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ABSTRACT
Microkernel hasmany intriguing features like security, fault-tolerance,
modularity and customizability, which recently stimulate a resur-
gent interest in both academia and industry (including seL4, QNX
and Google’s Fuchsia OS). However, IPC (inter-process communi-
cation), which is known as the Achilles’ Heel of microkernels, is
still the major factor for the overall (poor) OS performance. Besides,
IPC also plays a vital role in monolithic kernels like Android Linux,
as mobile applications frequently communicate with plenty of user-
level services through IPC. Previous software optimizations of IPC
usually cannot bypass the kernel which is responsible for domain
switching and message copying/remapping; hardware solutions
like tagged memory or capability replace page tables for isolation,
but usually require non-trivial modification to existing software
stack to adapt the new hardware primitives. In this paper, we pro-
pose a hardware-assisted OS primitive, XPC (Cross Process Call),
for fast and secure synchronous IPC. XPC enables direct switch
between IPC caller and callee without trapping into the kernel, and
supports message passing across multiple processes through the
invocation chain without copying. The primitive is compatible with
the traditional address space based isolation mechanism and can be
easily integrated into existing microkernels and monolithic kernels.
We have implemented a prototype of XPC based on a Rocket RISC-V
core with FPGA boards and ported two microkernel implementa-
tions, seL4 and Zircon, and one monolithic kernel implementation,
Android Binder, for evaluation. We also implement XPC on GEM5
simulator to validate the generality. The result shows that XPC
can reduce IPC call latency from 664 to 21 cycles, up to 54.2x im-
provement on Android Binder, and improve the performance of
real-world applications on microkernels by 1.6x on Sqlite3 and 10x
on an HTTP server with minimal hardware resource cost.

CCS CONCEPTS
• Computer systems organization → Architectures; • Soft-
ware and its engineering → Operating systems.
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1 INTRODUCTION
Microkernel has been extensively studied for decades [23, 28, 32, 39,
42, 45, 58]. It minimizes functionalities in privileged mode and puts
most of them, including paging, file system and device drivers, in
isolated user-mode domains to achieve fine-grained isolation, better
extensibility, security and fault tolerance. Due to these benefits,
microkernel-based OSes have been widely deployed in a broad
range of devices including aircraft [22], vehicles [36] and mobile
baseband systems [35]. Recently, we also witnessed a resurgent
interest in designing and deploying microkernel-based operating
systems, including seL4 [39], L4 on Apple’s iOS secure enclave [4]
and Google’s next-generation OS called Fuchsia1.

However, the implementations of current microkernel-based
OSes still face a tradeoff between security and performance: more
fine-grained isolation usually leads to better security and fault toler-
ance but also more IPCs (inter-process communications), which are
known as the Achilles’ Heel of microkernels [27, 46, 61]. For exam-
ple, on amodern processor like Intel SkyLake, seL4 spends about 468
cycles [7] for a one-way IPC on its fast path2 (687 cycles when en-
abling Spectre/Meltdown mitigations). Even worse, Google’s Fuch-
sia’s kernel (called Zircon) costs tens of thousands of cycles for one
round-trip IPC. This brings a notable performance slowdown over
a monolithic kernel like Linux for many IPC-intensive workloads.

Monolithic kernel-based OSes also suffer from the long latency
of IPC. For example, Android is built on the monolithic kernel,
Linux, and provides many user-level services for mobile applica-
tions. These applications frequently communicate with user-level
services, like drawing a component in the surfaces through window
manager, which causes high overhead. Android has introduced
Binder [12] and anonymous shared memory [11] in Linux kernel
to mitigate the issue, but the latency is still high.

Most of the cycles of an IPC are spent on two tasks: 1) domain
switching, and 2) message copying. Since the caller and callee are in
user mode, they have to trap into the kernel to switch the address

1https://fuchsia.googlesource.com/
2Fast path in seL4 is a heavily-optimized IPC routine without scheduling and does not
consider long message copying.
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space, which includes context saving/restoring, capability checking,
and many other IPC logics. Sending messages through shared mem-
ory can reduce the number of copying, but may also lead to TOCT-
TOU (Time-Of-Check-To-Time-Of-Use) attack if both the caller and
callee own the shared memory at the same time [49]. Adopting
page remapping for ownership transfer can mitigate the above se-
curity problem, but the remapping operation still requires kernel’s
involvement. Meanwhile, remapping may also lead to costly TLB
shootdown.

Previous work proposed various ways to optimize IPC perfor-
mance, by either software [17, 29, 30, 45] or hardware [43, 44, 50,
55, 63, 66, 67]. For most software solutions, the overhead of trap-
ping to kernel is inevitable, and message passing will lead to either
multiple copying or TLB shootdown. Some hardware solutions, like
CODOMs [62], leverage tagged memory instead of page tables for
isolation. They adopt single address space to reduce the overhead
of domain switching and message passing. These new hardware
solutions usually require non-trivial modification of existing kernel
implementations which are designed for multiple address spaces.

We advocate an efficient and secure IPC for microkernels and
monolithic kernels, with the regeneration of microkernels on trend-
ing heterogenous systems [13], mobile OS [2] and the next genera-
tion data center [57], and the widespread IPC usage in monolithic
kernel-based OSes like Android. In this paper, we propose a new
hardware-assisted OS primitive, XPC (cross process call), to securely
improve the performance of IPC. The design has four goals:

(1) Direct switching without trapping to kernel.
(2) Secure zero-copying for message passing.
(3) Easy integration with existing kernels.
(4) Minimal hardware modifications.

Specifically, our new primitive contains three parts. The first
is a new hardware-aware abstraction, x-entry, which is similar to
endpoint in traditional microkernel but with additional states. Each
x-entry has its own ID and uses a new capability, xcall-cap, for ac-
cess control. The capability is managed by the kernel for flexibility
and checked by the hardware for efficiency. The second is a set of
new instructions including xcall and xret that allows user-level code
to directly switch across processes without the kernel involved. The
third is a new address-space mapping mechanism, named relay-
seg (short for “relay memory segment”), for zero-copying message
passing between callers and callees. The mapping is done by a new
register which specifies the base and range of virtual and physi-
cal address of the message. This mechanism supports ownership
transfer of the message by ensuring only one owner of the message
at any time, which can prevent TOCTTOU attack and requires no
TLB flush after a domain switch. A relay-seg can also be passed
through the invoking chain, aka handover, to further reduce the
number of copying.

Although asynchronous IPC has the benefit of high throughput,
synchronous IPC can achieve low latency and is easy to support
semantics in existing POSIX APIs, thus has been used widely in
existing systems [58, 65]. Even if Google’s Zircon adopts asynchro-
nous IPC, it uses the asynchronous IPC to simulate the synchronous
semantics of the file system interfaces. This, unfortunately, intro-
duces latencies as high as tens of thousands cycles per IPC.

XPC chooses to keep semantic of synchronous IPC across differ-
ent address spaces, which makes it easy to be adopted to existing
OS kernels. Meanwhile, XPC overcomes two limitations of tradi-
tional synchronous IPC [26], one is the relatively low data transfer
throughput and the other is its not-easy-to-use model for multi-
threaded applications. Specifically, XPC improves throughput with
the relay-seg mechanism and provides easy-to-use multi-threaded
programming interfaces with the migrating thread model [29].

