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Abstract—The releases of Intel SGX and AMD SEV mark the transition of hardware-based enclaves from research prototypes to
mainstream products. These two paradigms of secure enclaves are attractive to both the cloud providers and tenants, since security is
one of the key pillars of cloud computing. However, it is found that current hardware-defined enclaves are not flexible and efficient
enough for the cloud. For example, although SGX can provide strong memory protection with both confidentiality and integrity, the size
of secure memory is tightly restricted. On the contrary, SEV enables enclaves to use more memory but has critical security flaws due to
no memory integrity protection. Meanwhile, both types of enclaves have relatively long booting latency, which makes them not suitable
for short-term tasks like serverless workloads.

After an in-depth analysis, we find that there are some intrinsic tradeoffs between security and performance due to the limitation of
architectural designs. In this paper, we investigate a novel hardware-software co-design of enclaves to meet the requirements of cloud
by placing a part of the logic of the enclave mechanism into a lightweight software layer, named Enclavisor, to achieve a balance
between security, performance, and flexibility. Specifically, our implementation is based on AMD’s SEV and, Enclavisor is placed in the
guest kernel mode of SEV’s secure virtual machines. Enclavisor inherently supports memory encryption with no memory limitation and

also achieves efficient booting, multiple enclave granularities, and post-launch remote attestation. Meanwhile, we also propose
hardware/software solutions to mitigate the security flaws caused by the lack of memory integrity. We implement a prototype of
Enclavisor on an AMD SEV server. The experiments on both micro-benchmarks and application benchmarks show that enclaves on

Enclavisor can have close-to-native performance.

Index Terms—Enclave, Virtulization, AMD SEV.

1 INTRODUCTION

INCE the first day of cloud computing, security has

been one of the most concerned issues for end users,
who outsource their data and code to cloud servers for
efficient computation. However, it is challenging to protect
users’ outsourced data assets in face of potentially compro-
mised cloud software stack and curious or even malicious
cloud operators. There has been a long line of research
on constructing isolated execution environments on cloud
servers with system software, which are supposed to shield
the execution of users” workload from outside attackers.
Most of the previous works are based on system software
like operating systems and hypervisors [1], [2], [3], which
require a relatively large trusted computing base (TCB) and
non-trivial modifications to existing cloud software stack.
Thus, few of these systems have been deployed by major
cloud vendors.

In recent years, hardware support for secure comput-
ing is receiving increasing attention in the industry after
decades of researching. In 2015, Intel SGX [4] was released,
which supports hardware enclave that offers many attrac-
tive architectural features, including remote attestation and
guarantees of both confidentiality and integrity of data in
memory without trusting off-chip DRAM or any peripher-
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als. Thus, many researchers propose to leverage SGX on
cloud platforms to protect applications without trusting
the cloud [5]. Major cloud vendors have started to explore
possible usages of SGX, like Azure’s confidential computing
and IBM’s data-in-use protection.

However, as SGX is getting more widely used and
deployed, it is found that many of its architectural limi-
tations hinder its usage. First, SGX only supports a small
amount of enclave page cache (EPC) as runtime memory
(first 128MB and then 256MB), which significantly limits
the performance of memory-intensive applications like in-
memory stores and big-data processing which are typical
workloads in the cloud. The upcoming SGXv2 will not
solve this problem. Second, creating a new enclave involves
many steps with non-negligible latency, which makes it
not suitable for short-term workloads as in the serverless
scenarios (although many of the serverless workloads do
have small memory foot-print). Third, the interaction of en-
claves (either in-out or between enclaves) causes notorious
performance overhead: a cross-boundary function call leads
to 7000+ cycles; no memory sharing between enclaves (since
they use different memory encryption keys) requires data to
be encrypted and decrypted before and after transferring
from one enclave to another. One possible reason for these
limitations is that SGX is not designed for cloud'. Intel also
suggests that SGX is more suitable to protect only small
parts of applications [6].

1. SGX is firstly deployed on desktop and notebook processors. Till
now, only the Xeon E3 series of server processor supports SGX.
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On the contrary, AMD released its enclave in 2016, with
techniques named secure memory encryption (SME) and
secure encrypted virtualization (SEV) [7], which is designed
for the cloud in the first place. Unlike defining a new
abstraction of an enclave as Intel SGX does, AMD SEV
reuses a virtual machine as its enclave and tries to make
the protection as transparent as possible to existing cloud
applications. It also supports memory encryption and has
no memory limitation for enclaves to use.

Unfortunately, these benefits come with the cost of se-
curity and flexibility: first, the virtual machine granularity
is too coarse-grained and heavyweight for enclaves. For
cloud users who only want to run an application in the
enclave, they have to deploy a guest OS as well. Meanwhile,
current SEV can only support a limited number of enclaves
running concurrently (15 on AMD EPYC 7281) due to the
limitation of ASID. Running more enclaves at the same
time requires evicting and reusing of ASID, which will hurt
performance. Second, SEV cannot guarantee the integrity of
enclave memory. This could be a critical security flaw, and
many researchers have reported successful attacks even if
the memory of enclaves is encrypted [8], [9]. Third, SEV
only supports one-time attestation for each enclave before it
is launched, which does not allow multiple users to attest
long-running cloud services.

In this paper, we first give a systematic analysis on the
mismatching between what hardware enclave offers and
what cloud application requires. Then we propose a new
enclave system with a novel hardware-software co-design
that can well fit the requirements of cloud scenario by
embracing the flexibility of software and strong security
guarantee of hardware. Specifically, our implementation
is mainly based on AMD SEV. But instead of using an
entire virtual machine as an enclave, we introduce a small
layer of software running in guest supervisor mode, named
Enclavisor, to manage enclave instances running in guest’s
user mode. The Enclavisor is responsible for enclaves’ life
cycle management, including creation, attestation, schedul-
ing, deletion, interaction, etc. As shown in Table 1, our
system can achieve the most needed requirements of cloud
workloads:

o High-security insurance: All the off-chip memory
are encrypted by hardware. Meanwhile, we also
propose both software solutions and hardware en-
hancements to mitigate the security problems due to
a lack of memory integrity on SEV.

e Large memory support: There is no limitation on the
memory size of the enclaves. Also, the overhead of
secure memory access is usually trivial.

o High performance: Enclavisor can create a new en-
clave instance by fork to achieve fast boot for server-
less and FaaS workloads [10], [11], [12]. It also sup-
ports FlexSC-like [13] fast interaction (see Highway
in Section 3.4).

o Flexible remote attestation: We propose two-phase
attestation, which leverages Intel SGX (as a proxy
node) to support post-launch remote attestation of
Enclavisor, which is not supported by SEV but re-
quired by long-running services with multiple users.

Our system is implemented and evaluated on a server
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with AMD EPYC 7281 processor. The evaluation shows that
enclaves on Enclavisor can achieve near-native performance
in both micro-benchmarks and real-world benchmarks. In
summary, this paper makes the following contributions:

e A systematic analysis on the mismatching between
existing architectural features and requirements of
cloud applications.

e A practical software-hardware co-design for building
secure and efficient enclaves for the cloud.

e Animplementation of a prototype and an evaluation
on real hardware and applications.

