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ABSTRACT

Recent in-memory database systems leverage advanced

hardware features like RDMA to provide transactional

processing at millions of transactions per second. Dis-

tributed transaction processing systems can scale to even

higher rates, especially for partitionable workloads. Un-

fortunately, these high rates are challenging to sustain

during partition reconfiguration events. In this paper, we

first show that state-of-the-art approaches would cause

notable performance disruption under fast transaction

processing. To this end, this paper presents DrTM+B,

a live reconfiguration approach that seamlessly reparti-

tions data while causing little performance disruption to

running transactions. DrTM+B uses a pre-copy based

mechanism, where excessive data transfer is avoided by

leveraging properties commonly found in recent trans-

actional systems. DrTM+B’s reconfiguration plans re-

duce data movement by preferring existing data repli-

cas, while data is asynchronously copied from multiple

replicas in parallel. It further reuses the log forwarding

mechanism in primary-backup replication to seamlessly

track and forward dirty database tuples, avoiding itera-

tive copying costs. To commit a reconfiguration plan in a

transactionally safe way, DrTM+B designs a cooperative

commit protocol to perform data and state synchroniza-

tions among replicas. Evaluation on a working system

based on DrTM+R with 3-way replication using typical

OLTP workloads like TPC-C and SmallBank shows that

DrTM+B incurs only very small performance degrada-

tion during live reconfiguration. Both the reconfiguration

time and the downtime are also minimal.

1 INTRODUCTION

Many applications like web services, stock exchange and

e-commerce demand low-latency, high-throughput trans-

actions over a large volume of data. Modern transaction

processing systems scale by sharding data across a num-

ber of machines. State-of-the-art transaction processing

systems like H-Store [16] and Silo [27, 30] have achieved

orders of magnitude higher performance than previous

systems. Recent designs like DrTM [29, 5], FaRM [11],

and FaSST [15] further achieved millions of transactions

per second on a small-scale cluster by exploiting novel

hardware features like RDMA.

While sharding essentially distributes the client loads

across multiple machines, it also faces a new challenge

such that an improper data sharding scheme would cause

notable workload imbalance as well as degraded over-

all performance. Work imbalance becomes even more

severe for dynamically skewed workloads where the

hotspot constantly changes over time [7, 3, 19, 17]. For

example, the volume on the New York Stock Exchange

(NYSE) during the first and last ten minutes of the trad-

ing day is an order of magnitude higher than at other

times [24], while the access pattern is indeed skewed.

This not only requires many distributed accesses in trans-

actions but also causes frequent transaction aborts or

stalls due to contended accesses on certain partitions.

For example, our evaluation shows that when moving

the warehouse selection from uniform to a highly skewed

distribution, the transaction throughput degrades by 10X

for TPC-C [26].

Prior approaches tackle this problem through live re-

configuration of the sharding plan [24]. Here, an optimal

reconfiguration plan needs to balance among the follow-

ing key requirements: 1) non-intrusiveness to running

transactions; 2) minimal data movement; 3) balanced

load after reconfiguration. To this end, E-Store [24] first

generates an optimal plan according to current load dis-

tribution by re-assigning database tuples. It then uses

Squall [12] to apply the new physical layout by migrating

tuples online. Specifically, Squall fetches tuples on de-

mand from the source node to reduce downtime. We term

such an approach as a post-copy migration scheme, as an

analogy to the live migration of virtual machines [6].

While post-copy approaches like Squall have been

shown to be effective to quickly balance the load for H-

Store [16], our investigation finds them ineffective for

transaction processing systems with orders of magni-

tude higher throughput like DrTM [29, 5], FaRM [11]

and FaSST [15]. This is due to prohibitive performance

degradation during the lengthy post-copy phase, which

is caused by enormous data transfer costs. Specifi-

cally, we have implemented the Squall-like approach on

DrTM+R [5] and evaluated the effectiveness on TPC-

C [26]. Even under configuration with low skew, there

are near 4 seconds where millions of transactions execute

with extremely low throughput and high latency, which

means tens of millions of transactions were disrupted or

stalled during the live reconfiguration process. This is

prohibitively expensive for a transaction processing sys-

tem demanding sub-millisecond latency and stable per-



formance. Consequently, this leaves the system trapped

between two bad options: it can either delay reconfigura-

tion and thus run with somewhat degraded performance

for a long period, or it can reconfigure and thus run with

seriously degraded performance for a short period.

