattern. Section 5 presents how to apply the Euno-
mia design pattern on a B+Tree. In Section 6, we give out
the experiments on two concurrent index structures. In
Section 7, we present a system evaluation under TPC-C
workload. The related work is summarized in Section 8,
and we conclude the paper in Section 9.

2 BACKGROUND

This section introduces the necessary background regarding
HTM and index structures, especially the usage of HTM to
design concurrent index structures.

2.1 HTM Semantics
With the commercial popularization of IBM z- and p-
Series [10], [11] and Intel Haswell [12] processors, HTM has
been widely available to the mass market. Here we use
Intel’s RTM (Restricted Transactional Memory) as an exam-
ple to illustrate the semantics and quirks of HTM.

RTM provides xbegin and xend primitives to enclose a
critical region which ought to be executed transactionally.
Memory addresses read and written within an RTM region
constitute the read-set and write-set respectively. A conflict-
ing access occurs if one RTM transaction (i.e., a running
instance of an RTM region) has a read set that overlaps with
another concurrent transaction’s write set or if their write
sets overlap. RTM provides strong atomicity [13]. If an RTM
transaction conflicts with concurrent memory operations
from other transactional or non-transactional code, the pro-
cessor will abort the transaction. If an RTM transaction is
aborted, all its writes will be discarded, and the program
state will be rolled back to the beginning of the execution.
Otherwise, all memory modifications within an RTM region
will appear to happen atomically.

However, as a hardware mechanism, RTM provides no
forward progress guarantee. Consequently, it is the pro-
grammers’ responsibility to provide a fall-back handler
when an RTM transaction retries a predefined threshold. In
practice, the fall-back handler usually acquires a coarse-
grained lock, all other transactionally executing threads
eliding the same lock will abort, and the execution serializes
on the lock [14]. Hence, the performance of an RTM transac-
tion will fall back to a coarse-grained lock scheme with an
additional cost of RTM aborts.

2.2 Concurrent Index Structures
An index structure is a data structure that facilitates fast
data retrieval in a data management system [15]. Represen-
tative index structures include search trees [16], [17], [18],
skip lists [19], and hash maps [2], [3]. With the expansion of
user amount and data scale, index structures have to con-
front with highly-concurrent requests. To provide correct
indexing with high performance, concurrent index struc-
tures have to resolve the data races with small synchroniza-
tion overhead. Shrinking the granularity of synchronization
point is a conventional technique to improve the perfor-
mance of concurrent index structures. Many concurrent
index structures attempt to achieve high performance by
using fine-grained locks [20], [21], [22]. Such fine-grained
synchronization unleashes the concurrency, while it
increases the programming complexity. Moreover, pro-
grams with too many subtle locks can be deadlock-prone.
With the availability of processors supporting atomic
instructions, lock-free methods are also widely used to con-
struct efficient concurrent index structures [23], [24], [25],
[26], [27]. However, lock-free schemes are based on atomic
instructions, which only make the program more complex
and hard to reason about the correctness.

Since B+tree and skip list are two most widely used con-
current index structures [2], [19], [28], [29], we use them for
case study in the following paper. A B+Tree is a B-Tree in
which internal nodes store keys, and only leaves are
associated with values [30] (Fig. 1a). When there is an access
to B+tree, the request first traverses along the edges to locate
the target leaf node. Then the request updates/gets the
value. The node will split if the leaf node is full. The split
will propagate upwards along the edges if the parent node
is full too. Meanwhile, skip list is a layered data structure,
and each layer is an ordered linked list (Fig. 1b). Each layer
acts as an express lane for the lower one. Data are stored in
the bottom layer. When there is an access to skip list, the
request starts from the top layer and finds the largest node
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which is smaller than the requested key. Then the request
moves to the next layer and continues the search. Finally
the request reaches the bottom layer at which moment it
can decide whether the key exists.

2.3 HTM-Based Index Structures
With the commercial availability of HTM-capable process-
ors, HTM-based concurrent data structures have drawn
much attention from academia. HTM provides high perfor-
mance while simplifying the programming paradigm,
which makes it a perfect candidate for devising highly-
concurrent index structures. Conventional HTM-based
index structures protect the consistency of concurrent oper-
ations by adopting an HTM region at the boundary of the
critical section. As researched in DBX [2], the first successful
attempt to design HTM-based database, the programmers
could substitute the complex lock-based synchronization
with two simple HTM primitives: xbegin and xend. Such pro-
gramming paradigm offloads the responsibility of guaran-
teeing the concurrent correctness from programmers to
hardware architecture, and HTM-based index structures
like B+Tree and skip list have been successfully used in
many database designs [3], [4].

3 MOTIVATION

HTM-based index structures have been pervasively used
in many database systems, and have been proven to
deliver scalable performance under mainstream work-
loads. However, with the expansion of data capacity and
user amount, modern concurrent index structures have to
confront with different kinds of contented workloads.
Prior research has revealed that most concurrent index
structures with software-based synchronization techni-
ques (e.g., lock, atomic instruction) suffer varying degrees
of performance slowdown when workloads exhibit high
contention [7], [8], [9], [31]. In this section, we explore the
performance behavior of HTM-based index structures
under highly-contented workloads and analyze the rea-
sons for the performance pathology.

3.1 Pathological Performance Under High
Contention

Here we use two representative HTM-based concurrent
index structures, i.e., B+Tree and skip list, derived
from DBX [2] as examples to illustrate the issues of
HTM-based concurrent index structure under contention.
The HTM-based B+Tree (namely HTM-B+Tree) adopts
HTM regions to protect operations of the B+Tree such as
get, put, and delete. This design was later adopted and
shown to be effective in other distributed in-memory data-
bases [3], [4]. Besides, skip list [19] is a simpler alternative to
balanced search trees; the HTM-based skip list is also
widely adopted in many database systems [2].

Conventional HTM-based index structures use a
monolithic HTM region marked by xbegin and xend prim-
itives to protect the entire data retrieval process; such a
coarse-grained HTM region eliminates the complexity of
maintaining fine-grained locks and makes it easy to rea-
son about correctness. As a result, HTM-based index
structures are shown to have much better performance
compared to the state-of-the-art lock-based concurrent
index structures (i.e., Masstree [21]) under low to modest
contention [2].

While the HTM-based concurrent index structures
deliver high performance under low and modest conten-
tion, the performance is found to exhibit dramatic collapse
under high contention. To illustrate this, we evaluate the
throughput of an HTM-based B+Tree and an HTM-based
skip list using the YCSB benchmark with the Zipfian input
distribution [6], [32]. The experimental setup is the same as
that in Section 6.1. We set a skew factor u to control the span
of hot keys. Higher the u, higher the probability that multi-
ple threads access the same hot region in the key set. All the
performance results are collected using 16 threads (a few
cores are reserved for controlling threads). Threads are dis-
tributed equally on two sockets.

As the data in Fig. 2 show, with low contention rate (i.e.,
skew factor u < 0.6), the HTM-based B+Tree achieves high
and stable performance. However, when the contention rate
increases (e.g., u > 0.6), the performance of an HTM-based
B+Tree shows a sharp collapse. When u = 0.9, the perfor-
mance decreases to lower than 3 million ops/s. HTM-based
skip list exhibits similar performance behavior.

To understand the underlying reasons behind the perfor-
mance collapse, we collect the number of HTM aborts. Since
adding performance counters to each HTM region severely
hinders the overall throughput, here we set performance
counters in every 10 operations so that the performance
with HTM counters deviates little from that without coun-
ters. As the data in Fig. 3a show, the HTM abort rate of
B+Tree increases sharply with the contention rate; the HTM
abort rate for u = 0.9 is around 47X higher than that for u =
0.5. Similarly, the HTM abort rate of skip list also rises by
22X when the skew factor increases from 0 to 0.99 (Fig. 3b).
The collected CPU cycles also show that frequent HTM
aborts and retries waste more than 94 percent of the total
CPU cycles under high contention.