2 MOTIVATION AND BACKGROUND

The security of cloud tenants” data and application highly
depends on the infrastructure of the multi-tenant cloud
being secure. However, with security threats such as vul-
nerabilities in hypervisors and malicious cloud operators, it
is no surprise to see frequent reports of secret leakages or
abuses in clouding computing. To ameliorate this problem,
there is a long line of research of attempting to construct
enclaves (i.e., trusted execution environment, TEE) for se-
cure computation in commodity clouds. Yet, most prior
systems [2], [14], [15] require intrusive software/hardware
modifications or bloat the trusted computing base (TCB) of
secure applications due to trusting the hypervisor or even
the guest OS.

2.1 Intel SGX’s Limitations

Intel SGX [4] is one of the most promising solutions. It is the
first security extension being deployed on commodity pro-
cessors that can protect both the integrity and confidentiality
of memory, which takes a strong threat model that can even
defend against physical attacks. Thus, many researchers try
to leverage SGX to provide strong security guarantees for
cloud applications with minimal trust on software compo-
nents. In recent years, SGX is used to protect applications
like KMS, databases, big data processing, containers and
FaaS [5], [16], [17], [18], [19], [20], [21]. Meanwhile, major
cloud vendors like Microsoft Azure and IBM cloud also use
SGX for protecting sensitive data.

However, as SGX is getting more used and deployed,
it is found that SGX still cannot fulfill some essential re-
quirements of cloud, including the lack of multi-processor
support, being vulnerable to various side channel attacks,
etc. Among these requirements, the most demanded two
are larger memory size and higher performance. As shown
in Figure 1-(a), the integrity check and the memory swap-
ping caused by limited EPC size can lead to a substan-
tial performance slowdown for EPC access compared with
normal memory access. Figure 1-(b) shows the latency of
loading/booting an SGX enclave application, which is much
slower than loading a non-SGX application (e.g., launching
Memcached only takes 479 us). Note that the presented
results do not include remote attestation which can further
increase the booting latency significantly. Similar results
are reported in many studies [18], [20]. These limitations
significantly limit SGX’s usage for scenarios like memory-
intensive and latency-sensitive applications on the cloud.
We analyze these two limitations and find that they are
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TABLE 1
A comparison on Intel SGX, AMD SEV and Enclavisor from different dimensions.

Memory Memory  Memory size Enclave Enclave Fast  Efficient Remote

encryption  integrity limitation number granularity boot interaction  attestation
SGX Yes Yes All 256MB EPC ~ Unlimited Fine-grained No No Pre/post-boot
SEV Yes No All phy-mem Limited (15) Coarse-grained = No No Pre-boot only
Enclavisor  Yes Partial [*] ~ All phy-mem Unlimited Multiple Yes Yes Pre/post-boot

* Our design can defend against two types of attacks caused by no integrity guarantee (specified in Section 3.6).

intrinsic issues and the cause is rooted in the design for
memory protection.
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Fig. 1. (a) We quantify the performance degradation of secure
memory accessing on Intel SGX and AMD SEV machines,
separately. The micro-benchmark repeatedly reads/writes a ran-
dom 4K page within a specified working set, and compares the
performance of enclave execution with native execution. SGX
experiments are done in a VM with 92 MB EPC while AMD ex-
periments are done in a normal and a secure VM. (b) This micro-
benchmark measures the SGX enclave booting performance by
continuously creating 6 sample enclaves provided in Intel SGX
SDK. The enclave size is 16 MB. If the newly created enclave
is accessing memory, the last enclave’s boot time increases to
212.4 ms. Even if not, the boot time is still about 110.0 ms. The
experiments are done in VM with 64 MB EPC.

Why is it hard to support large EPC in SGX? SGX lever-
ages counter-based encryption for protecting memory confi-
dentiality and Bonsai Merkle Tree (BMT) for ensuring mem-
ory integrity. SGX maintains an 8-byte hash for each 64-byte
secure memory block (cacheline size) as well as the counters,
and checks the hash for each EPC access operation [22], [23].
It stores each hash for the memory block as leaf nodes of a
4-level Merkle hash tree. Specifically, for 128MB EPC, only
96MB are used for storing data. Correspondingly, the 96MB
data will have 12MB counters for encryption and 12MB
MAC s for integrity check. The counters will then have a
Merkle hash tree with 1.5MB level-0 nodes, 192KB level-1
nodes, 24KB level-2 nodes, and 3KB level-3 nodes. Only the
level-3 nodes are stored in the very limited CPU internal
storage.

Therefore, enlarging the EPC size leads to the growth
of the size and depth of the hash tree, which will lead to
poor cache locality and higher memory bandwidth penalties
when navigating the tree, which will in turn cause longer
memory access latency.

Why is it hard to support fast boot of an SGX enclave? Boot
speed is critical for the emerging short-term cloud tasks,
especially in the serverless scenario [10], [11], [12]. The boot-
ing cost of SGX enclaves mainly comes from the expensive
enclave constructing instructions: during booting, all the
memory pages need to be added to an enclave one by one,

which leads to data copy from ordinary pages to EPC pages.
Itis needed by the processor to calculate a hash of the loaded
application for remote attestation. Meanwhile, since the total
size of EPC is limited, it is likely to trigger EPC swapping
during the booting processing, as in the last case of Figure 1-
(b).

A traditional way to optimize booting latency of cloud
applications is using fork-style copy-on-write mechanisms
to skip the initialization process of an application [12].
However, since each SGX enclave has its own memory en-
cryption key, the copy-on-write mechanisms are not possible
to be applied here.

Besides the two limitations mentioned, the design of
SGXis also not friendly to interactions. First, the code within
an enclave cannot invoke system calls directly through
instructions like syscall. Second, as memory sharing is dis-
abled between enclaves, message passing between two en-
claves needs at least two memory copies and two encryp-
tion/decryption operations. Such overhead suggests to put
all services into one enclave, which contradicts the principle
to minimize code within each enclave for better security.

2.2 AMD SEV’s Limitations

AMD SEV [7] is a new virtualization security paradigm that
has been supported by software stacks of modern cloud [24],
[25]. SEV integrates memory encryption with AMD-V virtu-
alization architecture and aims to protect virtual machines
from the potentially malicious hypervisor. Inside the pro-
cessor, SEV tags all the data of a VM with its address space
ID (ASID), which prevents the data from being used by
anyone other than the owner VM. When data leaves/enters
the processor, it is automatically encrypted/decrypted by
the memory controller with a key bound to its owner VM.
The keys are managed by a secure co-processor and will
never be exposed to any software. SEV decides whether
to encrypt one memory page according to one bit (C-bit)
in the corresponding guest page table entry. It is easy for
a VM to mark selected memory pages as confidential by
setting the C-bits in its own page table, and leave others as
plaintext pages for communications with others. An exten-
sion of SEV, named SEV-ES (encrypted state), encrypts and
protects a secure VM's state as well as its execution contexts.
Although SEV has no limitation on enclave’s memory size,
it brings new limitations for being used to secure critical
cloud applications.

First, the isolation granularity in SEV is VM (Challenge-
1), which means that if a user only needs to protect a
small piece of code, she has to deploy a large guest OS in
the enclave. Since the size of popular OSes has increased
dramatically (e.g., the Linux kernel 4.5 has over 20 million
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source lines of code), such requirement will excessively
enlarge application’s software TCB. Moreover, VM-level
enclave also leads to long boot time, which mismatches
the fast boot requirements in a popular cloud computing
paradigm named serverless [10], [11], [12] (especially, 1ms
in [26]). For example, launching a simple Kata container [25]
(the container is actually a micro SEV VM) takes about 2.6s.

