
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Unifying Timestamp with Transaction Ordering for
MVCC with Decentralized Scalar Timestamp
Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhenhan Gong,

and Binyu Zang, Shanghai Jiao Tong University
https://www.usenix.org/conference/nsdi21/presentation/wei

Unifying Timestamp with Transaction Ordering for MVCC

with Decentralized Scalar Timestamp

Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhenhan Gong, Binyu Zang
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

This paper presents DST, a decentralized scalar timestamp

scheme to scale distributed transactions using multi-version
concurrency control (MVCC). DST is efficient in storage and
network by being a scalar timestamp but requiring no central-
ized timestamp service for coordination, which may become
a scalability bottleneck. The key observation is that concur-
rency control (CC) protocols like OCC and 2PL already im-
ply a serializable order among concurrent read-write transac-
tions through conflicting database tuples. To this end, DST
piggybacks on CC protocols to maintain the timestamp or-
dering with low cost and no new scalability bottleneck for
read-write transactions. DST further provides snapshot reads
with bounded staleness by using a hybrid scalar timestamp
(physical clock and logical counter).

To demonstrate the generality of DST, we provide a gen-
eral guideline for the integration of DST and further show
the effectiveness by using three representative transactional
systems (i.e., DrTM+R, MySQL cluster, and ROCOCO) with
different CC protocols. Experimental results show that DST
can achieve more than 95% of optimal performance (using
Read Committed) without compromising correctness. With
DST, DrTM+R achieves up to 1.8X higher peak throughput
for TPC-E and outperforms other timestamp schemes by 6.3X
for TPC-C. DST also leads up to 1.9X and 2.1X speedup on
TPC-C for MySQL cluster and ROCOCO, respectively.

1 Introduction

Many large-scale applications like Web services, stock ex-
change, and e-commerce require accessing scalable sharded
data stores in a consistent way. Among such accesses, a
large fraction requires consistently scanning data over many
shards despite concurrent updates on the fly. For example, an
examination of TPC-E [57], a sophisticated online transaction
processing benchmark that models stock exchange, uncovers
that 79% of transactions are read-only ones at run time. It
was also reported that 99.8% of accesses to Facebook’s dis-
tributed data store TAO are reads [16], which need strong
consistency along with transactional writes [7].

However, it is costly to provide transactional isolation to
read-only transactions [39] because a user read request may
result in thousands of sub-queries [7]. Pessimistically exe-
cuting a read-only transaction may cause unnecessary block-
ing to itself and concurrent read-write transactions, while op-
timistically executing it is likely to cause excessive aborts.
For instance, as shown in Fig. 1(a), there is a notable per-

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Throughput (K txns/s)

RC/Incorrect

OCC

OCC+GTS

OCC+VTS

0

0.4

0.8

1.2

1.6

2.0

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Number of districts

RC/Incorrect

OCC

OCC+GTS

OCC+VTS

Fig. 1: Performance of (a) TPC-E and (b) TPC-C on a local 16-node

cluster using different CC protocols and TS schemes (see §5 for de-

tails). GTS and VTS stand for using OCC protocol, while the read-

only transactions read the snapshots delimitated by GTS and VTS.

RC/Incorrect stands for using RC protocol, which can provide opti-

mal performance, but at the expense of correctness. One machine is

dedicated for timestamp oracle, even OCC and RC have no need.

formance gap between using optimistic concurrency control
(OCC) [29] and read committed (RC) protocol for TPC-E.1

A common approach is to leverage multi-version concur-
rency control (MVCC) [13, 65] for transactional systems,
which has been widely adopted by nearly every commer-
cial database like PostgreSQL [3], Oracle [4], MySQL/Inn-
oDB [2], Hekaton [21], and SAP HANA [50]. MVCC si-
multaneously maintains multiple database snapshots by us-
ing timestamps to delimitate them. Thus, readers may read
tuples from a stale snapshot while writers can write the tu-
ples concurrently. It essentially unleashes the parallelism be-
tween concurrent readers and writers.

While MVCC extracts more concurrency for transactions
(especially for read-only transactions), it does not necessarily
approach optimal performance and/or scalability improve-
ment (see Fig. 1), due to the overhead of maintaining times-
tamp ordering at scale (§2.3). More specifically, a central-
ized sequencer (timestamp oracle) is usually used to provide
snapshot timestamp to transactions, which reflects a total or-
der among transactions (i.e., global timestamp (GTS)). How-
ever, such a mechanism not only adds more communications
but also causes overly-constrained concurrency control for
read-write transactions, leading to performance degradation
and scalability bottlenecks [14]. Vector timestamp (VTS),
which leverages a clock per worker or machine, only mit-
igates the scalability bottleneck of centralized timestamp
schemes but causes more network traffic, which grows lin-

1We evaluate different timestamp schemes on DrTM+R [18]. RC cannot
provide correct results as it completely disregards the conflicts between
read-write and read-only transactions. Detailed setup can be found in §5.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 357

early with the increase of workers or machines in the system.
Although recent work ameliorates the performance of cen-
tralized and/or vectorized timestamp schemes (e.g., batch-
ing requests [46, 27], timestamp compression [70], and ded-
icated fetch thread [70]), the fundamental performance and
scalability bottlenecks remain.

In this paper, we propose a new timestamp scheme,
namely, decentralized scalar timestamp (DST), which en-
ables MVCC without a centralized sequencer or vector times-
tamps. DST is motivated by a key observation: transac-

tion ordering provided by existing CC protocols already im-

plies serializable ordering among transactions, which can

be reused to maintain timestamp ordering in a lightweight

and scalable way. This is because any pair of conflicting
transactions must have conflicting accesses to a particular tu-
ple. Thus, the later transaction should see the timestamp of
the former transaction from the conflicting tuple and have a
larger timestamp.

DST piggybacks on CC protocols to derive a scalable
timestamp, in contrast to providing a separate timestamp
scheme. Specifically, DST starts with a scalar timestamp for
each transaction from a local clock and dynamically refines
the tentative timestamp through transaction execution with
the largest one from tuples in the read/write set. Upon com-
mit, a transaction will also install the refined timestamp to
the read/write set so that any transactions serialized after this
transaction will have a larger timestamp.

One key challenge is how to derive a consistent yet fresh

snapshot. DST leverages a decentralized design for read-only
transactions, which introduces a hybrid scalar timestamp to
provide snapshot reads with bounded staleness. Specifically,
the read-only transaction can read fresh tuples whose times-
tamp is within two times the maximum physical clock drift
under loosely synchronized clocks.2 The fresh and consistent
snapshot is obtained by attempting to read tuples using the
latest hybrid timestamp while detecting and reordering any
concurrent conflicting read-write transactions. In the hybrid
timestamp, the physical part (a loosely synchronized clock)
ensures the read-only transaction can read a fresh snapshot,
and the logical part (a monotonically increasing counter)
avoids possible overflow of the physical part.

To demonstrate the effectiveness and generality of DST,
we have implemented DST on three representative trans-
actional systems with different CC protocols, namely
DrTM+R [18] (OCC), MySQL cluster [1] (2PL), and
ROCOCO [43]. We also implemented two centralized times-
tamp schemes (GTS and VTS) on DrTM+R by following the
state-of-the-art [46, 70]. The experimental results on three
clusters show that DST can achieve more than 95% of op-
timal performance (using RC protocol) without compromis-
ing correctness. With DST, DrTM+R achieves up to 1.8X
and 6.1X performance improvements for TPC-E and TPC-C.

2The clock drift (aka clock skew) can be obtained using a network time pro-
tocol like the precision time protocol (PTP), which only affects the fresh-
ness of reads in DST rather than correctness.

A comparison with other timestamp schemes shows DST is
up to 1.7X and 6.3X faster than best of them for TPC-E and
TPC-C, respectively. Further, DST also leads up to 1.9X and
2.1X speedup on TPC-C for MySQL cluster and ROCOCO.

DST shares some similarities with decentralized times-
tamps proposed in prior work [68, 37], which optimize a
specific CC protocol for multi-core databases. For instance,
TicToc [68] uses a data-driven timestamp scheme to reduce
transaction aborts for OCC. Differently, DST is a general
timestamp scheme for various CC protocols (§4.2) and can
piggyback on each one efficiently in a distributed setting.

In summary, the contributions of this paper are:

• A decentralized scalar timestamp scheme called DST for
MVCC that enables efficient read-only transactions with
little impact on read-write transactions (§3.1 and §3.2), as
well as an intuitive proof of correctness (§3.3).

• A consistent yet fresh snapshot-read approach based on a
hybrid timestamp that provides bounded staleness (§3.4).

• To demonstrate the generality, DST is integrated into
three representative transactional systems with different
CC protocols, including OCC, 2PL, and ROCOCO (§4).

• A set of evaluations on three clusters with both mi-
crobenchmarks and applications (e.g., TPC-E, TPC-C, and
SmallBank) confirms the performance gains of DST (§5).

The source code of three transactional systems with DST,
including all benchmarks and experimental results, are avail-
able at https://github.com/SJTU-IPADS/dst.

2 Background and Motivation

2.1 Target Systems

DST is designed for general distributed transactions over
database data partitioned to multiple storage nodes. The
client’s transaction request is handled by a coordinator,
which interacts with storage nodes for executing the transac-
tion. During the transaction’s execution, the coordinator may
send read/write requests to read/write data from the storage
nodes; or send transactional requests (e.g., lock or unlock)
according to the database’s concurrency control protocol. It
batches requests (e.g., write and unlock) to avoid extra net-
work roundtrip.

Our goal is to support serializable read-only transaction
that never aborts, and does not interfere with read-write trans-
action. Further, it is desirable to execute reads in the read-
only transaction in one-roundtrip, i.e., the coordinator can
retrieve a consistent view of the data from the storage nodes
in one request.