3.2 Analysis of Design Defects
To understand the underlying reasons for the collapsed per-
formance under high contention, we perform a detailed
analysis and uncover three main sources of aborts.

Fig. 1. Data structure of B+Tree and skip list.

Fig. 2. Performance under different contention rates.
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High Retry Overhead. While using a monolithic transac-
tion for the entire index structure provides consistency with
trivial effort, it also increases the time consumed by retry
operations. Our analysis finds that the distribution of con-
flicts is non-uniform in B+Tree and skip list: more than
90 percent of conflicts occur in the leaf level of B+Tree, and
about 83 percent of conflicts occur at the lowest two levels
of skip list. In this case, a conflict will abort the entire index
traversal from beginning to end, even though there is actu-
ally no conflict in other parts of the index structure. Accord-
ing to the experimental results, such futile retry process
takes up around 60 percent of the total execution time in the
B+Tree and about 58 percent of the total execution time in
the skip list.

False Conflicts. Are conflicts incurred by requests access-
ing different records. False conflicts stem from two primary
reasons. The first one is cache line sharing of consecutive
records. Consecutive and dense memory layout pervasively
exists in ordered index structures. For example, B+Tree
arranges keys within a node in a continuous manner to pro-
vide an ordered store, and skip list stores pointers to each
node densely in an array. Such data layout causes severe
conflicts under high contention. Since HTM detects conflicts
at cache line granularity, concurrently accessing data in the
same cache line would result in increased conflict rates
within nodes. The second reason is accessing the shared meta-
data. For instance, a conventional B+Tree inherently con-
tains pervasive shared variables to maintain tree structure
invariants (e.g., the number of layers and version number of
nodes), and skip list stores the maximum height of a node
in it. We categorize conflicts incurred by shared meta-data
as false conflicts since their target records are actually differ-
ent. Since it is difficult to measure the exact percentage of
false conflicts directly, we approximate the decomposition
by excluding other affected factors and estimating the abort
rate. To estimate the impact of “same record”, we modified
the Zipfian distributed workloads and to prevent different
threads from accessing the same records and collect the
reduction on HTM aborts. We calculate the HTM aborts
from accessing different records (e.g., when inserting conse-
cutive records) by subtracting previous rates from the total
rate. As to shared meta-data, it is hard to remove all shared
variables in the tree structure as some are indispensable to
proceed with execution. We remove shared variables for
version and node status, and estimate the reduction of
aborts. As shown in Fig. 3a, 87-90 percent of conflicts in B
+Tree are caused by requests to different keys, which is the
primary reason for the growth of abort rate. Besides, the
conflicts incurred by shared meta-data contribute 6-10 per-
cent, which is also a non-negligible source. As shown in
Fig. 3b, for HTM-based skip list, conflicts incurred by
shared meta-data (e.g., max height of nodes) can be
neglected, while conflicts incurred by different records

contribute 92-99 percent. It is also notable that the abort
rates of B+Tree and skip list are different. The reason behind
it is the difference in their organization. The records in B
+Tree’s leaf nodes are stored in a consecutive manner. On
the other hand, the skip list stores pointers to each node
densely in an array, but each node only holds one record
individually. For these two data structures, the modification
operations mainly occur in records. In B+Tree, the consecu-
tively-stored records incur both true and false conflicts fre-
quently due to cache line sharing and shared meta-data;
while in skip list, modifications to a single record will not
affect the sibling records directly since they are not stored
consecutively in the same cache line. Therefore, the abort
rate of B+Tree is higher than that of skip list.

True Conflicts. Are conflicts incurred by requests access-
ing exactly the same record. For workloads under high con-
tention, the probability that multiple requests access the
same record simultaneously is inherently high, which is a
significant source of conflict. From Fig. 3, we can observe
that 9-12 percent of conflicts are incurred by requests to the
same records in B+Tree, and 1-7 percent in skip list.

4 EUNOMIA DESIGN PATTERN

Based on the above analysis, this section first summarizes
some common features in concurrent index structures, which
are the primary reasons for the performance slowdown
under contention. Then we propose the Eunomia design pat-
tern, which comprises four design guidelines to scale concur-
rent index structures under contention usingHTM.

4.1 Features of Concurrent Index Structures
The analysis in Section 3 reveals several defects of HTM-
based concurrent index structures. Such design defects
stem from the gap between HTM semantics and some com-
mon features of concurrent index structures. To fully take
advantage of HTM mechanism, it is necessary to under-
stand the common features of concurrent index structures,
which are the basis of our design pattern.

Multiple Phases During Data Access. Most concurrent
index structures improve the efficiency of data searching at
the cost of additional storage space to maintain the index
data structure. For example, B+Tree maintains hierarchi-
cal inner nodes to reduce the time complexity of data
locating; skip list stores keys in multiple levels to reduce
the hops in searching a particular key. Therefore, the
index retrieval process of those concurrent index struc-
tures shares a common pattern: the request entering the
data structure first traverses along the index edges to
search the target key, then it performs modifications to
the target key according to different semantics. Such
data access can be divided into an index phase and an
operation phase. Taking a concurrent B+Tree index as an
instance, the request first traverses along the tree edges
to locate the target leaf node in index phase. After the
request finds the target leaf node, it modifies the node
and updates/inserts new value in operation phase.

Uneven Modification Distribution. As discussed above, in
index phase, requests mainly traverse along index structure;
few modifications occur in this phase. In operation phase,
requests update the records and modify the index structure
accordingly; most modifications take place in this phase.
Therefore the boundary between the two phases divides the

Fig. 3. HTM aborts incurred by different reasons.
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concurrent index structures into a modification-sparse part
and a modification-intensive part. The majority of data
modifications actually occur in the operation phase. When
protecting the concurrent index structure by HTM, the
uneven distribution of data modification leads to the
uneven distribution of conflicts; that is why 90 percent of
conflicts occur in the leaf layer of B+Tree, and over 80 per-
cent of conflicts occur at the bottom two levels of skip list.
Conventional HTM-based concurrent index structures pro-
tect the whole access process within one monolithic HTM
region. In such a manner, a request needs to traverse the
concurrent index structure from the root node for each
retry, even most conflicts occurred in the operation phase,
which leads to high retry overhead.

Ordered and Consecutive Data Layout. Most concurrent
index structures store records in a dense and consecutive
manner due to the following reasons: first, guaranteeing the
efficiency of range query operations which return a sequence
of sorted keys; second, enabling fast data retrieval such as
binary search; third, reducing the memory consumption. For
example, B+Tree stores keys consecutively in leaf nodes, and
skip list arranges pointers to nodes in different levels in an
array. These ordered data (such as leaf nodes in B+Tree) are
often modified in the operation phase of concurrent index
structures. When such data structure are combined with
HTM, which detects conflicts in cache line granularity, it will
incur high likelihood of false conflicts.

4.2 Eunomia Design Principles
Based on the performance issues and features analyzed
above, we advocate Eunomia, a design pattern for scaling
concurrent index structures using HTM under highly-
contented workloads. Eunomia is constituted with the
following principles.