Second, current SEV only allows 15 secure enclaves to
run concurrently (Challenge-2). This is because SEV asso-
ciates ASIDs with VMs” memory encryption keys and an
ASID has only 4-bit. To re-allocate an in-use ASID for a new
secure VM (e.g., the 16th secure VM), the hypervisor first
needs to flush the cache on all the cores that the old VM runs
on to ensure consistency and then deactivates the ASID (i.e.,
stops the old VM). The process is time consuming and not
supported by current software yet. Therefore, in the case
of using one application for one enclave, it may not only
waste the parallelism of multiple cores, but also incur high
booting/switching overhead when overcommitting ASID
for more enclaves.

Third, an SEV-secured VM can only be attested for one
time at the boot time (Challenge-3). So, only one tenant can
attest and build a trusted channel with a secure VM, which
prevents multiple mutual-distrust tenants from securely
sharing the VM.

Last but not least, SEV does not ensure memory data
integrity (Challenge-4), which has been utilized as a attack
vector [8], [9], [27], [28]. It means that a even if the memory
of a secure VM is encrypted, a compromised hypervisor is
still able to tamper with or even steal VM’s private data
without knowing the encryption key. There are two cate-
grories of attacks, one is rollback attack and the other is NPT
mapping attack. More details are discussed in Section 3.6.

:l Enclave : System component — Protect
App-1  Launch VM as enclave VM
enclave oo
PP- App-:
- ~ pp-2
App-1 || App-2 Enc1] |Enc-2)
Enc-1 Enc-2
Guest kernel Enclavisor
K | Kernel / Kernel /
erne Hypervisor Hypervisor
Microcode Microcode & SP Microcode & SP
& MEE
Hardware Hardware Hardware
(a) Intel SGX (b) AMD SEV (c) Enclavisor

Fig. 2. Enclavisor as the extension of secure hardware. (Enc: Enclave,
MEE: Memory Encryption Engine, SP: Secure Processor)

In all, it is challenging to design a secure hardware
enclave that can fit different usages in various cloud sce-
narios. So in this paper, we propose Enclavisor, a hardware-
software co-designed system which leverages software as an
extension of existing secure hardware to construct enclaves
in a more flexible way to meet different requirements of
cloud (see Table 1). As shown in Figure 2, our design and
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implementation is based on AMD’s SEV and Enclavisor is
placed in the guest kernel mode of SEV’s secure virtual ma-
chine. Enclavisor inherently supports memory encryption
with no memory limitation, and also achieves multiple en-
clave granularities, efficient booting and post-launch remote
attestation. Meanwhile, we also propose hardware/software
solutions to mitigate the security flaws caused by the lack of
memory integrity.

3 DESIGN
3.1 Threat Model

We assume that Enclavisor is trusted and cannot be com-
promised. An attacker can compromise and control system
software components, including the guest OS as well as
the hypervisor. Enclaves are mutual distrust. We do not
consider denial-of-service (DoS), side channel attacks, or
hardware bugs (e.g., rowhammer attacks). We also do not
consider physical attacks on the secure memory integrity,
including physical rollback attacks in which an attacker
physically overrides a memory page with its previous (en-
crypted) content (e.g., by injecting memory transactions to
the memory bus directly).

3.2 System Overview

Normal VM Secure VM
s-Code s-Code Code Code
______ 1
ns-Code ns-Code | Libs Libs
Process-1 _P_ro_cz:‘s_s?; Process-2 LibOS
Process-3
Guest 03 Enclavisor
Hypervisor

Fig. 3. An overview of our system. An enclave needs to trust Enclavisor
besides the SEV hardware. (s-Code: secure code, ns-Code: non-secure
code)

SEV technology protects a VM as a whole (Challenge-
1), which means an application needs to trust the guest OS
in the VM. To solve this challenge, our system separates
the application and the guest OS into different isolated exe-
cution environments. Such design can provide fine-grained
isolation for secure applications and can remove the guest
OS from TCB.

Nevertheless, current SEV only allows at most 15 secure
VMs to run (Challenge-2), which makes it impossible to
let each secure application to monopolize a secure VM as
its isolated execution environment. To solve this challenge,
our system uses one secure VM and provides mutually-
isolated execution environments within the VM as enclaves
for applications to use.

Figure 3 gives an overview of our system which pro-
vides fine-grained enclaves inside one secure VM under the
supervision of Enclavisor. Enclavisor is a trusted software
layer running in the secure VM’s kernel level (i.e., ring-0 in
guest mode). It is responsible for building and managing
secure enclaves: first, it manages the memory for enclaves
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through page tables including enforcing memory isolation
between (mutual-distrusted) enclaves; second, it schedules
the enclaves in the secure VM. Different from traditional
guest OSes, Enclavisor (9,800 SLOC) is as a flexible exten-
sion of the secure hardware to support different enclaves
and does not implement most OS functionalities such as
POSIX system calls. Logically, an enclave belongs to its host
application and just executes in a secure environment, and
most of the enclave’s system calls are routed to its guest OS
on which the host application runs.

Although Enclavisor can provide mutual-isolated en-
claves in a secure VM, cloud tenants still cannot share the
VM because SEV remote attestation can only be done for
one time at the VM boot time (Challenge-3). The probable
reason for such attestation design is SEV assumes a secure
VM as an enclave and has one owner. To overcome this
obstacle, our idea is leveraging an Intel SGX enclave as a
secure delegation for establishing trusted communication
channels between Enclavisor and different tenants. Details
are in Section 3.5.

SEV does not protect memory integrity (Challenge-4),
which may lead to critical security flaws. First, though it is
non-trivial to physically modify the memory in cloud (out
of our scope), a compromised hypervisor can easily launch
rollback attacks. Second, a malicious hypervisor can steal
secrets from a secure VM through manipulating the nested
page table (NPT). To defend against these attacks, our basic
idea is (i) depriving the untrusted hypervisor of the writing
capability to the secure memory, and (ii) reducing the its
impact on the NPT mapping. Details are in Section 3.6.

3.3 Enclave Application Launching

Alice : Normal VM Secure VM
A2
l | ) Enclave | [ Other
| App binary O binary || enclave
App I
\biﬁl,_ | create_enclave | Shared mem [ build & attest
|
Enclave | Alice’s key
| binary || | Guest Os | Keme! Enclavisor
| module
Enclave |
Hash |
|
. Kernel
Hypervisor
launch app | module
| .
= init key
|

Fig. 4. An application can issue the enclave creation request and En-
clavisor is responsible for building the enclave.

Figure 4 depicts the launching flow of a cloud tenant’s
enclave application. First, a cloud tenant Alice uploads her
application image including the secure enclave part to a
VM in the cloud. She also calculates a hash measurement
for constructing the secure enclave and encrypts the hash
with one secret key (Key_Alice). Second, Alice’s application
will be started as a normal application in a normal VM,
and the application can invoke the create_enclave interface
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for creating an enclave. As shown in Figure 5, for invoking
such interface, the application needs to provide the enclave
image, enclave configuration (e.g., legal entry points), and
the hash of both. Third, through the added kernel modules,
Enclavisor in the secure VM will receive the request of
creating an enclave. Then, it will retrieve the requested
content (i.e., the arguments of create_enclave) in the inter-
VM shared memory and construct the secure enclave. The
shared memory between the normal and secure VMs is pre-
built for transferring data. After that, Enclavisor calculates
a measurement on the enclave memory content and its
configuration. If the calculated hash measurement matches
the decrypted one from the enclave owner, it will establish
the inter-process shared memory between the enclave and
its host application, approve the enclave to run, and finish
the creation process. Otherwise, it will refuse to create
the enclave and return an error. For attesting the enclave,
Enclavisor needs to share a secret key with enclave owner
(e.g., Key_Alice). We will explain when and how Enclavisor
gets the key in Section 3.5.

