
Serverless Computing on Heterogeneous Computers

Dong Du
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai, China
Dd_nirvana@sjtu.edu.cn

Qingyuan Liu
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai, China
liu_qy@sjtu.edu.cn

Xueqiang Jiang
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai, China
jiangxq@sjtu.edu.cn

Yubin Xia
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai Artificial Intelligence
Laboratory

Shanghai, China
xiayubin@sjtu.edu.cn

Binyu Zang
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai, China
byzang@sjtu.edu.cn

Haibo Chen
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University

Shanghai, China
haibochen@sjtu.edu.cn

ABSTRACT

Existing serverless computing platforms are built upon homoge-
neous computers, limiting the function density and restricting
serverless computing to limited scenarios. We introduce Molecule,
the first serverless computing system utilizing heterogeneous com-
puters. Molecule enables both general-purpose devices (e.g., Nvidia
DPU) and domain-specific accelerators (e.g., FPGA and GPU) for
serverless applications that significantly improve function density
(50% higher) and application performance (up to 34.6x). To achieve
these results, we first propose XPU-Shim, a distributed shim to
bridge the gap between underlying multi-OS systems (when using
general-purpose devices) and our serverless runtime (i.e., Molecule).
We further introduce vectorized sandbox, a sandbox abstraction
to abstract hardware heterogeneity (when using domain-specific
accelerators). Moreover, we also review state-of-the-art serverless
optimizations on startup and communication latency and overcome
the challenges to implement them on heterogeneous computers. We
have implemented Molecule on real platforms with Nvidia DPUs
and Xilinx FPGAs and evaluate it using benchmarks and real-world
applications.

CCS CONCEPTS

·Computer systems organization→Cloud computing; · Soft-
ware and its engineering→ Operating systems.

KEYWORDS

Cloud computing, serverless computing, heterogeneous computers,
function-as-a-service, operating system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507732

ACM Reference Format:

Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. 2022. Serverless Computing on Heterogeneous Computers. In Proceed-
ings of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’22), February 28 ś

March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3503222.3507732

1 INTRODUCTION

Serverless computing [62] has become an emerging paradigm of to-
day’s cloud and data center infrastructures [6, 9, 12, 21]. It uses one
single-purpose service or function as the basic computation unit,
which eases computing in several ways. First, it helps application
developers focus on the core logic, and leaves infrastructure-related
tasks like auto-scaling to the serverless platform. Second, it adopts
the łpay-as-you-gož model with fine-grained charging granularity
(e.g., 1ms [7]) so that users can save costs for unused computing
resources. Third, serverless computing also benefits cloud providers
such that they can manage their resources more efficiently.

There are already many implementations [4, 9, 18, 42] and opti-
mizations [11, 16, 35, 43, 54, 61, 78, 84, 91, 92] of serverless systems.
However, (almost) all of these works focus on serverless comput-
ing with a homogeneous computer, one that contains processing
units (to run functions) with the same computation ability (typ-
ically same ISA and frequency). This homogeneous architecture
is meeting its limitations in the face of several issues and recent
trends in serverless platforms.

Challenges of serverless. First, serverless auto-scalability and the
need for low communication latency require a serverless runtime
to support high function density in a single machine. However, it
is hard for homogeneous computers as the prospect of dark sili-
con [55] hampers general-purpose parallelism in computers that
only have CPUs as the processing units. Second, nowadays, many
important applications, e.g., machine learning, artificial intelligence,
video classification, and genome analysis, rely on heterogeneous ac-
celerators (e.g., FPGA, GPU, and ASIC) for faster computation. For
example, genome sequencing analysis can achieve over ten times

797

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3503222.3507732

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

speedup utilizing AWS F1 FPGA [24]. Inability to leverage these het-
erogeneous accelerators restricts serverless computing to be only
used in limited scenarios. Moreover, co-locating I/O stacks with
computations in CPU can lead to worse resource utilization [71]
and break performance isolation [64].

We believe that future serverless platforms will be deployed on
heterogeneous computers, which are connected with CPU, DPU (data
processing units [10, 31]), domain-specific accelerators [2, 67, 86],
and smart devices like smartNIC and smartSSD. Heterogeneous
computers greatly improve scalability (i.e., vertical scaling), per-
formance for a wider range of applications, and resource isolation.
With these benefits, heterogeneous computers are rapidly permeat-
ing data centers in recent years [19, 20, 23, 25, 40, 56].

This paper presents Molecule, the first serverless computing
system on heterogeneous computers. Molecule takes both general-
purpose devices (e.g., Nvidia DPU) and domain-specific accelera-
tors (e.g., FPGA) into account. Molecule leverages DPU for better
function density and FPGA for better application performance but
can still provide high-level and easy-to-use programming models,
which are beneficial to developers for two reasons. First, develop-
ers can easily utilize heterogeneous processing units to write their
serverless applications. Second, Molecule retains all the benefits
promised by serverless computing, e.g., auto-scalability.

Designing a serverless system on heterogeneous computers
raises three major challenges. First, as the DPU and accelerators
themselves become more complex [75, 76], it is not surprising that
more and more of these devices are deploying an OS to manage the
hardware resources, e.g., OSes on DPU and network devices [27, 75],
RTOS on SSD controller [68]. This trend makes heterogeneous com-
puters multi-OS systems. However, existing serverless systems rely
on single OS to manage the lifecycle of functions, control resource
allocation, and enforce permission controls, e.g., Catalyzer [54]
leverages OS fork to create new instances. This brings a new chal-
lenge to serverless computing: how can we achieve the same func-
tionalities with multi-OS systems?

Second, a design to abstract away low-level heterogeneous hard-
ware and software details for serverless systems is desired but still
missing. In heterogeneous computers, different processing units
(PUs) can have different ISAs (e.g., X86 and ARM), frequencies,
cache sizes, I/O bandwidth (better for smart devices), and other
specific characteristics. Many of these hardware details need to be
exposed to applications for better performance (e.g., RDMA connec-
tion between DPU and CPU). However, this violates the principle
of serverless computing, which aims to provide a high-level and
hardware-agnostic view for applications. The software stack on
heterogeneous PUs does not help in this case Ð PUs may deploy
different OSes (or a simple firmware for devices/accelerators) with
different services; that further increases the heterogeneity.

Third, heterogeneous computers also complicate communication
between serverless functions. Most serverless applications adopt
function chain [82], which leads to intensive inter-function com-
munication. Existing serverless systems rely on OS primitives, e.g.,
IPC [43, 61], to reduce the communication latency when functions
are running on the same PU. However, they still use the network
for communication between two PUs and thus miss great optimiza-
tion opportunities due to the wrong assumption of the underlying

DPU Accelerators

Other heterogeneous devices

CPU

GPU
Smart I/O

devices
!

Figure 1: Serverless on heterogeneous computers.

hardware and the inability to communicate with PUs on the same
machine directly (e.g., DMA, RDMA, or Intel CXL [13]).

To tackle these challenges, we first propose a generic serverless
abstraction, vectorized sandbox, to overcome the challenges of het-
erogeneity. The vectorized sandbox extends existing abstraction to
support concurrent sandbox creation and invocation, which is the
key to enable serverless functions on domain-specific accelerators
like FPGA. As we require each device (or PU) to implement the
interfaces required by the abstraction, a serverless runtime can
manage heterogeneous functions without considering the underly-
ing hardware and software details. Based on this abstraction, we
have implemented serverless sandboxes on CPU, DPU, and FPGA.

Second, this paper presents XPU-Shim, which is an indirection
layer between a single serverless runtime and multiple OSes. XPU-
Shim has two key primitives, neighbor IPC and distributed capa-

bilities. Neighbor IPC utilizes hardware interconnects, e.g., DMA,
to allow applications on different PUs to communicate efficiently,
while distributed capabilities provide a unified way to enforce per-
mission control in a multi-OS system. XPU-Shim bridges the gap
between existing serverless mechanisms and the multi-OS system.

Furthermore, we successfully build Molecule, the serverless sys-
tem for heterogeneous computers. Molecule is built uponXPU-Shim
and vectorized sandbox. We also review state-of-the-art serverless
optimizations on startup and communication latency and overcome
the challenges of implementing them on heterogeneous comput-
ers. We have implemented Molecule on real platforms with Nvidia
DPU and Xilinx UltraScale+ FPGA and evaluated it using bench-
marks [66, 93] and real-world applications. The results show that
Molecule can achieve up to 50% higher function density with 2
DPU devices, and significantly improve application performance
by supporting FPGA serverless functions (up to 34.6x better). Mole-
cule also overcomes many challenges to achieve low startup and
communication latency, i.e., 10x less startup latency and 13x less
communication latency than baseline systems.

2 MOTIVATION

2.1 Background

2.1.1 Heterogeneous Computers. Nowadays, datacenter and cloud
tend to deploy heterogeneous devices, which are connected with
CPU, DPU (data processing units [10, 31]), domain-specific acceler-
ators (e.g., ASIC, FPGA, GPU) [2, 67, 86], and smart I/O devices with
embedded computing capability like smartSSD and smartNIC [28ś
31, 37]. The architecture with connected heterogeneous devices is
coined heterogeneous computer.

Heterogeneous computers greatly improve scalability (i.e., ver-
tical scaling), performance for a wider range of applications, and

798

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

CPU +1 DPU +2 DPU

1000

1256

1512

C
o

n
c
u

rr
e
n

t
in

s
ta

n
c
e
s

(a) DPU for higher density.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Matrix
Scaling

Matrix
Add

Vector
Multi

192us 324us 3551us

N
o

rm
al

iz
ed

 l
at

en
cy CPU function

FPGA function

(b) FPGA for better performance.

Figure 2: Benefits of serverless on heterogeneous computers.

(a) We use the Python image processing function from Server-

lessBench as the application and evaluate on an x86 server

machine with two DPUs. (b) We use three functions imple-

menting matrix operations (i.e., scaling, addition, and multi-

plication) and evaluate on EC2 F1 instances (x86 server with

one FPGA device).

resource utilization. With these benefits, we believe that future
serverless platforms will be deployed on heterogeneous computers.

Multi-OS architecture. As the heterogeneous devices themselves
become more complex, device vendors tend to deploy an OS to
manage the hardware resources on the device [27, 68, 75]. For
example, Nvidia DPU leverages Linux to manage the NIC devices,
accelerators (e.g., crypto engine), onboard memory and persistent
storage. This approach decouples the resource management in the
device and the host OS (on CPU), which is more flexible than using
a single OS to manage all. The architecture with multiple OSes on
a single computer is coined multi-OS architecture.

In our experimental server, there are three Linux systems (i.e.,
Ubuntu 20.04) with two Bluefield DPUs: one on the CPU and two
on the DPUs. It is still unknown how to implement serverless
functionalities with the multi-OS architecture.

2.1.2 Serverless Platform and Sandbox. Serverless computing [62]
uses one single-purpose function as the basic computation unit,
which eases computing in several ways, e.g., auto-scaling and pay-
as-you-go model. Usually, application developers send their func-
tions to a serverless platform, which compiles the functions offline
together with a language runtime. When requests arrive, the plat-
form will schedule a worker machine with a serverless runtime to
provide sandboxed execution environments to invoke the function.

The sandboxed execution environment is called serverless sand-

box in the paper, which could be container [15, 78], gVisor [22],
AWS Firecracker [17], or Kata Container [26]. Although the isola-
tion mechanisms and guarantees are different for serverless sand-
boxes, they usually implement the same set of runtime interfaces,
e.g., OCI[33]. With the standard interfaces, a serverless platform
does not need to care about a sandbox’s internal design and can
only use the interfaces to manage function instances.

Next, we give use cases leveraging heterogeneous computers to
overcome the challenges of existing serverless computing (e.g., low
function density and limited scenarios).

2.2 Case-1: DPU for Higher Density

DPUs (data processing units) [27, 75, 76] are a new class of pro-
grammable devices that move and process data around the data
centers. DPU is a system on a chip (or SoC). It is capable of running

commercial OSes and performance-critical applications like server-
less functions. Usually, it includes a high-performant multi-core
processing unit (e.g., 2.75GHz ARM cores in Bluefield-2 DPU), an
efficient network interface capable of processing and transferring
data at (almost) line rate, and optional domain-specific accelerators.
Therefore, a serverless runtime that can distribute functions to CPU
and DPU can effectively improve the function density, as shown in
the left of Figure 1.