Splitting HTM Transactions with Consistency Validation.
There exist multiple phases during request traversal, and the
HTM-protected index structure can be divided into a con-
flict-sparse index phase and a conflict-intensive operation
phase. Traditional HTM-based index structures use a large
monolithic transaction region to protect the consistency of
the entire data retrieval with little programming complexity.
Consequently, a conflict in operation phase incurs retry
throughout the index structure, leading to high retry over-
head. To solve this problem, an intuitive way is to decom-
pose a large HTM transaction into multiple smaller HTM
transactions. Since data conflicts distribute unevenly in con-
current index structures, the split boundary ought to be
decided by the likelihood of data conflicts so that retries
incurred by conflicts in conflict-intensive regions will not
impact the requests in conflict-sparse regions. For example,
in concurrent B+Trees, the delimiter between index phase

and operation phase is between the inner layers and the leaf
layer. Therefore, if the monolithic HTM region is divided
into two parts, the boundary ought to be set above the leaf
layer so that the conflicts happened in operation phase only
incur retries in this stage, instead of causing futile retry oper-
ation throughout the entire index structure, as depicted in
Fig. 4. However, naively splitting the HTM region no longer
guarantees the atomicity and consistency of the entire data
access operation. To solve this problem, Eunomia uses a ver-
sion-based opportunistic consistency validation to detect
and avoid potential inconsistency problems. The detailed
implementation is introduced in Section 5.

Partitioning Data Layout. Consecutive and dense memory
layout incurs high false conflict rate when multiple threads
access the data in the same cache line. To address this
issue, Eunomia fpartitions the continuous records into
multiple segments and requests to adjacent records will
be randomly distributed to different segments located in
different cache lines as shown in Fig. 5. Since requests to
adjacent data are scattered to different segments ran-
domly, the false conflict rate can be reduced (Fig. 5). For
operations requiring ordered data (e.g., range query),
Eunomia uses buffers to store sorted keys gathered from
multiple segments temporarily. Hence, the original
ordering semantics can still be maintained. The detailed
implementation is introduced in Section 5.

Conflict Control Module (CCM). The conflicts distribute
unevenly in the index data structure, and most conflicts
actually occur in the modification-dominated operation
phase. To prevent multiple threads from colliding in opera-
tion phase, we propose conflict control module at the
boundary between index phase and operation phase. CCM
has two main functions: detecting/avoiding potential true
conflicts, and throttling the number of threads entering the
operation phase. Especially, CCM adopts two main techni-
ques (Fig. 6). First, CCM employs fine-grained advisory
locks to detect and serialize all requests accessing the same
key. Thus potential true conflicts are eliminated. Second,
CCM adopts a Bloom filter [33] based mechanism to prevent
requests searching for inexistent keys from entering the
operation phase, so as to constrain the number of threads in
operation phase.

Adaptive Contention Control Strategy. While the above
design guidelines are helpful for a high contention scenario,
applications usually exhibit changing workloads with dif-
ferent levels of contention. As the design choices to handle
high contention may bring overhead under low contention,
Eunomia uses an adaptive contention control strategy to
detect contention rates and bypass extra cost when conten-
tion is low.

5 CASE STUDY: EUNO-B+TREE

In this part, we illustrate how to apply Eunomia design pat-
terns to implement concrete HTM-based index structures.
The baseline is a traditional HTM-based B+Tree, which has

Fig. 4. The split HTM transactions.

Fig. 5. The segmented data layout.
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been widely used in many systems [2], [3], [4]. We apply
each Eunomia principles to the baseline and implement a
scalable HTM-based B+Tree (namely Euno-B+Tree) under
contention.

5.1 Data Structure Design
Splitting HTM Transactions: Reducing Retry Cost. To reduce
the retry cost, Eunomia partitions the monolithic HTM
region at the delimiter between index phase and operation
phase. For B+Tree, the split boundary ought to be above the
bottom leaf layer. Therefore we decompose the HTM region
of HTM-based B+Tree as shown in Fig. 7. Euno-B+Tree
splits the original HTM region into two individual parts:
upper region, which protects the atomicity of internal nodes
traversing, the read-dominated index phase; and lower
region, which protects the atomicity of leaf nodes accessing,
the conflict-prone operation phase.

Trivially splitting the monolithic HTM region introduces
inconsistency issue when node splits: consider if a thread
tries to insert record A, while a concurrent thread tries to
read record B in the same leaf node. The read request will
get the leaf node pointer by traversing the tree index in the
upper region. However, before it enters (or retries) the
lower region, the leaf node may be split due to the concur-
rent insertion and record B is moved to the sibling leaf
node. The read request will fail to get record B. The problem
is the read request gets the leaf node pointer in one HTM
region, while it searches the leaf node in another HTM
region. As a result, the read request is not aware of concur-
rent splitting.

To solve the problem, Euno-B+Tree adopts a version-
based consistency validation approach. The overall consis-
tency is guaranteed by a version number tracking the split
operation (Fig. 8). The version number is created with the
leaf node, and is updated when the leaf node splits. At
the end of the upper region, the request finds a pointer
to the target leaf node, and reads the version number of
this node into a local variable before exiting the upper
region. When the request enters the lower region, the
version number will be checked. An inconsistency means

the target leaf node has been split. Therefore, the request
needs to retry from the root node. For the above exam-
ple, after the read request gets the leaf node pointer in
the upper region, it snapshots its version into a local var-
iable. When a leaf node is split, its version is updated.
Then the read request will be aware of the split event by
checking the version number at the beginning of access-
ing the lower region or a new retry.

Scattered Leaf Nodes: Reducing False Conflicts. To reduce the
false conflicts incurred by consecutive and dense memory
layout, Eunomia stored records in a scattered manner. In
B+Tree, the dense and consecutive memory layout mainly
exists in leaf layer, which is also located in operation phase,
exacerbating the false conflict rate. Therefore, Euno-B+Tree
redesigns the leaf layer in a scattered manner to reduce the
likelihood of false conflict (Fig. 8). Each leaf node is sep-
arated into multiple segments located in different cache
lines. Only the keys in the same segment are kept sorted
and stored consecutively, and the value pointers are
combined with keys for the convenience of sorting and
reorganization. Besides, each segment has its meta-data
to record the number of stored elements, which naturally
splits the shared meta-data, another source of false con-
flicts. To avoid the conflict in the same segment, we use
a write scheduler to assign each put operation to a random
segment. Each leaf node maintains a lock (split lock) to
serialize concurrent split operations because concurrent
split operations on the same leaf node are highly likely
to conflict with each other.

Also, we allocate reserved keys in each leaf node as a
buffer to hold the sorted keys for operations requiring
ordered results (e.g., range query). The reserved keys have
the following functions.

� Storing old records for a node split. If a node is split,
the reserved keys in each split nodewill be used to store
old records. The length of reserved keys equals the
number of records inherited from the original node.

� Storing records overflowed from segments. To make
room for further concurrent insertions, if an insertion
overflows a segment, the reserved keyswill be dynam-
ically expanded, and all records in segments will be
moved to it.

� Storing sorted records for range queries. All of
records in segments will be sorted and moved to
reserved keys when there is a range query
operation.

When reserved keys are expanded, the total size of seg-
ments is shrunk to keep that the size of all segments
plus the size of reserved keys equals the size of the orig-
inal space in a node. The records in reserved keys could
also be searched and updated. However, the partitioned
segments and reserved keys work together to scatter

Fig. 6. Design of conflict control module.

Fig. 7. Overview of Euno-B+Tree structure.

Fig. 8. The data layout of leaf nodes.
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different operations, which reduces the probability of
false sharing. Such a design sacrifices the performance of
search operations. However, since each segment and
reserved keys are already sorted, performing a merge sort
is quick, and the sorted results can be reused for the fol-
lowing search operations.