/** Success: return non-negative enclave id
* Argl: enclave image & config & hash
* Arg2: the enclave owner identifier */
int create_enclave(Buf image, ID userID);

/** Success: return zero
* Argl: enclavelD returned by create_enclave
* Arg2: [1] [input] passing entry_point & arguments
* [2] [output] get feedback
* Arg3: choose normal mode or fast mode */
int enter_enclave(int enclaveID, Buf buffer, int mode);

/* shutdown an enclave */
void destroy_enclave(int enclavelD);

Fig. 5. Three simplified interfaces: our SDK provides similar interfaces
with those in SGX SDK. As the SGX programming interfaces are easy-
to-use and widely adopted, Enclavisor inherits its interfaces for better
practicability.

After successfully creating an enclave, the host applica-
tion can use enter_enclave to invoke secure enclave functions.
The shared memory established during the process of en-
clave creation is used for passing arguments and receiving
results. Besides, this interface has two modes: the normal
mode relies on the privileged software to transfer the control
flow; the fast mode is based on Highway (see Section 3.4) and
does not need the involvement of privileged software.

Besides protecting secure parts of an application, Enclav-
isor can also protect unmodified applications. Specifically,
our SDK provides a common host application which just
creates an enclave to hold the unmodified application as
well as the relied libraries and invokes its main function.
When the application in the enclave invokes system calls,
(most of) the corresponding requests will be redirected to
the guest OS in the normal VM (see Section 3.4).

3.4

This subsection answers two questions: (i) how an enclave
and its host application communicate with each other; (ii)
how to redirect the system calls invoked by enclaves to the
guest OS.

Interaction with Highway
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Fig. 6. Trap-based communication. With the help of privileged software,
an enclave and its (untrusted) host application can interact with each
other.

Ring 0 Hypervisor

As depicted in Figure 6, our system can leverage the
functionalities provided by privileged software (i.e., we add
kernel modules) to support the interaction between enclaves
and their host applications. Nevertheless, this communica-
tion way (named trap-based communication) is not efficient.
Specifically, there are 8 context switches (4 between ring-0
and ring-3 in guest mode, 4 between guest mode and host
mode) for an enclave to invoke a host application’s function,
which involves expensive VMRUN/VMEXIT. Such a process
takes a considerable cost not only because the context switch
instructions are expensive but also because the switches
can incur much indirect overhead including cache and TLB
pollution and scheduling cost.

App’s untrusted part App’s trusted part
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Secure Syscalls ‘
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Fig. 7. Highway. A fast communication channel between an enclave and
its host application based on shared memory. Dotted arrows represent
write accesses.

For fast communication, our system also supports es-
tablishing a shared-memory-based Highway between an en-
clave and its host application. Highway helps them to trans-
fer not only the communication data but also the control
flow.

How an enclave redirects system calls: We add a thin
layer for dispatching system calls in the standard C library
(i.e., glibc) which is transparent to enclave applications.
Instead of invoking syscall instructions directly, an enclave
thread (i.e., syscall dispatcher in Figure 7) will route system
calls to the guest OS through Highway.

Specifically, the dispatcher first writes the arguments as
well as the related data into the shared memory, and then
sets the start field to one (indicating a system call request).
After that, it waits until the finish field becomes one and then
gets the results of the system call. In the host application,
there is a daemon thread (i.e., syscall delegator in Figure 7)
polling on the start field for detecting system call requests.
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The daemon thread actually is the application thread that
invokes enter_enclave. Recall that enter_enclave has a fast
mode. When choosing such mode, the application thread
loops on the start field as the daemon thread for the enclave
thread. Once detecting a system call request, it invokes the
system call on the guest OS and writes return value in the
result field. At last, it sets the finish field as one to inform the
dispatcher (the enclave thread) of the finish of the request.

Our system also supports running the daemon thread
for system call delegation in the guest OS, which can further
remove context switches for invoking system calls. We also
carefully design the data layout in the shared buffer for
better cache locality. For example, we let the start field
exclusively take a cacheline (64 bytes) for avoiding false
sharing, and insert another 64-byte slot (cacheline) after it
to avoid the effects of CPU cacheline prefetching.

Besides system calls, Highway can also be used for other
interactions between host applications and the enclaves.
Our system supports both the trap-based and the polling-
based communication. The latter one is faster and more
suitable for the scenario of frequent interactions but burns
extra cores, and the former is on the opposite side.

Last but not least, we also consider the security threats
of reusing untrustworthy system calls because the guest OS
can issue lago attacks [29]. To mitigate this problem, the
system call dispatcher can configure which system calls to
redirect. By default, the dispatcher does not route enclave
memory-related system calls (e.g., brk) to the guest OS and
these system calls are implemented in Enclavisor. Further-
more, Enclavisor also provides an in-memory file system
(secure FS) for enclaves to use. If an enclave creates a file
with a specific prefix (i.e., Enclavisor/), the file will be stored
in the secure FS and all the file operations on it are handled
by the secure FS. Since cryptographic safeguards such as
SSL are usually employed by secure applications to protect
network communication, we just reuse the network services
of the untrusted guest OS without extra efforts. In brief,
Enclavisor can provide some shared services like a secure
FS and the system call dispatcher inside each enclave can
choose whether to use such service according to different
policies. Besides, the dispatcher can embrace different secu-
rity shields for defending against potential attacks, which
can be transparent to enclave applications.

An optional optimization. We further give an optimiza-
tion to improve the performance of the above design. When
the syscall dispatcher waits for the finishing of a system
call, it occupies the CPU and thus wastes CPU cycles. To
avoid the busy wait, we adopt the mechanism of user-mode
scheduling [13], [18] and then provide a simple scheduler
in the LibC which can schedule multiple threads in an ap-
plication. After issuing a (cost) system call request through
Highway, the dispatcher can proactively release the CPU
and transfer the control flow to the user-mode scheduler.
Then, the scheduler can immediately schedule other ready
threads and thus improve the CPU utilization. Note that this
optimization is transparent to an application and optional.

3.5 Two-phase Attestation

This subsection answers two questions: (i) how to let mul-
tiple tenants attest the same SEV VM; (ii) how Enclavisor
retrieves a tenant’s secret key.
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SEV only allows a secure VM to be attested for one time in
the boot process. If some cloud tenants or the cloud provider
attests the secure VM, other tenants are hard to trust the VM.
An intuitive solution is letting a trusted third party attest the
secure VM. However, it takes extra deployment cost.

B
/ /

Attestation
servers

SGX Enclave Enclave |
@
Cloud [0 | [ I 0
- attestation / Enclavisor
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Fig. 8. We utilize an Intel SGX enclave as a secure attestation proxy.

As shown in Figure 8, our design allows the cloud
provider to attest a secure VM through an Intel SGX enclave.
To be specific, when booting an SEV-protected VM, the
cloud provider uses an attestation proxy that runs in an SGX
enclave to attest the VM. The attestation proxy leverages
the AMD Key Distribution Server (KDS) to verify the VM
booting proof. If the proof is authenticated, the attestation
proxy can know the Enclavisor is securely booted without
being tampered. Therefore, the attestation proxy in the SGX
enclave can establish a secure channel with Enclavisor in the
SEV-protected VM.