2.2 MVCC and Timestamps

A common approach to support serializable read-only trans-
action without interfering with read-write transaction is
through multi-version concurrency control (MVCC). There
are two major design considerations for an efficient MVCC
system compared with single-version mechanisms [65]. The
first is how to cheaply allocate a globally-ordered version

358 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/dst

2PL with global timestamp (GTS)

At Oracle: ✁ timestamp server

+ GlobalTS ✁ monotonic global timestamp

+ StableGTS ✁ snapshot global timestamp

+ Queue ✁ pending global timestamp

INSTALL(gts):

+1 add gts to Queue

STABILIZE(): ✁ run asynchronously

+1 for each gts in Queue do

+2 if gts is ready then

+3 dequeue gts and gts → StableGTS

At Workeri: ✁ i denotes the worker number

WRITE(tx,	id,	data)

1 acquire lock

2 add �id,	data� to tx.wset

READ(tx,	id)

1 acquire lock and get latest �data�

2 add �id,	data� to tx.rset

3 return �data�

COMMIT(tx)

+1 tx.TS ← Oracle.GlobalTS ✁ network round trip

2 for each w in tx.wset do

:3 update �w.data,	tx.TS� and release lock

3 for each r in tx.rset do

4 release lock

+5 Oracle.INSTALL(tx.TS) ✁ network round trip

ROTX(tx) ✁ snapshot read

+1 tx.TS ← Oracle.StableGTS

+2 for each r in tx.rset do

+3 get �r.data� up to tx.TS

Fig. 2: Using GTS (i.e., blue code lines) to enable consistent snap-

shots for read-only transactions with 2PL. +N and :N denote new

and modified lines of code respectively.

for updating tuples transactionally. Deciding the version in-
stalled with tuples should have minimal impacts on read-
write transactions. The second is how to efficiently allocate a

freshly-stable version for reading tuples consistently. Read-
only transactions should have access to consistent snapshots
with low latency and high freshness. MVCC schemes typ-
ically adopt the concept of timestamps for tuple versions.
However, it is non-trivial to design a general timestamp
scheme that supports efficient snapshot reads while incurring
minimal overhead for broad CC protocols.

To motivate the design of DST, we start by briefly re-
viewing how existing timestamp schemes are applied to two-
phase locking (2PL) for MVCC and snapshot reads [45, 65].

Global timestamp (GTS). This approach leverages a times-
tamp service, namely timestamp oracle, to manage globally
ordered timestamps [46, 15, 21]. It provides two functions
for MVCC systems, as shown in Fig. 2. First, the read-
write transaction contacts the oracle for a commit timestamp
(GlobalTS) at the commit phase. Upon a successful commit,
this transaction creates a new version denoted by the commit
timestamp for each tuple in the write set (line:3 of COM-
MIT) and sends back the committed timestamp to the oracle
(line:5). Second, the read-only transaction contacts the ora-

StableGTS

C=1

A=B

B=2

C A

4 53 6

3 3 53 6

GlobalTS

4

5

6

W1:

W2:

W3:

A

B 5

0 50 0

0

5

0 1

5 2

3

id

C
ts

(value)

value

B

A=3

B

EXECUTION

MVSTORE
1 1 5

62

1 4 6411

2

time

time

TX3

TX4
TX2

TX1

A

multi-version

A A=Bread write remoteTX

INSTALL

commit TS

4 TS

Fig. 3: A sample case of using GTS, where four transactions (TX1-

TX4) operate on three tuples (A, B, and C).

cle for a read timestamp (StableGTS) and retrieves tuples in
the read set with versions no larger than the read timestamp
(line:2-3 of ROTX).

Given the specification of extensions to 2PL with GTS in
Fig. 2, we analyze the transaction behavior in the case shown
in Fig. 3 to explain the design of GTS. There are four transac-
tions (TX1–TX4), which operate on three tuples (A, B, and C).
Note that non-conflicting transactions TX1 (green) and TX2

(orange) are both forced to acquire GlobalTS according to
the specification. This operation is necessary to maintain the
global timestamp ordering, yet results in overly-constrained
concurrency control and an extra network round trip com-
pared to the vanilla 2PL.

The necessity of the oracle to maintain StableGTS can be
revealed with the conflict between the timestamp order and
the commit order concerning TX1 and TX2. In this case, TX2

acquires a larger GlobalTS but commits before TX1. When
read-only transaction TX4 (red) starts, it cannot simply use
the latest committed timestamp (GlobalTS=5) for snapshot
reads. The snapshot would be inconsistent if the read-only
transaction observes TX2 before TX1 commits. Thus, transac-
tions must install commit timestamps so that the oracle can
determine the read timestamp (StableGTS=3) for TX4.

Vector timestamp (VTS). To reduce the overhead of acquir-
ing GlobalTS in the critical path of read-write transactions,
VTS replaces the global timestamp counter with a vector of
local timestamps. The vector contains a slot for each worker,
which records the per-worker timestamp. In each worker, a
local counter (LocalTS) is used to assign the commit times-
tamp for transactions, hence reducing one network round trip
compared to GTS. However, the oracle is retained in VTS to
maintain the StableVTS with similar reasons as GTS. Fig. 4
shows the specification of extensions to 2PL with VTS.

Fig. 5 presents a concrete case of using VTS. Each worker
maintains its local counter (W1:3, W2:2, and W3:5). The ver-
sion of a tuple is represented as 〈i : ts〉, where i is the
worker ID, and ts is the commit timestamp of the transaction
that writes the tuple. The initial StableVTS is (3, 2, 5), which
means that tuples with versions less than 〈1 : 3〉, 〈2 : 2〉, and

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 359

2PL with vector timestamp (VTS)

At Oracle: � timestamp server

+ StableVTS � snapshot global timestamp

+ Queues � pending global timestamp

INSTALL(�i:ts�,	deps)

+1 add ��i:ts�,	deps� to a Queues[i]

STABILIZE() � run asynchronously

+1 for each queue in Queues do

+2 for each ��i:ts�,	deps� in queue do

+3 if deps is ready then � stability protocol

+4 dequeue ��i:ts�,	deps�

+5 �i:ts� → StableVTS

At Workeri: � i denotes the worker number

+ LocalTS � monotonic local timestamp

WRITE(tx,	id,	data)

:1 acquire lock and get latest �i:ts�

2 add �id,	data� to tx.wset

+3 add �i:ts� to tx.deps

READ(tx,	id)

:1 acquire lock and get latest �data,	�i:ts��

2 add �id,	data� to tx.rset

+3 add �i:ts� to tx.deps

4 return �data�

COMMIT(tx)

+1 tx.TS ← LocalTS

2 for each w in tx.wset do

:3 update �w.data,	�i:tx.TS�� and release lock

4 for each r in tx.rset do

5 release lock

+6 Oracle.INSTALL(�i:tx.TS�,	tx.deps) � NT round trip

ROTX(tx) � snapshot read

+1 tx.TS ← Oracle.StableVTS

+2 for each r in tx.rset do

+3 get �r.data� up to tx.TS

Fig. 4: Using VTS (i.e., blue code lines) to enable consistent snap-

shots for read-only transactions with 2PL. +N and :N denote new

and modified lines of code respectively.

〈3 : 5〉 can be consistently read by read-only transactions.
Maintaining the stable timestamp (StableVTS) becomes

more complex in VTS because the per-worker timestamps
are not directly comparable [70, 8]. To convey the ordering
of transactions to the oracle for deciding StableVTS, workers
collect observed timestamps of accessed tuples from other
workers (e.g., 〈1 : 2〉 of C for TX2). Note that when read-
write transactions (TX1, TX2, and TX3) commit, they must
send all observed timestamps (deps) to the oracle (INSTALL

in Fig. 4). Moreover, read-only transactions (TX4) must re-
quest the whole vector timestamp (StableVTS) from the ora-
cle to start a snapshot read.

2.3 Analysis of Network Overhead

We present an in-depth analysis of centralized timestamp
schemes3 and attribute performance overhead and scalability
bottleneck to three main aspects:

3For brevity, we avoid prior sophisticated optimizations (incl. batching re-
quests [46, 27], timestamp compression and dedicated fetch thread [70])
for timestamps in here, but enable all of them in the evaluation (§5).

StableVTS

C=1

A=BW1:

W2:

W3:

3
2
5

A

B 5

0 50 0

0

5

0 1

5 2

3
2
6

4
2
6

B=2

C A

3
2
6

4
3
6

3

2:3

3:6 1:4

1:2

1:23:3

3:3

B43

LocalTS

5 6

2 A=3

3

id

C

value

B

EXECUTION

MVSTORE
ts

(value)

time

time

3:61:2

2:3

2:31:41:21:41:21:2

3:3 3:3

1:2

TX3

TX4TX2

TX1

A

1:4 1:4

LocalTS

LocalTS

multi-version

A A=Bread write remote localTX

INSTALL

deps

commit TS

2:3 TS

Fig. 5: A sample case of using VTS, where four transactions (TX1-

TX4) operate on three tuples (A, B, and C).

Non-scalable timestamp oracle. Prior work [46, 61, 11, 59,
67, 37] has shown that a centralized timestamp oracle will
become the scalability bottleneck of MVCC systems. The
throughput of schemes using a shared counter with atomic
operations (GTS) [31, 21, 25] is limited to less than 10 M op-
s/s (GlobalCNT in Fig. 6(a)). The throughput will further de-
crease due to maintaining the stable timestamp for read-only
transactions (+StableTS). VTS mitigates the scalability issue
by using a local counter for read-write transactions. Besides,
prior work [70] avoids the mechanism for the stable times-
tamp (reaching close to 40 M ops/s) at the expense of increas-
ing transaction aborts. However, the network will first be-
come the bottleneck for both GTS and VTS (Network). Con-
sequently, the throughput of timestamp oracle (TSOracle)
can only reach 1.26 M and 2.39 M ops/s for GTS and VTS
respectively, which may be enough for TPC-E (281 K txns/s)
but far not enough for TPC-C (1.64 M txns/s) and SmallBank
(80 M txns/s) even only scaling out to 16 machines.