Conflict Control Module: Reducing and Constraining Con-
flicts. To avoid potential true conflicts and throttle the
number of threads entering operation phase, CCM is
added at the boundary between index phase and opera-
tion phase. In B+Tree, we add the CCM above each leaf
node, which is the delimiter between index phase and
operation phase. The first function of CCM is to detect
and eliminate potential true conflicts. Thus it uses fine-
grained atomic advisory locks to prevent two conflicting
operations from accessing the same record simulta-
neously. Then CCM adopts a Bloom filter based mecha-
nism to constrain the number of requests entering the
operation phase. Specifically, CCM has a hash function
and two bit vectors: mark bits and lock bits.

� Hash function. The target key of a request will be
hashed to a bit in the vector.

� Lock bits. The lock bits function as fine-grained
atomic advisory locks attached to each slot in the leaf
node. It detects and serializes all concurrent requests
accessing the same key. It can avoid conflicting oper-
ations (i.e., put versus get and put versus put) to
enter the HTM region simultaneously.

� Mark bits. Besides, the mark bits vector is used to
indicate the existence of the corresponding key,
resembling the working mechanism of Bloom filter.
If a request searches for an inexistent key, the mark
bits will prevent it from entering the leaf node; thus
fewer threads could enter the leaf node, and conflict
rate is reduced further.

We set the length of the bit vector twice as the leaf node’s
fanout so that the space overhead is kept below 5 percent
while the false positive rate is kept under 6 percent.

Adaptive Concurrency Control. To reduce the overhead for
low contention rate, we use a contention detector in CCM,
which detects the contention rate and adjust the contention
control strategy accordingly. First, the detector predicts the
conflict probability of a leaf node based on historical data.
When the conflict rate of a leaf node keeps below a thresh-
old for a period, its contention rate is considered to be low.
In such a condition, the new incoming requests will bypass
the CCM and split locks, skipping the overhead brought by
these modules.

5.2 Algorithms
Based on the above data structure design, we further
relate how Euno-B+Tree handles common B+Tree
operations.

Get/Put. Algorithm 1 shows the traversal procedure
shared by both get and put operations. Due to the split HTM
regions, the traversal procedure is naturally divided into
two parts. The atomicity of each part is protected by an
HTM region, one for the upper region (Lines 23-28) and one
for the lower region (Lines 41-51) accordingly. We omit the
fall-back path here for brevity. The CCM is used to prevent
conflicting requests from entering the lower region simulta-
neously (Lines 29-40).

Algorithm 1. Get/Put (Two-Step Tree Traversal)

21: procedure Traverse(REQ_TYPE, key, newVal)
22: RETRY:
23: XBEGIN() //upper region
24: node = root
25: leaf = findLeaf(node, key)
26: local_seqno = leaf.seqno
27: ccm = leaf.CCModule //get the conflict control module
28: XEND()
29: slot = ccm.hash(key)
30: while !CAS(ccm[slot].lockBit, 0, 1) or leaf.isLocked() do
31: spin()
32: exist = ccm[slot].markBit
33: if !exist then
34: if REQ_TYPE == GET then
35: record = null
36: else //REQ_TYPE == PUT
37: //insert the key if it does not exist
38: insert = CAS(ccm[slot].markBit, 0, 1)
39: if insert and leaf.isNearFull() then
40: leaf.lock() //hold the lock for split
41: XBEGIN() //lower region
42: if local_seqno != leaf.seqno then
43: consistent = false //inconsistency happens
44: else
45: if exist then
46: record = leaf.getRecord(key)
47: if REQ_TYPE == PUT then
48: if record == null then
49: record = INSERT(leaf, key)
50: record.value = newVal
51: XEND()
52: if leaf.isLocked() then
53: leaf.unlock()
54: ccm[slot].lockBit = 0
55: if !consistent then
56: goto RETRY

57: if REQ_TYPE == GET then
58: return record

To process a put or a get request:

1) Euno-B+Tree first traverses along the tree edges
from the root to reach the leaf node (Lines 23-28).
The atomicity of the traversal is protected by an
HTM region. Before exiting the HTM region, the
request reads the current version number into a local
variable (Line 26).

2) Before entering the lower region, Euno-B+Tree uses
the CCM to serialize conflicting accesses on the same
node (Lines 29-40). This is done by atomically check-
ing and setting the lock bit of the corresponding key
(Line 30). We use a set of atomic advisory locks to
protect the atomicity of each byte in the bit vector.
After a request sets the lock bit successfully, it will
validate if its target key exists or not by checking the
mark bit (Line 32). If it does not exist, for a get
request, it will assign a null value to the record; for a
put request, it will set its bit in the mark bits vector
and initiate an insert procedure. For an insertion
operation, if the leaf node needs to be split due to the
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capacity limitation, it will try to acquire the split lock
before splitting (Line 40). The subsequent operations
will be blocked by the lock from entering a node in
the split process (Line 30).

3) Scanning the leaf node is protected in the lower region
(Lines 41-51). In the beginning, it needs to check the
version number of the leaf node. If it has been
changed, it means the node was split by a concurrent
request before entering or retrying the lower region
(Line 43). In this case, a request in the lower region
could scan the wrong leaf node. Thus it ought to
retry from the root and search for the latest proper
leaf node. Otherwise, the leaf node is still valid; the
request will continue searching for the target key in
this leaf node (Line 46). If the target key is not found
in a leaf node, the put request will insert a new key
(Line 49); otherwise, it will update the value of an
existing key (Line 50).

Insert. Based on the partitioned leaf nodes introduced in
Section 5.1, we propose the algorithm of insertion; Fig. 9
illustrates necessary steps.

1) Before an insertion request enters the leaf node, it
first checks the CCM to detect potential true con-
flicts. The hash function in CCM maps the target key
to a certain bit in the lock_bits. Then the request will
be blocked if the target bit is being locked. Other-
wise, it will set the target bit in lock_bits and mark_-
bits until it finishes the insertion.

2) The write scheduler randomly distributes incoming
requests to different segments. If all insertions are dis-
tributed to different available segments (segments
with empty slots), thenmultiple insertions can be proc-
essed concurrently. If the target segment is full, the
schedulerwill retry the distribution attempt (Fig. 9a).

3) If the retry times exceed a threshold, then we can
infer the leaf node is near-full or the key-value pairs
stored in segments distribute unevenly. In this case,
we move the elements in all segments to reserved keys
(Fig. 9b), then clean the segments to accommodate
new concurrent insertions. If the retries are incurred
by uneven key-value distribution, after we reorga-
nize the keys to reserved keys, there could remain
sufficient room in segments to support further con-
current insertions.
a) If there is still sufficient room to hold new keys

(Fig. 9c), the scheduler continues to distribute
concurrent insertions to different segments.

b) If there is not sufficient room for new keys, the
split lock is acquired for a further split operation.

By this means, the leaf node allocates concurrent inser-
tions to different segments, and the shared meta-data are
also naturally divided into several parts.

Split. When a node in B+Tree is full, a new insertion will
trigger a split. The current node is split into two nodes with
original keys evenly distributed. The content of the parent
node will be adjusted accordingly, and the split propagates
upwards if the parent nodes are full themselves. Given the
insertion semantics related in the previous section, the keys
in leaf nodes of Euno-B+Tree are arranged in a partially
unordered manner (ordered within a segment, unordered
among segments). Therefore splitting a node, in fact,
includes both sorting and splitting steps.

1) When a node splits, Euno-B+Tree first locks the leaf
node to block new incoming insertions; otherwise,
they are highly likely to conflict when the keys are
being reshuffled.

2) Then the keys in the original node are sorted and
stashed to reserved keys in an ordered manner.

3) The original node is split according to the typical
scheme of a B+Tree. The version number increases to
keep consistency. The smallest key of the right leaf
node is inserted into the parent node to make the
newly-born node indexable.

4) In new nodes, old key-value pairs inherited from the
old node are stored in reserved keys, and the remain-
ing empty slots are evenly distributed to multiple
segments. So that segments will be entirely empty to
accommodate new records.