We have implemented a prototype of XPC based on Rocket RISC-
V core on FPGA board for evaluation. We ported two microkernel
implementations (seL4 and Zircon) and one monolithic kernel im-
plementation (Android Binder), then measured the performance
of both micro-benchmarks and real-world applications. The result
shows that XPC can reduce the latency of IPC by 5x-141x for exist-
ing microkernels, up to 54.2x improvement on Android Binder, and
the performance of applications like SQLite and a Web Server can
be improved by up to 12x (from 1.6x). The overall hardware costs
are small (1.99% in LUT resource).

The main contributions of this paper are as follows:
• A detailed analysis of performance overhead of IPC and a
comparison with existing optimizations.

• A new IPC primitive with no kernel-trapping and zero-
copying message support along the calling chain.

• An implementation of XPC on FPGA with low hardware
costs as well as Gem5 and the integration with two real-
world microkernels and Android Binder.

• An evaluation with micro-benchmarks and applications on
a real platform.

2 MOTIVATION
We start by analyzing the IPC performance of a state-of-the-art
microkernel (i.e., seL4 [39]) and then present a detailed explanation
of IPC. Our work is motivated by the performance analysis.

2.1 IPC Performance is Still Critical
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Figure 1: (a): For Sqlite3 with YCSB workload, around 18% to 39%
of the time is spent on IPC. (b): Distribution of IPC time, “data
transfer” means the percentage of message transfer.

We took YCSB benchmark workloads and ran Sqlite3 on seL4 on
a SiFive U500 RISC-V environment [8] (more setup details are in §5).
Figure 1(a) shows that Sqlite3 with YCSB’s workloads spends 18%
to 39% of the time on IPC, which is significant. For each IPC, most
of the time is spent on two tasks: domain switch and message trans-
fer. For IPC with short message, the major performance overhead
comes from domain switch; as the length of message increases, the
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Table 1: One-way IPC latency of seL4. seL4 (4K)will use sharedmem-
ory. The evaluation is done on a RISC-V U500 FPGA board.

Phases (cycles) seL4(0B)
fast path

seL4(4KB)
fast path

Trap 107 110
IPC Logic 212 216
Process Switch 146 211
Restore 199 257
Message Transfer 0 4010
Sum 664 4804

time of data transfer dominates. Figure 1(b) shows the cumulative
distribution of IPC time with different message sizes on the YCSB-E
workload. In total, message transfer takes 58.7% of all the IPC time.
The result is similar for other YCSB workloads, ranging from 45.6%
to 66.4%. The rest is mainly spent on domain switch, which takes
another half of the entire IPC time. This motivates us to design XPC
with both fast domain switch and efficient message transfer.

2.2 Deconstructing IPC
In this section, we break down the process of IPC, measure the cost
of each step, and analyze where the time goes. This quantitative
analysis is done using a state-of-the-art microkernel, seL4, with a
latest RISC-V FPGA board.

There are two paths of IPC in seL4: the “fast path” and the “slow
path”. The fast path contains five steps, as shown in Table 1. The
slow path allows scheduling and interrupts, which introduce longer
latency. Next, we will focus on the fast path and explain when seL4
will take the slow path.

Trap & Restore: A caller starts an IPC by invoking a system
call instruction to trap into the kernel. The kernel will first save
the caller’s context and switch to the kernel’s own context. After
finishing the IPC handling code (e.g., fastpath_call in seL4), the
kernel will restore the callee’s context and return to its userspace.
As shown in Table 1, these two phases take about 300 cycles which
becomes a significant overhead of domain switch.

In existing systems, the costly switch between kernel mode and
user mode is inevitable. Besides, the kernel will always save and
restore all the context for isolation. The underlying assumption is
that the caller and callee do not trust each other. However, we find
that in certain cases, the caller and callee may have different trust
assumptions, e.g., by defining their own calling conventions. Thus,
it could be more flexible and efficient to let the caller and callee
manage their context to achieve a balance between performance
and isolation.

IPC Logic: In the IPC logic part, the major task is checking. seL4
uses capabilities to manage all the kernel resources, including IPC.
The kernel first fetches the caller’s capability and checks its validity
(e.g., having send permission or not). It then checks if the following
conditions are met to decide whether to take the slow path or not:

• the caller and callee have different priorities, or
• the caller and callee are not on the same core, or
• the size of a message is larger than registers (32-byte) and
less than 120-byte (IPC buffer size).

The IPC logic takes about 200 cycles.
We find that these checking logic are more suitable to be im-

plemented in hardware, which can be done in parallel to hide the
latency. It inspires us to separate the logic to a control plane and
a data plane, in which the former is done by software for more
flexibility and the latter by hardware for more efficiency.

Process Switch:After running the IPC logic, the kernel achieves
the “point of no return” and switches context to the callee. In this
part, the kernel manipulates the scheduling queue to dequeue the
callee thread and block the caller. To make the callee have the
capability to reply, a reply_cap is added into the callee thread. Finally,
the kernel transfers the IPC messages (only for messages ≤ 32B)
and switches to the callee’s address space. The process switch phase
occupies about 150-200 cycles.

Process switch introduces several memory accesses (e.g., user
contexts, capabilities, and scheduling queue). These memory ac-
cesses may trigger Cache and TLB misses, and thus affect the IPC
performance.

Message Transfer: In seL4, there are three ways to transfer a
message according to its length. If a message is small enough to
be put into registers, it will be copied during the process switch
phase, as mentioned. For medium-size messages (≤ IPC buffer and
> register size), seL4 will turn to slowpath to copy the message (in
our experiment, an IPC with 64B message takes 2182 cycles). For
long message transfer, seL4 uses shared memory in user space to
reduce data copying (e.g., 4010 cycles for copying 4KB data).

However, it is hard to achieve efficient and secure message trans-
fer with shared memory. Although in-place update in shared mem-
ory can achieve zero-copying between caller and callee, it is not
secure. For example, a multi-threaded caller can observe the opera-
tions performed by the callee and even affect the callee’s behavior
by modifying the shared memory. In most existing implementa-
tions, the data still needs to be copied to the shared memory at first.
The message transfer dominates the IPC cycles when the message
size is large.

Observations: In the analysis, we have two observations: first,
a fast IPC that not dependent on the kernel is necessary but still
missing. Second, a secure and zero-copying mechanism for passing
messages while supporting handover is critical to performance. Our
design is based on these two observations.

3 DESIGN
XPC consists of a new hardware component (XPC engine) and
software support (OS kernel and a user library). The XPC engine
provides basic functionalities for IPC, including capability checking,
context switching, and a lightweight yet efficient message passing
mechanism. The OS kernel acts as the control plane and manages
IPC by configuring the XPC engine.

3.1 Design Overview
This section describes two hardware primitives provided by XPC
engine and the programming model. The hardware changes are
summarized in Figure 2.

User-level Cross Process Call: The XPC engine provides two
new abstractions: x-entry and xcall-cap for this primitive. An x-entry
is bound with a procedure that can be invoked by other processes. A
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Figure 2: XPC Engine: x-entry-table holds all x-entries, each of which represents an XPC procedure. xcall capability bitmap indicates which
x-entries can be invoked by current thread. A link stack is used to store the linkage record. Two new instructions xcall and xret perform the call
and return operations, handled by XPC Logic. seg-reg, seg-mask and seg-list-reg provide a new address mapping method called relay segment
to transfer message.

process can create multiple x-entries. All the x-entries are stored in a
table named x-entry-table, which is a global memory region pointed
by a new register x-entry-table-reg. Each x-entry has an ID, which is
its index within the x-entry-table. A new register, x-entry-table-size,
controls the size of x-entry-table, and makes the table scalable. A
caller needs an xcall-cap to invoke an x-entry. xcall-cap is short
for “XPC call capability”, which records the IPC capabilities of each
x-entry. Two new instructions are provided for IPC call and return,
respectively: “xcall #reg” and “xret”, where #reg records an x-entry
index provided by the OS kernel.