This paper describes DrTM+B, a live reconfiguration

scheme targeting distributed transaction processing with

high throughput and low latency. Unlike prior post-

copy based approaches [13, 12], DrTM+B uses a pre-

copy based approach to reducing disruption to running

transactions. Traditionally, pre-copy mechanisms [9, 10]

would iteratively migrate tuples to the destination node

(pre-copy phase) and only start the live reconfiguration

process (commit phase) when the difference between the

source and the destination nodes drops below a thresh-

old, or the number of iterative copies exceeds a thresh-

old. While such a pre-copy based approach causes little

service disruption time, it may cause a notable downtime

during the commit phase and the number of tuples to be

transferred during the iterative pre-copy phase may still

be non-trivial. To this end, DrTM+B also incorporates

two key optimizations to further reduce data transfer and

disruption to transactions.

First, we propose a novel reuse of fault-tolerant

replicas to accelerate data transfer. This is based on

the observation that state-of-the-art distributed trans-

action systems such as FaRM [11], FaSST [15] and

DrTM+R [5] use primary-backup replication to tolerate

failures. DrTM+B’s reconfiguration plans take this into

account: the new configuration uses previous backup

nodes when possible to avoid physical tuple movement.

This optimization can commonly avoid data copying

in the pre-copy phase. When data copying is neces-

sary, DrTM+B leverages all existing replicas by asyn-

chronously pulling data in parallel. This can shorten

the migration time and reduce disruption to transactions

since the data copying uses one-sided RDMA operations

to bypass the CPU of the source node, which may be

busy with the transaction processing.

Second, data migration with pre-copy usually requires

tracking and copying dirty data, even when the des-

tination has already held a data copy (has a backup

replica). This results in more migration iterations and

lengthy downtime since many dirty tuples may be gen-

erated during the data migration process. To this end,

DrTM+B reuses its fault-tolerance logging mechanism

for tracking and copying dirty tuples. Therefore, no ad-

ditional data copying is needed in the commit phase. Fur-

ther, DrTM+B employs a cooperative commit protocol to

minimize the downtime required to migrate final states,

where the concurrency control protocol is slightly modi-

fied to be aware of the configuration change.

We have implemented DrTM+B by extending

DrTM+R [5]. The extensions include reusing fault toler-

ance mechanism for live reconfiguration and making the

OCC protocol aware of the reconfiguration process.1 To

demonstrate the effectiveness of DrTM+B, we evaluated

it using TPC-C and SmallBank with changing skewness.

Evaluation results show that DrTM+B can complete a

reconfiguration within 40 milliseconds if existing repli-

cas suffice to balance the workload. With data copying,

DrTM+B only takes 3 seconds and 1 second to recon-

figure TPC-C and SmallBank workloads with only 7%

and 3% throughput drop during reconfiguration respec-

tively. There is no observable downtime and DrTM+B

finishes live reconfiguration significantly faster than ex-

isting post-copy approaches.

In summary, this paper makes the below contributions:

• A pre-copy based scheme to reduce downtime of

live reconfiguration. (§3)

• Two key optimizations that further minimize data

transfer, service disruption and downtime. (§4)

• An intensive evaluation that confirms the effective-

ness of DrTM+B. (§6)

2 BACKGROUND AND MOTIVATION

2.1 Fast In-memory Transaction Systems

Recent commoditization of advanced hardware features

like RDMA have stimulated the design and implemen-

tation of fast distributed in-memory transaction systems

like DrTM [29, 5], FaRM [11] and FaSST [15]. These

systems exploit the low-latency transmission of RDMA

to boost distributed transactions, resulting in orders of

magnitude higher throughput compared to previous sys-

tems and reaching millions of transactions per second

even on a small-scale cluster.

To achieve high throughput and low latency, such

systems follow a local execution mode such that each

worker thread will run a transaction to completion. The

request will be routed to the node which contains most

of the tuples the transaction accesses for efficiency. To

scale, these systems continue the practice of H-Store [16]

and others by splitting a large volume of data into multi-

ple partitions spreading across multiple nodes.

To achieve high availability upon failures, a common

approach is to use Vertical Paxos [18] with primary-

backup replication [16, 11, 5, 15]. The primary-backup

replication has been shown to have a lower number of

replicas to tolerate the same number of failures compared

to Paxos [11]. Under primary-backup replication, each

partition is commonly configured to use 3-way replica-

tion (one primary and two backups). The transaction will

write the log at each node with a backup before com-

mitting on the primary. To make backups catch up with

1DrTM+B can coexist with the fault-tolerance mechanisms based

on primary-backup replication [5, 11] since both the pre-copy phase

and the commit phase are applied in a transactionally safe way.
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Fig. 1: An example of reconfiguration.

the primary, each node will periodically apply updates in

logs to the backup replicas in background.