In such a sorting-split-reorganizing way, we can constrain
the randomness of keys within the leaf node layer. The keys
in the internal nodes are still stored in order.

5.3 Range Query and Deletion
Range queries, which access a set of consecutive keys, are an
important interface for ordered indexes. In Euno-B+Tree,
when a range query request reaches a leaf node, the node
will be locked by the split lock, and key-value pairs stored
in all segments will be moved and sorted in reserved keys.
Hence, the scan iterator can get a sequence of ordered keys.
Besides, the traversal process of a deletion is similar to that
of a put operation; the tree structure simply labels the status
of the record as deleted and clears the corresponding mark
bits. Euno-B+Tree reuses the deletion and garbage collec-
tion scheme in DBX [2] to clean up the unused nodes.
Instead of re-balancing the tree on every deletion instantly,
we do the re-balance when the number of deletions exceeds
a threshold. Previous research has proved that such a re-bal-
ance scheme has theoretical and empirical advantages [34],
and has been adopted by many prior systems [2], [21].

6 DATA STRUCTURE EVALUATION

According to Eunomia design pattern, we have imple-
mented an HTM-based B+Tree (namely Euno-B+Tree) and

Fig. 9. Concurrent insertions to a leaf node.
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an HTM-based skip list (namely Euno-SkipList). Each of
them only consumes less than 600 lines of C/C++ code. By
evaluating the implementation, we try to answer the follow-
ing questions:

� Does Eunomia solve all the challenges discussed in
Section 3?

� Can Eunomia deliver better performance than a fine-
grained locking schemes even under high contention?

� Can Eunomia achieve performance scalability under
different contention levels?

� Howdoes each design choice affect the performance?
� What is the memory overhead of Eunomia design

pattern?
� Can the real applications (e.g., Database) take advan-

tage of Eunomia (Section 7)?

6.1 Experimental Setup
All experiments were conducted on a 20-core server (two
2.30 GHz 10-core Intel

�
Xeon

�
E5-2650 chips) running Linux

3.19.0. Each core has private 32 KB L1 data cache, 32 KB L1
instruction cache, and 256 KB L2 cache. Each chip has a
shared 25 MB L3 cache. The cache line size is 64 bytes. The
total DRAM size is 256 GB. We use Intel’s RTM to imple-
ment atomic regions.

We compare Euno-B+Tree with different concurrent
B+Tree implementations:

1) An HTM-based B+Tree (namely HTM-B+Tree)
adopted by many database systems [2], [3], [4],
which uses HTM regions to protect the atomicity of
the entire operation. We reuse the fall-back strategy
and retry policy in DBX [2].

2) A highly optimized concurrent B+Tree implementa-
tion derived from Masstree [21]. It uses fine-grained
locks to achieve good scalability. However, we still
use the term “Masstree” for simplicity.

3) An HTM version of Masstree (namely HTM-
Masstree). It uses HTM region to protect the entire
Masstree operation (as in (1)), subsuming multiple
elided locks.

We compare Euno-SkipList with different concurrent
skip list implementations:

1) An HTM-based skip list adopted by many database
systems [2], [3], which uses HTM to protect the
atomicity of the entire operation.

2) A fine-grained lock skip list using the strategy pro-
posed by Pugh [35], which utilizes a useful property
to simplify the implementation that the distribution
of levels within a skip list does not affect correctness
(denoted as FGLock-SkipList).

3) A lock-free skip list using the strategy proposed by
Fraser [36], which utilizes CAS instructions to main-
tain consistency while preserving high concurrency
(denoted as LockFree-SkipList).

We here adopt the Yahoo! Cloud Serving Benchmark
(YCSB) [37] for evaluating Euno-B+Tree, which is a repre-
sentative benchmark for large-scale key-value storage. For
each record, both key and value have 8 bytes fixed size. The
get/put ratio is set to the default value of 50%/50%. For the
B+Tree, we set the node fanout to 16. The average tree depth
is 6, and run duration is set longer than 20 seconds to get
stable performance. Unless otherwise specified, we use

Zipfian as the default input distribution for B+Tree, private
to each thread (intra-thread locality). The Zipfian distribu-
tion has a skew factor u, and the probability of accessing a
key k is given by

P ðkÞ / 1

k

� �u

: (1)

Thus, we can easily increase the contention rate by increas-
ing u. With u = 0, all records are accessed with the
same probability (uniform distribution); with u = 0.99, the
“hottest” tenth of the values in the set are accessed by
41 percent of the requests.

For the skip list, we set the height to 16. The size of record
is the same with B+Tree. Since the original Zipfian distribu-
tion does not provide enough contention for skip list, we
design a new input distributionwith a skew factor u to control
the contention rate. Higher the u, higher the probability that
multiple threads access the same hot region in the key set.

6.2 Throughput
To see whether Eunomia solves the issues discussed in
Section 3, we initially repeat the experiment in Fig. 2. The
throughput of B+Tree is shown in Fig. 10. When the conten-
tion is low or even modest (u < 0.6), Euno-B+Tree can
obtain similar performance as HTM-B+Tree. This is because
Euno-B+Tree uses adaptive concurrency control to reduce
most overhead under low contention. Meanwhile, the
throughput of Euno-B+Tree is about 36.85 percent higher
than Masstree since Masstree’s fine-grained synchroniza-
tion needs to execute additional instructions. According to
our analysis, when u = 0.5, the number of instructions exe-
cuted by Masstree is about 2.10X that of Euno-B+Tree. The
extra instructions primarily come from the “before-and-
after” version checking mechanism in Masstree (Section 4.6
of [21]). For example, when u = 0.5, a put operation in Mas-
stree needs on average to check and manipulate a version
number about 15 times while traversing the tree. Under
high contention (u > 0.6), Euno-B+Tree can achieve 11X
speedup over HTM-B+Tree (18.6 M versus 1.7 M Ops/s
with u = 0.99). This is because Eunomia eliminates most
aborts compared with HTM-B+Tree (Fig. 11): 60.3 versus 1.9
aborts per Op under extremely high contention. Besides,
compared with Masstree, it has 65 percent better
performance even under high contention. This is because
Euno-B+Tree executes around 40 percent fewer instructions
under high contention. On the other hand, the performance

Fig. 10. Throughput of concurrent B+Trees under different contention
rates.
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of the HTM-Masstree is worse than Masstree under both
low and high contention. This is because the HTM-based
Masstree has more shared variables than that of B+Tree,
e.g., bits indicating whether the node is being split/inserted;
its performance is low even under small skew factor and
drops little with the increase of contention factor. This
shows that, even for a highly optimized concurrent B+Tree,
it is still hard to directly take advantage of HTM.

Furthermore, the throughput of skip list is shown in
Fig. 12. Our evaluation illustrates that under low contention,
Euno-SkipList outperforms FGLock-SkipList and LockFree-
SkipList by about 3.47X and 2.10X. The FGLock-SkipList is a
highly-optimized implementation using fine-grained locks,
while LockFree-SkipList uses CAS instructions to maintain
atomicity. However, in our workload, FGLock-SkipList
exhibits a relatively low performance. It is because the batch
of keys processed by a thread interleave with each other,
making it more likely for a thread to be blocked. Meanwhile,
the HTM-based implementation can take advantage of
higher concurrency, leading to fewer instructions and sim-
pler execution logic. Under low contention, Euno-SkipList
does not show lower performance than HTM-SkipList,
which indicates that Eunomia design does not incur much
overhead to HTM-SkipList. As u grows from 0.7 to 0.99, the
performance of HTM-SkipList drops dramatically, while
the performance of Euno-SkipList remains relatively stable.
Under high contention, Euno-SkipList can obtain perfor-
mance about 2.89X higher than HTM-SkipList. This is
because Euno-SkipList eliminates most aborts compared to
HTM-SkipList (Fig. 13). According to our analysis, under
high contention, Euno-SkipList reduces about 95 percent
aborts compared to HTM-SkipList.