Lightweight Message Transfer: XPC engine provides a light-
weight mechanism named relay-seg (short for relay segment) for
message transfer. A relay-seg is a memory region backed with con-
tinuous physical memory. The translation of a relay-seg is done by
a new register, seg-reg, instead of page tables. The seg-reg can be
passed from a caller to a callee, thus the callee can directly access
the data within the virtual address range indicated in its seg-reg. The
OS kernel will ensure that the mapping of a relay-seg will never be
overlapped by any mapping of page table; thus, no TLB shootdown
is needed on this region.

Listing 1 Example code of XPC.
1: void xpc_handler(void* arg) {
2: ... /* handler logic */
3: xpc_return ();
4: }
5:
6: void server () {
7: ... /* Register an XPC Entry */
8: xpc_handler_thread = create_thread ();
9: max_xpc_context = 4;
10: xpc_ID = xpc_register_entry( entry_handler ,
11: xpc_handler_thread , max_xpc_context );
12: }
13:
14: void client () {
15: /* get server 's entry ID and capability
16: from parent process */
17: server_ID = acquire_server_ID("servername");
18: xpc_arg = alloc_relay_mem(size);
19: ... /* fill relay -seg with argument */

20: xpc_call(server_ID , xpc_arg );
21: }

XPC Programming Model: The programming model of XPC
is compatible with both capability based permission check and page
table based isolation. Listing 1 shows an example code snippet. The
server first registers an x-entry by passing the procedure handler,
a handler thread and a max context number (indicating the max
number of simultaneous callers). The handler thread is used to offer
the runtime state for client threads and can be shared by multiple
x-entries. After that, the server finishes the registration and is ready
to serve IPC requests. The client gets the server’s ID as well as the
IPC capability, typically from its parent process or a name server.
The IPC is performed through xcall #reg, and the message could be
transferred through general purpose registers and relay-seg.

3.2 XPC Engine
xcall: The xcall #reg instruction is used to invoke an x-entry whose
ID is specified by the register. The XPC engine performs four tasks:
1○ It first checks the caller’s xcall-cap by reading the bit at #reg in
the xcall-cap bitmap. 2○ Then the engine loads the target x-entry
from x-entry-table and checks the valid bit of the entry. 3○ After
that, a linkage record is pushed to the link stack. Here we use the
term linkage record to indicate the information necessary for return,
which will be stored in a per-thread stack (called link stack). 4○
Then, the processor loads the new page table pointer (flushes TLB
if necessary) and sets the PC to the procedure’s entrance address.
The engine will put the caller’s xcall-cap-reg in a register (e.g., t0 in
RISC-V), to help a callee to identify the caller. Any exceptions that
happen in the process will be reported to the kernel.

xret: The xret instruction pops a linkage record from the link
stack and returns to the previous process. The CPU first checks the
valid bit of the popped linkage record. It then restores to the caller
according to the linkage record.
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xcall-cap: The xcall-cap will be checked during an xcall. For
performance concern, we use a bitmap to represent xcall-cap (other
design options are discussed in §6.2). Each bit with index i repre-
sents whether the thread is capable of invoking a corresponding
x-entry with ID i . The bitmap is stored in a per-thread memory
region pointed by a register xcall-cap-reg, which will be maintained
by the kernel and checked by the hardware during xcall.

Link Stack: As mentioned, a link stack is used to record the
calling information (linkage record), which is a per-thread memory
region pointed by a register link-reg, and can only be accessed by the
kernel. In our current design, a linkage record includes page table
pointer, return address, xcall-cap-reg, seg-list-reg, relay segment and
a valid bit. The XPC engine does not save other general registers and
leaves to XPC library and applications to handle them. The entries
in linkage record can be extended to meet different architectures by
obeying a principle that linkage record should maintain information
which can not be recovered by user-space.

At the point of pushing the linkage record, XPC engine is ready
to perform switching and can save the linkage record lazily. Thus,
we can optimize link stack using a non-blocking approach to hide
the latency of writing stack. As shown in §5.2, we can save 16 cycles
using the optimization.

XPCEngineCache:We add a dedicated cache to optimizemem-
ory accesses of the XPC engine to fetch the x-entry and capability.
We have two observations for this design decision: 1○ IPC has high
temporal locality (for a single thread); 2○ IPC is predictable. Based
on the two observations, we use a software manageable cache for
XPC engine to store x-entries. Prefetch is supported so that a user
application can load an x-entry into the cache in advance. As shown
in §5.2, we can save 12 cycles by prefetching.

3.3 Relay Segment
relay-seg: A seg-reg register is introduced as an extension of the
TLB module for mapping a relay-seg. It includes four fields: virtual
address base, physical address base, length, and permission. The vir-
tual region (from VA_BASE to VA_BASE + LEN) is directly mapped
to a physical region (from PA_BASE to PA_BASE + LEN). During
address translation, the seg-reg has higher priority over the page
table.

seg-mask: Figure 3 shows the registers and operations of a relay-
seg. User applications cannot directly change the mapping of seg-reg.
Instead, they can use a new register seg-mask to shrink the range
of current relay-seg and pass the new range to the callee. This is
useful when only a part of the message should be passed to the
callee, especially along a calling chain. During an xcall, both the
seg-reg and seg-mask are saved in the linkage record, and seg-reg is
updated to the intersection of seg-reg and seg-mask. After that, the
callee can access relay-seg just as the caller does.

Multiple relay-segs: A server can create multiple relay-segs,
which will be stored in a per-process memory region called seg-
list managed by OS kernel, which is pointed by a new register
seg-list-reg. If one process needs to perform a call with another
relay-seg, it can use a new instruction, swapseg #reg, to atomically
swap the current seg-reg with the one indexed by #reg in its seg-list.
By swapping with an invalid entry, a thread can invalidate the
seg-reg.

Client-A

swapseg

Server-B Server-C

A’s Relay-seg B’s Relay-seg

seg reg

seg-mask reg

xcall xcall

Figure 3: XPC mask and swap operations on relay-seg.

Ownership of relay-seg: To defend against TOCTTOU attacks,
the kernel will ensure that each relay-seg can only be active on one
CPU core at a time. In another word, an active relay-seg can only be
owned by one thread, and the ownership will be transferred along
its calling chain, so that two CPUs cannot operate one relay-seg at
the same time.

Return a relay-seg: During an xret, the callee’s seg-reg must
be the same as when it is invoked. The XPC engine will ensure
this by checking the current seg-reg with the seg-reg and seg-mask
saved in the linkage record. The check is necessary; otherwise, a
malicious callee may swap caller’s relay-seg to its seg-list and return
a different one. If the check fails, an exception will be raised, and
the kernel will handle it.

4 IMPLEMENTATION
We describe our specific implementation of the general design, from
four aspects: integration with the RocketChip RISC-V core, support
for microkernels, support for monolithic kernels, and a user-level
message handover mechanism.

4.1 Integration into RocketChip
We introduce the RTL prototype implementation in RocketChip
and how OS kernel manages the XPC engine here.