However, designing such a system is challenging because the OS
on DPU makes the CPU-DPU heterogeneous computers multi-OS
systems while existing serverless mechanisms are built upon the
single-OS system. In this paper, Molecule relies on a distributed
shim (i.e., XPU-Shim) to overcome the challenge. As shown in Fig-
ure 2-a, Molecule can achieve 50% better scalability with 2 Bluefield
DPUs in a single computer.

2.3 Case-2: Accelerator for Better Performance

Applications like machine learning and big data analytics are widely
spread in the cloud and datacenter, and rely on domain-specific
accelerators to finish computation tasks. For instance, Amazon
EC2 F1 [2] allows developers to design and deploy accelerators on
the cloud to boost applications like genome sequencing, big data
analytics, and video processing. As shown in the right of Figure 1,
building serverless platforms on heterogeneous computers with
accelerators can enable more application scenarios in serverless
computing. Figure 2-b shows that Molecule’s serverless functions
can achieve 3x better latency for a matrix computation chain (used
in ML applications) by utilizing FPGA. Besides, the combination
may help to improve the utilization of accelerators (ignoring fine-
grained scheduler overheads), which is a serious problem in data
centers now [60, 90]. With serverless, we can flexibly schedule tasks
to accelerators in a fine-grained way.

Although bringing accelerators to serverless has many benefits,
abstracting hardware heterogeneity into high-level interfaces for
serverless computing is hard. In this paper, Molecule proposes a
generic serverless abstraction, vectorized sandbox, to overcome the
challenges of heterogeneity.

2.4 Other Representative Cases

Many other workloads [87, 89] require a combination of hardware
acceleration and low execution latency and are invoked many times,
which can benefit from the heterogeneous serverless computing. For
example, Dorylus [89], a serverless application for GNN training,
can only use CPU now, which can be improved by using accelerators
like GPU with the help of Molecule.

2.5 Goals

The paper aims to propose a general and consistent set of abstrac-
tions for heterogeneous serverless computing. Based on the ab-
stractions, we have built the Molecule serverless system, which
supports CPU, DPU, and FPGA, and can easily extend to other PUs
and devices. The paper further proposes a set of optimizations for
heterogeneous serverless, e.g., optimizing startup and communica-
tion latencies. These contributions are shown in Table 1. Next, we
will introduce the abstractions in ğ3, and elaborate the Molecule
serverless design in ğ4.

799

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

Table 1: Overall contributions. V.S. is short for vectorized

sandbox, and CPU-inter. is short for CPU-intercepted. ✓

means an abstraction or an optimization is supported in the

target PU.

PUs
Abstractions

V.S. XPU-Shim

Optimizations

cFork
V.S.

caching
nIPC
DAG

to CPU to DPU to FPGA

Communication methods

CPU

DPU

FPGA

IPC RDMA DMA

RDMA

DMA Shm.

IPC CPU-inter.

CPU-inter.

3 ABSTRACTION

This section introduces two key abstractions for heterogeneous
serverless computing, XPU-Shim (ğ3.1śğ3.4) and vectorized sand-
box (ğ3.5), which abstract away the hardware distribution and het-
erogeneity for a serverless platform.

3.1 XPU-Shim

Shim is a common software mechanism for application adaptability
in computing. A shim is usually a library or a middleware that
intercepts API calls and changes the arguments passed, handles the
operation itself or redirects the operation elsewhere [34]. Following
the principle, this paper proposes a distributed shim, XPU-Shim, to
handle the distribution caused by heterogeneous computers (i.e.,
multi-OS).

XPU-Shim is an indirection layer supporting serverless runtime
on the multi-OS environment. The overall architecture is shown
in Figure 3. We describe three key features of XPU-Shim. First,
XPU-Shim is working upon the OS or firmware at each PU (called
local OS) and utilizes interfaces of vectorized sandbox to manage
heterogeneous functions Ð this significantly improves the system
flexibility as the local OS and PU could be very different. Second,
XPU-Shim provides system call style interfaces to applications,
calledXPUcalls (shown in Table 2), that provide a unified abstraction
to manage and utilize resources on different PUs. XPU-Shim is
distributed at each PU with generic programming ability (e.g., x86
or ARM cores) and maintains the global states of the heterogeneous
computer and forms the same view for applications on different
PUs. It usually requires XPU-Shim to maintain the consistency of
global states through some protocols [45]. Last, XPU-Shim supports
efficient communication for applications even on different PUs.

XPU-Shim relies on two key primitives, distributed capabilities
and neighbor IPC, to handle distributed hardware and OSes.

3.2 Distributed Capability

XPU-Shim maintains global resources and states for user-space
applications using distributed objects and capabilities. Currently, we
have defined the following two distributed objects: 1 CAP_Group

is the object recording all capabilities of a process, and 2 IPC is
the inter-process connection object. This is much simpler than
traditional capability systems because XPU-Shim only utilizes the
capability system to manage permission and communication among
different PUs.

Runtime/FirmwareDPU OSHost OS

DPU AcceleratorCPUCPU

XPU-Shim

OS

syscalls

XPU-Shim XPU-Shim

XPU-Shim
Global states / Cross-PU primitives

XPU

calls

Serverless Runtime

Vectorized sandbox Vectorized sandbox Vectorized sandbox

function function

neighbor IPC

Figure 3: Abstraction for heterogeneous serverless.

Callee Callee

CPU DPU

Callee

Remote

Node

Local IPCRemote IPC (Network) (DMA/RDMA/CXL/…)

XPU-Shim

Local OS

Hardware

nIPC

CallerFunction

Figure 4: Three IPC methods. XPU-Shim introduces nIPC as

a complement to IPC and remote IPC (network).

Global process. To utilize XPU-Shim’s unified abstraction, a pro-
cess1 should be globally identifiable. This is not naturally supported,
e.g., Linux PID is unique in the local PU, but can not guarantee
global uniqueness. XPU-Shim maintains a CAP_Group for each
process which has a globally unique ID (i.e., xpu_pid) to identify a
process. The global ID is encoded by two numbers: PU-ID (the ID
for each processing unit) and the UUID (e.g., PID) on the local OS.
This encoding method statically partitions processes to each PUs
and can mitigate synchronization costs.

Permission control. Since local OSes cannot maintain cross-PU
permissions, we should design a permission management approach
in XPU-Shim. This is achieved through the distributed capability
system. CAP_Group (per-process) maintains a list of capabilities,
including the target distributed object and the permissions. One
special permission is owner Ðwhich can grant the permission to ac-
cess the object to another process, using grant_cap. The owner can
revoke the capability using revoke_cap. The capability (or permis-
sion) is checked in XPUcalls, e.g., a process can only connect to an
XPU-FIFO using xfifo_connect when it has read or write permission.

3.3 Neighbor IPC

Neighbor IPC (nIPC) is a primitive to allow a process to communi-
cate with another process (on a different PU), as shown in Figure 4.
Compared with local IPC and remote communication (e.g., HTTP
over socket), nIPC relies on similar network-based communication
methods (e.g., PCIe). However, as a single machine, the connection
between two PUs is much more reliable. Therefore, a serverless
runtime can use a simple software stack for communication and
does not need to go through an API gateway.

1We use prcoess to represent the unit of user applications in PUs.

800

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 2: XPUcall. The table shows the major XPUcalls implemented in our prototype.

XPUcall Description

Distributed Cap.
int grant_cap(xpu_pid, obj_id, perm) Grant the capability (perm to access obj_id) to process xpu_pid
int revoke_cap(xpu_pid, obj_id, perm) Revoke the capability (perm to access obj_id) from process xpu_pid

Neighbor IPC

xpu_fd xfifo_init(local_uuid, xpu_uuid) Init an XPU-FIFO
xpu_fd xfifo_connect(xpu_uuid) Connect to an XPU-FIFO
int xfifo_close(xpu_fd) Close an XPU-FIFO
int xfifo_read(xpu_fd, buf, length) Read data from an XPU-FIFO
int xfifo_write(xpu_fd, buf, length) Write data to an XPU-FIFO

Misc.
xpu_pid xSpawn(PU_id, path, argv, envp, capv) Spawn a process in a neighbor PU (PU_id)
xpu_pid get_xpupid() Get current xpu_pid

Table 3: The vectorized sandbox abstraction.

OCI interfaces Description

state <sandbox-id> Query the state of a sandbox.

create <sandbox-id> <func-id>
Create sandbox with the ID and bundle path,
a config.json file is required to indicate details.

start <sandbox-id> Run a created sandbox.
kill <sandbox-id> <signal> Send a signal to a created/running sandbox.
delete <sandbox-id> Delete a sandbox.

Vectorized interfaces Description

state vector<sandbox-id> Query the state of a vector of sandboxes.
create vector<sandbox, func-id> Create a vector of sandboxes.
start vector<sandbox-id> Run a vector of sandboxes concurrently.
kill vector<sandbox-id, signal> Send a signal to a vector of sandboxes.
delete vector<sandbox-id> Delete a vector of sandboxes.

Currently, XPU-Shim supports a FIFO-styled communication
mechanism, i.e., XPU-FIFO. Similar to existing OSes, we use dis-
tributed capabilities (or file descriptors) to manage FIFOs for appli-
cations. XPU-FIFO is initialized with local and global UUIDs using
xfifo_init. The local UUID indicates the FIFO in the local OS, and
the global UUID is used to allow any processes to connect this
FIFO (i.e., xfifo_connect). After that, processes can read and write
an XPU-FIFO through xfifo_read and xfifo_write, which is similar
to existing FIFO’s interfaces. The techniques to implement nIPC
will be elaborated in ğ5.

3.4 Miscellaneous XPU Operations

XPU-Shim further provides some XPU operations to ease a server-
less runtime to utilize heterogeneous PUs.

Cross-PU spawn (xSpawn). XPU-Shim introduces global spawn
(abbr. xSpawn), which follows the spawn interfaces in Unix systems
to allow a process to start a new program on other PUs. As shown in
Table 2, xSpawn requires PU_id field, which indicates the target PU
of the spawn. XPU-Shim does not share any implicit permissions
between parent and child processes, and relies on the capv (an array
of capabilities) to allow a parent to grant permissions to the child
explicitly.

3.5 Vectorized Sandbox Abstraction

Now, we introduce the second key abstraction, vectorized sandbox,
which handles the hardware heterogeneity.

Open container initiative (OCI) runtime specification [33] is the
most widely used sandbox abstraction in serverless computing,
e.g., Docker runc (container-based sandbox), gVisor (process-level
virtualization sandbox), and Kata container (VM-based sandbox)
all implement the abstractions. The core of OCI runtime is five
interfaces, as shown in the upper half of Table 3.

The five interfaces are generic enough to abstract sandboxes in
many cases, which is one of the reasons why the specification is
widely accepted. Next, we explain how we implement the sandbox
interfaces for functions running on FPGAs and then discuss the
limitations caused by abstraction and howwe extend it to vectorized
sandbox abstraction.

FPGA serverless functions. Molecule supports serverless func-
tions running in FPGAs. The programming model is similar to
normal serverless functions. Developers need first upload their
function codes (written in HLS, OpenCL, or even Verilog) to the
platform, which will compile the FPGA function with a wrapper
(e.g., shell in AWS F1 [8] or an FPGA OS [65, 69]) into a bitstream
(or FPGA image). Then, FPGA functions can be invoked as usual
serverless functions.

Specifically, we implemented a new sandbox runtime named
runf, which is responsible for maintaining sandboxes on FPGAs. It
will maintain FPGA serverless instance states, which will be used
when state <sandbox-id> invoked. To create a sandbox running on
FPGA, runf will download the corresponding FPGA image and
program it into FPGA devices. start <sandbox-id> will be invoked
when the serverless runtime needs to handle a request for the FPGA
function. In this case, runf transfers the arguments to the FPGA
devices and issues a command to the device to execute the function
and waits for the results. Similarly, runf can erase the FPGA devices
to delete a sandbox.

Challenges. Although the above method can implement the sand-
box used for FPGA serverless, it has at least two limitations. First,
the OCI interfaces have poor scalability on heterogeneous devices
like FPGA. Unlike generic-purpose PUs, FPGA can only flush one
image at a time. That means we can only run 1 FPGA instance
in machines with 1 FPGA device. Even with techniques like par-
tial re-configuration, one FPGA can only support very limited re-
gions [65, 69, 73]. Besides, it also leads to higher startup latency as
we need to re-program FPGA devices for most requests.