6.3 Scalability
Besides the skew factor, an increase in threads number also
intensifies the contention rate. Here we evaluate scalability
with increasing threads under different levels of contention.
As to Euno-B+Tree, we set u by referencing previous
research [5], [38]: 0.2 to simulate low contention; 0.6 for
modest contention; 0.9 for high contention. We also set u to
0.99 to simulate extremely high contention. Fig. 14 shows
the results. Owing to the adaptive control, under low con-
tention (Fig. 14a), Euno-B+Tree scales smoothly and is very
close to HTM-B+Tree. This indicates that the adaptive con-
trol can reduce most performance cost under low conten-
tion. However, since Masstree needs to execute more
instructions for synchronization (40 percent more

instructions per thread), this overhead is amplified by add-
ing more threads. As a result, Eunomia is 52-63 percent bet-
ter than Masstree under high contention. HTM-Masstree
fails to scale after eight cores under low contention. Under
modest contention (Fig. 14b), the performance of HTM-B
+Tree begins to collapse after four threads due to the
increase in abort rate. Masstree still has stable performance
as false conflicts in Masstree is not as severe as that in HTM-
based implementations. Under high or even extreme con-
tention (Figs. 14c and 14d), Euno-B+Tree still has reasonable
scalability and performs better than Masstree (21.9 M versus
13.1 M Ops/s with 20 threads) for extremely high conten-
tion. This benefit is still from the fact that HTM simplifies
the algorithm which makes it execute fewer instructions
than Masstree.

For skip list, we evaluate four conditions, namely low
contention (u is 0), medium contention (u is 0.5), high con-
tention (u is 0.7) and extremely high contention (u is 0.99).
Fig. 15 shows the results. Under low contention, both Euno-
SkipList and HTM-SkipList scale smoothly. Under modest
contention, the scalability of Euno-SkipList is barely
affected. However, under high contention, HTM-SkipList
fails to scale after eight cores due to the data conflicts
brought by monolithic HTM region and consecutive mem-
ory layout. On the other hand, Euno-SkipList still scales
smoothly even under extremely high contention, while
HTM-SkipList, FGLock-SkipList and LockFree-SkipList
fail to scale after four cores. Both HTM-SkipList and
Euno-SkipList outperforms FGLock-SkipList and LockFree-
SkipList under each circumstance due to more concurrency
achieved by leveraging HTM. Compared to FGLock-

Fig. 11. Comparison of HTM aborts in concurrent B+Trees incurred by
different reasons.

Fig. 12. Throughput of concurrent skip lists under different contention
rates.

Fig. 13. Comparison of HTM aborts in concurrent skip lists incurred by
different reasons.
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SkipList and LockFree-SkipList, implementations based
on HTM show higher performance under different
circumstances.

6.4 Impact of Different Design Choices
To understand the performance gain and cost from various
design aspects, we here present an analysis of multiple fac-
tors in Fig. 16. The benchmark is the YCSB with Zipfian
input distribution with 20 threads under high contention
(u is 0.9).

Baseline refers to an HTM-based index structure using a
single HTM region to protect the entire operation. +Split
HTM means splitting the monolithic HTM region into parts
and using version numbers to protect consistency. +Parti-
tioned refers to partitioning the data layout to avoid false
conflicts in B+Tree and skip list. +CCM refers to adopting
the CCM. The speedups are generated from continuously
accumulating these design choices.

From the results, we can observe that all design choices
bring substantial speedup to an HTM-based B+Tree. First,
splitting the monolithic HTM region gets 1.83X speedup

under high contention. The split HTM region not only
reduces the overhead of retries, but also lowers the possibil-
ity of data conflicts since by shrinking the HTM execution
time. Second, partitioned leaf nodes (+Partitioned) generates
4.58X speedup under high contention, as it decreases the
false conflict rate caused by accessing the same leaf node.
By further reducing true and false conflicts, conflict control
module (+CCM) gets 11.10X speedup under high conten-
tion. In the case of skip list, splitting the monolithic HTM
region (+Split HTM) gets 2.74X speedup under high conten-
tion. The speedup derives from the elimination of the time
wasted in transaction retry. The employment of partitioned
segments (+Partitioned) reduces most false conflicts, and
introduces 6.55X performance gain. Then, the CCM (+CCM)
brings 7.55X speedup since it reduces the probability of
both true and false conflicts.

Furthermore, we collect the reduction on execution time
brought by different design choices in B+Tree and skip list
(Fig. 17). The multiple design choices are also added accu-
mulatively. Splitting the monolithic HTM region (+Split
HTM) contributes 50 percent of the execution time reduc-
tion in B+Tree and 70 percent of the execution time
reduction in skip list. Split HTM region is the first design
choice to apply, and it significantly reduces the original exe-
cution time by reducing both the retry overhead and conflict
probability. Partitioned data structure (+Partitioned) contrib-
utes 25-35 percent of the execution time reduction. Conflict
control module (+CCM) is the last design choice to apply. It
further brings about 15 percent of the original time reduc-
tion for B+Tree. The impact of conflict control module in
skip list is not significant since the conflicts in skip list are
largely resolved by the former two design choices.

6.5 Memory Consumption Analysis
In this section, we take Euno-B+Tree and Euno-SkipList as
examples to examine the memory overhead brought by
Eunomia. Two structures in Euno-B+Tree would involve
additional memory consumption: reserved keys and the con-
flict control module. The conflict control module consists of
two-bit vectors for each leaf node and its memory consump-
tion is negligible. Therefore, the main memory overhead
comes from reserved keys. For Euno-SkipList, only the seg-
ments structure would involve additional memory con-
sumption. Here, we evaluate the memory consumption
overhead of Euno-B+Tree and Euno-SkipList using Valgrind

Fig. 14. Performance scalability under different contention levels.

Fig. 15. Performance scalability under different contention levels.

Fig. 16. Impact of different design choices. The relative performance is
labeled on the top of each column.

ZHANG ETAL.: EUNOMIA: SCALING CONCURRENT INDEX STRUCTURES UNDER CONTENTION USING HTM 1847



toolset [39]. The workload includes getting and putting 10
million keys in a Zipfian distribution with 16 threads. The
node fanout is set to 16 for Euno-B+Tree, and run duration is
set to longer than 20 seconds to get stable performance.

1) We have measured the memory overhead under
different contention rates. For Euno-B+Tree, we
varied the skew factor of the Zipfian Distribution
from 0.0 to 1.0. The results show that the average
memory consumption overhead is 5.64 percent
(1.79 GB versus 1.69 GB) (from 2.44 to 7.64 per-
cent). For Euno-SkipList, the results show that the
average memory consumption overhead is negli-
gible (1.75 GB versus 1.75 GB), which is because
the memories allocated to segments are just
enough for storing pointers.

2) We have also measured the memory overhead with
different get/put ratios: 0.2/0.8, 0.5/0.5, and 0.8/0.2.
The results show that the average memory consump-
tion overhead is 4.21 percent (1.62 GB versus 1.55
GB) (from 2.91 to 5.80 percent) for Euno-B+Tree, and
1.2 percent (1.65 GB versus 1.63 GB) (from 0.7 to 1.1
percent) for Euno-SkipList.

As such analysis results show, the additional memory
consumption is small. The major reason is that reserved
keys in B+Tree work as a buffer to hold the keys being
sorted for split and scan operations. Such data structures
are allocated and expanded dynamically and will not hold
redundant space permanently. Besides, the segments struc-
ture introduces small memory overhead in skip list when
segments are not full.