2.2 Skewed Workloads & Live Reconfiguration

While sharding scales out in-memory transactions, it is

hard or even impossible to find a static sharding con-

figuration that works well for all workloads, especially

for those with dynamic changing hotspots and skew-

ness [24]. Actually, prior work on production appli-

cations has shown that hot objects change rapidly over

time [3, 7, 19, 17]. Some e-commerces like daily deals

and flash sales can abruptly and significantly increase the

visits and transactions on particular products, resulting in

order spikes [1].

A change in skewness can cause severe load imbal-

ance, leading to notably degraded overall performance.

Fig. 1 shows a sample database which is partitioned into

4 partitions by the range of key and is initially assigned

to 3 nodes with a balanced workload. However, the pres-

ence of dynamical changes in load may result in skew-

ness, where some of the nodes will become overloaded

while others may be idle. For example, if most accesses

currently focus on the tuples in Partition 1 and 3 (P1 and

P3), Node 0 and 2 (N0 and N2) will be overloaded while

Node 1 (N1) will be underloaded.

To illustrate the performance impact from skewed

workloads on fast distributed transaction systems, we

conducted an initial experiment using DrTM+R [5] for

TPC-C [26] on a 6-node cluster. For this experi-

ment, TPC-C scales by partitioning a 25-million-tuples

database into 192 warehouses (32 per node). We test

different skewed settings (no skew, low skew and high

skew), and report the average throughput and latency of

the system. Additional details of our experimental set-

ting are described in Sec. 6. As shown in Fig. 2(a), the

throughput decreases by 3.3X and 10.0X from no skew

to low skew and high skew respectively. In addition, as

shown in Fig. 2(b), the increases of latency also reach

3.7X and 11.0X for low skew and high skew respectively.

Hence, it is highly desirable for a distributed in-

memory transaction system to support fast and seamless

live reconfiguration to quickly adapt to frequent work-

load changes. As shown in Fig. 1, the current hotspots

on the sample database occur in Partition 1 and 3 (P1
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Fig. 2: (a) The throughput and (b) the latency of DrTM+R,

as well as (c) the number of influenced transactions during

reconfiguration for TPC-C with different workloads.

with 35% and P3 with 50%). A proper reconfiguration

plan is generated to lively migrate the Partition 0 and 4

(P0 and P4) from the overloaded nodes (N0 and N2) to

the underloaded node (N1). To achieve this, some parti-

tion (i.e., P3) may need to be split to achieve fine-grained

elasticity in the reconfiguration plan.

2.3 Disruptiveness of Post-copy Migration

To address the above issues, a recent state-of-the-art sys-

tem called E-Store [24] has provided the live reconfigu-

ration feature by automatically identifying whether a re-

configuration is needed and creating a new plan to bal-

ance the load across nodes. E-Store uses Squall [12] to

execute the plan by lively migrating data among nodes in

a transactionally safe way. Specifically, Squall follows

the post-copy based approach [13], which first applies

the reconfiguration plan and then pulls database tuples in

an on-demand (reactive) way. It further introduces opti-

mizations such as asynchronous migration and splitting

reconfigurations.

Fig. 3 illustrates the timeline of the post-copy ap-

proach adopted by Squall. After receiving a new plan

(migrating P0’s primary from N0 to N1), the reconfigu-

ration manager (RM) starts a reconfiguration by broad-

casting the new plan to all nodes. All nodes then tempo-

rally suspend accesses to P0 and wait for all outstanding

transactions on P0 to finish. After that, RM notifies all

nodes to update the new location of P0’s primary in the

mapping table from partitions to nodes (PN table) and

resume accesses to P0. Afterward, N0 will periodically

migrate the tuples of P0 to N1 in an asynchronous way.

Meanwhile, all transactions involving P0 will also be (re-

)assigned to N1. N1 will examine whether the tuples the

transaction accesses have been migrated. If not, N1 will

block the transaction and send a pull request to reactively

migrate the tuples from N0.