Using fast networks can boost the throughput of times-
tamp oracle, while the performance of transactional sys-
tems will also increase much [23, 64, 26, 70], and CPU
may first become the bottleneck [59]. Moreover, batching
requests [46, 27] or dedicated fetch thread [70] can allevi-
ate the timestamp-related load on the network4, while these
techniques also amplify the staleness of the data retrieved by
read-only transactions, and increase the abort rate and the
end-to-end latency of read-write transactions (see §5.1).

Costly timestamp allocation. A centralized timestamp
scheme will inevitably cause extra network communication
overhead for each read-write transaction. GTS demands two
network round trips, one for obtaining the commit timestamp
and one for installing it. VTS uses per-worker local coun-
ters to assign the commit timestamp, but still demands one
network round trip to install the timestamp. Given that most
transactions operate on tuples in local partitions [56, 54, 55],
especially for read-write transactions, additional network
round trips will notably lengthen the critical section of trans-

4We enabled these optimizations for GTS and VTS in our evaluation (§5).

360 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 80

 35

 40

 0

 5

 10

Global TS Vector TS
TPC-E: 281 K txns/s
TPC-C: 1.64 M txns/s

SmallBank: 80 M txns/s
T

h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

)

GlobalCNT

+StableTS

Network

TSOracle

L
o
c
a
lC

N
T

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

TPC-C TPC-ESmallBank

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Execution time of TXs (µs)

NoTS

GTS

VTS

DST

10
-2

10
-1

10
0

10
1

10
2

10
3

 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Number of machines

Fig. 6: (a) Analysis of peak performance and bottleneck of timestamp oracle for GTS and VTS using a 24core machine with 10GbE. (b) The

performance of read-write transactions with the increase of execution time for different timestamp schemes. The weighted average median

latency of read-write transactions in TPC-E, TPC-C and SmallBank are labeled by red lines. (c) The performance of read-only transactions with

the increase of machines for different timestamp schemes. All experiments are conducted on a local 16-node cluster with 10GbE network (§5).

One machine is dedicated for timestamp oracle, even NoTS has no need. Each machine spawns 24 server workers.

actions and further increase the chance of conflicts, causing
extra transaction aborts or blocking time. Thus, it is non-
trivial to hide the network round trips without sacrificing the
latency of transactions (e.g., batching requests [46, 27]).

The overhead of timestamp allocation highly depends on
the execution time of transactions. Hence, we implement a
microbenchmark only consisting of read-write transactions,
which do not access any tuples and just spin in a loop for a
given time. As shown in Fig. 6(b), the overhead of VTS is
moderate (from 10% to 30%) compared to not using times-
tamp schemes (NoTS), when the execution time is close to
that of read-write transactions in TPC-E (from 1,400µs to
470µs). The throughput will significantly drop more than
80% when transactions execute in about 50µs, which is sim-
ilar to that of read-write transactions in TPC-C. Further, GTS
can only achieve half of VTS throughput, since it demands
one more round trip to obtain the commit timestamp.

Large traffic size. VTS mitigates the timestamp overhead
by using per-worker local counters as the commit timestamp
for read-write transactions. However, a critical downside is
that a whole vector of per-worker timestamps must be ob-
tained as the read timestamp first, and then be transferred to
every tuple for performing consistent snapshot reads. In con-
trast to the scalar timestamp (e.g., GTS), this overhead grows
linearly with the increase of workers or machines in the sys-
tem. For most transactional workloads [54, 55, 56, 57], the
size of the vector timestamp can become orders of magni-
tude larger than the tuple size, even in a moderate-sized clus-
ter. Using the per-machine counter in VTS (i.e., all workers
on one machine share one timestamp slot) can reduce traf-
fic size [8]. However, these workers have to share a local
counter by using atomic operations (e.g., CAS), which will
incur additional overhead on read-write transactions [70].

To demonstrate the impact of traffic size, we implement
a microbenchmark only consisting of read-only transactions,
which read ten 8-byte tuples with 90% of which being local
accesses. In Fig. 6(c), the performance collapse of VTS is
due to the increase of timestamp vector obtained from the
oracle and transferred to remote tuples. Note that GTS is still
one order of magnitude slower due to extra one round-trip to
fetch the read timestamp (even scalar), compared to NoTS.

3 Decentralized Scalar Timestamp (DST)

Managing globally ordered timestamps in a centralized ser-
vice inevitably results in the problem of maintaining the con-
sistency between timestamp ordering and transaction order-
ing. More importantly, without a holistic decentralized de-
sign, the timestamp scheme cannot achieve good scalability.
This observation can be backed by the aforementioned per-
formance bottlenecks due to acquiring commit/read times-
tamps and installing committed timestamps. Such operations
add significant overhead to the execution of CC protocols.

To fundamentally overcome the above drawbacks of tradi-
tional timestamp schemes, we propose DST, a decentralized

scalar timestamp that facilitates the multi-version concur-
rency control (MVCC) implementation for broad CC proto-
cols with efficient snapshot read support and minimal over-
head. The intuition behind our design is that the timestamp

scheme can piggyback on concurrency control protocols to

maintain the timestamp ordering with low cost and no new

scalability bottleneck to read-write transactions.
In this section, we first use two-phase locking (2PL) as an

example to explain the basic protocol of DST for read-write
and read-only transactions (§3.1 and §3.2). We then prove
the serializability of read-only transactions with DST (§3.3)
and introduce a hybrid scalar timestamp to provide snapshot
reads with bounded staleness (§3.4). Finally, we discuss the
impact of DST on the fault-tolerance scheme (§3.5).

3.1 Timestamps in Read-write Transaction

DST is a fully decentralized timestamp without a centralized
sequencer (timestamp oracle) to provide total order times-
tamps for read-write transactions and stable timestamps for
read-only transactions. Therefore, DST must ensure that the
derived timestamps for read-write transactions always match
the transaction ordering.

The CC protocol is used to ensure the serializable trans-
action ordering and provide the following three properties,
where Transaction A (TXA) commits before Transaction B
(TXB), and both of them access a conflicting tuple O.

PROPERTY 1: Write-Write. TXB’s write (WB(O)) should
overwrite TXA’s write (WA(O)) or generate a newer version.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 361

Read-write Transaction: 2PL with DST

At Workeri: ✂ i denotes the worker number

+ LocalTS ✂ monotonic local timestamp

START(x)

+1 x.TS ← LocalTS

WRITE(x,	id,	data)

:1 acquire lock and get ts

2 add �id,	data� to x.wset

+3 x.TS ← max(x.TS,	ts+1)

READ(x,	id)

:1 acquire lock and get latest �data,	ts�

2 add �id,	data� to x.rset

+3 x.TS ← max(x.TS,	ts+1)

4 return data

COMMIT(x)

1 for each w in x.wset do

:2 update �w.data,	x.TS and release lock

3 for each r in x.rset do

:4 update �x.TS� and release lock

+5 LocalTS ← max(LocalTS,	x.TS)

Fig. 7: Specification of read-write transaction for 2PL with DST.

+N and :N denote new and modified lines of code respectively.

PROPERTY 2: Write-Read. TXB’s read (RB(O)) should re-
trieve TXA’s write (WA(O)).

PROPERTY 3: Read-Write. TXA’s read (RA(O)) should not
retrieve TXB’s write (WB(O)).

To match the transaction ordering, DST should ensure TXB’s
commit timestamp (TSB) is larger than TXA’s commit times-
tamp (TSA) under the above case. The general idea is to
piggyback over the CC protocol to derive a commit times-
tamp from conflicting tuples. Fig. 7 presents how DST is
integrated with two-phase locking (2PL), and Fig. 8 also
illustrates the execution of sample transactions with DST.
DST leverages conflicting tuples and above three properties
to transmit commit timestamps between dependent transac-
tions. The additional codes for DST in WRITE, READ, and
COMMIT (see Fig. 7) are commented on corresponding oper-
ations in the following explanations.

Write-Write property. Transaction TXA installs value (VA)
with commit timestamp (TSA) into the tuple O.

〈VA, TSA〉 → O

TSA → O.ts ⊲ line:2 of COMMIT

Transaction TXB reads the timestamp of tuple O (O.ts) and in-
stalls new value (VB) with a larger commit timestamp (TSB)
into the tuple O.

O.ts → ts ⊲ line:1 of WRITE

max(ts+1, TSB) → TSB ⊲ line:3 of WRITE

〈VB, TSB〉 → O

TSB → O.ts ⊲ line:2 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and both
of them write tuple A. Therefore, the commit timestamp of
TX3 should be larger than that of TX1. Using DST, TX1 in-
stalls its value (5) with its commit timestamp (TS1=4) into
tuple A. After that, TX3 should derive a larger timestamp

(TS3=5) from the timestamp of tuple A (A.ts=4) and use it
to install new value (3) into tuple A. Note that the write oper-
ations will update both the tuple’s timestamp and the value’s
timestamp (as a tuple may have multiple values with differ-
ent versions).

Write-Read property. Transaction TXA installs value VA with
its commit timestamp TSA into tuple O.

〈VA, TSA〉 → O

TSA → O.ts ⊲ line:2 of COMMIT

Transaction TXB reads value VA of tuple O with timestamp
O.ts and installs a larger commit timestamp TSB.

O → 〈VA, ts〉 ⊲ line:1 of READ

max(ts+1, TSB) → TSB ⊲ line:3 of READ

TSB → O.ts ⊲ line:4 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and TX1

writes tuple A before TX3 reads it. Therefore, the commit
timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 installs its value 5 with its commit timestamp
(TS1=4) into tuple A. After that, TX3 reads the timestamp of
tuple A (A.ts=4) and derives a larger timestamp (TS3=5).