7 SYSTEM EVALUATION

To further study the benefit of Eunomia to database applica-
tions, we evaluate it in a mainstream database system. We
here port Eunomia as the underlying index structure for an
in-memory database called DBX [2] and evaluate the end-
to-end performance under different contentions.

7.1 Workloads
The TPC-C benchmark [40] is specified by Transaction Proc-
essing Performance Council (TPC) and represents the cur-
rent industry standard for evaluating OLTP system [40]. It
comprises nine tables and five types of transactions, simu-
lating a warehouse-centric order processing application. For
database benchmarks like TPC-C, the number of entities to
access (scale_factor) is by default equal to the number of
threads in normal situation and shrinking the number of
entities is a common way to increase the contention rate [9],
[31], [41]. The decrease of entity number increases the

probability that multiple threads write the same (or adja-
cent) keys [42].

Due to the working set limitation, it is impossible to
use HTM region to protect the correctness of the entire
business transaction [43]. Therefore, current HTM-based
database systems adopt a two-layer design [2], [3], [4].
That is, building the database out of two independent
components: a shared in-memory store layer and a trans-
action layer. The former exposes a key-value access; the
latter builds atop the former and protects the consistency
of business transaction, which contains multiple key-
value accesses. Here, we also use such a strategy. We
adjust the number of warehouses and working threads
to control the contention rate. We test TPC-C with stan-
dard mixed transactions, and all logging functionalities
are disabled.

Here we reuse the concurrency control strategy of
DBX [2]. We replace the underlying HTM-B+Tree with
Eunomia (namely Euno-DBX). We compare the perfor-
mance with two state-of-the-art OLTP systems:

1) DBX [2], an in-memory database using HTM to pro-
tect the consistency of a single-threaded B+Tree;

2) Silo [41], which is an in-memory database adopting a
Masstree-inspired [21] tree structure for underlying
indexes. Since the key length is fixed to 8 bytes,
the underlying Masstree can represent a highly-
optimized fine-grained locked B+Tree.

7.2 End-to-End Performance
Fig. 18 shows the throughput with different numbers of
warehouses and threads. From the data in Fig. 18a, we can
observe that with the shrink of warehouse number, the
throughput of all the systems decreases due to the increas-
ing contention rate. Euno-B+Tree achieves 1.07X-12.14X
(3.60X on average) speedup over DBX and 1.42X-2.01X
(1.65X on average) speedup over Silo. From the data in
Fig. 18b, we can observe that Euno-B+Tree scales well with
thread number under high contention rate (warehouse
number is fixed at 1), and achieves 337 K transactions per
second (TPS) throughput with 20 threads. The performance
of Euno-B+Tree is on average 1.60X-16.26X (9.07X on aver-
age) higher than the collapsed performance of HTM-based
B+Tree in DBX, and on average 1.78X-2.35X (1.99X on aver-
age) higher than Masstree-based Silo.

To further understand the source of speedup, we collect
the runtime data of the five main transaction types. Among
the five types of transactions in TPC-C, NEW-ORDER
(45 percent out of five transaction types) transaction is the
backbone of the entire transaction system, and the conten-
tion rate of sequentially inserting new orders is the highest

Fig. 17. Reduction on the execution time brought by each design choice.
Fig. 18. TPC-C benchmark with standard mix. We adjust the number of
warehouses and threads to control the contention rate.
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among the five transaction types. Therefore the throughput
of original HTM-B+Tree in DBX collapses due to frequent
aborts incurred by true/false HTM conflicts. Eunomia
removes the contention incurred by sequential insertion,
thereby unleashes the concurrency and achieves high scal-
ability. The performance of Silo is on average 50 percent
that of Eunomia, which is consistent with the key-value
store performance as analyzed in Section 6.

8 RELATED WORK

HTM is an emerging hardware feature enabling the combi-
nation of high performance and low programming com-
plexity. HTM is gaining more and more attention in
designing concurrent data structure. However, it could also
exhibit pathological performance if misused. Dice et al. [44]
note that memory allocators could incur certain pathologi-
cal cases. Unlike them, who use HTM intuitively, we figure
out more subtle design to achieve scalability under high
contention. Brown et al. [45] find that multi-socket architec-
ture could have a critical influence on the behavior of HTM,
as cross-socket cache access lengthens the time to complete
a transaction. In our research, we have also noticed the
impact of NUMA architecture. However, NUMA architec-
ture only magnifies the impact of transaction conflicts. Our
research attempts to find a way to eliminate conflicts, thus
solve the problem from the source.

An extensive body of research has discussed techniques
to improve HTM efficiency by splitting monolithic transac-
tions. Hassan et al. [46] propose optimistic transactional
boosting (OTB), which divides each operation of concurrent
data structures into three steps (traversal, validation, and
commit). Afek et al. [47] propose consistency oblivious pro-
gramming (COP), which splits concurrent code to boxes,
and allows sections of code that meet certain criteria to exe-
cute without checking for consistency. Xiang et al. [48] pro-
pose software partitioning of hardware transactions (ParT).
It splits HTM operations into a non-atomic planning phase
and an HTM-protected completion phase with the compiler
support. These methods try to reduce conflicts by shrinking
transaction size, and our design differs from these works in
two aspects: first, we focus on highly-contented workloads;
second, we attempt to reduce both true and false conflicts.

9 CONCLUSION

Wehave presented Eunomia, a design pattern for concurrent
index structures under high contention. First, Eunomia pro-
vides a new strategy of partitioning monolithic transactions
to reduce abort rate. Second, Eunomia scatters the original
index structure to reduce false conflicts. Third, Eunomia
adopts a proactive conflict control module to eliminate true
conflicts and reduce conflict rate. Fourth, Eunomia adapts
away the overhead under low contention. We have shown
the effectiveness of Eunomia by refactoring a concurrent
B+Tree and a skip list according to Eunomia design patterns.

ACKNOWLEDGMENTS

We are grateful to support from the National Key Research
and Development Program of China (No. 2017YFB0202105),
the National Natural Science Foundation of China
(No. 61672160 and 61370081) and Shanghai Science and
Technology Development Funds (17511102200).

REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,” Syn-
thesis Lectures Comput. Archit., vol. 5, no. 1, pp. 1–263, 2010.

[2] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transac-
tional memory to build a scalable in-memory database,” in Proc.
9th Eur. Conf. Comput. Syst., 2014, pp. 26:1–26:15.

[3] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” in Proc. 25th
Symp. Operating Syst. Principles, 2015, pp. 87–104.

[4] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using RDMA and HTM,” in Proc. 11th
Eur. Conf. Comput. Syst., 2016, pp. 26:1–26:17.

[5] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the abyss: An evaluation of concurrency control
with one thousand cores,” Proc. VLDB Endowment, vol. 8, no. 3,
pp. 209–220, 2014.

[6] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger, ‘Quickly generating billion-record synthetic data-
bases,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1994,
vol. 23, pp. 243–252.

[7] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase reconcilia-
tion for contended in-memory transactions,” in Proc. USENIX
Conf. Operating Syst. Des. Implementation, 2014, pp. 511–524.

[8] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li, “Extracting more con-
currency from distributed transactions,” in Proc. USENIX Conf.
Operating Syst. Des. Implementation, 2014, pp. 479–494.

[9] Z. Wang, S. Mu, H. Y. Yang Cui , H. Chen, and J. Li, “Scaling
multicore databases via constrained parallel execution,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 1643–1658.

[10] A. Wang, et al., “Evaluation of blue Gene/Q hardware support for
transactional memories,” in Proc. 21st Int. Conf. Parallel Archit.
Compilation, 2012, pp. 127–136.