801

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

Second, explicitly deleting sandboxes incurs non-trivial costs
that are unnecessary in these cases. In CPU or DPU cases, a server-
less runtime should explicitly delete a sandbox to save hardware
resources. However, in FPGA, the flushed functions will not occupy
any resources and can be easily replaced when a new FPGA server-
less function is created. These two limitations motivate vectorized
sandbox abstraction.

Vectorized sandbox. Specifically, we have made the following
three extensions, as shown in the bottom half of Table 3. First,
sandbox creation is vectorized as create vector<sandbox, func-id>.
That means runf can create a vector of FPGA sandboxes at one time.
Specifically, runf can put the vector of sandboxes into one FPGA
image and flush the image containing all the sandboxes. Then, runf
can directly invoke the target sandbox (if it is cached in the image)
when requests arrive. The design can optimize the startup latency
as FPGA functions are more likely to be cached in devices.

Second, similar to creation, the start interface is vectorized as
start vector<sandbox-id>. The extension enables concurrent execu-
tion that is beneficial to achieve auto-scalability with limited FPGA
devices. For example, the wrapper in FPGA can partition resources
into several regions and allow several sandboxes to handle requests
concurrently.

Last, Molecule does not explicitly destroy FPGA sandboxes, i.e.,
the delete command will be empty and directly return (but the runf
will update sandbox states). The real destroy operations happen in
the next create operation, which will replace the current hardware
implementations with the new one. This effectively improves the
delete performance. The approach will not add overheads to the
next create operation as it does not include the erasing operation.

Summary. The vectorized sandbox efficiently enables accelerators
for serverless computing. It is worth noting that vectorized sandbox
relies on the wrapper in the FPGA to guarantee security and perfor-
mance isolation among instances, e.g., Coyote [69] implements OS
abstractions in FPGA and relies on MMU/TLB for isolation between
vFPGAs. XPU-Shim leverages the vectorized sandbox abstraction
to abstract hardware heterogeneity with great performance.

4 MOLECULE DESIGN

This paper presents Molecule, a serverless runtime on heteroge-
neous computers. Compared with prior systems [4, 6], Molecule
aims to achieve the following goals that are not explored:
• Molecule can manage worker machines with heterogeneous de-
vices, e.g., DPUs, FPGA, smart I/O devices and others.

• Molecule does not rely on the host OS to provide single-OS ab-
stractions but relies on a distributed shim, XPU-Shim, to manage
functions on distributed OSes.

• Molecule should support prior serverless mechanisms (e.g., fork-
based startup) on heterogeneous computers.

4.1 Heterogeneous Serverless Computing

Programmingmodels.Molecule has similar programming models
of AWS Lambda [6] and others [4], as shown in Figure 5. Devel-
opers need to write their functions based on a specific language
runtime supported by Molecule, e.g., Python. As shown in Figure 5-
a, we provide the same language runtime for CPU (x86 server in

Python language runtime

def matmul(n):

A = np.random.rand(n, n)

B = np.random.rand(n, n)

start = time()

C = np.matmul(A, B)

latency = time()-start

return latency

def handler(event):

n = int(event['n'])

result = matmul(n)

return result

(a) CPU/DPU function (matmul).

// FPGA openCL runtime

Vector madd(matA , matB ,

dim0 , dim1) {

int i = 0;

// Auto -pipeline

for (; i < dim0 * dim1;

++i)

c[i] = matA[i]+matB[i];

return c;

}

Vector handler(event) {

//...

return madd (...);

}

(b) FPGA function (madd).

Figure 5: Heterogeneous serverless functions. The figure

shows pseudocode of simplified functions.

 Heterogeneous Computer

DPU OS

DPU

Template

Lang

Runtime

Container

Lang

Runtime

Host OS

Container

Lang

Runtime
Molecule

Runtime Executor

XPU-Shim (DPU)XPU-Shim (CPU)

CPUCPU

xSpawn

cfork

API Gateway (Global Manager)

FPGA

Transient sandbox

Dispatcher

XPU-Shim

(FPGA)

Executor

xSpawn

Shell/FPGAOS

Figure 6: Molecule architecture.

our platform) and DPU (Arm PUs in our platform) as they sup-
port general-purpose programming. However, as their computation
capabilities are heterogeneous, it is unfair to treat CPU and DPU
as the same, especially when serverless promises pay-as-you-go
billing models.

Unlike the homogeneous resource model used in existing plat-
forms, e.g., the one-fits-all memory value in AWS lambda [14],
Molecule requires end-users to explicitly assign resources to a func-
tion, and select the type of PU (i.e., CPU or FPGA) according to their
prices and hardware abilities, e.g., DPU has the lowest prices and
FPGA has the highest prices. Users can choose multiple settings
and let the platform decide how to schedule instances. According to
users’ configuration, the API Gateway then schedules a function’s
instance to machines with at least one of the required kinds of PU
where the function can execute.

Molecule supports functions running in domain-specific acceler-
ators like FPGA. Developers can write their FPGA functions in our
FPGA runtime (Figure 5-b) and upload the functions to the platform
to generate an FPGA image. Users can also construct a function
chain (or DAG) using different types of functions, e.g., a frontend
function (on DPU) to pull an image from storage services, and then
transfer the image to an FPGA function gzip to compress the image.
Molecule schedules a function chain in one computer in most cases
for better communication performance [43, 61].

System architecture. The architecture of Molecule is shown in Fig-
ure 6. Molecule serves serverless requests from the global manager.

802

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

It can run on any PU (host CPU in the figure) in a heterogeneous
computer and manage functions in other PUs with XPU-Shim. Mol-
ecule will launch executors on other PUs through xSpawn, which
are responsible for managing local function instances using the
vectorized sandbox abstraction. The executor receives commands
from Molecule (through nIPC), executes the commands on the local
OS, and returns the results. For accelerators (e.g., FPGA) that cannot
launch a generic program, we start a virtual XPU-Shim instance
on the neighbor CPU/DPU (e.g., XPU-Shim for FPGA in the figure).
This instance is responsible for running the corresponding executor
and managing the accelerator.

Next, we introduce howMolecule achieves two important perfor-
mance goals in serverless: low startup and communication latency.

4.2 Optimizing Startup Latency

A function instance can handle a request with either cold start or
warm start, depending on whether there are available cached sand-
boxes. The first execution of a function usually begins with a cold
start, which needs to prepare function images, create sandboxes,
and load function codes. The cold start usually causes long latency,
e.g., >1s in complicated Java functions [54, 93]; which are the major
costs for most functions.

Fork-based startup [51, 54, 78] and snapshot-based startup [11,
16, 35, 54, 91, 92] are the two most widely adopted optimizations
for reducing startup latency. Molecule follows the line of research,
with two new contributions. First, prior optimizations utilizing fork
to achieve state-of-the-art startup latency requires an additional
layer of virtualization, e.g., gVisor’s microVM in Catalyzer [54] and
unikernel in Seuss [51]. We propose cfork, the first container-level
fork to achieve <10ms startup latency. cfork is designed to support
heterogeneous computers.

Second, accelerators like FPGA cannot utilize fork to boost startup
latency, bringing new challenges to serverless runtimes. There-
fore, Molecule leverages vectorized sandbox abstraction to combine
multiple serverless instances into one image, which increases the
possibility of hitting a cached instance for incoming requests.

Container fork. Container fork (cfork) inherits the idea of sand-
box fork in Catalyzer [54] to generate new instances from a pre-
prepared template container (on CPU and DPU), but overcomes
three new challenges to achieve container-level fork on heteroge-
neous computers.

First, a containermay containmulti-threads or evenmulti-processes
that are hard to be cloned correctly and efficiently as Unix fork

only propagates the forking thread. Catalyzer relies on the un-
derlying hypervisor (i.e., gVisor) to provide the ability to fork a
whole sandbox, which is inapplicable for Molecule without the
hypervisor layer. To solve this challenge, cfork proposes forkable
language runtime: a wrapper for serverless functions that is re-
sponsible for forking multi-thread instances. The language runtime
will temporarily merge all the threads into a single thread, save
the multi-threaded contexts in memory, and expand it to a multi-
threaded one after cfork. This lifts the fork mechanism from OS to
language runtimes controlled and prepared by serverless platforms.
Currently, we have supported forkable Python and Node.js runtime,
which accounts for nearly 90% of functions in AWS [36].

Second, Molecule needs to migrate the forked function instances
from the template container to a new container for isolation. To
satisfy the need, Molecule will prepare a new container (called
function container) for the forked instance. During cfork, the fork-
able runtime will reconfigure its namespaces and cgroup according
to the function’s configuration, and then load the function’s code
(and dependencies if any) and establish a connection to the Mole-
cule. After that, Molecule can assign requests to the child instance,
and the child executes them in the function container. By default,
Molecule prepares generic template containers for all functions
using the same language, e.g., one Python template for all Python
functions. Molecule can launch a dedicated template with code and
dependencies for hot functions to further reduce the latency.

Third, cfork should support the multi-OS system on heteroge-
neous computers. In order to fork new instances on multiple PUs,
every PU needs to prepare a template container for each language
runtime. After that, Molecule can utilize nIPC to request neighbor
PUs to create function containers and cfork new instances. The
new instances will utilize nIPC to get requests and return responses.

Caching FPGA function instances. Instead of łforkž, Molecule
will cache function instances to mitigate the cold-boot costs on
FPGA. This is enabled by our vectorized sandbox abstraction. Specif-
ically, Molecule can utilize keep-alive policies (e.g., FaasCache [57]
and others [82]) to predict the function instances that should be
cached and prepare an FPGA image with those instances. When
a request arrives, and the target function instance is cached, Mol-
ecule can directly invoke the function (i.e., warm start) without
re-programming FPGA.

The number of cached instances highly depends on the design
of the wrapper in FPGA, which should provide both isolation and
fair-sharing among instances. For example, the state-of-the-art
system Coyote [69] can support multiple vFPGA and utilize DRAM
stripping to achieve performance isolation, which will be a good
choice for Molecule to support serverless computing. Molecule uses
a simpler way now to statically partition and protect the resources.

4.3 Optimizing Function DAG Communication

Serverless applications are usually composed of a chain of functions
(also named łserverless DAGž) [82, 84, 93], making communication
latency important. Serverless platforms usually use the network
and API gateway for communication in all cases, which can incur
unnecessary costs when functions are running in a single machine.
State-of-the-art serverless systems [43, 61] adopt local IPC when
two function instances are in the same PU and use network mecha-
nisms (e.g., gRPC or HTTP) when they are on different PUs. For
example, SAND [43] allows function instances to communicate
through a local bus with each other when they are on the same PU.

Molecule leverages XPU-Shim to support IPC-based communica-
tion in a heterogeneous computer, allowing functions on different
PUs to communicate like in a single PU through nIPC.

nIPC-based DAG call. Prior systems [43, 61] usually rely on an
intermediate entity, e.g., local bus in SAND [43] and the engine in
Nightcore [61], to transfer messages. Molecule implements a łdirect
connectž method that establishes connections directly between
caller and callee function instances, i.e., establishing a full-duplex
connection using FIFOs between two functions. To support this,

803

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

each function will create a self_fifo which is named using its UUID
(globally unique), and block on the FIFO (i.e., xfifo_read). When a
request arrives, Molecule injects the UUIDs of caller and callee into
each function instance, so functions can communicate with others
by writing others’ FIFOs (i.e., xfifo_write).

Supports for DPU. As nIPC provides the XPU-FIFO abstraction,
which is almost the same as local FIFO used in single-PU systems,
the supporting efforts for CPU-DPU heterogeneous computers are
minor (about 30 LoC changes in Node.js runtime). The major dif-
ference is that functions should register their FIFOs to XPU-FIFOs
to allow processes on other PUs to access.