Read-Write property. Transaction TXA installs commit times-
tamp TSA into tuple O since it has read the value of tuple O.

TSA → O.ts ⊲ line:4 of COMMIT

TXB reads timestamp of tuple O (O.ts) and installs new value
VB with a larger timestamp TSB into tuple O (O.ts).

O.ts → ts ⊲ line:1 of WRITE

max(ts+1, TSB) → TSB ⊲ line:3 of WRITE

〈VB, TSB〉 → O

TSB → O.ts ⊲ line:2 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and TX1

reads tuple B before TX3 writes it. Therefore, the commit
timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 reads an old value (5) of tuple B and installs its
commit timestamp (TS1=4) into tuple B. After that, TX3 will
derive a larger timestamp (TS3=5) and use it to install new
value (2) into tuple B.

3.2 Timestamps in Read-only Transaction

DST ensures that the order of derived commit timestamps for
read-write transactions always matches the transaction order-
ing. Therefore, read-only transactions can directly pick any
timestamp (TSRO) to read a consistent snapshot by compar-
ing its read timestamp with the timestamps of tuples.

Since the (snapshot) read-only transaction does not follow
the CC protocol (e.g., lock/unlock tuples before/after read-
ing values), the read-only transaction may read a part of up-
dates of a concurrent read-write transaction. For example, in
Fig. 8, the read-only transaction TX4 (red) and the read-write
transaction TX3 (purple) are concurrently executed. If TX3

commits between the read operations to tuple A and tuple B

in TX4, and then TX4 will read an old version of tuple A (5)
and a new version of tuple B (2).

362 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

C=1

A=BW1:

W2:

W3:
2

A=3

C A

B

4

5

6

MVSTORE

A

B 5 5

0

0

id

C

5

1

5

7

6 45

2

2 6

1 4

0 1

7

5

76

3

B=2

B

3

4

5

7

wait

7

0 5

2 4 7

0 5 3

7

5 2

7

0

0

43
EXECUTION

TX3

TX4TX2

TX1

2 ts
(value)ts

(tuple)

2 6 2 6

1 1 1 1 5

2 2 4 2 4 2 4 5

time

time

A

4 4

A

5

2
5

LocalTS

LocalTS

LocalTS

value

4

5

6

multi-version

A A=Bread write remote localTX4 TS

Fig. 8: A sample case of using DST, where four transactions (TX1-

TX4) operate on three tuples (A, B, and C).

To ensure the serializability of read-only transactions,
DST asks the read-only transaction to claim its operations
actively before reading the tuple. It first installs its read times-
tamp (TSRO) into the tuple and waits until the conflicting
read-write transaction commits (e.g., the tuple is not locked),
if the timestamp of the tuple is not larger than the read times-
tamp (DEP_READ in Fig. 9). Note that the read-only trans-
action will only wait for at most one conflicting read-write
transaction because if the concurrent read-write transaction
starts after the claim, it will definitely see the read times-
tamp through accessing the tuple and derive a larger com-
mit timestamp. Consequently, the read-only transaction will
skip all of the updates from this transaction. If the concurrent
read-write transaction starts before the claim, it will hold the
lock of the tuple. The read-only transaction will wait until
the read-write transaction commits. No matter the commit
timestamp is larger or smaller than the read timestamp, a
read-only transaction can always read a consistent snapshot
by ignoring or reading all of the updates from conflicting
transactions. Note that CC protocols ensure the atomicity of
read-write transaction’s updates.

As shown in Fig. 8, the read-only transaction TX4 will
install its read timestamp (TS4=7) into tuples with smaller
tuple timestamps (line:1 of DEP_READ in Fig. 9). For un-
locked tuple C, TX4 will directly read the value up to the
timestamp (1). For locked tuple A and B, TX4 will wait until
the concurrent read-write transaction TX3 commits. In this
example, since TX3 does not see the read timestamp of TX4,
the commit timestamp of TX3 is still smaller than the read
timestamp of TX4 (5 vs. 7). Hence, TX4 can read all updates
from TX3 (A=3 and B=2).

3.3 Proof of Correctness

THEOREM (SERIALIZABILITY). DST implements serializ-

able read-only transactions, which always read a consistent

snapshot generated by serializable read-write transactions.

PROOF SKETCH. The intuition of the proof is that if a read-
only transaction can be serialized with read-write transac-

Read-only Transaction: 2PL with DST

At Workeri: ✄ i denotes the worker number

+ LocalTS ✄ monotonic local timestamp

ROTX(x) ✄ snapshot read

+1 x.TS ← LocalTS

+2 for each r in x.rset do

+3 DEP_READ(x,	r)

DEP_READ(x,	r)

+1 if r.ts <= x.TS then

+2 r.ts ← x.TS ✄ atomic (CAS)

+3 wait until r not locked ✄ if conflict

+4 get �r.data� up to x.TS

Fig. 9: Specification of read-only transaction for 2PL with DST.

tions, then it reads a consistent snapshot. We provide a proof
sketch by contradiction based on this intuition: i.e., if a read-
only transaction cannot be serialized with read-write transac-
tions, then it leads to a contradiction. Before giving the proof,
we need to prove following two lemmas first:

LEMMA 1. Given two dependent read-write transactions

TX1 and TX2, if TX2 depends on TX1, then TX2’s timestamp

(TS2) is larger than TX1’s timestamp (TS1).

PROOF. If TX2 directly depends on TX1
5, this lemma follows

directly from the algorithm (see §3.1) that TX2 always calcu-
lates TS2 based TS1. If TX2 transitively depends on TX1, in
a proof by contradiction we assume TS1 is not smaller than
TS2, then in the partial dependent graph denoted by TX1 →
... → TXi → TXj ... → TX2

6, there exists TXi and TXj that TXj

directly depends on TXi, but its timestamp is not larger than
TXi’s, which is a contradiction with the first case.

LEMMA 2. Given a read-only transaction TXRO and a read-

write transaction TXRW, TXRO observes TXRW’s update on tu-

ple O
7, if and only if TXRO’s timestamp (TSRO) is not smaller

than TXRW’s timestamp (TSRW).

PROOF. First, if TXRO observes TXRW’s update on O, then
TSRO is not smaller than TSRW. Because TXRW updates O

with TSRW and content atomically (e.g., 2PL), TXRO waits for
TXRW’s commit. Second, if TSRO is not smaller than TSRW,
then TXRO eventually observes TXRW’s update on O. Assume
TXRO does not observe TXRW’s update, then TXRO reads O be-
fore TXRW commits its update. One situation is TXRO reads
O before TXRW’s request arrives, it leads a contradiction that
TXRO update O’s timestamp to be TSRO before the read. An-
other situation is TXRO reads O after TXRW calculates TSRW,
but before committing its update. This leads to the contra-
diction that TXRO always waits for the concurrent TXRW to
commit (e.g., 2PL).

PROOF OF THE THEOREM. TX1 updates A, TX2 updates B,
and TX2 depends on TX1. Assume read-only transaction TXRO

only observes TX2’s update on B, but does not observe TX1’s

5TX2 is conflicting with TX1, and TX2 accesses the conflicting tuples imme-
diately after TX1.

6The symbol → indicates the happen-before relation.
7It means TXRO’s read on O happens after TXRW’s update.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 363

update on A (i.e., inconsistent reads).8 From LEMMA 2, we
have TSRO is not smaller than TS2, while TS1 is larger than
TSRO. Therefore, we have TS1 is larger than TS2, which is
contradictory to LEMMA 1.

3.4 Hybrid Timestamp and Bounded Staleness

Hybrid timestamp. The commit timestamp of a read-write
transaction is derived from the timestamps of tuples in its
read/write set, and the read timestamp of a read-only trans-
action can be any timestamp in the past, at present, or even
in the future. Therefore, the local timestamp (LocalTS) is not
essential for the correctness of DST. However, the read-only
transaction may suffer from either staleness or performance
issues if using an improper read timestamp. If the read times-
tamp is too small (past), the read-only transaction may read
an excessively stale snapshot. If the read timestamp is too
large (future), the read-only transaction will frequently in-
stall its read timestamp into tuples and wait until conflicting
read-write transactions commit (DEP_READ in Fig. 9).

DST adopts a combination of physical clock and logic

counter as a hybrid timestamp. The 64-bit timestamp con-
sists of the 48-bit physical part (high-order bits) and the 16-
bit logic part (low-order bits). DST uses a loosely synchro-
nized clock as the physical part and uses a monotonically
increasing counter as the logical part. At the beginning of
the transaction, it will acquire a local hybrid timestamp com-
posed of the current physical clock and zero-initialized logic
counter (START in Fig. 7 and line:1 of ROTX in Fig. 9). The
logical part of the hybrid timestamp is used to avoid possi-
ble overflow of the physical part since the timestamp will
be incremented when calculating the maximum timestamp
(e.g., line:3 of WRITE in Fig. 7). On the other hand, the
physical part of the hybrid timestamp is used to ensure the
read-only transaction can read a fresh snapshot.

Bounded staleness. Based on the hybrid timestamp, DST
can provide snapshot reads with bounded staleness.

THEOREM (BOUNDED STALENESS). The updates of read-

write transactions can be observed in at most ∆, where ∆
is the maximal duration any machine needs to make its local

clock increased by 2 × ε, and ε is the maximal clock drift

between any two machines in the cluster.

PROOF SKETCH. First, we prove the following two lemmas:

LEMMA 1. Given a read-write transaction TXRW, its commit

timestamp (TSRW) is not larger than tm + ε, where tm is the

local machine time on TXRW commits.

PROOF. If TSRW is larger than tm + ε, then there is a TXi

which accesses a tuple before TXRW, and TSi is larger than
tm+ε. As the timestamp is calculated from its local machine
time or the tuples it accessed, we can inductively find a trans-
action TXj whose timestamp is larger than tm + ε, and it is
calculated from its local machine time. It is a contradiction
to the maximal clock drift between any two nodes is ε.