[11] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in
the power architecture,” in Proc. 40th Annu. Int. Symp. Comput.
Archit., 2013, pp. 225–236.

[12] I. Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Santa Clara, CA, USA, 2015.

[13] C. Blundell, E. C. Lewis, and M. M. Martin, “Subtleties of transac-
tional memory atomicity semantics,” IEEE Comput. Archit. Lett.,
vol. 5, no. 2, Jul.-Dec. 2006.

[14] D. Dice, Y. Lev,M.Moir, andD.Nussbaum, “Early experiencewith
a commercial hardware transactionalmemory implementation,” in
Proc. 14th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2009, pp. 157–168.

[15] J. D. Ullman, H. Garcia-Molina, and J. Widom, Database Systems:
The Complete Book. London, U.K.: Pearson Education, 2002.

[16] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984,
pp. 47–57.

[17] J.-S. Ahn, D. Kang, D. Jung, J.-S. Kim, and S. Maeng, “m*-tree: An
ordered index structure for NAND flash memory with adaptive
page layout scheme,” IEEE Trans. Comput., vol. 62, no. 4, pp. 784–
797, Apr. 2013.

[18] Y. Sasaki, W.-C. Lee, T. Hara, and S. Nishio, “SKY R-tree: An
index structure for distance-based top-k query,” in Proc. Int. Conf.
Database Syst. Adv. Appl., 2014, pp. 220–235.

[19] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, pp. 668–676, 1990.

[20] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-Tree,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 598–
609, 2008.

[21] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast mul-
ticore key-value storage,” in Proc. Eur. Conf. Comput. Syst., 2012,
pp. 183–196.

[22] A. Sultana, H. A. Cameron, and P. C. Graham, “Concurrent
B-trees with lock-free techniques,” Masters Abstracts Int., vol. 46,
no. 4, p. 2171, 2008.

[23] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary
search trees,” in Proc. ACM Symp. Principles Practice Parallel Pro-
gram., 2014, pp. 317–328.

[24] A. Braginsky and E. Petrank, “A lock-free B+Tree,” in Proc. Annu.
ACM Symp. Parallelism Algorithms Archit., 2012, pp. 58–67.

[25] A. Ramachandran and N. Mittal, “Improving efficacy of internal
binary search trees using local recovery,” in Proc. ACM Symp.
Principles Practice Parallel Program., 2016, pp. 42:1–42:2.

ZHANG ETAL.: EUNOMIA: SCALING CONCURRENT INDEX STRUCTURES UNDER CONTENTION USING HTM 1849



[26] K. Fraser and T. Harris, “Concurrent programming without
locks,” ACM Trans. Comput. Syst., vol. 25, no. 2, 2007, Art. no. 5.

[27] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky,
“Concurrent tries with efficient non-blocking snapshots,” in Proc.
ACM Symp. Principles Practice Parallel Program., 2012, pp. 151–160.

[28] R. Elmasri, Fundamentals of Database Systems. Noida, Delhi, India:
Pearson Education, 2008.

[29] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip
lists,” in Proc. 23rd Annu. ACM Symp. Principles Distrib. Comput.,
2004, pp. 50–59.

[30] R. Bayer and E. McCreight, “Organization and maintenance of
large ordered indexes,” in Software Pioneers. Berlin, Germany:
Springer, 2002, pp. 245–262.

[31] Y. Wu, C.-Y. Chan, and K.-L. Tan, “Transaction healing: Scaling
optimistic concurrency control on multicores,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2016, pp. 1689–1704.

[32] D. M. Powers, “Applications and explanations of Zipf’s law,” in
Proc. Joint Conf. New Methods Language Process. Comput. Natural
Language Learn., 1998, pp. 151–160.

[33] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[34] S. Sen and R. E. Tarjan, “Deletion without rebalancing in balanced
binary trees,” in Proc. 21st Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 2010, pp. 1490–1499.

[35] W. Pugh, “Concurrent maintenance of skip lists,” Univ.
Maryland, College Park, College Park, MD, USA, Tech. Rep.
CS-TR-2222.1, 1990.

[36] K. Fraser, “Practical lock-freedom,” University of Cambridge,
Computer Laboratory, Cambridge, U.K., Tech. Rep. UCAM-CL-
TR-579, 2004.

[37] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[38] J. Dittrich, L. Blunschi, and M. A. V. Salles, “Dwarfs in the rear-
view mirror: How big are they really?” Proc. VLDB Endowment,
vol. 1, no. 2, pp. 1586–1597, 2008.

[39] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proc. 28th ACM SIG-
PLANConf. Program. Language Des. Implementation, 2007, pp. 89–100.

[40] Transaction Processing Performance Council, “TPC-C benchmark,
revision 5.11,” http://www.tpc.org/tpc, 2010

[41] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. ACM
Symp. Operating Syst. Principles, 2013, pp. 18–32.

[42] S. K. Cha and C. Song, “P* TIME: Highly scalable OLTP DBMS for
managing update-intensive stream workload,” in Proc. 30th Int.
Conf. Very Large Data Bases, 2004, pp. 1033–1044.

[43] Z. Wang, H. Qian, H. Chen, and J. Li, “Opportunities and pitfalls
of multi-core scaling using hardware transaction memory,” in
Proc. 4th Asia-Pacific Workshop Syst., 2013, pp. 3:1–3:7.

[44] D. Dice, T. Harris, A. Kogan, and Y. Lev, “The influence of
Malloc placement on TSX hardware transactional memory,”
arXiv:1504.04640, vol. 5, pp. 1–6, 2015.

[45] T. Brown, A. Kogan, Y. Lev, and V. Luchangco, “Investigating
the performance of hardware transactions on a multi-socket
machine,” in Proc. Annu. ACM Symp. Parallelism Algorithms Archit.,
2016, pp. 121–132.

[46] A. Hassan, R. Palmieri, and B. Ravindran, “On developing opti-
mistic transactional lazy set,” in Proc. Int. Conf. Principles Distrib.
Syst., 2014, pp. 437–452.

[47] Y. Afek, H. Avni, and N. Shavit, “Towards consistency oblivious
programming,” in Proc. Int. Conf. Principles Distrib. Syst., 2011,
pp. 65–79.

[48] L. Xiang and M. L. Scott, “Software partitioning of hardware
transactions,” in Proc. ACM Symp. Principles Practice Parallel Pro-
gram., 2015, pp. 76–86.

Weihua Zhang received the PhD degree in
computer science from Fudan University, in 2007.
He is currently an associate professor of
Parallel Processing Institute, Fudan University.
His research interests include compilers, com-
puter architecture, parallelization, and systems
software.

Xin Wang is now working toward the graduate
degree in the Software School, Fudan University
and working in the Parallel Processing Institute.
His work is related to computer architecture, sim-
ulation, parallel optimization and so on.

Shiyu Ji is currently working toward the under-
graduate degree in the Software School, Fudan
University and working in the Parallel Processing
Institute. His work is related to transaction mem-
ory, parallel optimization and so on.

Ziyun Wei is working toward the undergraduate
degree in the Software School, Fudan University
currently and a member of Parallel Processing
Institute. He is mainly focusing on GPU security,
computer architecture, parallel optimization and
so on.

Zhaoguo Wang received the MS and PhD
degrees from Fudan University. He is a post-doc
researcher in the School of Computer Science,
New York University. His research area is mainly
in multicore in-memory database.

Haibo Chen received the BS and PhD degrees
in computer science from Fudan University, in
2004 and 2009, respectively. He is currently a
professor in the School of Software, Shanghai
Jiao Tong University, doing research that impro-
ves the performance and dependability of com-
puter systems. He is a senior member of the
IEEE and the IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

http://www.tpc.org/tpc


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