Supports for FPGA. FPGA functions can utilize the same FIFO
design to transfer data between CPU and FPGA. However, this also
leads to two copyings to transfer data between two FPGA functions,
i.e., the caller needs to copy the data to host DRAM, and the callee
needs to copy the data from the host DRAM back to the FPGA
attached DRAM. Molecule implements a zero-copying method by
leveraging DRAM data retention [1], an advanced FPGA feature
that allows Molecule to load a new FPGA image without erasing
the data in the FPGA attached DRAM, i.e., the data is persisted. In
this case, the caller FPGA function can leave the data in the FPGA
DRAM, and the callee FPGA function can directly use the data
without data movement. FPGA wrapper is responsible for clearing
sensitive data.

5 IMPLEMENTATION AND OPTIMIZATIONS

We implement XPU-Shim totally in user space for better portability.
The core of the XPU-Shim prototype includes 3,542 lines of C/C++
codes (excluding third-party libraries). Besides, we provide an XPU-
Shim library (1,460 lines of C codes) that provides the XPUcall
interfaces invoked by processes. XPU-Shim will connect and syn-
chronize states among PUs utilizing the underlying interconnect.
In our settings, the DPU and CPU communicate through RDMA
(which is the only exported PCIe-based communication method),
while FPGA and CPU communicate through DMA.

Besides, we implement Molecule based on vectorized sandbox
abstraction. In CPU and DPU, the abstraction is implemented based
on Docker runc [32] (by always passing one-sized vector). In FPGA,
we implement a new runtime, runf, which will manage FPGA server-
less functions. runf relies on an FPGA wrapper to statically assign
DRAM banks (or PLRAMs) to an instance; two instances can share
a DRAM bank only when they will never execute concurrently
(enforced by the wrapper). Molecule supports two mostly used
language runtimes, Node.js and Python, accounting for 90% of
functions in AWS [36] for CPU and DPU and provides one FPGA
language runtime based on OpenCL and Xilinx Vitis [39].

XPUcall optimizations. As the XPU-Shim is another process in
the system, we need an IPC approach to communicate between a
user-process and XPU-Shim. In a naive implementation, we use
FIFO and shared memory to implement XPUcalls. The XPUcall
uses FIFO to pass small arguments and uses shared memory to
transfer bulk data. However, the two IPC round trips, shown in
Figure 7-a, can lead to significantly high costs in DPUs, e.g., 100us
in our Bluefield-1 DPU, while the costs in host CPU is about 20us.
Therefore, we propose two optimizations.

Local OS

XPU-Shim

Function

FIFO-req FIFO-res

Local OS

XPU-Shim

Function

FIFO-res

Shared MPSC-queue (req)

Local OS

XPU-Shim

Function

Shm-res

Shared MPSC-queue (req)

Polling

Polling

Polling

(a) XPUcall using IPC (b) XPUcall with
MPSC-queue

(c) XPUcall with
MPSC-queue + Polling-user

1 2 3

4

1

2 2

1

3

Figure 7: XPUcall optimizations. MPSC is short for Multi-

Producer Single-Consumer.

Figure 7-b shows the case that XPU-Shim polls on an MPSC
(Multi-Producer Single-Consumer) queue and relies on IPC to notify
processes for XPUcall responses. This can reduce the IPC round
trips from two to one. The optimization is reasonable in devices as
XPU-Shim can be pinned to dedicated cores for better performance.
Besides, we can further let the processes poll on shared memory
for responses, eliminating IPC costs, as shown in Figure 7-c. In our
evaluation, we choose the second method as the default one.

To enhance security, the MPSC queue is only used for notifying
XPU-Shim about which process has issued XPUcalls. All invoca-
tion information is recorded in a per-process shared memory, so a
malicious process may only perform DoS attacks by corrupting the
queue but cannot learn information of other processes. XPU-Shim
also supports multi-threaded handling for XPUcall-intensive scenar-
ios, in which each XPU-Shim thread will handle a dedicated MPSC
queue. An alternative implementation is to use the Multi-Producer
Multi-Consumer queue to allow work-stealing [49, 53].

Inter-PU synchronization. XPU-Shim follows the ideas of prior
multi-kernel [46ś48] and partitioned kernel [83] designs to synchro-
nize global states among different PUs through message passing
explicitly. We have the following strategies to manage global states.
• No synchronization with statically partitioned global states: creat-
ing and destroying of processes (i.e., CAP_Group) can (mostly)
be processed by XPU-Shim on the local PU because the global
PID is encoded with PU ID and local UUID.

• Immediate synchronization: states like XPU-FIFO’s global UUIDs
should be globally unique. Therefore, xfifo_init XPUcall needs
to synchronize with other PUs to ensure that a global UUID is
valid. Besides, we synchronize all capability update operations
immediately to ensure permission checking can always finish
locally, i.e., no runtime synchronization costs.

• Lazy synchronization: XPU-Shim allows harmless stale states. For
example, when an XPU-FIFO UUID’s reference counter turns
to 0 and could be deleted, XPU-Shim revokes the XPU-FIFO’s
resources but synchronizes the UUID information lazily to other
PUs. This enables optimizations like batching to avoid frequent
synchronization.

Profile selections. Molecule allows developers to choose multiple
settings (or profiles) for their serverless applications, e.g., a function
can be scheduled on both CPU and DPU.When a request for a multi-
setting application comes, the control plane of Molecule will choose
a specific PU based on platform-specific policies. For now, Molecule
uses a policy that considers function-chain by locating functions in

804

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

one chain to the same PU. It is feasible to extend Molecule to use
other policies, e.g., machine-learning model-based ones [96].

Keep-alive policies. Molecule inherits the approach used in ex-
isting systems [57, 82] for the keep-alive policies. The decision is
made by the control plane of Molecule. Molecule now will tend
to cache functions in a chain in the same image. We will consider
incorporating advanced policies like FaaSCache [57] in our future
work.

Limitations. Currently, our prototype does not implement the
direct communication between DPU and FPGA; instead, we rely
on the host CPU to forward the data between DPU and FPGA, i.e.,
CPU-intercepted communication.

6 EVALUATION

In the evaluation, we answer the following questions:
• Question-1: How does XPU-Shim reduce the cross-PU communi-
cation latency? (ğ6.1)

• Question-2: Can Molecule achieve better scalability and perfor-
mance on heterogeneous computers? (ğ6.2)

• Question-3: Can Molecule achieve better performance than com-
mercial serverless systems? (ğ6.3)

• Question-4: Can Molecule achieve low startup latency for server-
less on heterogeneous computers? (ğ6.4)

• Question-5: Can Molecule achieve low communication latency
for serverless on heterogeneous computers? (ğ6.5)

• Question-6: How does Molecule reduce the end-to-end latency of
serverless applications? (ğ6.6)

• Question-7 : How is Molecule compared with state-of-the-art
serverless systems? (ğ6.7)

• Question-8: How easy is it to support a new accelerator? (ğ6.8)
We use two settings for evaluation. First, we use one server with

Intel Xeon Platinum 8160 CPU (2.10GHz 96 cores in total), con-
nected with two 100Gbps Mellanox Bluefield-1 DPUs, each with 16
ARM cores (800Mhz), as the CPU-DPU heterogeneous computer.
Second, we use an AWS F1.x16large EC2 instance (64vCPU) with
eight UltraScale Plus FPGAs as the CPU-FPGA heterogeneous com-
puter.

We compare Molecule with Molecule-homo (the homogeneous
version of Molecule) and commercial serverless systems like AWS
Lambda [6] and OpenWhisk [4]. Molecule-homo does not utilize
XPU-Shim; therefore, it can only run on either CPU or DPU (but
not both) and cannot utilize accelerators like FPGA. Molecule-
homo uses Node.js Express [5] and Python Flask [3] as the baseline
DAG methods, which are also used in OpenWhisk. It also does
not use optimizations like cfork. However, our good implemen-
tation of Molecule-homo achieves much better performance than
AWS Lambda and OpenWhisk (ğ6.3). This makes Molecule-homo
a more reasonable baseline to illustrate the benefits of hardware
heterogeneity and optimizations of Molecule.

6.1 Neighbor IPC Performance

nIPC’s performance is at the core of Molecule performance. Thus,
we evaluate it first. We compare the performance of nIPC with
Linux FIFO as shown in Figure 8. We evaluate three nIPC cases
based on different XPUcall implementations (Figure 7). In all three
cases, a caller in DPU will issue a xfifo_write and measure the

 0

 50

 100

 150

 200

 250

 16 32 64 128 256 512 1024 2048

L
at

en
cy

 (
u
s)

Msg size (Bytes)

nIPC-Base
nIPC-MPSC

nIPC-Poll

Linux (DPU)
Linux (CPU)

Figure 8: nIPC latency. The figure shows local Linux FIFO and

nIPC performances using three XPUcall implementations (i.e.,

base, MPSC, and MPSC with polling). According to XPUcall

implementations, nIPC’s latency ranges from 25us to 144us.

 0
 200
 400
 600
 800

 1000
 1200
 1400

AWS Lambda

OpenWhisk
Molecule-Homo

Molecule

S
ta

rt
u

p
 l

at
en

cy
 (

m
s)

(a) Startup latency.

 0
 10
 20
 30
 40
 50
 60
 70
 80

AWS Lambda

OpenWhisk
Molecule-Homo

Molecule

<1ms

C
o

m
m

.
la

te
n

cy
 (

m
s)

(b) Communication latency.

Figure 9: Comparison with commercial serverless systems.

latency as the nIPC results. Linux FIFO is the ideal communication
mechanism used in state-of-the-art serverless systems for internal
calls.

As a result, nIPC-Base and nIPC-MPSC (i.e., multi-producer
single-consumer) have 1.6xś2.8x times higher latency than Linux
IPC (onDPU) because of the XPUcall costs. nIPC-Polling can achieve
about 25us latency, which is even better than Linux IPC (on DPU)
because it bypasses the slow kernel on the device; it is still 1.5xś3.1x
slower than Linux IPC (on CPU). The results confirm the efficiency
of our XPUcall optimizations on devices. We do not apply these op-
timizations on the CPU because XPUcall causes much fewer costs
in the CPU (about 20us) in our settings.

6.2 Benefits of Heterogeneous Serverless

This section explains how the results in Figure 2 are achieved.

Higher function density on CPU-DPU computers.We take one
Python image processing function as a case and evaluate the max-
imum function density in one worker machine. As shown in Fig-
ure 2-a, the resources of the CPU in our server only support up to
1000 concurrent instances in the baseline. When we configure the
function to run on both CPU and DPU, Molecule can create new
instances on DPU that can achieve more than 50% density with 2
Bluefield DPUs. Notably, Molecule does not improve the per-PU
density, while the density per computer is improved by utilizing
DPUs with Molecule.

Lower computation latency on CPU-FPGA computers. Matrix
operations are at the heart of deep learning. Compared with general-
purpose CPUs, FPGA is a better choice to perform these computa-
tions. We implement three basic operations, matrix scaling, matrix

addition, and vector multiplication, into CPU functions and FPGA
functions. As shown in Figure 2-b, all the three functions achieve
lower latency (2.15xś2.82x) using FPGA functions.

805

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

 50

 100

 150

 200

 250

Python Node.js

S
ta

rt
u

p
 L

at
en

cy
 (

m
s) Baseline-local

cfork-local
cfork-XPU

(a) Startup at CPU.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Python Node.js
S

ta
rt

u
p

 L
at

en
cy

 (
m

s) Baseline-local
cfork-local
cfork-XPU

(b) Startup at DPU.

 0

 5

 10

 15

 20

Baseline

No-Erase

Warm-image

Warm-sandbox

L
at

en
cy

 (
s)

Erase
Load-image

Prep.-sandbox

0.053s
(sandbox)

(c) Startup at FPGA.

Figure 10: Serverless startup latency. Molecule’s cfork can

significantly outperform baseline cold boot, and a remote

cfork only adds negligible costs with the help of XPU-Shim.

Table 4: FPGA resource utilization.

LUTs # REGs # BRAMs # DSPs

AWS F1 Total 1,181,768 2,364,480 2,160 6,840

Wrapper (12 func.)
119,517
(10.1%)

196,996
(8.3%)

486
(22.5%)

787
(11.5%)

6.3 Commercial Serverless Systems

Before evaluating other metrics and applications, we compare Mole-
cule andMolecule-homowith existing serverless systems, including
OpenWhisk and AWS Lambda. Specifically, we evaluate two im-
portant performance metrics: startup latency and communication
latency. We use a helloworld function for startup latency evaluation
and an image processing function for communication evaluation
(the transferred size <1KB). In AWS, we use the step function as the
communication method. As shown in Figure 9, Molecule achieves
37ś46x better startup latency and 68ś300x better communication
latency compared to OpenWhisk and AWS Lambda. Even our ho-
mogeneous version, Molecule-homo, achieves 5ś6x better startup
latency and 4-19x better communication latency.