The attestation proxy also contains a number of cloud
tenants’ public keys which are uploaded when the tenants
register in the cloud. A cloud tenant can utilize the Intel
Attestation Service (IAS) to verify the attestation proxy and
the proxy can use a tenant’s public key to authenticate
him/her. With such mutual attestation, the cloud tenant can
establish a secure channel with the SGX-protected proxy.

Next, the cloud tenant can send one secret key to the
proxy and the proxy can forward the key to Enclavisor.
Therefore, the cloud tenant and Enclavisor can securely
communicate with each other with that key (i.e., a secure
communication channel between the tenant and Enclavisor).
With SGX for secure connection, different tenants can build
private channels with the same Enclavisor and thus can
securely share the secure VM. Note that the code of the
attestation proxy and Enclavisor should be public and can
be investigated by any party.

Our two-phase attestation mechanism works as following
steps: In phase-1 which is only needed for one time, a tenant
indirectly attests an SEV VM with a trustworthy Enclavisor
running inside with SGX and then builds a secure channel
with Enclavisor. Afterwards, Enclavisor can directly attest
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the tenant’s secure enclaves without the tenant’s involve-
ment (phase-2). Our two-phase attestation has two purposes
as other remote attestation mechanisms. First, it allows a
tenant to ensure his/her initial enclave is correctly running.
Second, it helps a tenant to establish a secure commu-
nication channel with Enclavisor (and inherently, his/her
enclaves). So, a tenant can securely upload his/her private
code/data to his/her enclaves and the enclaves can securely
send the results back to the tenant.

Our two-phase attestation is a kind of secure boot or
chained attestation [1], while its new contribution is making
SEV attestation flexible through a practical solution that uses
an SGX enclave as a proxy.

3.6 Mitigating Memory Integrity Issues

SEV hardware promises no integrity protection for a secure
VM'’s encrypted (private) memory pages, which, however,
can severely degrade the security guarantees. In this sub-
section, we first describe two potential attacks to an SEV-
protected VM and then propose the corresponding mitiga-
tions. Although we still cannot provide fully memory in-
tegrity guarantee, the mitigations will significantly raise the
bar of successful attacking and can meet the requirements
of most cloud scenarios.

Rollback attacks. Although attackers cannot inject arbi-
trary code/data into a secure VM because they cannot access
the memory encryption key?, they can replace one memory
page with its older version. For instance, a compromised
hypervisor can record a snapshot of a secure VM and then
guess the password to access the root shell (only allows
three trials for entering password) in the VM. Since the
hypervisor can rollback the secure VM to an initial state with
the legal snapshot, it can use a brute-force attack to guess the
password for unlimited times. The root cause of rollback attacks
is that attackers can record secure memory pages and override the
new content with the old content by a compromised hypervisor.

Nested page table (NPT) mapping attacks. In AMD hard-
ware virtualization technology, NPTs map guest physical
addresses (GPA) to host physical addresses (HPA) while
guest page tables (GPT) in the VM map guest virtual ad-
dresses (GVA) to guest physical addresses (GPA). For an
SEV-secured VM, the hypervisor cannot modify the GPTs
in it but has full control of the NPT. Arbitrarily changing
the NPT mapping is meaningless because it (usually) causes
DoS attacks only. However, a subtle hypervisor can steal se-
crets from a secure VM through carefully manipulating the
NPT mappings. For example, an enclave on the Enclavisor
needs to copy some plaintext content (e.g., a socket con-
figuration) to the shared memory when invoking a system
call. It has no problem to expose such insensitive data to
attackers. However, a compromised hypervisor can change
the NPT mapping for page where the socket configuration
resides to any other memory page of the secure VM. Thus,
the secure VM will write its secret data into the shared buffer
spontaneously. Theoretically, the hypervisor can dump all

2. In native SEV, modifying encrypted memory blindly is considered
as DoS attacks since the CPU will get meaningless data or code after
decryption. Nevertheless, to prevent malicious software from conduct-
ing rollback attacks, our designs disallow malicious software including
a compromised hypervisor to write secure memory. Therefore, blindly
writing secure memory is also forbidden in our system.
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the secure memory of a VM in such way and thus break
the cryptographic (privacy) guarantee. The root cause of NPT
mapping attacks is that the untrusted hypervisor can arbitrarily
modify the NPT mappings.

The basic idea to mitigate these two types of attacks
is depriving/restricting the hypervisor’s access to secure memory
pages and the related NPT mappings.

Software solution. To that end, one possible solution
is to introduce another high-privileged layer, e.g., nested
virtualization [1], to restrict the capabilities of the hyper-
visor. However, this solution may incur non-trivial over-
head due to frequent cross-layer switches. Therefore, we
choose a lightweight approach, sibling protection with non-
bypassable memory isolation [30], [31], [32]. Specifically,
we can deploy a trusted component such as Fidelius [31] in
the same privilege level (i.e., ring 0 in host mode) with the
hypervisor, but isolates the component from the untrusted
hypervisor. The hypervisor must invoke the trusted compo-
nent to modify the page table mappings. And the latter one
is responsible for verifying the mapping requests to enforce
the policies as follows:

e Security Policy 1: Once a physical page is mapped as
a private page to a secure VM, it cannot be mapped
as writable to others.

e Security Policy 2: When the hypervisor needs to swap
out a secure VM’s private page, the trusted compo-
nent needs to calculate and record the hash of the
page.

e Security Policy 3: When swapping back a private page
of some secure VM, the trusted component needs
to check the page content against the recorded hash
and ensure the page is mapped to the original guest
physical addresses.

We let Enclavisor use a fixed GPA region for shared
memory and thus the trusted component can easily tell
whether a page is private to a secure VM according to the
GPA and then enforce the first policy. This policy ensures
that any malicious software cannot write (or rollback) a
secure VM'’s mapped private pages.

To preserve the memory oversubscribing functionalities
of the hypervisor, we further introduce the other two poli-
cies. The trusted component also involves in the process of
page swapping and simply uses the hash of page content
to prevent possible rollback attacks. Meanwhile, it ensures a
swapped-out page can only be mapped back to the original
GPA for defending against the NPT mapping attacks.

Hardware proposal. The above software solution works be-
cause there is a trusted software component for maintaining
the mapping information for each physical page. Therefore,
the new SEV hardware can also implement a similar book-
keeping mechanism to defend against those two types of
attacks.

Specifically, the SEV hardware reserves a part of physical
memory for storing the Ownership-Table which records the
required metadata of each physical page in the rest of
the physical memory. As shown in Table 2, each physical
page’s metadata contains two fields: Owner and Guest Frame
Number (GEN). The Ouwnership-Table is checked by MMU
at the end of traditional (nested) address translation. After
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a (guest) virtual address is translated into HPA (physical
page), MMU further uses the HPA as index to find the cor-
responding physical page’s metadata in Ownership-Table.
If the Owner of this page is not the one currently running on
the CPU, MMU will deny the memory access and trigger
an exception. By default, a physical page has no owner,
which means MMU will not trigger any exception when
it is accessed. The physical pages owned by some secure
VM cannot be accessed by hypervisor and other (secure)
VMs. So, any malicious software cannot read /write a secure
VM'’s private memory and thus cannot conduct rollback
attacks. Note that memory encryption can be optional (for
defending against physical attacks like cold-boot attacks
or NVM stealing) in such a new extension because the
hypervisor can no longer read the secure memory.

TABLE 2
The hardware-maintained Ownership-Table (indexed by physical page).