8The proof is also correct for TX1 and TX2 are the same transaction.

LEMMA 2. For any read-only transaction TXRO starts after

TXRW commits, its read timestamp TSRO is larger than tm−ε.

PROOF. This follows that TXRO calculates its timestamp
based on local machine time and the clock drift between any
two nodes cannot be larger than ε.

PROOF OF THE THEOREM. With LEMMA 1 and 2, we can
have a fact that, if TXRO starts after TXRW, then TSRO cannot
be smaller than TSRW−2 × ε. Since any machine is able to
increase its local machine time by 2 × ε in ∆, we can con-
clude that the updates of TXRW will be visible in the duration
of ∆.

3.5 Failure and Recovery

The CC protocol should provide a proper fault-tolerance
scheme to recover the transactional system from various fail-
ures. For example, the primary-backup replication [30] is
widely used to provide high availability in prior work [23, 18,
26]. The fault-tolerance schemes can usually work with var-
ious timestamp schemes by replicating tuples together with
the commit timestamps of read-write transactions. However,
the fully decentralized design of DST has two sides. The ad-
vantage of this approach is to avoid handling the failure of
centralized timestamp oracle, which may cause a stop-the-
world recovery [70]. The disadvantage is the potential cost
to maintain the consistency of decentralized timestamps be-
fore and after some failure occurs.

An obvious, but costly solution is to replicate the read
timestamps of read-only transactions together with tuples, as
the commit timestamps of read-write transactions. Because
the missing read timestamp may cause a new conflicting
read-write transaction to use a smaller commit timestamp to
write tuples; the read-only transaction may read some tuples
with an old version and other tuples with a new version be-
fore and after the failure occurs, respectively.

To avoid replicating or persisting read timestamps, DST
provides two alternative solutions that can be selected ac-
cording to the behavior of workloads or the CC protocol asso-
ciated. More specifically, after recovery, DST can selectively
abort and re-execute either the remaining read-only transac-
tions that read tuples on crashed machines or the remaining
read-write transactions that write tuples on crashed machines.
Consequently, there is no additional overhead and modifica-
tion associated with the normal execution of transactions, re-
gardless of which approach is selected.

4 Generality of DST

DST is a general timestamp scheme to enable efficient read-
only transactions with little impact on read-write transac-
tions. Hence, it is easy to integrate DST with various CC
protocols, and DST can also cooperate with many optimiza-
tions [37, 43] on CC protocols. In this section, we first lay
out a general guideline for piggybacking DST on various CC
protocols, and then demonstrate the efficacy of this guideline
by applying it to three representative transactional systems

364 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(DrTM+R, MySQL cluster, and ROCOCO) with different CC
protocols (OCC, 2PL, and ROCOCO).

4.1 A Guideline for Integrating DST

Read-write transaction. DST should allocate a commit
timestamp for the read-write transaction that is larger than
any dependent transactions’ timestamp. Thus, two following
tasks (RW1 and RW2) should piggyback on CC protocols.

1. select a commit timestamp larger than both the current

local timestamp and the timestamps of tuples in the

read/write set. (RW1)
2. install the commit timestamp to tuples in the read/write

set before the transaction commits. (RW2)

Read-only transaction. DST should guarantee the read-only
transaction can read the value of tuples up to the read times-
tamp. Thus, two following tasks (RO1 and RO2) should piggy-
back on CC protocols.

1. select an appropriate read timestamp according to the

current local timestamp. (RO1)
2. ensure the tuple has an equal or larger timestamp

before reading its value up to the read timestamp. (RO2)

4.2 Case Study

The description below focuses on the general comments
about integrating DST; we omit a few details and corner
cases due to space limitations.

DrTM+R. Optimistic concurrency control (OCC) is widely
adopted by modern transactional systems [21, 10, 59, 62,
22, 23, 18, 26, 63]. The read-only transaction in OCC will
take two or more rounds of reads for consistent results with-
out MVCC and timestamp schemes, due to conflicting read-
write transactions. We use DrTM+R [18] to demonstrate how
DST piggybacks on OCC.9

For the read-write transaction, we can obtain the times-
tamp of tuples in the read and write set when validating and
locking them respectively and then derive a larger commit
timestamp (RW1). Before committing, we should install the
commit timestamp to the tuples in the read and write set
(RW2). Note that there is no need to lock tuples in the read
set since dummy timestamps from aborted transactions are
benign. For the read-only transaction, all CC protocols share
(almost) the same implementation (see Fig. 9). The only dif-
ference is how to wait for conflicting transactions (line:3 of
DEP_READ). For OCC, the conflicting read-write transac-
tion will lock the tuple when installing its timestamp for up-
dates. Therefore, similar to 2PL, the read-only transaction
will confirm that the tuple is not locked before reading the
value up to its read timestamp.

MySQL cluster. Two-phase locking (2PL) is another classic
CC protocol used by many transactional systems [1, 19, 36].
The read-only transaction in 2PL will be blocked without
MVCC and timestamp schemes, due to conflicting read-
write transactions. We use MySQL cluster [1] (v7.6.8) to
9We use the version of DrTM+R [63] without HTM, which also enables
coroutine and supports various networks (e.g., TCP/IP and RDMA).

Table 1: Measurement clusters.

Name # Hardware

AWS 32 r4.2xlarge (8x vCPU, 61GB DRAM, up to 10GbE)

VAL 16 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM,
1x Intel I350 10GbE

VLR 16 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM,
2x Mellanox ConnectX-4 100Gbps InfiniBand RNICs

show the integration of 2PL and DST, mainly following the
specification in Fig. 7 and 9.10 To support the read-write lock
in MySQL cluster, the transaction only needs to install times-
tamp into tuples in the read set atomically (i.e., compare-and-
swap) and avoids overwriting a larger timestamp. Further,
we leverage the lock queue mechanism in MySQL cluster
to wait for conflicting transactions (line:3 of DEP_READ in
Fig. 9), which avoids spinning on the tuple.

ROCOCO. ROCOCO [43] is a research CC protocol that
outperforms traditional protocols under high contention
workloads by reordering conflicting read-write transactions
instead of aborting them. The read-write transaction is
chopped into pieces by an offline checker and uses a two-
phase mechanism. The start phase explores a dependency
graph, and then the commit phase executes conflicting trans-
actions with a serializable order according to the dependency
graph. The read-only transaction in ROCOCO is blocked until
the completion of conflicting transactions and uses multiple
rounds for reading consistent results.

To extend ROCOCO11 with DST, the general idea is to use
the dependency graph to collect timestamps of dependent tu-
ples and derive a larger commit timestamp for the read-write
transaction in the start phase (RW1). Then the commit times-
tamp can be installed to tuples in the commit phase (RW2).
For the read-only transaction, the blocking mechanism in
ROCOCO is reused to wait for conflicting transactions (line:3

of DEP_READ in Fig. 9).

5 Evaluation

We have integrated DST with three representative trans-
actional systems, namely DrTM+R, MySQL cluster, and
ROCOCO, with different CC protocols, and also implemented
two centralized timestamp schemes (GTS and VTS) by fol-
lowing the state-of-the-art [46, 70]12 with many carefully
tuned optimizations (e.g., batching requests [46, 27], coop-
erative multitasking [26], timestamp compression and dedi-
cated fetch thread [70]). These optimizations have significant
performance improvements on GTS and VTS. For exam-
ple, cooperative multitasking improves the peak per-machine
throughput of GTS on DrTM+R by 3.04X, and timestamp
compression improves VTS by 2.7X on a 16-node cluster.

Testbed and setup. To study the impact of hardware plat-

10Although MySQL cluster uses read committed (RC) protocol by default,
it also provides serializability by using per-row 2PL.

11Source code: https://github.com/shuaimu/rococo.
12Different than Percolator [46], we use the stabilization process to avoid

holding locks when acquiring write timestamp, since it will significantly
increase transaction abort rate.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 365

https://github.com/shuaimu/rococo

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300 350

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Throughput (K txns/s)

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

 0

 0.4

 0.8

 1.2

 1.6

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Number of districts

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

Fig. 10: Performance of (a) TPC-E and (b) TPC-C on AWS.

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Throughput (K txns/s)

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

 0

 0.5

 1

 1.5

 2

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Number of districts

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

Fig. 11: Performance of (a) TPC-E and (b) TPC-C on VAL.

forms on DST, we use three clusters with different networks
and CPU processing power (Table 1). Without explicit men-
tion, one machine in each cluster is dedicated to the times-
tamp oracle, even only GTS and VTS need. Other machines
serve as both database nodes and clients. We use these ma-
chines in a symmetric setting [23], namely each machine
both executes transactions and store database data.

Benchmarks and performance overview. As the perfor-
mance benefit of using MVCC and snapshot reads is sen-
sitive to characteristics of read-only transactions in OLTP
workloads, we chose three different benchmarks, namely
TPC-E, TPC-C, and SmallBank, to show the benefits of DST
comprehensively. TPC-E [57] presents the workload of a bro-
kerage firm with a high proportion of read-only transac-
tions (79% of the standard mix) and complicated operations
(massive range queries and distributed accesses). DST is ex-
pected to improve the performance much compared to the
vanilla CC protocols for this target workload, with a relaxed

consistency level from strict serializability to serializability.
TPC-C [56] simulates a warehouse-centric order processing
application with a few read-only transactions (8% of the
standard mix). DST is expected to show gradual improve-
ment with the increase of execution time in read-only trans-
actions (not affect proportion). We increase the number of
districts (one district by default) accessed by the read-only
stock-level transactions (4%). SmallBank [54] models a
simple banking application where transactions perform very
simple read and write operations (less than four) on user ac-
counts. DST is expected not to incur perceptible overhead
and show order-of-magnitude speedup compared to central-
ized timestamp schemes (GTS and VTS). In all benchmarks,
DST should achieve close to optimal performance using RC
(5%) but without compromising correctness, which can be
backed by the experimental results of DST on motivating mi-
crobenchmarks (see Fig. 6).