Next, we elaborate on the details of how our optimizations on
Molecule achieve this good performance.

6.4 Function Startup Latency

Startup latency on CPU and DPU. We take Python image pro-
cessing as a case to evaluate function startup latency in Molecule, as
shown in Figure 10-a and b. We compare three cases, the Molecule-
homo baseline, the Molecule’s cfork issued by local PU, and the
Molecule’s cfork issued by a neighbor PU (cfork-XPU in the figure).
The results show that Molecule’s cfork can significantly outper-
form baseline cold boot. Besides, with XPU-Shim supports, we can
fork a remote template with negligible costs (about 1ś3 ms).

Startup latency on FPGA. We take vector multiplication as an
example to break down the startup latency on FPGA, as shown
in Figure 10-c. We consider three stages: erasing the old image,
loading the target image, and preparing a software sandbox to
invoke functions. The most naive approach (i.e., łBaselinež) takes
more than 20s to finish the whole process. The major costs come
from erasing. As discussed, erasing is unnecessary (for most cases)
in FPGA serverless, andMolecule can achieve about 3.8s by skipping
the step (i.e., łNo Erasež). Molecule can achieve better performance
(1.9s) when the function is cached because of vectorized sandbox
design. In the best case, if runf still maintains the warmed sandbox,
we only need 53ms to invoke the function. It is worth noting that
optimizing FPGA startup latency is not the major goal of this paper,

 0

 20

 40

 60

 80

 100

Baseline
+Naive cfork

+FuncContainer

+Cpuset opt

85.55

47.25

30.05

8.40S
ta

rt
u

p
 L

at
en

cy
 (

m
s)

(a) cfork breakdown.

 12

 16

 20

 1 2 4 8 16M
em

o
ry

 (
M

B
) Baseline Molecule

(b) RSS.

 8

 12

 1 2 4 8 16
Number of concurrent instances

(c) PSS.

Figure 11: cfork breakdown and memory usages. (a) Break-

down of cfork optimizations. (b) and (c) present the memory

usage. cfork saves more memory.

e.g., Molecule can achieve 20ms startup latency when the FPGA
deploys systems like Coyote [69].

We analyze the potential to cache instances. Table 4 presents the
resource utilization in F1 with vectorized image. Our wrapper con-
taining 12 instances (four instances for madd, mmult, and mscale)
only takes 10.1% and 22.5% of the total LUT and BRAM resources.
With 8 FPGAs, Molecule can cache 96 FPGA function instances
in one computer. Moreover, the FPGA wrapper required by vec-
torized sandbox introduces space overheads, i.e., 5% lookup tables
(logic resources on the FPGA) in F1 for the case in Table 4. Other
advanced wrappers take similar costs, e.g., Coyote [69] requires
2-4% base overhead and up to 14% for a full-featured wrapper with
four vFPGAs.

cfork breakdown. We break down the cfork performance to il-
lustrate how different optimizations work2, as shown in Figure 11-
a. łBaselinež indicates the startup latency using Molecule-homo.
łNaive cforkž initializes a function container, uses cfork to propa-
gate a new process, and assigns the child process to the function
container’s cgroup and namespaces. What’s more, łFuncContainerž
eliminates the overhead to start a new function container, but uses a
pre-initialized one to settle the child process. łCpuset optž does the
same as łFuncContainerž but applies a patch to the Linux kernel,
replacing semaphore locks in łkernel/cgroup/cpuset.cž to mutex
locks, and thus reduces the overhead to change the cgroup. As
we can see in the figure, simply using cfork can achieve about
2x better startup performance compared with baseline. When we
apply all the optimizations, the function can initialize more than
10x faster than the baseline.

Memory saving. Figure 11-b and Figure 11-c compare memory us-
ages of an image resizing function in Molecule-homo and Molecule
under concurrent running functions (from 1 instance to 16). We
use the resident set size (RSS) and the proportional set size (PSS)
to represent the memory usage. RSS is the total memory used by
a process, while PSS is composed of the private memory of that
process plus the proportion of shared memory with other processes.
Each point in the figure shows the average value of memory usage
over all running instances. In Molecule, RSS and PSS also contain
template container’s resources. A comparison of the two figures
shows that Molecule achieves lower PSS comparing to the baseline
(34% lower for 16 instances). The major reason for the improve-
ment is that cfork shares more states among instances. Molecule

2The results are evaluated on a desktop machine with Intel Core i7-9700 CPU (8 cores,
3.00GHz), 16GB memory and Linux 5.8.10 kernel.

806

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

1

2

3

4

front-
interact

interact-
smarthome

smarthome-
door

smarthome-
light

L
at

en
cy

 (
m

s)

Baseline Molecule

(a) CPU to CPU

1
2
3
4
5
6
7
8
9

front-
interact

interact-
smarthome

smarthome-
door

smarthome-
light

L
at

en
cy

 (
m

s)

Baseline Molecule

(b) DPU to DPU

1
2
3
4
5
6
7

front-
interact

interact-
smarthome

smarthome-
door

smarthome-
light

L
at

en
cy

 (
m

s)

Baseline Molecule

(c) CPU to DPU

1

2

3

4

5

6

front-
interact

interact-
smarthome

smarthome-
door

smarthome-
light

L
at

en
cy

 (
m

s)

Baseline Molecule

(d) DPU to CPU

Figure 12: Serverless DAG communication latency.Molecule

achieves 10ś18x lower latency.

 0

 500

 1000

 1500

 1 2 3 4 5

L
at

en
cy

 (
u
s)

Function chain (instance #)

Copying
Shm

Figure 13: FPGA function chain (end-to-end) latency.

requires higher RSS because of the additional resources required
by the template container.

6.5 Function Communication Latency

CPU and DPU. We take Alexa skills as a case to evaluate DAG
communication latency in Molecule, as shown in Figure 12. We
compare Molecule (using IPC and nIPC) and the baseline (Molecule-
homo using Node.js Express). We consider different cases, including
CPU only (Baseline-CPU), DPU only (Baseline-DPU), and cross CPU
and DPU. In all the cases, IPC-based DAG optimizations can achieve
15ś18x better latency than the Baseline. Although nIPC can incur
additional costs than local IPC, it still significantly outperforms the
baseline method (10ś13x).

FPGA.Molecule’s nIPC utilizes DMA to transfer data between CPU
and FPGA functions, which only incurs 50ś100us costs to transfer
4KB data. We further compare the basic approach with our shared
memory optimization (based on data retention), using an FPGA
function chain with five functions to perform vector computation.
As shown in Figure 13, the optimizations can effectively improve
end-to-end performance (i.e., 1.95x) by mitigating unnecessary data
movement.

6.6 Real Applications and Benchmarks

We evaluate Molecule with applications from ServerlessBench [93]
and FunctionBench [66]. We compare the end-to-end latency of
baseline (Molecule-homo) and Molecule on the CPU, DPU, or both
(if the application is a DAG chain). Instances on DPU with Molecule
are booted remotely with cfork and XPU-Shim’s supports. Besides,
we evaluate both the cold-boot and warm-boot (instances cache
hit) results, shown in Figure 14. We also evaluate three serverless
applications with FPGA functions [38], GZip, Matrix-Comput, and

Anti-MoneyL, to illustrate the performance benefits of Molecule.
We normalize results and label concrete numbers in the figure.

Performance with cold-boot. Figure 14-a and c show the end-
to-end latency of eight applications with cold-boot on CPU and
Bluefield-1 DPU (or BF-1 DPU). Molecule outperforms the baseline
in all cases, achieving 1.01x-11.12x less latency. The major factor for
the improvement depends on the execution latency, e.g., Molecule
only achieves 1.01x better latency in Video Processing because it
takes about 37 seconds for processing a video, which dominates
the costs. Instead, we can achieve 11x in Matmul as it is a short
function that only takes 3ś12ms for processing.

BF-1 DPU requires longer latencies than CPU (4xś7x) because of
its low frequencies (i.e., 800MHz ARM cores). We further support
Molecule on BF-2 DPU, the state-of-the-art DPUwith up to 2.75GHz
cores, and present the performance in Figure 14-d. As a result,
DPU functions achieve 3xś4x better (compared with BF-1) latencies
on BF-2, and are very close to the CPU functions’ performance.
This indicates that it is reasonable to utilize DPU for serverless
computing, which has comparable performance and promises better
energy efficiency.

Performance with warm-boot.Warm boot means reusing before-
hand booted instances to execute a function, which is usually much
faster than a cold boot. Consequently, some serverless systems [57]
prepare several function instances in advance so that the invoca-
tions of these functions can avoid cold boot (i.e., cache hit) and thus
optimize startup latency. Figure 14-b shows the warm-boot latency
on the CPU, which means each instance is created and cached be-
fore the first invocation request’s arrival. Both the baseline and
Molecule achieve better results as states are warmed, and achieve
almost the same results in most cases. Molecule leads to additional
costs in some cases because cfork will lead to more page faults to
handle copy-on-write. This indicates that it is reasonable to cache
warm instances through common booting rather than fork when
the cache hit rate is high.

Performance with chained functions. We present the end-to-
end latency of two chained functions, Node.js Alexa (with five
functions) and Python MapReduce (with three functions), as shown
in Figure 14-e. Besides the baseline and Molecule results on CPU
and DPU, the figure includes latency when distributing functions
to different devices (i.e., CrossPU in the figure). Specifically, we
ensure that all inter-function calls are cross PU, e.g., in Alexa, the
1st, 3rd, and 5th functions are in the host CPU, and the 2nd and
4th functions are in the DPU. These instances are pre-booted to
lower startup overhead’s influences on the end-to-end latencies. As
shown in the figure, Molecule can achieve 2.04ś2.47x less end-to-
end latency in Alexa with our IPC/nIPC-based optimizations, and
3.70ś4.47x less latency in MapReduce.

FPGA serverless applications. We evaluate three serverless ap-
plications that FPGA can accelerate. GZip is the application from
FunctioBench, which will compress a passed File. We implement
the function utilizing Molecule’s FPGA runtime and compare their
performance with different sized files (from 1KB data to 112MB
Linux code). As shown in Figure 14-f, FPGA accelerated Gzip signif-
icantly outperforms CPU Gzip when file size is larger than 25MB,

807

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

 0

 0.2

 0.4

 0.6

 0.8

 1

Image
Resize

Chameleon Linpack Matmul PyAES Video
Processing

DD gzip
Compression

198.0 262.3 461.5 298.9 164.5 38254 194.9 335.6

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

Baseline Molecule

(a) FunctionBench (Cold boot on CPU).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Image
Resize

Chameleon Linpack Matmul PyAES Video
Processing

DD gzip
Compression

14.1 10.9 95.9 1.4 19.5 33,811 43.1 182.9

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

Baseline Molecule

(b) FunctionBench (Warm boot).

 0

 0.2

 0.4

 0.6

 0.8

 1

Image
Resize

Chameleon Linpack Matmul PyAES Video
Processing

DD gzip
Compression

1245.4 1857.1 1855.2 1853.2 1121.9 240237 1134.3 1909.6

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

Baseline Molecule

(c) FunctionBench (Cold boot on BF-1 DPU).

 0

 0.2

 0.4

 0.6

 0.8

 1

Image
Resize

Chameleon Linpack Matmul PyAES Video
Processing

DD gzip
Compression

238.9 492.4 471.4 400.8 213.7 82636.8 216.1 506.7

L
at

en
cy

 (
n

o
rm

al
iz

ed
)

Baseline Molecule

(d) FunctionBench (Cold boot on BF-2 DPU).

 0

 0.5

 1

 1.5

 2

 2.5

 3

Alexa MapReduce

38.6 20.0

N
o
rm

al
iz

ed

Baseline-CPU
Molecule-CPU
Baseline-DPU

Molecule-DPU
Baseline-CrossPU

Molecule-CrossPU

(e) Chained Applications.