Physical Page Owner Guest Frame Number
0 None -
1 secure VM1 0x2000
2 secure VM1 0x2001
3 secure VM2 0x2000

Since MMU checks physical pages” ownership, the un-
trusted hypervisor cannot map a secure VM’s private mem-
ory pages (GPA) to physical pages (HPA) not owned by the
secure VM (otherwise the VM crashes). However, it still can
remap a VM’s private memory page to any physical page
belonging to the secure VM, i.e., changing the mapping
from GPA to HPA for conducting NPT mapping attacks.
So, if a GVA is translated (i.e., GVA - GPA - HPA) and
the physical page’s Owner is some secure VM, MMU will
also check whether the GPA (the intermediate result of
the address translation) matches the physical page’s GFN
(GFN = GPA >> 12) in the Ownership-Table. Thus, a
malicious hypervisor cannot arbitrarily manipulate the NPT
mappings.

With the new hardware, the hypervisor needs to ex-
plicitly assign physical pages to a secure VM at its boot
time or during its runtime. When the hypervisor sends
the request of launching a secure VM to the hardware, the
request should contain a small physical memory range (i.e.,
a starting HPA and a size) and the corresponding guest
physical memory range (i.e., a starting GPA and a size) of
the secure VM. For each physical page (HPA), the hardware
checks its Owner field: if the field is None, the hardware sets
it to the secure VM and sets the corresponding GFN (GPA);
otherwise, the hardware undoes the changes and returns
an error. A small physical memory range is enough for the
booting process of a secure VM (e.g., 24M for Enclavisor)
and more memory can be added at runtime. Besides, the
request information will be also included in the remote
attestation, so the secure VM can know which GPA range
is already mapped to physical memory.

A secure VM may require more memory and trigger NPT
faults during runtime. The hypervisor can assign physical
pages (on-demand) to it as follows. The hypervisor allocates
a free physical page (HPA) and tells the secure VM the
HPA and the faulting GPA (through either a software-based
or hardware-provided upcall). The secure VM should first
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check whether GPA is mapped before and (if not) then exe-
cute accept_page (a new instruction) to set the corresponding
entry in the Ownership-Table. After that, the hypervisor can
add the new mapping in the NPT. In brief, for adding a
new mapping (GPA - HPA), the secure VM (e.g., Enclavisor)
ensures its GPA is never double-mapped, which eases the
hardware’s design and implementation (hardware ensures
the HPA has no owner before).

A hypervisor cannot directly revoke physical pages from
a secure VM, but it can ask a secure VM (e.g., Enclavisor) to
return some physical pages back (like ballooning). A secure
VM can use another new instruction named release_page
to release its not-used pages. Nevertheless, as non-volatile
memory (NVM) (i.e., Intel Optane Persistent Memory) is
commercially available now, the memory resource pressure
will become much smaller since NVM can have larger
capacity and lower price than traditional DRAM. Thus,
memory ballooning may not frequently happen. Besides,
a secure VM will not exhaust the physical memory re-
source for two reasons. First, the hypervisor can restrict
the maximum amount of the physical memory used by a
secure VM. Second, the ballooning code inside the secure
VM should be implemented in some trusted module like
Enclavisor that is deployed by the cloud provider. Therefore,
the hypervisor can still preserve its capability of managing
physical memory.

At last, we analyze the above hardware enhancement
from two aspects: memory-usage overhead and memory-
check latency. First, the Ownership-Table occupies less than
0.2% physical memory because the size of owner (4 bits)
and GFN (less than 52 bits) for each page (4K) is less than
8 bytes. With hierarchical structures (like page tables), the
Ownership-Table can be even smaller. Second, MMU has
to check the Ownership-Table during address translation.
But the check results can also be cached in some TLB-like
structures of MMU, which can hide the check latency. Since
Intel SGX also adds similar checks (i.e., checking EPCM) in
its MMU, we believe our proposals are practical.

4 IMPLEMENTATION

We add about 900 SLOC in glibc-2.26 for dispatching the
system calls. We implement an Enclavisor prototype by
tailoring and retrofitting sv6 [33]. The prototype (6,500
SLOC) has three major components: (i) threads manage-
ment for creating/scheduling/destroying enclave threads,
(ii) memory management for managing both secure private
and shared memory, and (iii) an in-memory file system (FS)
for temporary secure files. Enclavisor does not contain any
device drivers for performing I/O because most system calls
including I/O related ones are redirected to the guest OS in
the normal VM (see Section 3.4).

Enclavisor implements enclave fork with traditional
copy-on-write mechanism. When an enclave invokes fork,
our system will not only fork an enclave on Enclavisor
but also fork its host application in the normal VM. When
an enclave creates a new thread, our system also creates
the daemon thread by default. Enclavisor handles enclave
exceptions such as page faults by itself and only relies
on the timer interrupt (i.e., a virtual interrupt injected by
the hypervisor) for scheduling. Since the responsibilities of
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Enclavisor are clear and limited, it should be feasible to
build Enclavisor over a formally verified OS kernel [34] and
further verify the entire Enclavisor with more effort. We also
add about 500 SLOC in the guest OS kernel module and
the hypervisor (KVM module) for inter-VM communication.
Referring to [30], [31], We also give a prototype implemen-
tation (1,500 SLOC) of the sibling protection mentioned in
Section 3.6 in Linux/KVM (hypervisor).

In our system, a secure VM can serve multiple normal
VMs and a normal VM can also construct enclaves in differ-
ent secure VMs. Since the hardware allows 15 secure VMs
to run concurrently, it is possible to deploy Enclavisor with
different security/functionality configurations in different
VMs, such as supporting FS or not. Enclavisor makes the
enclave environments highly extensible and thus makes it
easier to meet different desired features for different sce-
narios. Currently, Enclavisor supports enclave forking and
shared/grant memory between enclaves, which are hard to
achieve in no matter SGX enclaves or SEV VMs.

5 SECURITY ANALYSIS

Enclavisor plays a similar role with hardware firmware
(e.g.,, AMD PSP), which is within the TCB of the whole
system. If Enclavisor has bugs and is compromised by an
attacker, then the system is compromised, which is the
same as the cases if the SGX microcode and AMD PSP
have bugs and get compromised. It makes sense to assume
Enclavisor is trusted because it only provides simple and
clear functionalities and has a small code base (i.e., 6,500
SLOC). Trusting a small software component is also a com-
mon assumption (e.g., TrustVisor [15], CloudVisor [1], and
Nested Kernel [30]).

Compromised guest OS. Our system separates an en-
clave and its guest OS into a secure VM and a normal VM.
Even if the guest OS is compromised, it cannot directly
access the enclave’s secure memory or its execution context
which is maintained by Enclavisor. We also consider indirect
attacks like Iago attacks [29]. To defend against memory-
based Iago attacks, our dispatcher routes all the memory-
related system calls to the trusted Enclavisor. For other
types of lago attacks, it is convenient to adopt orthogonal
solutions [2] into our system.

However, the separation design exposes the system call
trace of an enclave, which may be utilized by attackers as a
side channel. A possible countermeasure is hiding informa-
tion from the trace, which can be done by either the pro-
grammers (manual efforts) or our dispatcher (automatically
adding noises).