5.1 DrTM+R

We deploy one server at each machine and co-locate clients
to saturate the performance of servers as prior work [58, 60,
23, 64, 26]. Due to space limitations, we do not report the
experimental results on SmallBank, which are as expected.

TPC-E. Fig. 10(a) shows the results of TPC-E on AWS.
TPC-E has a high proportion of read-only transactions, and
most of them are distributed. Compared to using snapshot
reads (GTS, VTS, and DST), the vanilla OCC protocol pro-
vides strict serializability and requires an additional round to
validate tuples in the read set. Thus, many read-only transac-
tions will abort under heavy workloads. As a reference, RC
can outperform OCC by 1.79X (yet with incorrect results),
since it simply skips the validation phase. DST achieves al-
most the same performance as RC, as it also avoids the vali-
dation phase and never aborts read-only transactions. Differ-
ently, DST ensures the read-only transaction can read a con-
sistent yet fresh snapshot. Moreover, compared to GTS and
VTS with the same consistency level (serializability), DST
can outperform the throughput of them by 1.16X and 1.72X,
respectively. Because DST omits the communication to the
timestamp oracle and avoids large traffic size due to using a
fully decentralized design and scalar timestamps (see §2.3).

We further evaluate TPC-E on VAL. As shown in Fig. 11(a),
DST can still achieve similar performance as RC and pro-
vides 1.13X and 1.29X speedup compared to GTS and VTS,
respectively. VTS performs slightly better on VAL due to us-
ing a relatively smaller vector timestamp.

TPC-C. Fig. 10(b) and Fig. 11(b) show the peak throughput
of TPC-C on AWS and VAL with the increase of districts ac-
cessed by the read-only stock-level transactions. Note that
the default setting in TPC-C accesses one district (the first
data point of every line). Besides, we retain all default set-
tings, like the proportion of stock-level transactions (4%).

As shown in Fig. 10(b), when accessing one district, DST
has a very close performance compared to RC. These results
indicate that DST has little overhead to read-write transac-
tions. In comparison to DST, GTS and VTS are 6.29X and
2.93X slower than RC, due to the significant cost for main-
taining centralized and/or vectorized timestamps (see §2.3).

OCC performs well on the original TPC-C due to the lim-
ited read-only transactions in the standard-mix (8%). On the
other hand, when increasing the execution time of read-only
stock-level transactions (by accessing more districts), the
performance difference between RC and OCC is more ev-
ident because OCC has more overheads for validating the
read-set of the stock-level. DST still performs close to RC
and is 4.94X faster than vanilla OCC (accessing 20 districts)
with a relaxed consistency level. Finally, DST still outper-
forms VTS and GTS by 2.29X and 3.56X when accessing
20 districts, respectively.

In Fig. 11(b), the performance of DST is also very close
to RC for TPC-C on VAL. On the other hand, the overhead
of GTS and VTS still incurs up to 2.57X (from 1.95X) and
1.73X (from 1.47X) slowdown, compared with DST. Differ-

366 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 1

 2

 3

 4

0 0.5 1.0 1.5 2.0 2.5

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Throughput (M txns/s)

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

 0

 3

 6

 9

 12

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Number of districts

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

Fig. 12: Performance of (a) TPC-E and (b) TPC-C on VLR.

ent than AWS, the lower latency of network round-trip on
VAL (90µs) is beneficial for centralized timestamp schemes,
but the effect is quite limited.

Using fast network (i.e., RDMA). Readers might be inter-
ested in how the performance of networks impacts the per-
formance of timestamp schemes, especially using RDMA.
DrTM+R naturally supports RDMA, and we adopt FaSST-
RPC [26] to implement the timestamp oracle for GTS and
VTS. By using 100Gbps RDMA, the CPU may become the
bottleneck in the timestamp oracle for GTS, about 3.0 M op-
s/s (see §2.3). For VTS, the timestamp oracle will not limit
the performance of TPC-E and TPC-C with only 16 machines,
while the increase of transaction abort rate (due to optimiza-
tions [70]) and large traffic size still incur non-trivial costs,
compared to the decentralized scalar timestamp (like DST).

As shown in Fig. 12, the fast network (RDMA) in VLR
has a significant positive impact on all of the settings, as ex-
pected. For TPC-E, DST still outperforms GTS and VTS by
1.07X, and 1.32X, respectively. RDMA reduces the overhead
of centralized timestamp allocation for GTS, while the im-
pact of traffic size in VTS remains. For TPC-C, DST is still
4.49X (from 1.19X) and 1.76X (from 1.15X) faster than GTS
and VTS.

5.2 MySQL cluster

We evaluate MySQL cluster with DST by using TPC-C and
SmallBank on VAL. We increase the number of clients un-
til the throughput is saturated. As shown in Fig. 13, with
DST, MySQL cluster achieves up to 1.91X (from 1.09X)
and 1.28X (from 1.07X) higher throughput for TPC-C and
SmallBank, respectively. The main reason is due to enabling
snapshot reads to avoid blocking for the read-only transac-
tions. It also mitigates the contention in the read-write trans-
actions. DST is more effective in TPC-C since it is more sen-
sitive to blocking time from conflicting transactions due to
relatively longer execution time compared to SmallBank. On
the other hand, DST can provide comparable performance to
RC but still guarantee serializability for correctness.

5.3 ROCOCO

We follow the methodology (benchmarks and settings) in
prior work [43, 39] to evaluate ROCOCO on VAL.13 Fig. 14
shows the performance of ROCOCO by increasing the num-

13We try our best to compare with ROCOCO-SNOW [39], which also op-
timizes the read-only transaction of ROCOCO. Unfortunately, it failed to
run on our testbed.

0

0.5

1.0

1.5

2.0

2.5

 0 100 200 300 400

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

)

Number of clients

RC/Incorrect

2PL

2PL+DST
 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

)

Number of clients

RC/Incorrect

2PL

2PL+DST

Fig. 13: Performance of (a) TPC-C and (b) SmallBank for

MySQL cluster with different CC protocols on VAL.

 0

 2

 4

 6

 8

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

)

Concurrent reqs/server

Rococo

Rococo+DST
 0

 60

 120

 180

 240

 0 20 40 60 80 100

M
e
d
ia

n
 L

a
te

n
c
y
 (

m
s
)

Concurrent reqs/server

Rococo

Rococo+DST

Fig. 14: (a) Throughput of new-order transactions and (b) median

latency of stock-level transactions in TPC-C mixed workload.

ber of concurrent requests per server. In Fig. 14(a), using
DST on ROCOCO can improve the throughput of new-order
transactions by 2.09X with 100 concurrent requests per
server, due to reducing transaction aborts and skipping the
validation process in read-only transactions. For example,
less than 4% of stock-level transactions can be committed
when there are more than 50 concurrent requests per server.
Thus, the server CPU is wasted on retrying and validat-
ing read-only transactions. Further, as shown in Fig. 14(b),
ROCOCO+DST has a much lower median latency of (read-
only) stock-level transactions, thanks to reading a consis-
tent snapshot by one round of execution without validation.

5.4 A Study of DST Cost

To study the overhead from blocking and additional times-
tamp updates in DST, we use two workloads that share most
characteristics with TPC-C. We tuned the workload behavior
to better reflect these overheads.

Blocking overhead. One read-only transaction accesses 10
tuples, while another write-only transaction continuously up-
dates these tuples with locking. This is considered as the
worst-case scenario for DST, since the read tuples are locked
most of the time. Fig. 15(a) shows the impact on the me-
dian latency of read-only transactions when varying the stal-
eness of read timestamps. When using the current time (stal-
eness=0ms) as the read timestamp, 10% of the reads are
blocked by concurrent writes, which incur 83% overhead of
the median latency (1.72ms vs. 0.96ms). With the increase of
staleness (smaller timestamp), fewer reads are blocked since
the tuples have been updated with larger commit timestamps.
The blocking overhead becomes trivial when staleness ex-
ceeds 100ms. Note that this is an extreme case for blocking:
reads always touch the locked tuples. In reality, we only ob-
serve about 160 and 200 blocks per second at each machine

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 367

0

0.5

1.0

1.5

2.0

0 100 400 600 800

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Staleness of timestamp (ms)

DST

 0

 5

 10

 15

 20

 25

0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

 t
x
n
s
/s

)

Ratio of read accesses (%)

NoTS

DST

Fig. 15: (a) The impact of latency for read-only transactions by

using stale timestamp. (b) The overhead of DST with the ratio in-

crease of read-only accesses in read-write transactions.

under peak throughput for TPC-E and TPC-C, respectively.

Timestamp update overhead. Fig. 15(b) presents the over-
head of DST to read-write transactions. Each transaction ac-
cesses 10 tuples, while some tuples are made read-only. We
can see that when all tuples are updated, there is no over-
head for DST, since the timestamp update will piggyback
on the unlock operation. With the increase of read(-only)
ratio, DST adds up to 25% overhead to the overall perfor-
mance. Because DST will update the timestamp of tuples
even just reading them, which requires additional synchro-
nizations using atomic operations. Fortunately, most of the
read and write sets are overlapping in OLTP workloads.

6 Discussion

Performance overhead. Compared to traditional centralized
timestamp schemes, DST needs to update the timestamps
of tuples in the read set for read-write transactions, which
may incur additional costs. However, these operations can
easily piggyback on original operations in CC protocols (see
Fig. 7), like the locking and the validating in 2PL and OCC,
respectively. Moreover, the read-only transaction may also
update the timestamps of tuples, while it only happens as the
read timestamp is larger (DEP_READ in Fig. 9). Thus, us-
ing a hybrid timestamp can effectively mitigate it. To study
the potential performance overhead for DST, we designed
two microbenchmarks to model the worst-case scenarios (see
§5.4), and the experimental results show limited cost.