XPC Engine: XPC engine is implemented as a unit of a Rock-
etChip core. Table 2 shows detailed information about the new
registers as well as instructions. The new registers are implemented
as CSRs (Control and Status Registers) and can be accessed by csrr
(CSR read) and csrw (CSR write) instructions. The three new instruc-
tions are sent to the XPC engine in Execution stage. XPC engine
checks the validity of an IPC and returns the callee information
to the pipeline. Five new exceptions are added, including invalid
x-entry, invalid xcall-cap, invalid linkage, invalid seg-mask, and
swapseg error.

The default implementation does not contain engine cache to
minimize the hardware modifications, while a version with engine
cache will be evaluated in the microbenchmark to show the per-
formance. The engine cache contains only one entry and relies
on software management including prefetching and eviction. The
prefetch is invoked by xcall #reg, using a negative ID value (−ID)
in the register to indicate a prefetch operation.

XPC Management: The kernel manages four XPC objects: 1)
the global x-entry table, 2) per_thread link stack, 3) per_thread
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Table 2: Registers and instructions provided by XPC engine.

Register Name Access Privilege Register Length Description
(R/W in kernel by default)

x-entry-table-reg VA length Holding base address of x-entry-table.
x-entry-table-size 64 bits Controlling the size of x-entry-table.
xcall-cap-reg VA length Holding the address of xcall capability bitmap.
link-reg VA length Holding the address of link stack.
relay-seg R/ in user mode 3*64 bits Holding the mapping and permission of a relay segment.
seg-mask R/W in user mode 2*64 bits Mask of the relay segment.
seg-listp R/ in user mode VA length Holding the base address of relay segment list.

Instruction Execution Privilege Instruction Format Description

xcall User mode xcall #register Switching page table base register, PC and xcall-cap-reg, according to the
x-entry ID specified by the register. Pushing a linkage record to the link stack.

xret User mode xret Returning to a linkage record poped from the link stack.
swapseg User mode swapseg #register Switching current seg-reg with a picked one in the relay segment list and

clearing the seg-mask.

Exception Fault Instruction Description

Invalid x-entry xcall Calling an invalid x-entry.
Invalid xcall-cap xcall Calling an x-entry without xcall-cap.
Invalid linkage xret Returning to an invalid linkage record.
Swapseg error swapseg Swapping an invalid entry from relay segment list.
Invalid seg-mask csrw seg-mask, #reg Masked segment is out of the range of seg-reg.

xcall capability bitmap and 4) per_address_space relay segment list.
During the system boot, the kernel allocates the memory for the
x-entry table and sets the table size (1024 entries in our current
implementation). When creating a thread, it allocates 8KB memory
for the thread’s link stack, 128B memory as the capability bitmap
and one 4KB page for the seg-list. During a context switch, the
kernel saves and restores the per_thread objects.

4.2 Support for Microkernels
Capability:Capabilities have beenwidely used bymicrokernels [39,
58] for IPC. To transfer a xcall-cap between threads, our implemen-
tation introduces a software capability, grant-cap, which allows a
thread to grant a capability (either xcall or grant) to another thread.
The kernel will maintain and enforce the grant capability list for
each thread. When a thread creates an x-entry, it will have the
grant-cap of the new x-entry, and can grant the xcall-cap to other
threads.

Split Thread State: The domain switch in user mode may lead
to misbehavior of the kernel since the kernel is not aware of the
current running thread. For example, caller A issues xcall to callee
B, which then triggers a page fault and traps to the kernel. Since
the kernel is now aware of the xcall, it will mistakenly use A’s page
table to handle B’s page fault.

To solve this problem,we borrow the idea frommigrating thread [29]
and separate the kernel-maintained thread state into two parts:
scheduling state and runtime state. The scheduling state contains all
the scheduling related information, including kernel stack, prior-
ity, time slice, etc. The runtime state contains the current address
space and capabilities, which are used by the kernel to serve this
thread. Each thread is bound with one scheduling state but may
have different runtime states when running. In our implementation,
we use xcall-cap-reg to determine runtime states. Once a thread
traps to the kernel, the kernel will use the value of xcall-cap-reg to
find current runtime state, as this register is per-thread and will be
updated by hardware during xcall.

Per-invocation C-Stack: The thread model of XPC supports
one x-entry of a server to be invoked by multiple clients at the same
time. In XPC, our library provides a per-invocation XPC context,
which includes an execution stack (called C-Stack) and local data,
to support simultaneous cross procedure calls.

When creating an x-entry, a server specifies a max number of
XPC contexts for it. The XPC library will create these contexts in
advance, and add a trampoline for each x-entry. The trampoline will
select an idle XPC context, switch to the corresponding C-Stack and
restore the local data before invocation, and release the resources
before return. If no idle context is available, the trampoline either
returns an error or waits for an idle one.

Such implementation may introduce DoS attacks, e.g., a mali-
cious client may excessively invoke one x-entry to occupy all its
available contexts. To address this problem, XPC allows each server
to adopt specific policies to limit the invocation from clients. This
problem can also be mitigated by adopting credit systems, as in
M3 [13] and Intel QP [3].

Application Termination: Our implementation also considers
that any procedure along a calling chain may terminate abnormally,
which may affect the entire chain. For example, consider a calling
chain: A → B → C, where B is killed by the kernel due to some
exception. When C invokes xret, it may return to a wrong process.
In this case, we need a way to trigger an exception and let the kernel
handle it.

In our implementation, when a process terminates, the kernel
will scan all the link stacks and mark all of the process’s linkage
records (by comparing the page table pointer) as invalid. Thus, in
the previous example, once C returns, the hardware will trigger an
exception, and the kernel will pop B’s linkage record and return to
A with a timeout error.

We also introduce an optimization to reduce the frequency of
link stack scanning: when B is killed, the kernel will zero B’s page
table (the top level page) without scanning. Thus a page fault will
be triggered when C returns to B, and the kernel gets a chance to
handle. The kernel will also revoke the resource of B (§4.4).
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Figure 4: XPC for Android Binder. Rectangular boxes denote com-
ponents in Android; shaded boxes denote modified parts.

4.3 Support for Android Binder
Android Binder is a significant extension introduced by Android for
inter-process communication. It has been widely used in Android
components, including window manager, activity manager, input
method manager, etc [12]. Android Binder is composed of several
layers, including the Linux Binder driver, the Android Binder frame-
work (i.e., C++ middleware), and the API (e.g., Android interface
definition language). Our modification focuses on the driver and
framework but keeps the API unmodified to meet existing applica-
tions.

Binder uses Binder transaction to represent a cross-processmethod
invocation and uses kernel “twofold copy” to transfer data (named
transaction buffer). Besides, Android also introduces ashmem (anony-
mous shared memory [11]) to boost the performance of bulk mem-
ory transfer between processes.

Binder Transaction: The process of a Binder transaction be-
tween a client and a server involves the following steps:

(1) The client prepares a method code representing the remote
method to call along with marshaled data (Parcels in An-
droid).

(2) The client Binder object calls transact(). This call will be
passed through the Linux Binder driver, which copies the
data from the userspace transaction buffer (through copy_-
from_user), switches to the server side, and copies the data
from the kernel (through copy_to_user). (Twomemory copy-
ings and two domain switchings.)

(3) The Binder framework in the server side receives the request
and handles this call by invoking onTransact()method, which
is prepared by the server in advance.

(4) The server replies the request through the Linux Binder
driver.