Compromised hypervisor. In our design, multiple en-
claves share a secure VM, which means that they also share
the same memory encryption key. Although a malicious en-
clave cannot directly attack other enclaves since Enclavisor
guarantees the isolation, it may collude with a malicious
hypervisor to issue new attacks. Specifically, the hypervisor
may carefully craft some pages with malicious code or fake
data (step-1) and send them to the malicious enclave to get
these pages encrypted by the shared memory encryption
key (step-2). Then the hypervisor can change the NPT of a
victim enclave to remap its virtual pages to these malicious
physical pages (step-3) to inject the malicious code and data.
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In step-2, the hypervisor can easily utilize NPT faults to
figure out which physical page maps to which virtual page.

Our system defends against this kind of colluding attack
by either the software solution or the hardware proposal
specified in Section 3.6. In brief, the software mechanism
can detect and refuse such malicious mapping operations
in step-3. The enhanced hardware encrypts memory with
GPA, which makes the above mapping attacks meaning]less.

Similarly, recent attacks targeting SEV [8], [9], [27], [28]
will also fail on our system since they requires the hyper-
visor to either replace the physical memory or modify the
NPT mappings, which can be classified into rollback attacks
or NPT mapping attacks and are discussed in Section 3.6.

Other attacks. We do not defend against physical attacks
to break the integrity of secure memory. For example, a
physical rollback attack requires to record memory trans-
actions first and then replay them directly on the hardware.
We argue that such attacks are hard to issue in the cloud
environment.

Our design does not target side channel attacks. Never-
theless, it also does not introduce new side channels other
than the channel of system call trace, which, however, can
be closed by our dispatcher as mentioned above. In recent
years, it is a hot topic to propose different solutions to
defend against various kinds of side channel attacks, which
are orthogonal and can be applied to our work.

Future commercial hardware. The design of Enclavisor can
make sure different enclaves securely share the same mem-
ory encryption key in AMD SEV. Nevertheless, a similar
hardware security extension, named Intel Multi-Key Total
Memory Encryption (MKTME) [35], can provide multiple
(up to 32K) memory encryption keys in a VM. Once MK-
TME is commercially available, Enclavisor can also be built
atop it to provide fine-grained enclaves and leverage the
multiple key support to simplify some designs.

We add SGX-assisted attestation as a practical solution
to enable post-launch remote attestation which is not sup-
ported by SEV hardware yet. This mechanism has little
effect on the software TCB since the attestation code is
extremely simple. Meanwhile, it is optional and can be
easily replaced once the flexible attestation is ready in SEV.

6 EVALUATION

Our evaluation of Enclavisor on SEV hardware contains two
parts: (i) we present some results from micro-benchmarks
regarding the interaction performance and booting perfor-
mance; (ii) we present real-world application benchmarks
to demonstrate the efficiency of Enclavisor. All experiments
use an AMD EPYC 7281 CPU with 32 cores and we fix
the CPU frequency to 2.1GHz. The host machine has 96GB
DRAM and runs Linux/KVM 4.20. We assign 4 cores to the
secure VM and 24 cores to the normal VM. Each VM has
32GB DRAM and runs Linux 4.18.1.

6.1 Micro-benchmarks

Interaction cost. We first measure the interaction cost be-
tween an enclave and its underlying guest OS since Enclav-
isor separates them into different VMs. We choose to test the
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cost of getpid® because it is extremely simple and thus can
almost reflect the actual cost of a round trip between user-
level and kernel-level. It only takes about 174 cycles in a
normal VM. Note that the result is the average latency over
one million times invocation of getpid and KPTI is by default
disabled on AMD CPUs which are not affected by Melt-
down. In contrast, as shown in Table 3, one round trip of
trap-based communication takes at least 5,000 cycles even in
the ideal case. This cost consists of: one round trip between a
normal VM and the hypervisor takes about 1812 cycles; one
round trip between a secure VM and the hypervisor takes
about 2040 cycles. Actually, the total cost can become larger
when considering the uncontrollable scheduling cost.

TABLE 3
A comparison on the cost of a round trip between an enclave and its

guest OS.

Interaction Cycles

Native 174

Trap-based > 5,000

Highway(user) 325

Highway(kernel) 170

Nevertheless, Enclavisor also supports polling-based
communication as depicted in Figure 7. When the daemon
thread is polling in the host application (i.e., user-level), a
getpid system call takes about 325 cycles which consists of
(i) the “round trip” between the daemon thread and the
enclave thread together with (ii) the round trip between the
daemon thread and the guest OS (i.e., a native system call).
Furthermore, Enclavisor also allows the daemon thread
polling in the kernel space, which can eliminate the context
switch between the guest OS and the daemon thread.

TABLE 4
A comparison on the booting performance of a Hello-World program.

Boot Time
Native 398.8 us
Kata SEV 2656 ms
Enclave Creation 1057.9 us
Enclave Fork 365.9 us

Booting performance. It takes about 398.8 us to launch a
simple Hello-World program in the normal VM. However,
when using an SEV-secured Kata container [25] to launch
the same application, it requires 2656 ms. Since the con-
tainer is protected in a secure VM, this long boot period
can be divided into two stages. The first stage is the VM
creation, which requires the involvement of the secure co-
processor and takes about 767 ms. The second stage is the
container/VM initialization, which is from the VM start
point to the main function of the application and costs about
1889 ms. Both of these two stages can bring substantial
overhead to a short-term program like a serverless function.

To create an enclave on Enclavisor, the host application
first loads the enclave into the shared buffer between the
normal VM and the secure VM, and then lets the guest
OS send a request of creating enclave to the Enclavisor.
When receiving the request, Enclavisor creates the enclave

3. We use glibc-2.28 to evaluate getpid on native Linux. The getpid
library call in glibc-2.28 always triggers the corresponding system call.
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accordingly. We also enable the guest OS to inform the
Enclavisor through an inter-VM Highway to avoid the
potentially high cost of trap-based communication. It takes
about 1 ms (verifying hash takes 587 us) to create a simple
Hello-World enclave on Enclavisor.

Enclavisor also supports enclave forking which dupli-
cates the host application, makes a copy of the enclave, and
establishes the corresponding shared memory. Forking an
enclave is usually faster than directly creating an enclave
since the former needs not to load and transfer the enclave
image and can avoid the initialization overhead, which is a
desired feature for serverless computing. Here, we measure
the time between the fork point and the point at which
forked enclave starts to run as the cost of forking the simple
enclave. The cost is about 365.9 us.

6.2 Application Benchmarks

We compare the performance of applications running on
Enclavisor with their native variants, i.e.,, running in a
normal VM. Without explicit statement, we use the enclave-
to-application Highway (user) in the following evaluations.
Note that we do not modify any lines of codes in the eval-
uated applications and only re-link them with our modified
libc.
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(a) SPEC CPU 2006. (b) Sqlite3.

Fig. 9. (a) Execution time of 12 applications in SPEC CPU 2006
benchmarks. (b) Sqlite3 is evaluated against 6 YCSB workloads.