 0
 1
 2
 3
 4
 5

 0 20 40 60 80 100 120

L
at

en
cy

 (
s)

File size

CPU
FPGA

(f) GZip FPGA functions.

 0
 50

 100
 150
 200
 250
 300

6K 60K 600K 6M

L
at

en
cy

 (
m

s)

Entries

CPU
FPGA

(g) Anti-MoneyL FPGA function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Matrix-Comput

2.6ms

N
o
rm

al
iz

ed

CPU FPGA

(h) Matrix computation.

Figure 14: Serverless applications.We present end-to-end latency. The unit is milliseconds unless explicitly declared.

Catalyzer

gVisor

Kata
Container

FireCracker SOCK

Replayable Molecule

Slow
(>1s)

Extreme
(≤10ms)(>100ms)

Fast
(~50ms)

Docker

Nightcore

Molecule

S
a

m
e

-P
U

OpenWhisk

Network
(Slow)

IPC
(Fast)

Thread/Language
(Extrem)

Faasm

Faastlane

Molecule
(nIPC)

Others

C
ro

s
s

-P
U

Network
(Slow)

IPC
(Fast)

Thread/Language
(Extrem)

(a) Startup design (b) Communication design

Figure 15: Serverless system design. Compared with state-

of-the-art serverless system designs (i.e., Kata Container [26],

Docker [15], gVisor [22], FireCracker [42], Replayable [92],

SOCK [78], Catalyzer [54], OpenWhisk [4], Nightcore [61],

Faastlane [70], Faasm [84]), Molecule achieves both low

startup and low communication latencies.

i.e., 4.8ś8.3x better latency. Anti-MoneyL is an application for anti-
money laundering checking. It will process a set of files with trans-
actions. Figure 14-g presents the latency to process transactions
with different entries (6 thousand to 6 million). FPGA accelerated
Anti-MoneyL outperforms CPU Anti-MoneyL by 4.7ś34.6x. Last,
Figure 14-h presents the results of a matrix computation application
in CPU and FPGA. FPGA functions achieve 2.8x lower latency.

6.7 Comparison with State-of-the-Art Systems

This section compares Molecule with state-of-the-art serverless
systems [22, 26, 42, 54, 61, 70, 78, 84, 92] on optimizations.

Startup optimizations. As shown in Figure 15 (a), snapshot (or
checkpoint and restore) and fork are the two most widely adopted
optimizations for reducing startup latency. For example, Replayable
Execution [92] and FireCracker [91] leverage prepared snapshots
to mitigate the application initialization cost. Catalyzer leverages

Table 5: Supporting different PUs. VSandbox is short for vec-

torized sandbox. Implementations can be reused by different

PUs.

PUs VSandbox XPU-Shim Programming model

DPU Modified runc
Communicate with
DPU through RDMA

Multi-languages

FPGA runF (on OpenCL)
Communicate with
FPGA through DMA

OpenCL (can be ex-
tended to others)

GPU runG (on CUDA)
Communicate with
GPU through DMA

CUDA C++ (can be ex-
tended to others)

sfork to reuse the state of running instances and achieve sub-
millisecond startup latencies. Compared with prior optimizations,
Molecule’s cfork is the first to fork a container-based serverless

function and overcomes the challenges of forking multi-threaded
processes. Besides, cfork is the first to support the cross-PU fork,
which is necessary for heterogeneous serverless computing.

Communication optimizations. State-of-the-art serverless sys-
tems [61, 70, 84] utilize IPC or shared memory for better commu-
nication performance, as shown in the upper half of Figure 15 (b).
For example, Nightcore [61] proposes internal call abstraction, that
utilizes Linux FIFO for communication. Faastlane [70] executes
functions of a chain as threads within a single process to achieve
extreme communication performance (but having worse isolation).
Molecule follows the line to utilize IPC for communication. More-
over, Molecule utilizes neighbor IPC to achieve the fastest cross-PU
communication latencies with the same IPC abstraction for func-
tions, as shown in the bottom half of Figure 15 (b).

808

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

6.8 Generality

Molecule eases the efforts to support new heterogeneous PUs (or
devices) for serverless computing. Specifically, with the proposed
two general abstractions, developers only need to implement three
components to support a new PU, including vectorized sandbox run-
time, XPU-Shim and programming models. Molecule is responsible
for the rest, including hardware management, functions scheduling,
states/data synchronization, and others. Besides the DPU and FPGA
presented in the paper, we have preliminarily supported GPU and
smartNIC on Molecule, and our experiences indicate that the efforts
are small.

Table 5 shows the required components for different PUs. We
take GPU as an example. Specifically, we should do the following
things to implement abstractions for GPU required by Molecule.
(1) Implement a vectorized sandbox runtime. It is called runG

now for GPU. runG needs to implement the five interfaces
defined by the runtime, i.e., create, start, kill, delete, and state
GPU kernels/functions. runG is implemented based on CUDA
API. Besides, GPU is nature to support vectorized abstraction
as a single GPU wrapper (with Nvidia Multi-Process Service)
can easily support multiple functions (either using multiple
contexts or a single context).

(2) ImplementXPU-Shim interfaces.XPU-Shim provides a shared
view for functions. We implement it for GPU in the same way
for FPGA. The XPU-Shim will listen for XPUcalls from GPU
functions, handle them, and synchronize data (when necessary)
with other PUs.

(3) Have a programming model of serverless functions for

the new device/PU. In our prototype, a GPU serverless func-
tion is a CUDA C++ kernel function and implements a specific
interface (the entry_point). A wrapper manages the GPU func-
tions implemented based on CUDA API. It is possible to use
other models which are orthogonal to Molecule.
With Molecule, these steps are sufficient to enable GPU for

serverless computing, and GPU functions can seamlessly coop-
erate with CPU, DPU and FPGA functions. There are certainly
further works and optimizations to do to better utilize GPU for
serverless computing, e.g., some developers prefer to use high-level
frameworks (e.g., Tensorflow) instead of CUDA. These works are
orthogonal to Molecule’s goals, and we believe future works can
solve them.

7 RELATED WORK

System supports for heterogeneous computers. There is a long
line of researches on the system supports for heterogeneous de-
vices [41, 44, 46, 47, 50, 58, 59, 67, 77, 79ś81, 83, 85, 86, 90]. Some sys-
tems use smart devices to offload computation-intensive tasks [59,
67, 80, 81, 86]. Distributed OSes, e.g., Multikernel [47], Omnix [85],
and Popcorn [46], are proposed to run a single OS (with multiple
kernels) to manage heterogeneous hardware resources; however, it
is non-trivial to implement such an OS with all required primitives.
Floem [80] proposes programming abstractions for NIC-accelerated
applications. However, the abstractions are too specific for server-
less functions to use. Flick [52] utilizes advanced hardware features
to support applications running on a heterogeneous ISA computer;

however, it requires hardware modifications and is hard to use in ex-
isting environment. E3 [72] is a microservice execution platform for
SmartNIC-accelerated servers, which can significantly improve the
energy-efficiency. However, E3 does not consider serverless-specific
requirements, e.g., low startup and communication latencies.

Compared with existing heterogeneous frameworks, we propose
XPU-Shim and vectorized sandbox, which are two basic abstractions
for heterogeneous serverless computing. We carefully design (only)
essential XPUcalls. Molecule is built upon the abstractions and can
enable serverless computing on heterogeneous computers with
great performance.

System optimizations for serverless computing. Prior works
propose many optimizations for serverless computing, including
snapshot and fork-based startup [51, 54, 54, 78, 91, 92], IPC-based
communication [43, 61], and others [57, 63, 70, 74, 88, 94, 95]. Mole-
cule follows the line of research and proposes cfork and nIPC-based
communication to achieve low startup and communication latency
on heterogeneous computers. Other works, e.g., keep-alive poli-
cies [57], core scheduling [63], fault tolerance [88, 94], long-running
programming models [95], are orthogonal to Molecule, which will
be explored and integrated in our future work.

8 CONCLUSION

This paper proposes Molecule, the first serverless system support-
ing heterogeneous computers. Molecule is carefully designed to
abstract away the hardware distribution and heterogeneity with a
shim layer (XPU-Shim) and vectorized sandbox abstraction. Our
results show Molecule brings significant benefits on scalability and
performance. We believe Molecule will motivate many future works
for heterogeneous serverless computing.

ACKNOWLEDGMENTS

We sincerely thank our shepherd Amirhossein Mirhosseini and the
anonymous ASPLOS’22 reviewers for their insightful suggestions.
We thank TianxiaWang andXingdaWei for their helps on providing
the initial implementations of Python cfork. We thank Xuhong
Peng and Jun Lu for their helps on providing smartNICs and help
us on debugging. This work was supported in part by the Key-Area
Research and Development Program of Guangdong Province (No.
2020B010164003), the National Natural Science Foundation of China
(No. 61925206, U19A2060, 61972244), STCSM (No. 21511101502).
Corresponding author: Yubin Xia (xiayubin@sjtu.edu.cn).

A ARTIFACT APPENDIX

A.1 Abstract

Molecule is a sandbox runtime for heterogeneous serverless com-
puting. This artifact includes the prototype implementation of Mol-
ecule, FunctionBench and ServerlessBench ported to Molecule, and
the experiment workflow to run these workloads.

A.2 Artifact Check-List (Meta-Information)
• Program: Molecule
• Data set: Open-source workloads from FunctionBench, Serverless-
Bench, and AWS.

• Hardware: FPGA is needed for FPGA function tests (available at
AWS EC2 F1), and DPU is needed for CPU-DPU tests.

809

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

• Metrics: Latency.
• Output: Performance reports for the test cases.
• Experiments: The artificat includes all the scripts and workloads
(benchmarks) necessary to reproduce results.

• How much disk space required (approximately)?: 10GB.
• Howmuch time is needed to prepareworkflow (approximately)?:

1 hour.
• Howmuch time is needed to complete experiments (approx-

imately)?: 3 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MulanPSL v2.

A.3 Description

A.3.1 How to Access. The source code and benchmarks are hosted
onGithub: https://github.com/Molecule-Serverless/molecule-artifact.

A.3.2 Hardware Dependencies.

• CPU: Servers with x86 CPU are recommended. Users can
also use ARM servers for experiments.

• FPGA: Users need a computer that is equipped with (at
least) one FPGA card for FPGA-based functions. AWS EC2
F1 instance (using AMI: ami-02155c6289e76719a) is perfectly
for this case.

• DPU: Users need a computer (with x86 CPU cores) that is
equipped with Nvidia Bluefield DPUs. As DPU is a generic
processor (using ARM CPU cores) and is abstracted by XPU-
Shim, the experiments for CPU-DPU settings are almost the
same as CPU-only settings. The artifact will use the CPU for
the tests. The instructions to configure and use DPU are also
provided and can be used for users with DPUs.

A.3.3 Software Dependencies. The following is a list of software
dependencies for Molecule and workloads (the listed versions have
been tested, and other versions might work but not be guaranteed):

• OS: Ubuntu 18.04/20.04 or Centos-7, Linux kernel 5.4.106.
• Compiler: g++/gcc-7.5.0, go1.15.5.
• Dependent libraries: build-essential, pkgconf, libtool, libsystemd-
dev, libprotobuf-c-dev, libcap-dev, libseccomp-dev, libyajl-
dev, go-md2man, libtool, autoconf, automake.

• Other dependeicies: Docker

The README on Github provides instructions to install the
dependencies.

A.3.4 Data Sets. The evaluation workloads are as follows:

• Eightworkloads (Chameleon, Linpack,Matmul, PyAES, Video
Processing, DD, gzip Compression, Map-Reduce) from Func-
tionBench.

• Two workloads (Image Resize, Alexa) from ServerlessBench.
• Three FPGA workloads (GZip FPGA, Anti-MoneyL, Matrix)
ported from AWS/Xilinx demos.

A.4 Installation

Molecule is open-sourced at https://github.com/Molecule-Serverless.
As the project contains many components, e.g., container runtime
supporting fork and language runtimes like Python/Node.JS for
functions, we use git-modules to manage them all in the artifact.

The code repository is organized as follows:

• molecule-benchmarks/: the benchmark suite (including source
code of serverlessBench) and scripts.

• functionBench/: the source code of functionBench.
• forkable-python-runtime/ andmolecule-js-env/: the language
runtime (Python and Node.js).