As shown in the Figure 4, we optimize the above process using
XPC. First, we keep the IPC interfaces provided by Android Binder
framework (e.g., transact() and onTransact()) unmodified to sup-
port existing applications. Besides, we extend the Binder driver to
manage the xcall-cap capabilities (i.e., the set_xcap and clear_xcap
interfaces) and x-entry table (i.e., the add_x-entry and remove_x-
entry interfaces). When a server process registers a service through
Binder interfaces (e.g., addService), the modified framework will
issue an ioctl command to the Linux Binder driver to add an x-entry.
Similarly, the framework will issue set-xcap when a client process
asks for a service through API (e.g., getService). Last, instead of in-
voking the ioctl, the framework will uses xcall and xret for remote

method invocation, and uses relay segment to implement Parcels
for data transfer. Moreover, the Linux kernel should also maintain
the XPC registers for threads, just like in §4.2. Optimized by XPC,
domain switchings and memory copying are eliminated.

Ashmem:The anonymous sharedmemory (ashmem) subsystem
provides a file-based sharedmemory interface to userspace. It works
like anonymous memory, but a process can share the mappings
with another process by sharing the file descriptor. The shared
memory can be accessed via both mmap or file I/O. In Android
Binder, processes can share file descriptors of an ashmem through
Binder driver.

Like conventional shared memory approaches, ashmem also
needs an extra copying to avoid TOCTTOU attacks. We use relay
segment in XPC to implement the ashmem.

• ashmem allocation: The Binder framework allocates an
ashmem by allocating a relay segment from Binder driver.

• ashmemmap: The memory map operation will allocate vir-
tual addresses for the segment and set the relay seg register.

• ashmem transfer: The ashmem can be transferred among
processes by passing the seg-reg register in the framework
during xcall.

Using the relay segment, the framework can avoid the additional
copying in the server side, as the ownership of the mapping has
been transferred. However, one limitation is that, in the prototype
implementation, there is only one active relay segment at a time.
Thus we rely on the page fault (implicitly)/swapseg (explicitly) to
switch the active relay segment when applications need accesses
to several ashmems at the same time.

4.4 Handover along Calling Chain
The relay-seg mechanism allows a segment of data to be passed
along the calling chain. In different situations, processes may have
different handover usages. Suppose a calling chain:A→B→C , where
A passes a messageM along the chain. Here we need to overcome
three challenges to support zero-copying handover. First, B may
append data toM , e.g., a network stack may append headers to pay-
load data. Such appending may exceed the boundary of a relay-seg.
Second,C’s interface may only accept small pieces of data, e.g., a file
system server will split data into block size and send them to disk
server one by one. Third, when C is executing, B may terminate
abnormally, which requires revocation of its relay-segs.

Message Size Negotiation: Message size negotiation is pro-
posed to handle the first challenge. It allows all processes in a
calling chain to negotiate a proper message size so that the client
can reserve some space for appending. The negotiation is performed
recursively. Given a calling chain: A→B→[C |D], where B may call
C or D. Ssel f (B) represents the size B will add, Sall (B) represents
the size B and all its possible callees will add. Thus, Sall (B) equals
Ssel f (B) adds Max(Sall (C), Sall (D)). For the first time A invokes B,
it asks B the Sall (B), so that A can reserve enough space for the
whole chain. Servers can also have their implementations of size
negotiation.

Message Shrink: Message shrink allows a caller to pass a part
of the message to its callee, with the help of seg-mask. For example,
A puts 1MBM in relay-seg and passes it to B. B can use the relay-seg
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Figure 5: XPC optimizations and breakdown.

with different 4KB-size seg-masks to pass data to C iteratively, just
like a sliding window.

SegmentRevocation: Segment revocation is done by the kernel
when a process terminates. The kernel will scan seg-list of the
process, return callers’ relay-segs to callers, and revoke other relay-
segs.

5 EVALUATION
To evaluate XPC, this section answers several questions:

• How XPC improves the IPC performance? (§5.2)
• How OS services benefit from XPC? (§5.3)
• How applications benefit from XPC? (§5.4)
• How the Android Binder benefits from XPC? (§5.5)
• How portable is XPC on other architectures? (§5.6)
• How much hardware resource XPC costs? (§5.7)

5.1 Methodology
We implemented the XPC engine based on two open-source RISC-
V [64] implementations: siFive Freedom U500 [8] (on Xilinx VC707
FPGA board) and lowRISC [5] (on Xilinx KC705 FPGA board). We
have ported two state-of-the-art microkernels, seL43 on siFive Free-
dom U500 and Zircon [2] on lowRISC, and added XPC support
in both systems. Besides, we port the Android Binder framework,
libBinder, to Freedom U500 (by modifying the synchronization
assembly code to RISC-V) with Linux 4.15 and optimize the syn-
chronous IPC in Binder with XPC. We evaluate the performance of
six systems: Zircon, seL4, Android Binder, Zircon-XPC, seL4-XPC
and Binder-XPC. Besides the FPGA hardware, we also port XPC on
the GEM5 simulator for ARMv8 to validate the generality of XPC.

5.2 Microbenchmark
Optimizations and Breakdown:We use the following five con-
figurations with different optimizations enabled to measure the
latency of IPC and show the breakdown of performance benefit.

• Full-Ctx: saving and restoring full context.
• Partial-Ctx: saving and restoring partial context.
• +Tagged TLB: enabling previous optimizations and adopt-
ing tagged TLB to mitigate TLB miss.

3seL4 already supports RISC-V. Our porting work mainly focuses on adding SMP
support.
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• +Nonblock Link Stack: enabling previous optimizations
and adopting nonblock link stack.

• +XPC Engine Cache: enabling previous optimizations and
adopting cache for XPC engine.

Figure 5 shows the cycles of one IPC call using different config-
urations. In the “Full-Cxt” configuration, as the RocketChip does
not support tagged TLB yet, it will incur about 40 cycles of TLB
flush/miss penalty. The trampoline code (mentioned in §4.2) takes
76 cycles to save and restore the general purpose registers. The
logic of xcall takes about 34 cycles. The “partial-context” optimiza-
tion only consider necessary registers (e.g., stack point register and
return address register) and reduce the trampoline code to 15 cycles.
The TLB misses could be mitigated by adopting tagged TLB. The
“Nonblock Link Stack” hides the latency of pushing linkage record,
which can reduce the latency by 16 cycles. The “Engine Cache” uses
prefetching to further reduce the latency by 12 cycles. With all the
optimization, one xcall can achieve 6 cycles and one IPC only spend
21 cycles.

In the following evaluation, XPC will use “Full-Cxt” with “Non-
blocking Link Stack” optimizations, to ensure the fairness of the
comparison.

One-way Call: We also evaluated the one-way call performance.
A client calls a server with different message sizes. We calculate
the cycles from the client invoking a call to the server getting the
request. As shown in Figure 6, seL4-XPC has 5-37x speedup over
the fast path of seL4. One reason is that seL4-XPC uses relay-seg to
transfer messages, while in seL4, the kernel-copying is only used
when the message is less than 120 bytes, and it uses shared memory
to transfer large message. As the message size grows, the speedup
comes more from the benefit of relay-seg. seL4 only uses slow path
when the message size is medium (64B here).

Zircon-XPC can have 60x speedup when the message size is
small, due to the elimination of scheduling and kernel involvement.
Zircon uses kernel twofold copying to transfer messages and does
not optimize the scheduling in the IPC path, which makes it much
slower than seL4.

Multi-core IPC:As shown in Figure 6, the performance of cross-
core IPC is improved from 81x (small message) to 141x (4KBmessage
size). Thanks to the migrating thread IPC model adopted by XPC,
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Table 3: Cycles of hardware instructions in XPC.