Range scans and phantom reads. DST relies on the CC pro-
tocol to detect conflicts, including range scans and phantom
reads, and also needs to assign timestamps to certain “guard”
(e.g., index structures) [32, 48]. For example, the next-key
locking mechanism [42] is widely used by 2PL to support
range scans. The CC protocol acquires such locks, and DST
assigns timestamps to them. For OCC, DST assigns times-
tamps to the internal nodes in the index structure as the ver-
sions during the validation phase.

The SNOW theorem. The SNOW Theorem [39] describes
the fact that strict serializability (S), non-blocking read-only
transactions (N), one-response from each tuple (O), and com-
patible with conflicting write transactions (W) cannot be sat-
isfied at the same time. Yet, SNOW-optimal and latency-
optimal read-only transactions can achieve three of the above
properties (i.e., N+O+W) without strict serializability (S). DST

also relaxes S to serializability for read-only transactions,
and satisfies O and W apparently. DST can simply satisfy N by
letting reads return a relatively stale data. However, it may
be not reasonable; thus, DST chooses to provide bounded
staleness with much fewer blocking operations (see §5.4).

Session strict serializability. DST only ensures serializabil-

ity to read-only transactions rather than strict serializability,
while it is equal to or better than most snapshot-based sys-
tems [39, 19, 6, 1]. Further, DST can provide session guaran-
tees [53, 8] (i.e., read-my-write [52] and read-after-write [40]
consistency), such that read-only transactions can always ob-
serve the latest updates of read-write transactions within the
same session (e.g., issued from the same client or handled by
the same server). DST returns the commit timestamp to the
session manager (e.g., client or server) after the transaction
commits. The session manager will always use the largest
observed commit timestamp as the read timestamp for suc-
cessive read-only transactions.

7 Related Work

Using timestamp for snapshot reads. A centralized times-
tamp is the most straightforward way to support MVCC for
snapshot reads, which is widely adopted by centralized sys-
tems [21, 25, 31, 28, 44, 66, 33]. Many distributed systems
also use timestamps to provide MVCC [46, 17, 51, 19, 6,
14, 70], while most of them only support weaker isolation
guarantees (e.g., Snapshot Isolation) [46, 6, 14, 70]. For ex-
ample, Percolator [46] uses a global timestamp oracle, and
NAM-DB [70] uses vectorized centralized timestamps. Span-
ner [19] is based on a combination of 2PL and MVCC devel-
oped in previous decades [45]. Spanner relies on TrueTime
API to provide scalable timestamps for strict serializable
read-only transactions and snapshot reads, which requires
specific hardware (GPS and atomic clocks) to ensure clocks
with bounded uncertainty. Further, the read-write transac-
tions still require blocking to ensure the match of times-
tamp and transaction ordering. DST chooses to support se-
rializable read-only transactions with bounded staleness. It
requires no external timestamp service and does not block
read-write transactions. RAMP [9] introduces Read Atomic
isolation and uses timestamps to identify and retry inconsis-
tent reads. TxCache [47] provides a distributed transactional
cache that always returns a consistent snapshot by lazily se-
lecting the timestamps for transactions. Causalspartan [49]
also uses Hybrid Logical Clocks to optimize timestamps in
causal consistency systems.

DST naturally piggybacks timestamp allocation to exist-
ing CC protocols, which avoids additional communications
for maintaining timestamps. Further, DST can work with a
border range of CC protocols and is orthogonal to prior opti-
mizations on CC protocols [37, 43].

Using timestamp for concurrency control. Many systems
directly leverage a timestamp-based mechanism to commit
transactions orderly [12, 5, 20, 34, 35, 71, 8]. CLOCC [5]
combines optimistic timestamp ordering with loosely syn-

368 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

chronized clocks, which avoids a centralized counter for
checking serializability in the original OCC protocol [29].
Granola [20] uses the timestamp based on a distributed vot-
ing mechanism to order independent transactions determin-
istically and treats distributed transactions in locking mode.
TAPIR [71] uses loosely synchronized clocks at the clients in
OCC’s validation for read-write transactions. The clock drift
in these systems will increase false aborts and impact the ex-
ecution of read-write transactions. On the contrary, the clock
drift in DST only affects the freshness of snapshot reads.

Several variant timestamp schemes have been proposed to
mitigate the cost from frequent aborts due to the violation be-

tween timestamp and transaction ordering. Lomet et al. [38]
introduce timestamp ranges to reduce transaction conflicts,
while the timestamp management is centralized. MaaT [41]
uses dynamic timestamp ranges to avoid distributed locking
for the atomic commitment in OCC. Further, some prior sys-
tems also use decentralized timestamp schemes, but most of
them focus on optimizing one particular CC protocol. Tic-
Toc [68] introduces a data-driven timestamp scheme for mul-
ticore platforms, which allows each read-write transaction
to compute a valid commit timestamp from tuples before it
commits. However, the read-only transaction still needs ad-
ditional validations and incurs more aborts due to conflicts.
Clock-SI [24] also uses loosely synchronized clocks to create
consistent snapshots with fewer network round trips, while
snapshot reads must be delayed due to concurrent transac-
tions and clock drift. Sundial [69] uses logical timestamps as
leases to reduce aborts in distributed read-write transactions.
Pelieus [52] derives a commit timestamp for the read-write
transaction from all involved servers (not tuples), which is
used in the validation phase with different rules to support
different concurrency levels (e.g., SI and Serializability).

Differently, DST is a decentralized timestamp scheme for
various CC protocols and can piggyback on them efficiently.
Thus, DST will not interfere with the execution of read-write
transactions and has no need of extra validations and aborts.

8 Conclusion

This paper presents DST, a decentralized scalar timestamp
that can unify timestamp management with existing CC
protocols. We have integrated DST with two classic proto-
cols, namely 2PL and OCC, and a recent research proposal,
ROCOCO. Our evaluation with three transactional systems
and three benchmarks confirmed the benefit of DST.

9 Acknowledgment

We sincerely thank our shepherd Irene Zhang and the anony-
mous reviewers for their insightful comments and feedback.
We also thank Hong Yang for porting DST to ROCOCO.
This work was supported in part by the Key-Area Research
and Development Program of Guangdong Province (No.
2020B010164003), the National Natural Science Foundation
of China (No. 61772335, 61925206, 61902242), the High-
Tech Support Program from Shanghai Committee of Science
and Technology (No. 19511121100, 20ZR1428100), and re-

search grants from Ant Group through Ant Research Pro-
gram and Alibaba Group through Alibaba Innovative Re-
search (AIR) Program. Corresponding author: Rong Chen
(rongchen@sjtu.edu.cn).

References

[1] MySQL Cluster. http://www.mysql.com/

products/cluster.

[2] MySQL/InnoDB. http://www.mysql.com.

[3] PostgreSQL. http://www.postgresql.org.

[4] Oracle Database Concepts: Data Concurrency and
Consistency. https://docs.oracle.com/cd/

B28359_01/server.111/b28318/consist.htm,
Januery 2017.

[5] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.
Efficient optimistic concurrency control using loosely
synchronized clocks. In Proceedings of the 1995 ACM

SIGMOD International Conference on Management

of Data, SIGMOD ’95, pages 23–34, New York, NY,
USA, 1995. ACM.

[6] M. K. Aguilera, J. B. Leners, R. Kotla, and M. Walfish.
Yesquel: scalable sql storage for web applications. In
SOSP. ACM, 2015.

[7] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veer-
araghavan. Challenges to adopting stronger consistency
at scale. In 15th Workshop on Hot Topics in Operating

Systems (HotOS XV), 2015.

[8] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li,
T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro.
Cure: Strong semantics meets high availability and
low latency. In 2016 IEEE 36th International Con-

ference on Distributed Computing Systems (ICDCS),
pages 405–414. IEEE, 2016.

[9] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Scalable atomic visibility with ramp transac-
tions. ACM Transactions on Database Systems (TODS),
41(3):15, 2016.

[10] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-
prakh. Megastore: Providing scalable, highly available
storage for interactive services. In Proceedings of the

5th biennial Conference on Innovative Data Systems

Research, CIDR’11, pages 223–234, 2011.

[11] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages
325–340. ACM, 2013.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 369

rongchen@sjtu.edu.cn
http://www.mysql.com/products/cluster
http://www.mysql.com/products/cluster
http://www.mysql.com
http://www.postgresql.org
https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm

[12] P. A. Bernstein and N. Goodman. Timestamp-
based algorithms for concurrency control in distributed
database systems. In Proceedings of the sixth interna-

tional conference on Very Large Data Bases-Volume 6,
pages 285–300. VLDB Endowment, 1980.

[13] P. A. Bernstein and N. Goodman. Multiversion con-
currency control theory and algorithms. ACM Trans.

Database Syst., 8(4):465–483, Dec. 1983.

[14] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and
E. Zamanian. The end of slow networks: It’s time
for a redesign. Proceedings of the VLDB Endowment,
9(7):528–539, 2016.

[15] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann,
J. Lee, and N. May. Distributed snapshot isolation:
global transactions pay globally, local transactions pay
locally. The VLDB Journal, 23(6):987–1011, 2014.

[16] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C.
Li, et al. Tao: Facebook’s distributed data store for the
social graph. In USENIX Annual Technical Conference,
pages 49–60, 2013.

[17] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. ACM Trans. Database

Syst., 34(4):20:1–20:42, Dec. 2009.

[18] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and
general distributed transactions using rdma and htm. In
Proceedings of the Eleventh European Conference on

Computer Systems, page 26. ACM, 2016.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally dis-
tributed database. ACM Transactions on Computer Sys-

tems (TOCS), 31(3):8, 2013.