• xpu-shim/: the XPU-Shim source code.
• pychain/: the IPC-based DAG chain for python functions.
• runc/: the runc supporting cfork.
• vsandbox-runtime/: the vectorized sandbox used to manage
FPGA functions (based on crun).

• moleculeruntimeclient/: a client to invoke commands on
remote PUs through XPU-Shim.

• docs/: figures and documents about the artifact.

To download and build Molecule and the test workloads, users
can run the scripts:

Enter to the molecule artifact

cd molecule-artifact

Update all submodules:

git submodule update --init --recursive

Build all componets (on x86 CPU):

./build_all.sh

If you have Nvidia DPU (with ARM cores), or you are using an
ARM server, use the following command to build:

On the Nvidia DPU node

./build_all_arm.sh

In addition, each sub-system and the README in Github include
detailed instructions to build systems and workloads separately.

A.5 Experiment Workflow

Molecule utilizes docker container to build function images and
run the functions. The artifact provides a set of scripts to run the
experiments used in the paper, including hello-world demos (for
functionalities), benchmark tests (for results reproducibility), and a
set of microbenchmarks that help users to understand the details
of techniques and custom the artifact for their own usages. All
the scripts are well documented, and the results are formatted and
explained.

A.6 Evaluation and Expected Results

The evaluation includes both benchmarks and microbench mea-
surement (mostly on latencies).

A.6.1 Benchmarks and Applications. The artifact includes scripts
to run benchmarks and applications. The detailed steps to run them
are as follows. The scripts will run both the baseline system and
Molecule and print the comparison data.

Functionbench. To get the end-to-end latencies of Molecule, users
can use the following instructions:

cd TOP_DIR/molecule-benchmarks/function-bench

./func_bench.sh

Chained applications. To run chained applications (e.g., Alexa)
on Molecule:

810

https://github.com/Molecule-Serverless/molecule-artifact
https://github.com/Molecule-Serverless

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

cd TOP_DIR/molecule-benchmarks

Build runtime and functions

./chained-func/docker_build.sh

This script will run Alexa chained applications

./chained-func/docker_run.sh

FPGA applications. To run FPGA applications on Molecule:

cd TOP_DIR/molecule-benchmarks/fpga-apps

./run_bench.sh

Output. The artifact has formated the outputs. For example, the
results of Functionbench would be like:

Function-bench Tests

Test-Case: LinPack (taking minutes)

=============== fork-startup result ==============

latency (ms):

avg 50% 75% 90% 95% 99%

6.40 5 8 9 9 9

=============== fork-end2end result ==============

latency (ms):

avg 50% 75% 90% 95% 99%

56.00 52 59 70 70 70

=============== baseline-startup result ==========

latency (ms):

avg 50% 75% 90% 95% 99%

177.60 172 177 186 186 186

=============== baseline-end2end result ==========

latency (ms):

avg 50% 75% 90% 95% 99%

203.70 198 203 212 212 212

Test-Case: Chameleon (taking minutes)

...

The above results show that the scripts will explicitly highlight
the time required for each test case and the well-formatted results
of baseline and Molecule under the same cases. The results are
directly matched to the data in the paper.

A.6.2 Microbenchmarks. For users who care about each detailed
technique, we provide a set of test cases to evaluate the different
techniques proposed by Molecule. For example, the IPC-based DAG
case is as the following.

IPC-based DAG. To get the communication latencies of Molecule,
using:

Enter molecule-benchmarks

cd TOP_DIR/molecule-benchmarks

./staged-func/docker_build.sh

This script will run all cases (Figure-12)

./staged-func/docker_run.sh

The above commands will run the test cases and dump the com-
munication latencies between different caller and callee, which
are the data used in the paper. Please refer to the README in the
artifact’s Github for more cases.

REFERENCES
[1] 2021. Amazon EC2 F1 Instance Expands to More Regions, Adds New Features,

and Improves Development Tools. https://aws.amazon.com/about-aws/whats-
new/2018/10/amazon-ec2-f1-instance-expands-to-more-regions-adds-new-
features-and-improves-development-tools/. Referenced Aug. 2021.

[2] 2021. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/f1.
Referenced July 2021.

[3] 2021. Apache OpenWhisk docker Runtime. https://github.com/apache/
openwhisk-runtime-docker.

[4] 2021. Apache OpenWhisk is a serverless, open source cloud platform. http:
//openwhisk.apache.org/. Referenced 2021.

[5] 2021. Apache OpenWhisk NodeJS Runtime. https://github.com/apache/
openwhisk-runtime-nodejs.

[6] 2021. AWS Lambda - Serverless Compute. https://aws.amazon.com/lambda/.
Referenced Jan. 2021.

[7] 2021. AWS LambdaEdge changes duration billing granularity from 50ms down
to 1ms. https://aws.amazon.com/about-aws/whats-new/2021/03/cloudfront-
lambda-at-edge-billing-granularity/. Referenced July 2021.

[8] 2021. AWS Shell Interface Specification. https://github.com/aws/aws-fpga/blob/
master/hdk/docs/AWS_Shell_Interface_Specification.md. Referenced Aug. 2021.

[9] 2021. Azure Functions Serverless Architecture. https://azure.microsoft.com/en-
us/services/functions/. Referenced Jan. 2021.

[10] 2021. BlueField-3, the most powerful software-defined, hardware-accelerated
data center infrastructure on a chip. https://www.nvidia.com/en-us/networking/
products/data-processing-unit/. Referenced April 2021.

[11] 2021. Checkpoint/Restore in gVisor. https://gvisor.dev/docs/user_guide/
checkpoint_restore/. Referenced April 2021.

[12] 2021. Cloud Functions - Overview | IBM. https://www.ibm.com/cloud/functions.
Referenced Jan. 2021.

[13] 2021. Compute Express Link. https://www.computeexpresslink.org/. Referenced
Aug. 2021.

[14] 2021. Configuring Lambda function memory. https://docs.aws.amazon.com/
lambda/latest/dg/configuration-memory.html. Referenced April 2021.

[15] 2021. The Docker Containerization Platform. https://www.docker.com/. Refer-
enced December 2021.

[16] 2021. documentation/Limitations.md at master - kata-containers/documentation.
https://github.com/kata-containers/documentation/blob/master/Limitations.
md. Referenced April 2021.

[17] 2021. Firecracker. https://firecracker-microvm.github.io/. Referenced December
2021.

[18] 2021. Fn Project - The Container Native Serverless Framework. https://fnproject.
io. Referenced December 2021.

[19] 2021. FPGA Accelerated Cloud Server-HUAWEI CLOUD. https://www.
huaweicloud.com/en-us/product/fcs.html. Referenced Nov. 2021.

[20] 2021. FPGA Cloud Compute. https://cloud.baidu.com/product/fpga.html. Refer-
enced Aug. 2021.

[21] 2021. Google Cloud Function. https://cloud.google.com/functions/. Referenced
Jan. 2021.

[22] 2021. Google gVisor: Container Runtime Sandbox. https://github.com/google/
gvisor. Referenced December 2021.

[23] 2021. Hardware Acceleration over NFV in China Mobile. https://wiki.opnfv.org/
download/attachments/20745096/opnfv_Acc.pdf. Referenced Nov. 2021.

[24] 2021. How DNAnexus and Edico Genome are Powering Precision Medicine
on Amazon Web Services (AWS). https://aws.amazon.com/blogs/apn/how-
dnanexus-and-edico-genome-are-powering-precision-medicine-on-amazon-
web-services-aws/. Referenced Aug. 2021.

[25] 2021. Instance families - Instance| Alibaba Cloud Documentation Center. https:
//www.alibabacloud.com/help/doc-detail/25378.htm. Referenced Aug. 2021.

[26] 2021. Kata Containers. https://github.com/kata-containers. Referenced December
2021.

[27] 2021. Marvell OCTEON SDK. https://www.marvell.com/content/dam/marvell/
en/public-collateral/embedded-processors/marvell-octeon-tx2-sdk-solutions-
brief.pdf. Referenced April 2021.

[28] 2021. Mellanox Innova-2 Flex Open Programmable SmartNIC. https://www.
mellanox.com/products/smartnics/innova-2-flex. Referenced 2021.

[29] 2021. Multi-Core Processors - LiquidIO Smart NICs | Network adapter - Mar-
vell. https://www.marvell.com/products/infrastructure-processors/multi-core-
processors/liquidio-smart-nics.html. Referenced 2021.

[30] 2021. NetFPGA. https://netfpga.org. Referenced 2021.
[31] 2021. NVIDIA Mellanox BlueField DPU. https://www.mellanox.com/products/

bluefield-overview. Referenced 2021.
[32] 2021. opencontainers/runc. https://github.com/opencontainers/runc.git. Refer-

enced April 2021.
[33] 2021. opencontainers/runtime-spec: OCI Runtime Specification. https://github.

com/opencontainers/runtime-spec. Referenced July 2021.

811

https://aws.amazon.com/ec2/instance-types/f1
https://github.com/apache/openwhisk-runtime-docker
https://github.com/apache/openwhisk-runtime-docker
http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://github.com/apache/openwhisk-runtime-nodejs
https://github.com/apache/openwhisk-runtime-nodejs
https://aws.amazon.com/lambda/
https://aws.amazon.com/about-aws/whats-new/2021/03/cloudfront-lambda-at-edge-billing-granularity/
https://aws.amazon.com/about-aws/whats-new/2021/03/cloudfront-lambda-at-edge-billing-granularity/
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://gvisor.dev/docs/user_guide/checkpoint_restore/
https://gvisor.dev/docs/user_guide/checkpoint_restore/
https://www.ibm.com/cloud/functions
https://www.computeexpresslink.org/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://www.docker.com/
https://github.com/kata-containers/documentation/blob/master/Limitations.md
https://github.com/kata-containers/documentation/blob/master/Limitations.md
https://firecracker-microvm.github.io/
https://fnproject.io
https://fnproject.io
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://cloud.baidu.com/product/fpga.html
https://cloud.google.com/functions/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf
https://www.alibabacloud.com/help/doc-detail/25378.htm
https://www.alibabacloud.com/help/doc-detail/25378.htm
https://github.com/kata-containers
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-tx2-sdk-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-tx2-sdk-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-tx2-sdk-solutions-brief.pdf
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://netfpga.org
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://github.com/opencontainers/runc.git
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen

[34] 2021. Shim (computing) from Wikipedia. https://en.wikipedia.org/wiki/Shim_
(computing). Referenced Dec 2021.

[35] 2021. [Snaps] Full snapshot + restore, firecracker-microvm/firecracker. https:
//github.com/firecracker-microvm/firecracker/issues/1184. Referenced April
2021.

[36] 2021. The State of Serverless. https://www.datadoghq.com/state-of-serverless/.
Referenced Aug. 2021.

[37] 2021. Stingray SmartNIC Adapters and IC. https://www.broadcom.com/products/
ethernet-connectivity/network-adapters/smartnic. Referenced 2021.

[38] 2021. Vitis Accel Examples Documentation. https://xilinx.github.io/Vitis_Accel_
Examples/2021.1/html/. Referenced Aug. 2021.

[39] 2021. Vitis Unified Software Platform. https://www.xilinx.com/products/design-
tools/vitis.html. Referenced Aug. 2021.

[40] 2021. Xilinx Powers Huawei FPGA Accelerated Cloud Server.
https://www.xilinx.com/news/press/2017/xilinx-powers-huawei-fpga-
accelerated-cloud-server.html. Referenced Aug. 2021.

[41] Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Humbel, Timo-
thy Roscoe, and Daniel Schwyn. 2021. Mmapx: Uniform Memory Protection in a
Heterogeneous World. In Proceedings of the Workshop on Hot Topics in Operating
Systems (Ann Arbor, Michigan) (HotOS ’21). Association for Computing Machin-
ery, New York, NY, USA, 159ś166. https://doi.org/10.1145/3458336.3465273

[42] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 419ś434. https://www.usenix.org/conference/nsdi20/presentation/
agache

[43] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND : Towards High-
Performance Serverless Computing. In 2018U SEN IX Annual Technical Confer-
ence (U SEN IX ATC 18). 923ś935.