Instruction Cycles

xcall 18
xret 23
swapseg 11

the server’s code is running in the client’s context. XPC also pro-
vides better TLB (in relay segment) and cache locality. Moreover, a
client can easily scale itself by creating several worker threads on
different cores and pull the server to run on these cores.

Other Instructions: We measure the cycles for xcall, xret and
swapseg instructions (results are shown in Table 3). Besides the
stated xcall, xret takes 23 cycles and swapseg takes 11 cycles. The
costs of the three instructions are small and mainly come from
the memory operations. Microkernels can implement efficient IPC
based on these primitives.

5.3 OS Services
To show how IPC influences the performance of microkernel, we
evaluate the performance of two OS services: file system and net-
work subsystem.

File System: In microkernels, a file system usually includes
two servers, a file system server and a block device server (e.g.,
in Zircon, the MiniFS and the in-memory ram disk server). We
port a log-based file system named xv6fs from fscq [21], a formally
verified crash-safe file system, to both Zircon and seL4. A ramdisk
device is used as the block device server.

We test the throughput of the file read/write operations. The
results are shown in Figure 7(a) and (b). Zircon uses kernel two-fold
copy, and seL4 uses shared memory. We implement seL4-one-copy
version which needs one copying to meet the interfaces (having
TOCTTOU issue) and seL4-two-copy version, which requires two
copying and provides higher security guarantee. XPC optimized
systems can achieve zero-copying without TOCTTOU issue. On av-
erage, XPC achieves 7.8x/3.8x speedup compared with Zircon/seL4
for read operations, and 13.2x/3.0x speedup for write operations.

The improvement mainly comes from both faster switch and
zero-copying of XPC, especially for write operations, which will
cause many IPCs and data transfers between the file system server
and the block device server.

Network: Microkernel systems usually have two servers for
network: one network stack server (including all network protocols)
and one network device server. We use lwIP [6], a network stack
used by Fuchsia (a full-fledged OS using Zircon), as our network
stack server. A loopback device driver, which gets a packet and
then sends it to the server, is used as the network device server. We
do not port lwIP to seL4, so we only consider Zircon in this test.

We evaluate the throughput of TCP connection with different
buffer sizes. The result is shown in Figure 7(c). On average, Zircon-
XPC is 6x faster than Zircon. For small buffer size, Zircon-XPC
achieves up to 8x speedup, and the number decreases as the buffer
size grows. This is because lwIP buffers the client messages for
batching, so increasing buffer size will reduce the numbers of IPC,
which improves the performance of the original Zircon due to its
high IPC latency.

5.4 Applications
To show how XPC improves the performance of real-world ap-
plications, we evaluate the performance of a database and a web
server.

Sqlite3: Sqlite3 [9] is a widely-used relational database. We use
the default configuration with journaling enabled, and measure the
throughput with different workloads (YSCB benchmark workloads).
Each workload is performed on a table with 1,000 records. The
result is shown in Figure 8(a) and (b). On average, XPC achieves
60% speedup in seL4 and 108% in Zircon.

YCSB-A and YCSB-F gain the most improvement because they
have a lot of write/update operations which will trigger frequent
file access. YSCB-C has minimal improvement since it is a read-only
workload and Sqlite3 has an in-memory cache that can handle the
read request well.

Web Server: Three servers are involved in this test: an HTTP
server, ported from lwIP, which accepts a request and then re-
turns a static HTML file; an AES encryption server which encrypts
the network traffic with a 128-bit key; an in-memory file cache
server which is used to cache the HTML files in both modes. The
HTTP server is configured with both encryption-enabled mode
and encryption-disabled mode. A client continuously sends HTTP
requests to the web server. The throughput is measured and the
result is shown in Figure 8(c). XPC has about 10x speedup with the
encryption and about 12x speedup without encryption. Most of the
benefit comes from handover optimization. Since in multi-server
cases, the message will be transferred multiple times. Using han-
dover can efficiently reduce the times of memory copying in these
IPC.

5.5 Android Binder
Binder. We evaluate the Binder by simulating the communication
between the window manager and a surface compositor. In the
case, the surface compositor will transfer the surface data to the
windows manager through Binder, and then the windows manager
need to read the surface data and draw the associated surface.

We consider two Binder facilities, passing data through Binder
buffer and passing data through ashmem, and evaluate the latency
for the communication. The result is shown in the Figure 9, where
the latency time includes the data preparation (client), the remote
method invocation and data transfer (framework), handling the
surface content (server), and the reply (framework).

Figure(a) reveals the result using a buffer for communication.
The latency of Android Binder is 378.4us for 2KB data and 878.0us
for 16KB data (average value of 100 times run), while the Binder-
XPC achieves 8.2us for 2KB data (46.2x improvement) and 29.0us for
16KB data (30.2x improvement). Notably, the buffer size is restricted
in Android (e.g., less than 1MB).

The result of using ashmem for data transfer in Binder is shown
in figure(b). The latency of Android Binder is from 0.5ms for 4KB
surface data size to 233.2ms for 32MB surface data size, while the
Binder-XPC achieves 9.3us for 4KB data (54.2x improvement) and
81.8ms for 32MB data (2.8x improvement).

Ashmem.We use the same case to evaluate the latency whenwe
only adopt the relay segment (Ashmem-XPC in the figure) for opti-
mizing ashmem. As shown in Figure(b), the Ashmem-XPC achieves
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Figure 7: Figure (a) and (b) show the read/write throughput of the file system with different buffer sizes. Figure (c) shows the throughput
of TCP with different buffer sizes. Higher the better.
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Figure 8: Figure (a) and (b) show the normalized throughput of Sqlite3 with YCSB’s workloads. Figure (c) shows the throughput of an HTTP
server (with & without encryption). Higher the better.
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Figure 9: Android Binder evaluation. Figure (a) and (b) show the
remote method invocation latency between the windowsmanager
and surface compositor with different argument sizes. Lower the
better.

0.3ms for 4KB data (1.6x improvement) and 82.0ms for 32MB data
(2.8x improvement). The improvement mainly comes from the se-
cure zero-copying message transfer.

Discussion: Overall, XPC can effectively optimize the perfor-
mance of Android Binder and Ashmem. We also have some limi-
tations. Currently, the prototype only optimizes synchronous IPC
in Binder (asynchronous IPC usage like death notification is not
supported yet). And we do not apply the split thread state approach
in the Linux kernel. Instead, we leverage machine mode in RISC-V
to trap and handle any exception between xcall and xret (rare in the
experiments). Compared with xcall and xret, relay segment is more
suitable for monolithic kernels as it introduces small modification.

5.6 Generality
XPC is a general design supporting different architectures. Besides
a RISC-V implementation on FPGA, we also implement it on ARM

Table 4: Simulator configuration.

Parameters Values

Cores 8 In-order cores @2.0GHz
I/D TLB 256 entries
L1 I/D Cache 32KB, 64B line, 2/4 Associativity
L1 Access Latency data/tag/response (3 cycle)
L2 Cache 1MB, 64B line, 16 Associativity
L2 Access Latency data/tag (13 cycles), response (5 cycle)
Memory Type LPDDR3_1600_1x32

platform using the cycle-accurate GEM5 simulator [18]. The im-
plementation is based on ARM HPI (High-Performance In-order)
model [1]. The simulation parameters, listed in Table 4, mimic a
modern in-order ARMv8-A implementation.

We use microOps to implement the functionalities of XPC engine.
By carefully choosing the order, we can avoid speculative issues
in the xcall and xret instructions. We set the entries of endpoint
table to 512, length of capability bitmap to 512 bits, and call stack
to 512 entries. Any normal load/store instructions on these regions
will trigger an exception. The implementation does not contain any
optimizations like nonblocking link stack and engine cache.