[20] J. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In Presented as

part of the 2012 USENIX Annual Technical Conference

(USENIX ATC 12), pages 223–235, Boston, MA, 2012.
USENIX.

[21] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwill-
ing. Hekaton: Sql server’s memory-optimized oltp en-
gine. In Proceedings of the 2013 ACM SIGMOD In-

ternational Conference on Management of Data, pages
1243–1254. ACM, 2013.

[22] B. Ding, L. Kot, A. Demers, and J. Gehrke. Centiman:
Elastic, high performance optimistic concurrency con-
trol by watermarking. In Proceedings of the Sixth ACM

Symposium on Cloud Computing, SoCC ’15, pages
262–275, New York, NY, USA, 2015. ACM.

[23] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Castro.
No compromises: Distributed transactions with consis-
tency, availability, and performance. In Proceedings of

the 25th Symposium on Operating Systems Principles,
SOSP’15, pages 54–70, New York, NY, USA, 2015.
ACM.

[24] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snap-
shot isolation for partitioned data stores using loosely
synchronized clocks. In IEEE 32nd International Sym-

posium on Reliable Distributed Systems (SRDS), pages
173–184, 2013.

[25] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. Proceedings of the

VLDB Endowment, 8(11):1190–1201, 2015.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst:
fast, scalable and simple distributed transactions with
two-sided (rdma) datagram rpcs. In 12th USENIX Sym-

posium on Operating Systems Design and Implementa-

tion (OSDI 16), pages 185–201. USENIX Association,
2016.

[27] A. K. M. Kaminsky and D. G. Andersen. Design
guidelines for high performance rdma systems. In
2016 USENIX Annual Technical Conference, page 437,
2016.

[28] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia:
Fast memory-optimized database system for heteroge-
neous workloads. In Proceedings of the 2016 Inter-

national Conference on Management of Data, pages
1675–1687. ACM, 2016.

[29] H. T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM Trans. Database Syst.,
6(2):213–226, June 1981.

[30] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. In Proceedings of

the 28th ACM Symposium on Principles of Distributed

Computing, PODC’09, pages 312–313, New York, NY,
USA, 2009. ACM.

[31] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concur-
rency control mechanisms for main-memory databases.
Proceedings of the VLDB Endowment, 5(4):298–309,
2011.

[32] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc.

VLDB Endow., 5(4):298–309, Dec. 2011.

370 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[33] V. Leis, A. Kemper, and T. Neumann. Exploiting hard-
ware transactional memory in main-memory databases.
In IEEE 30th International Conference on Data Engi-

neering, ICDE’14, pages 580–591. IEEE, 2014.

[34] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. 2015.

[35] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. Multi-version range concurrency control
in deuteronomy. Proceedings of the VLDB Endowment,
8(13):2146–2157, 2015.

[36] J. Li, E. Michael, and D. R. K. Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the

26th Symposium on Operating Systems Principles,
SOSP ’17, pages 104–120, New York, NY, USA, 2017.
ACM.

[37] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions. In
Proceedings of the 2017 ACM International Confer-

ence on Management of Data, pages 21–35. ACM,
2017.

[38] D. Lomet, A. Fekete, R. Wang, and P. Ward. Multi-
version concurrency via timestamp range conflict man-
agement. In IEEE 28th International Conference on

Data Engineering, ICDE, pages 714–725, 2012.

[39] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd.
The snow theorem and latency-optimal read-only trans-
actions. In Proceedings of 12th USENIX Sympo-

sium on Operating Systems Design and Implementa-

tion, OSDI’16, page 135, 2016.

[40] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential con-
sistency: Measuring and understanding consistency at
facebook. In Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP ’15, pages 295–
310, New York, NY, USA, 2015. ACM.

[41] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and
A. El Abbadi. Maat: Effective and scalable coordi-
nation of distributed transactions in the cloud. Proc.

VLDB Endow., 7(5):329–340, Jan. 2014.

[42] C. Mohan. Aries/kvl: A key-value locking method for
concurrency control of multiaction transactions operat-
ing on b-tree indexes. In Proceedings of the Sixteenth

International Conference on Very Large Databases,
pages 392–405, San Francisco, CA, USA, 1990. Mor-
gan Kaufmann Publishers Inc.

[43] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In Pro-

ceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, OSDI’14, pages
479–494, Berkeley, CA, USA, 2014. USENIX Associ-
ation.

[44] T. Neumann, T. Mühlbauer, and A. Kemper. Fast se-
rializable multi-version concurrency control for main-
memory database systems. In Proceedings of the 2015

ACM SIGMOD International Conference on Manage-

ment of Data, pages 677–689. ACM, 2015.

[45] A. Pavlo and M. Aslett. What’s really new with newsql?
SIGMOD Rec., 45(2):45–55, Sept. 2016.

[46] D. Peng and F. Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifications.
In OSDI, volume 10, pages 1–15, 2010.

[47] D. R. Ports, A. T. Clements, I. Zhang, S. Madden, and
B. Liskov. Transactional consistency and automatic
management in an application data cache. In OSDI,
volume 10, pages 1–15, 2010.

[48] M. Reimer. Solving the phantom problem by predica-
tive optimistic concurrency control. In Proceedings of

the 9th International Conference on Very Large Data

Bases, VLDB ’83, pages 81–88, San Francisco, CA,
USA, 1983. Morgan Kaufmann Publishers Inc.

[49] M. Roohitavaf, M. Demirbas, and S. Kulkarni.
Causalspartan: Causal consistency for distributed data
stores using hybrid logical clocks. In 2017 IEEE 36th

Symposium on Reliable Distributed Systems (SRDS),
pages 184–193. IEEE, 2017.

[50] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and
C. Bornhövd. Efficient transaction processing in sap
hana database: the end of a column store myth. In Pro-

ceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data, pages 731–742. ACM,
2012.

[51] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Proceed-

ings of the Twenty-Third ACM Symposium on Operat-

ing Systems Principles, pages 385–400. ACM, 2011.

[52] D. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
and M. K. Aguilera. Transactions with consistency
choices on geo-replicated cloud storage. 2013.

[53] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees
for weakly consistent replicated data. In Proceedings of

the Third International Conference on on Parallel and

Distributed Information Systems, PDIS ’94, pages 140–
150, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 371

[54] The H-Store Team. SmallBank Benchmark.
http://hstore.cs.brown.edu/documentation/

deployment/benchmarks/smallbank/.

[55] The H-Store Team. TATP Benchmark. https://
github.com/apavlo/h-store/tree/master/

src/benchmarks/edu/brown/benchmark/tm1/.

[56] The Transaction Processing Council. TPC-C Bench-
mark V5.11. http://www.tpc.org/tpcc/.

[57] The Transaction Processing Council. TPC-E Bench-
mark V1.14. http://www.tpc.org/tpce/.

[58] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: Fast distributed transactions
for partitioned database systems. In Proceedings of

the 2012 ACM SIGMOD International Conference on

Management of Data, SIGMOD’12, pages 1–12. ACM,
2012.

[59] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 18–32. ACM,
2013.

[60] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP’13, pages 18–
32. ACM, 2013.

[61] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Us-
ing vector interfaces to deliver millions of iops from
a networked key-value storage server. In Proceedings

of the Third ACM Symposium on Cloud Computing,
page 8. ACM, 2012.

[62] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory
database. In Proceedings of the Ninth European Con-

ference on Computer Systems, EuroSys’14, pages 26:1–
26:15. ACM, 2014.

[63] X. Wei, Z. Dong, R. Chen, and H. Chen. Decon-
structing rdma-enabled distributed transactions: Hybrid
is better! In 13th USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’18, pages
233–251, 2018.

[64] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using rdma and htm. In
Proceedings of the 25th Symposium on Operating Sys-

tems Principles, SOSP ’15, pages 87–104, New York,
NY, USA, 2015. ACM.

[65] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An
empirical evaluation of in-memory multi-version con-
currency control. Proc. VLDB Endow., 10(7):781–792,
Mar. 2017.

[66] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An em-
pirical evaluation of in-memory multi-version concur-
rency control. Proceedings of the VLDB Endowment,
10(7):781–792, 2017.

[67] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stone-
braker. Staring into the abyss: An evaluation of con-
currency control with one thousand cores. Proc. VLDB

Endow., 8(3):209–220, Nov. 2014.

[68] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tic-
toc: Time traveling optimistic concurrency control. In
Proceedings of the 2016 International Conference on

Management of Data, SIGMOD ’16, pages 1629–1642,
New York, NY, USA, 2016. ACM.

[69] X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and
S. Devadas. Sundial: Harmonizing concurrency control
and caching in a distributed oltp database management
system. Proc. VLDB Endow., 11(10):1289–1302, June
2018.

[70] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The
end of a myth: Distributed transactions can scale. Proc.

VLDB Endow., 10(6):685–696, Feb. 2017.

[71] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-
murthy, and D. R. K. Ports. Building consistent trans-
actions with inconsistent replication. In Proceedings of

the 25th Symposium on Operating Systems Principles,
SOSP’15, pages 263–278, New York, NY, USA, 2015.
ACM.

372 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/tm1/
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/tm1/
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/tm1/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/

	Introduction
	Background and Motivation
	Target Systems
	MVCC and Timestamps
	Analysis of Network Overhead

	Decentralized Scalar Timestamp (DST)
	Timestamps in Read-write Transaction
	Timestamps in Read-only Transaction
	Proof of Correctness
	Hybrid Timestamp and Bounded Staleness
	Failure and Recovery

	Generality of DST
	A Guideline for Integrating DST
	Case Study

	Evaluation
	[0.4]DrTM+R
	[0.4]MySQL cluster
	[0.4]Rococo
	A Study of DST Cost

	Discussion
	Related Work
	Conclusion
	Acknowledgment