SPEC CPU 2006. We measure the execution time of 12
applications in SPEC CPU 2006 benchmarks and present the
results in Figure 9-(a). For CPU-intensive benchmarks such
as bzip2 and gobmk, the performance of enclaves running
on Enclavisor is nearly the same as or even better than
the native execution performance. Two reasons can explain:
first, Enclavisor will not bring overhead to enclave appli-
cations when they do not invoke outside-enclave functions
(e.g., system calls); second, when executing system calls, the
Highway design avoids the context switches for the enclave
threads although it requires some extra cycles. Context
switches between user-mode (ring 3) and kernel-mode (ring
0) may incur indirect costs like TLB/cache pollution. Other
applications show less than 5% overhead which mainly
comes from the memory copies during system calls. Some of
them (mcf, sjeng, and sphinx3) are more system call intensive
and most system calls (66%-95%) are read or write, which
leads to more accesses to the shared memory and more
memory copies. The other two (libquantum and milc) issue
more mmap system calls on files, which also leads to more
memory copies (i.e., copy the file content from the normal
VM into the secure VM).
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Sqlite3. Figure 9-(b) shows the normalized throughput of
SQLite 3.0 (Sqlite3) under different YCSB workloads. In
this experiment, we directly generate the workload in the
execution thread and use Highway (kernel) for invoking
system calls. Also, we set the object size to 16 bytes to
decrease the memory copy overhead. In such setting, En-
clavisor can make the enclave application have comparable
(or even slightly better) performance with the native one.
A breakdown of this evaluation shows that about 35% of
the total execution time is spent on executing system calls.
Thus, the Highway design, which brings better locality for
the execution, should be the major reason why Enclavisor
shows close-to-native (or even better) performance.
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Fig. 10. (@) The performance comparison on Redis. (b) The
throughput comparison on Memcached.

Redis. We run Redis 5.0.4 with persistency disabled and use
YCSB workload a (50% read and 50% update operations)
to evaluate the performance. Specifically, we set the client
number to 20 and run the clients in the same normal VM
with the daemon thread and the native application to avoid
the interference of going through the real network devices.
The Redis server will be loaded 1 million records during the
initial phase and the record size is 1KB (1GB in total). Then,
we keep increasing the frequency of request sending (i.e.,
the target parameter in YCSB) for the clients and test the
corresponding throughput and latency in the meantime.

Figure 10-(a) presents the experiment results. When the
allowed latency is 135 us, the throughput of enclave Redis
is about 80% of the native one. The overhead mainly comes
from the extra data copy between the enclave thread and the
daemon thread. Since the record size is 1KB and each oper-
ation reads/updates a record, the memory copy overhead is
obvious, especially there is no actual network round trip.
For example, Enclavisor can introduce 21% overhead for
writing 1K data to a socket in such setting. The performance
trends in other YCSB workloads are similar.

Memcached. We evaluate Memcached 1.5.16 with YCSB
workload a (other workloads show similar results). The
Memcached server runs with 4 physical CPUs and we use
the same client configuration as the that in Redis. We com-
pare the throughput of Memcached on Enclavisor with the
native one under different memory pool size. Figure 10-(b)
shows that the enclave application has comparable perfor-
mance with the native one, which indicates that Enclavisor
has the potential to support big memory processing. The
memory copy overhead is not obvious as before since we
add TLS encryption which is much more expensive than the
copy operations in this experiment. When enabling user-
mode scheduling in this case (run 8 server threads on the
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4 CPUs), Enclavisor-Usersched can further achieve better
performance than native no matter the latter one runs 4/8
server threads on the 4 CPUs. This is because user-mode
scheduling can effectively improve the CPU utilization.
Specifically, Enclavisor-Usersched schedules a physical CPU
to execute runnable threads instead of wasting time on
waiting for I/O events.

7 RELATED WORK

There are many systems aiming at protecting tenants’ pri-
vate code/data in cloud where many security threats exist.
Systems like TrustVisor [15] and CloudVisor [1] leverage
trusted hypervisors or nested virtualization to provide se-
cure environment for a whole virtual machine. Though they
are efficient in guest VM protection, they cannot defend
against intra-domain attacks. Systems like InkTag [2] utilize
a trustworthy hypervisor to protect an application from
a compromised guest OS. However, they need to modify
and trust the hypervisor and it is expensive to frequently
intercept transitions between applications and guest OS.
Some other systems such as Bastion [14] make a further step
to defend against physical attacks but require unavailable
hardware. Besides efforts from the research community,
Intel published a promising hardware security technology
named SGX for enclave computing which is immune to
both malicious privileged software and physical attacks.
Thus, many studies [5], [16], [17], [18], [19], [20] use Intel
SGX for protecting sensitive codes and data. However, the
performance problem impedes the usage of SGX in many
scenarios. Although prior work [16], [17], [18], [20], [36]
makes efforts to improve the performance of SGX-protected
applications, the fundamental problem of limited memory
cannot be solved. Especially, the memory problem will
become much severer when multiple VMs/enclaves share
128/256 MB memory in a cloud server.

One of our major contributions is the decoupling of
security enforcement, which embraces both hardware ef-
ficiency (e.g., memory encryption) and software flexibility
(e.g., enclave management). In our design, Enclavisor only
has limited and fixed functionalities and serves more like a
firmware (e.g., PSP in AMDs SEV or Intels ME), which is
much more lightweight than a traditional OS/hypervisor.
Our design also achieves close-to-native performance and
good compatibility with commercial cloud stack.

Existing attacks [8], [9], [27], [28], [37] targeting SEV se-
cure VMs require either writing the VMs secure memory or
manipulating the VM’s NPT. However, these two requisites
are both impossible when our software or hardware de-
fenses (Section 3.6) are exploited. Recently, AMD proposes
new extensions for mitigating integrity problems of SEV
but still provides limited secure VMs as its enclaves [38].
Therefore, even for future SEV machines, Enclavisor is still
meaningful and actually easier to deploy (without a trusted
component in the hypervisor).

The system call dispatch mechanism in our system
shares some similarities with prior work [39] and their
dispatch policies or tools for generating glue code can
be incorporated into our system. Our Highway design is
inspired by [13], [18], [36] but is used for accelerating cross-
VM communication.
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Other secure enclaves. Since current SGX-capable CPUs
can only be used on single-socket platforms, Intel provides
SGX Card [40] to make the SGX technology available on
existing dual-socket server platforms. An SGX Card can
be attached to one host server over a PCI Express (PCle)
interface. Each card contains three independent Intel Xeon
E3 CPUs inside (each CPU provides 128 MB secure memory)
and several such cards can be attached to the same host.
With Intel SGX Cards, an application can be scaled out
by running multiple enclaves: execution and data are par-
titioned across different enclaves on different cards. Thus,
with one card, the total size of the secure memory increases
by a factor of 3, with two cards by a factor of 6, and so
on. Nevertheless, for a single enclave, the secure memory
limitation is not changed. Moreover, SGX Card does not
benefit enclave booting or the cross-enclave interaction.

ARM platforms are widely used in mobile and embed-
ded systems. ARM TrustZone technology can divide the
whole platform into the normal world and the secure world
(as a single TEE for the whole system). There are two kinds
of studies on how to multiplex the single secure world: 1)
deploying a secure OS in the secure world and letting the se-
cure OS run multiple mutually-isolated secure applications
(e.g., OP-TEE [41]); 2) providing multiple virtual secure
worlds in a single platform (e.g., our prior work, vIZ [42]).
Enclavisor makes an attempt to improve AMD-SEV while it
may also be extended to the work on TrustZone.

There are also some open-sourced enclaves (e.g., Sanc-
tum [43], Keystone [44], and our prior work called
Penglai [45]) which promise different attracting features.
Nevertheless, they are still not available on today’s com-
modity machines.

8 SUMMARY

We propose Enclavisor, a hardware-software co-design, for
building enclaves on the untrusted cloud. Through com-
bining the flexibility of software and the efficient security
guarantee of hardware, Enclavisor can achieve high-security
guarantee, large memory support and high run/boot time
performance for typical cloud applications. We implement
Enclavisor prototype on AMD SEV and tackle some spe-
cific challenges. The evaluation results demonstrate that
Enclavisor-protected enclaves can have near-native perfor-
mance.
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