We choose IPC of seL4 as a baseline. Since seL4 does not have
GEM5 support, we dump the instruction trace of seL4’s fastpath_-
call and fastpath_reply_recv using a record-and-replay tool named
Panda [24]. We run the trace directly in GEM5. The result is shown
in the table 5, which only consider the IPC logic part in seL4 and
xcall/xret in XPC.
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Table 5: IPC cost in ARM, (TLB flushing is about 58 cycles, which
can be removed with tagged TLB).

Systems IPC Call IPC Ret

Baseline (cycles) 66 (+58) 79 (+58)
XPC (cycles) 7 (+58) 10 (+58)

Table 6: Hardware resource costs in FPGA.

Resource Freedom XPC Cost

LUT 44643 45531 1.99%
LUTRAM 3370 3370 0.00%
SRL 636 636 0.00%
FF 30379 31386 3.31%
RAMB36 3 3 0.00%
RAMB18 48 48 0.00%
DSP48 Blocks 15 16 6.67%

Both the baseline and XPC have better performance than real
hardware. One of the reason is that GEM5 do not simulate the
TLB flushing costs (in ARM)4. We evaluate the cost of updating
TTBR0 with instruction barrier (isb instruction) and data barrier
(dsb instruction) in Hikey-960 board (ARMv8) and the cost is about
58 cycles.

Using XPC, the IPC logic part is improved: from 66 (+58 TLB
cost) cycles to 7 (+58 TLB cost) cycles when the message transfer
size is small and the cache is warm. The implementation on GEM5
confirms the generality of XPC design.

5.7 Hardware Costs
As we use Vivado [10] tool to generate the hardware, we can gain
the resource utilization report in the FPGA from it. The hardware
costs report is shown in Table 6 (without engine cache). The overall
hardware costs are small (1.99% in LUT and 0.00% in RAM). By
further investigating the resource costs, we found that CSRFile in
XPC uses more 372 LUTs and 273 FFs than baseline (to handle the
7 new registers), while XPC engine uses 422 LUTs, 462 FFs, and 1
DSP48 blocks.

The utilization certainly could be further optimized, like using
Verilog instead of Chisel in RocketChip. The low hardware costs
make XPC possible to be applied in existing processors (e.g., Intel
x86 and ARM).

6 DISCUSSION
6.1 Security Analysis
XPC Authentication and Identification: A caller cannot direct
issue xcall ID to invoke an XPCwithout the corresponding xcall-cap.
It may request the xcall-cap from a server with the corresponding
grant-cap, just like the name server [23] in L4. A callee can identify
a caller by its xcall-cap-reg, which will be put into a general purpose
register by XPC engine and cannot be forged.

Defending TOCTTOU Attacks: TOCTTOU attacks happen
due to the lack of ownership transfer of the messages. In XPC, a
message is passed by a relay-seg, which is owned by only one thread

4We confirmed this with the GME5 community.

at a time. Meanwhile, the kernel will ensure that a relay-seg will not
overlap with any other mapped memory range. Thus, each owner
can exclusively access the data in a relay-seg, which can inherently
defend against TOCTTOU attacks.

Fault Isolation: During an xcall, a callee crash will not affect
the execution of the caller and vice versa, as stated in §4.2 and
§4.4. If the callee hangs for a long time, the caller thread may also
hang. XPC can offer a timeout mechanism to enforce the control
flow to return to the caller in this case. However, in practice the
threshold of timeout is usually set to 0 or infinite [26], which makes
the timeout mechanism less useful.

Defending DoS Attacks: A malicious process may try to issue
DoS attacks by consuming far more hardware resources than it
needs. One possible attack is to create a lot of relay-seg which
requires many continuous physical memory ranges, which may
trigger external fragmentation. In XPC, a relay-seg will use the
process’s private address space (i.e., untyped memory as seL4 [39]),
which will not affect other processes or the kernel. Another case is
that, a malicious caller may exhaust the callee’s available contexts
by excessively calling the callee. We can use credit systems [3, 13]
to overcome the issue. The callee will first check whether the caller
has enough credits before assigning an XPC context to it.

Timing Attacks: XPC Engine Cache may be the source of tim-
ing attacks, but very hard since the number of entries is small (one
in the paper). Moreover, the issue can be mitigated by adding tag in
the Engine Cache like tagged-TLB. As each Cache entry is private
for a thread (with tag), the timing attacks could be mitigated.

6.2 Further Optimizations
Scalable xcall-cap: xcall-cap is implemented as a bitmap in our
prototype. It is efficient but may have scalability issue. An alterna-
tive approach is to use a radix-tree, which has better scalability but
will increase the memory footprint and affect the IPC performance.

Relay Page Table: The relay segment mechanism has a limita-
tion that it can only support contiguous memory. This issue can
be solved by extending the segment design to support a page table
design. A relay page table can be similar with previous dual-page-
table design [56]. The page table walker will choose the different
page table according to the VA being translated. However, the own-
ership transfer property will be harder to achieve, and relay page
table can only support page-level granularity.

7 RELATEDWORK
There is a long line of research on reducing the latency of domain
switch as well as message transfer to optimize IPC. We revisit pre-
vious IPC optimizations in this section and show the comparisons
in the Table 7.

7.1 Optimizations on Domain Switch
Software Optimizations: One widely adopted optimization is to
use caller’s thread to run callee’s code in callee’s address space,
as in PPC (protected procedure call) [17, 30] and migrating thread
model [22, 29]. This optimization eliminates the scheduling latency
and mitigates IPC logic overhead, and has been used in LRPC [17]
and the new version of Mach [29]. Tornado [30] also adopts PPC
as its execution model. Besides, it leverages another feature of PPC,
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Table 7: Systems with IPC optimizations. ∆ means TLB flush operations. N means the number of IPC in a calling chain.

Systems Domain switch Message passing

Type Name Addr
Space Description w/o

trap
w/o
sched Description w/o

TOCTTOU
Hand
over

Granu-
larity

Copy
time

Baseline Mach-3.0 Multi Kernel schedule ✗ ✗ Kernel copy ✓ ✗ Byte 2*N
LRPC [17] Multi Protected proc call ✗ ✓ Copy on A-stack ✓ ✗ Byte 2*N
Mach (94) [29] Multi Migrating thread ✗ ✓ Kernel copy ✓ ✗ Byte N
Tornado [30] Multi Protected proc call ✗ ✓ Remapping page ✓ ✗ Page 0+∆

Software
optimization

L4 [45] Multi Direct proc switch ✗ ✓ Temporary mapping ✓ ✗ Byte N
CrossOver [44] Multi Direct EPT switch ✓ ✓ Shared memory ✗ ✗ Page N-1
SkyBridge [50] Multi Direct EPT switch ✓ ✓ Shared memory ✗ ✗ Page N-1
Opal [20] Single Domain register ✓ ✓ Shared memory ✗ ✗ Page N-1
CHERI [65] Hybrid Function call ✓ ✓ Memory capability ✗ ✓ Byte 0
CODOMs [62, 63] Single Function call ✓ ✓ Cap reg + perm list ✗ ✓ Byte 0
DTU [13] Multi Explicit ✓ ✓ DMA-style data copy ✓ ✗ Byte 2*N
MMP [67] Multi Call gate ✗ ✓ Mapping + grant perm ✗ ✗ Byte 0+∆

Hardware
optimization

XPC Multi Cross process call ✓ ✓ Relay segment ✓ ✓ Byte 0

“fine data locality”, to mitigate the data cache miss penalty caused
by domain switching.