[44] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard
Fettweis. 2016. M3: A Hardware/Operating-System Co-Design to Tame Het-
erogeneous Manycores. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 189ś203.
https://doi.org/10.1145/2872362.2872371

[45] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-
Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017. Breaking the Bound-
aries in Heterogeneous-ISA Datacenters. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 645ś659. https://doi.org/10.1145/3037697.3037738

[46] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Akshay
Ravichandran, Cagil Kendir, Alastair Murray, and Binoy Ravindran. 2015. Pop-
corn: Bridging the Programmability Gap in Heterogeneous-ISA Platforms. In
Proceedings of the Tenth European Conference on Computer Systems (Bordeaux,
France) (EuroSys ’15). Association for Computing Machinery, New York, NY, USA,
Article 29, 16 pages. https://doi.org/10.1145/2741948.2741962

[47] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(Big Sky, Montana, USA) (SOSP ’09). Association for Computing Machinery, New
York, NY, USA, 29ś44. https://doi.org/10.1145/1629575.1629579

[48] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Calciu, Sanidhya
Kashyap, Ryan Stutsman, Amy Tai, and Gerd Zellweger. 2021. NrOS: Effective
Replication and Sharing in an Operating System. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21). USENIX Association.

[49] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (sep 1999), 720ś748. https:
//doi.org/10.1145/324133.324234

[50] Tanya Brokhman, Pavel Lifshits, and Mark Silberstein. 2019. GAIA: An OS

Page Cache for Heterogeneous Systems. In 2019 U SEN IX Annual Technical
Conference (U SEN IX ATC 19). 661ś674.

[51] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 32, 15 pages. https://doi.org/10.1145/3342195.3392698

[52] Shenghsun Cho, Han Chen, Sergey Madaminov, Michael Ferdman, and Peter
Milder. 2020. Flick: Fast and Lightweight ISA-Crossing Call for Heterogeneous-
ISA Environments. In Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE Press,
187ś198. https://doi.org/10.1109/ISCA45697.2020.00026

[53] Xiaoning Ding, KaiboWang, Phillip B. Gibbons, and Xiaodong Zhang. 2012. BWS:
Balanced Work Stealing for Time-Sharing Multicores. In Proceedings of the 7th

ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12).
Association for Computing Machinery, New York, NY, USA, 365ś378. https:
//doi.org/10.1145/2168836.2168873

[54] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 467ś481. https:
//doi.org/10.1145/3373376.3378512

[55] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In
Proceedings of the 38th Annual International Symposium on Computer Architecture
(San Jose, California, USA) (ISCA ’11). Association for Computing Machinery,
New York, NY, USA, 365ś376. https://doi.org/10.1145/2000064.2000108

[56] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta,Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-
mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. 2018. Azure Ac-
celerated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). 51ś66.

[57] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless
Computing Alive with Greedy-Dual Caching. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Ma-
chinery, New York, NY, USA, 386ś400. https://doi.org/10.1145/3445814.3446757

[58] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. 1999.
Tornado: Maximizing locality and concurrency in a shared memory multiproces-
sor operating system. In OSDI, Vol. 99. 87ś100.

[59] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. 2016. Biscuit: A Framework for near-Data Process-
ing of Big Data Workloads. In Proceedings of the 43rd International Symposium on
Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 153ś165.
https://doi.org/10.1109/ISCA.2016.23

[60] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In Proceedings of the 2019 USENIX Confer-
ence on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC
’19). USENIX Association, USA, 947ś960.

[61] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable
Serverless Computing for Latency-Sensitive, Interactive Microservices. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS
2021). Association for Computing Machinery, New York, NY, USA, 152ś166.
https://doi.org/10.1145/3445814.3446701

[62] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[63] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019. Centralized
Core-Granular Scheduling for Serverless Functions. In Proceedings of the ACM
Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Association
for Computing Machinery, New York, NY, USA, 158ś164. https://doi.org/10.
1145/3357223.3362709

[64] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Rajamani, Alexan-
dre Ferreira, and Aditya Akella. 2018. Iron: Isolating network-based CPU in
container environments. In 15th U SEN IX Symposium on Networked Systems
Design and Implementation (NSDI 18). 313ś328.

[65] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J Rossbach. 2018. Sharing, protection, and compatibility for
reconfigurable fabric with amorphos. In 13thU SEN IX Symposium on Operating
Systems Design and Implementation (OSDI 18). 107ś127.

[66] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Workloads for Server-
less FaaS. In Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for Computing Machinery, New York, NY, USA,
477. https://doi.org/10.1145/3357223.3365439

[67] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Emmett
Witchel, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for
GPU Programs. In 11thU SEN IX Symposium on Operating Systems Design and
Implementation (OSDI 14). 201ś216.

[68] Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri Narra, Jing Li, Hung-Wei
Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: trading
communication with computing near storage. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 219ś231.

812

https://en.wikipedia.org/wiki/Shim_(computing)
https://en.wikipedia.org/wiki/Shim_(computing)
https://github.com/firecracker-microvm/firecracker/issues/1184
https://github.com/firecracker-microvm/firecracker/issues/1184
https://www.datadoghq.com/state-of-serverless/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://xilinx.github.io/Vitis_Accel_Examples/2021.1/html/
https://xilinx.github.io/Vitis_Accel_Examples/2021.1/html/
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/news/press/2017/xilinx-powers-huawei-fpga-accelerated-cloud-server.html
https://www.xilinx.com/news/press/2017/xilinx-powers-huawei-fpga-accelerated-cloud-server.html
https://doi.org/10.1145/3458336.3465273
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1109/ISCA45697.2020.00026
https://doi.org/10.1145/2168836.2168873
https://doi.org/10.1145/2168836.2168873
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/3357223.3365439

Serverless Computing on Heterogeneous Computers ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[69] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions
make sense on FPGAs?. In 14th U SEN IX Symposium on Operating Systems
Design and Implementation (OSDI 20). 991ś1010.

[70] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021.
Faastlane: Accelerating Function-as-a-Service Workflows. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 805ś820.
https://www.usenix.org/conference/atc21/presentation/kotni

[71] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. 2020. LeapIO: Efficient and Portable Virtual NVMe Storage on ARM
SoCs. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. Association for
Computing Machinery, New York, NY, USA, 591ś605. https://doi.org/10.1145/
3373376.3378531

[72] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 363ś378. https://www.usenix.org/
conference/atc19/presentation/liu-ming

[73] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A Hypervisor for Shared-
Memory FPGA Platforms. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems. Association for Computing Machinery, New York, NY, USA, 827ś844.
https://doi.org/10.1145/3373376.3378482

[74] Ashraf Mahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 285ś301. https://www.usenix.org/conference/
atc21/presentation/mahgoub

[75] Mellanox Technologies. 2021. BlueField Multicore System on Chip.
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_
BlueField_Storage_Controller_Card.pdf.

[76] Netronome. 2021. Netronome Agilio SmartNICs. https://www.netronome.com/
media/documents/PB_NFP-4000.pdf.

[77] Joel Nider and Alexandra (Sasha) Fedorova. 2021. The Last CPU. In Proceedings of
the Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan) (HotOS
’21). Association for Computing Machinery, New York, NY, USA, 1ś8. https:
//doi.org/10.1145/3458336.3465291

[78] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK : Rapid Task Provision-
ing with Serverless-Optimized Containers. In 2018U SEN IX Annual Technical
Conference (U SEN IX ATC 18). 57ś70.

[79] Nathan Pemberton, Johann Schleier-Smith, and Joseph E. Gonzalez. 2021. The
RESTless Cloud. In Proceedings of theWorkshop on Hot Topics in Operating Systems
(Ann Arbor, Michigan) (HotOS ’21). Association for Computing Machinery, New
York, NY, USA, 49ś57. https://doi.org/10.1145/3458336.3465280

[80] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: a programming system
for NIC-accelerated network applications. In 13th U SEN IX Symposium on
Operating Systems Design and Implementation (OSDI 18). 663ś679.

[81] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. 2014. Willow: A User-
Programmable SSD . In 11thU SEN IX Symposium on Operating Systems Design
and Implementation (OSDI 14). 67ś80.

[82] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 U SEN IX Annual
Technical Conference (U SEN IX ATC 20). 205ś218.

[83] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
U SEN IX Symposium on Operating Systems Design and Implementation (OSDI

18). 69ś87.
[84] Simon Shillaker and Peter Pietzuch. 2020. Faasm: lightweight isolation for efficient

stateful serverless computing. In 2020 U SEN IX Annual Technical Conference
(U SEN IX ATC 20). 419ś433.

[85] Mark Silberstein. 2017. OmniX: An Accelerator-Centric OS for Omni-
Programmable Systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (Whistler, BC, Canada) (HotOS ’17). Association for Computing
Machinery, New York, NY, USA, 69ś75. https://doi.org/10.1145/3102980.3102992

[86] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
Integrating a File Systemwith GPUs. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Houston, Texas, USA) (ASPLOS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 485ś498. https://doi.org/10.1145/2451116.2451169

[87] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan Li, Yuxiong He, Elton
Zheng, Adi Oltean, Maya Mosyak, Chris Barnes, et al. 2019. Deep learning
inference service at microsoft. In 2019 U SEN IX Conference on Operational
Machine Learning (OpML 19). 15ś17.

[88] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez,
Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-Tolerance Shim for
Serverless Computing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing
Machinery, New York, NY, USA, Article 15, 15 pages. https://doi.org/10.1145/
3342195.3387535

[89] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al. 2021. Dorylus:
affordable, scalable, and accurate GNN training with distributed CPU servers and
serverless threads. In 15thU SEN IX Symposium on Operating Systems Design
and Implementation (OSDI 21). 495ś514.

[90] Maroun Tork, Lina Maudlej, andMark Silberstein. 2020. Lynx: A SmartNIC-Driven
Accelerator-Centric Architecture for Network Servers. Association for Comput-
ing Machinery, New York, NY, USA, 117ś131. https://doi.org/10.1145/3373376.
3378528

[91] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, Analysis, and Optimization of Serverless Function
Snapshots. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS 2021). Association for Computing Machinery, New York, NY, USA,
559ś572. https://doi.org/10.1145/3445814.3446714

[92] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable Execution
Optimized for Page Sharing for a Managed Runtime Environment. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 39, 16 pages.
https://doi.org/10.1145/3302424.3303978

[93] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms
with ServerlessBench. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’20). Association for Computing Machinery. https://doi.org/10.1145/
3419111.3421280

[94] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In 14th
U SEN IX Symposium on Operating Systems Design and Implementation (OSDI

20). 1187ś1204.
[95] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020. Kappa:

A Programming Framework for Serverless Computing. In Proceedings of the
11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 328ś343. https:
//doi.org/10.1145/3419111.3421277

[96] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. 2021. Un-
derstanding, Predicting and Scheduling Serverless Workloads under Partial In-
terference. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). As-
sociation for Computing Machinery, New York, NY, USA, Article 22, 15 pages.
https://doi.org/10.1145/3458817.3476215

813

https://www.usenix.org/conference/atc21/presentation/kotni
https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/3373376.3378531
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://doi.org/10.1145/3373376.3378482
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Storage_Controller_Card.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Storage_Controller_Card.pdf
https://www.netronome.com/media/documents/PB_NFP-4000.pdf
https://www.netronome.com/media/documents/PB_NFP-4000.pdf
https://doi.org/10.1145/3458336.3465291
https://doi.org/10.1145/3458336.3465291
https://doi.org/10.1145/3458336.3465280
https://doi.org/10.1145/3102980.3102992
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3458817.3476215

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Case-1: DPU for Higher Density
	2.3 Case-2: Accelerator for Better Performance
	2.4 Other Representative Cases
	2.5 Goals

	3 Abstraction
	3.1 XPU-Shim
	3.2 Distributed Capability
	3.3 Neighbor IPC
	3.4 Miscellaneous XPU Operations
	3.5 Vectorized Sandbox Abstraction

	4 Molecule Design
	4.1 Heterogeneous Serverless Computing
	4.2 Optimizing Startup Latency
	4.3 Optimizing Function DAG Communication

	5 Implementation and Optimizations
	6 Evaluation
	6.1 Neighbor IPC Performance
	6.2 Benefits of Heterogeneous Serverless
	6.3 Commercial Serverless Systems
	6.4 Function Startup Latency
	6.5 Function Communication Latency
	6.6 Real Applications and Benchmarks
	6.7 Comparison with State-of-the-Art Systems
	6.8 Generality

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