L4 [34, 45, 47, 48] uses a similar technology called “direct process
switch” that supports address space switching between caller and
callee with a small cost in kernel. It also adopts “lazy scheduling”
to avoid frequent run-queue manipulations to reduce cache miss
and TLB miss by careful placement.

Hardware Optimizations: New hardware extensions are also
proposed to improve the performance of cross domain calls, like
Opal [20], CHERI [65, 66] and CODOMs [62, 63]. Here a domain
is not a process isolated by address space, but a new abstraction
of execution subject (e.g., a piece of code) that has its own iden-
tity (e.g., domain ID). During a domain switch, the identity will be
changed either explicitly (e.g., ID saved in register) or implicitly
(e.g., ID implied by program counter). The switch can be done di-
rectly at unprivileged level without trapping to the kernel, which
is a huge advantage against software optimizations. Meanwhile,
multiple domains can share one address space, which can further
reduce the overhead of TLB miss after domain switch. However,
these systems usually require non-trivial changes to existing micro-
kernels which are designed for address space based isolation mech-
anism. To achieve better compatibility, systems like CHERI adopt
a hybrid approach using both capability and address space, but
switching between address spaces still requires kernel involvement.
CrossOver [44] and SkyBridge [50] leverage a hardware virtualiza-
tion feature, VMFUNC, which enables a virtual machine to directly
switch its EPT (extended page table) without trapping to the hy-
pervisor. However, the feature is only suitable for virtualization
environment.

7.2 Optimizations on Message Passing
Software Optimizations: For long message passing, one simple,
secure but not efficient method is to adopt “twofold copy” (caller
→ kernel→ callee), as shown in Figure 10(a). Some systems, e.g.,
LRPC [17], leverage user-level memory sharing to transfermessages
and reduce the time of copying from two to one (caller→ shared
buffer), as shown in Figure 10(b). However, this design may affect
the security since a malicious caller may change the message at
any time when the callee is running, e.g., right after the callee
checks the validity of the message, which leads to a TOCTTOU
attack. One solution would be that the callee copies the message
to its own space, but that will eat up the one-copy benefit [17].

Another solution is to change the ownership of shared memory by
remapping (Figure 10(c)). However, memory remapping requires
kernel’s involvement and causes TLB shootdown. Meanwhile, since
such memory is usually shared between two processes, if a message
needs to be passed throughmultiple processes on an invocation
chain, it has to be copied from one shared memory to another.

Client

Kernel

Server-A

Kernel

Server-B

Kernel Kernel

Server-A Client

IPC-call IPC-call IPC-ret IPC-ret

Client Server-A Server-B Server-A Client

Client Server-A Server-B Server-A Client

Serv-A Serv-B Serv-A Client

(a) Traditional microkernel system with twofold copy for long message.

Memory copy

IPC logic

Memory remap

Kernel Kernel Kernel Kernel

Kernel Kernel Kernel Kernel

Client

App/kernel logic

Address space

(b) System adopting user shared memory, vulnerable to TOCTTOU.

(c) System with shared memory & remapping, needs TLB shootdown.

(d) Our system with no trap to kernel 

      and zero-copy message passing.

Message initialization

Figure 10: Mechanisms for long message passing.

L4 [45] applies temporary mapping to achieve direct transfer of
messages. The kernel will first find an unmapped address space of
the callee, and map it temporarily into the caller’s communication
window, which is in caller’s address space but can only be accessed
by the kernel. Thus, one copy is achieved (caller→ communication
window). Meanwhile, since the caller cannot access the communi-
cation window, it has no way to change the message after sending
it. However, the caller still requires the kernel to do the copying
and remapping which will cause non-negligible overhead.
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HardwareOptimizations:Many hardware-assisted systems [19,
62, 63, 65, 66] leverage capability for efficient message transfer
among domains. CODOMs [62] uses a hybrid memory granting
mechanism combined with permission list (domain granularity)
and capability registers (byte granularity). By passing a capability
register, a region of memory can be passed from caller to callee and
forward. However, the owner of the region can access the region
anytime which makes the system still vulnerable to TOCTTOU
attack. CHERI [65] uses hardware capability pointers (which de-
scribe the lower and upper bounds of a memory range) for memory
transfer. Although the design has considered TOCTTOU issues
for some metadata (e.g., file descriptors), it still suffers TOCTTOU
attacks for the data. Meanwhile, these systems are designed for
single address space and use tagged memory for isolation.

Opal [40] and MMP [67, 68] propose new hardware design to
make message transfer more efficiently. They use PLB (protection
look-aside buffer) to decouple the permission from the address space
translation to achieve byte granularity sharing. However, without
additional data copy, they can neithermitigate the TOCTTOU attack
nor support long messages handover along the calling chain.

M3 [13] leverages a new hardware component, DTU (data trans-
fer unit), for message transfer. DTU is similar to DMA, which can
achieve high throughput when the message is large, and allow effi-
cient cross-core data transfer. However, it is known that DMA is not
suitable for small and medium-size data [51], since the overhead of
DMA channel initialization cannot be well amortized. HAQu [41]
leverages queue-based hardware accelerators to optimize cross-core
communication, while XPC can support a more general format of
the message.

Table 7 summaries the characteristics of systems with different
IPC optimizations. As it shows, the hardware methods can achieve
better performance, e.g., faster domain switch by eliminating ker-
nel trapping. However, these methods usually require significant
changes to not only hardware (e.g., CHERI [65] adds 33 new in-
structions) but also software (e.g., not support existing microkernels
designed for address space based isolation).

7.3 Other Related Work
Architectural Support for OS Performance: XPC continues the
line of work in the community on architectural support for OS per-
formance [14, 15, 31, 33, 38, 52–54]. Specifically, XPC contributes
a hardware-assisted primitive that significantly improves the per-
formance of IPC. This, combined with other recent architectural
support, will significantly boost OS performance for various work-
loads.

Shared Memory for IPC: Many operating systems adopt the
idea of using shared memory for message passing [20, 25, 44].
Fbufs [25] uses memory remapping and shared memory to achieve
effective data transfer among protection domains. While appealing
for performance, they are vulnerable to TOCTTOU attacks and can
not support general handover.

Asynchronous IPC: Asynchronous IPC, as a complement to
synchronous IPC, has been studied extensively [16, 26, 39, 59, 60].
FlexSC [59] proposes asynchronous system calls for batching pro-
cessing and reducing mode switch between user and kernel. Bar-
relfish [16] uses asynchronous IPC to achieve non-blockingmessage

exchanges among cores. Although asynchronous IPC can bring
good throughput due to its batching strategy, it usually cannot
achieve low latency at the same time.

Global Address Space Systems: Global virtual address sys-
tems [20, 37, 62, 63] put all the domains into a single address space.
Enforcing the isolation among different domains within the same
address space usually needs isolation mechanisms other than pag-
ing. For example, Singularity [37] relies on software verification
and language support to enforce the isolation and behavior correct-
ness of programs in the system. XPC has better compatibility and
can be easily adopted by existing microkernels.

8 CONCLUSION
This paper has presented XPC, a new architectural extension to
support fast and secure IPC. The extension is compatible with tra-
ditional address space isolation and can be easily integrated with
existing OS kernels. Our evaluation shows that XPC can signifi-
cantly improve the performance of various workloads of modern
microkernels and Android Binder.
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