The post-copy scheme aims at reducing the down-

time and avoiding repetitive data transfer. However, this

causes significant disruption to transaction processing

during data migration and a lengthy period of migration

time due to two main reasons. First, transactions will be

blocked due to missing database tuples. The transactions

that access multiple tuples will mostly be blocked, even

by multiple times. This is especially an issue for standard

OLTP applications like TPC-C [26]. Second, migrat-
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ing data will compete CPU and memory bandwidth with

transaction processing on an already overloaded node,

which may further aggravate the imbalance. The length

and strength of performance degradation would be pro-

hibitive for ultra-fast OLTP systems [5, 11, 15] that pro-

cess millions of transactions per second with tens of mi-

crosecond latency.

To illustrate this, we implemented a post-copy based

live reconfiguration on DrTM+R [5] with all optimiza-

tions in Squall [12], and conducted an experiment for

TPC-C [26] with various workloads. Fig. 2(c) shows

that the post-copy approach will disrupt several millions

of transactions. Worse even, the throughput of DrTM+R

degrades to nearly zero for more than 4 seconds when re-

configuring a TPC-C workload with low skew, as shown

in Fig. 4. This is because the transactions in TPC-C re-

quire accessing multiple tuples, where fetching database

tuples on demand would easily cause lengthy stalls and

even aborts of transactions. Even worse, the length

of performance degradation in the post-copy approach

will proportionately increase with the growth of data

size and the number of tuple accesses in a transaction.

This becomes an even more serious issue for rapidly

changing workloads that require frequent live reconfig-

uration [3, 7, 19, 17].

3 OVERVIEW OF DRTM+B

DrTM+B is designed to support live reconfiguration for

fast distributed in-memory transaction systems (§2.1).

Like E-Store [24], DrTM+B contains two cooperative

parts: Monitor and Planner. The monitor detects load

imbalance and identifies the tuples causing it, and the

planner decides whether there is a need to reorganize

the tuples and generate the corresponding reconfigura-

tion plan.

Unlike Squall [12], DrTM+B adopts a pre-copy based

approach to migrating tuples, like those widely used in

the live migration of virtual machines [6]. Fig. 5 il-

lustrates a typical pre-copy mechanism which contains

two consecutive phases: iterative pre-copy and commit.

In the iterative pre-copy phase, the involved data is first

copied from the source node to the destination node (i.e.,

DATA-COPY), then the dirty data is iteratively copied to

the destination (i.e., DIFF-COPY). When the amount of

dirty data is small enough or the number of iterations ex-
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Fig. 4: The throughput and median latency timeline of Squall

live reconfiguration on DrTM+R for TPC-C with low skew.

ceeds a threshold, the commit phase starts where it per-

forms final data synchronization (i.e., DATA-SYNC) to

transfer remaining dirty data, and state synchronization

(i.e., STATE-SYNC) to (re-)assign transactions according

to the new reconfiguration plan.

Issues with pre-copy. While the pre-copy based ap-

proach can minimize service disruption during data mi-

gration, there are two main issues limit its effectiveness

in fast in-memory transaction systems. First, the pre-

copy phase may be lengthy with large data transfer and

may even hard to converge, since the high frequency of

transaction processing will produce a huge amount of

dirty tuples. Second, it is hard to find an efficient way to

track the dirty tuples during migration and synchronize

such tuples to destination nodes.

Observation. To address the above issues, we exploit

two observations in fast in-memory transaction systems

with high availability [11, 5, 15], where the primary-

backup replication is used to tolerate failures. First, as

the backup replicas contain nearly the same content as

the primaries, it is possible to reuse the fault-tolerant

replicas to avoid most data transfer in the pre-copy

phase. Second, these systems typically use log forward-

ing to synchronize data between primaries and backups.

It opens an opportunity to freely track and synchronize

the updates on tuples during data migration.

Our approach. In the pre-copy phase (§4.2), DrTM+B

prefers to reuse the fault-tolerant replicas to skip the

DATA-COPY by a replication-aware reconfiguration plan

(§5). Note that DrTM+B may split a partition when

its granularity is not small enough to balance the work-

load (e.g., P3 in Fig. 1). For extremely rare cases

where all nodes holding the replicas of a hot partition

are also overloaded, DrTM+B will create a new replica

for the hot partition at a spare node. Furthermore, since

the source node holding the hot partition is busy with

transaction processing, DrTM+B uses one-sided RDMA

READ on the destination node to asynchronously pull

tuples from all replicas in parallel. For the DIFF-COPY,

DrTM+B seamlessly reuses the log forwarding mecha-

nism in replication systems to freely track and synchro-

nize the new updates on migrated tuples (i.e., dirty),

since the log essentially contains the changes of each
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committed transaction. Further, DrTM+B can concur-

rently execute DATA-COPY and DIFF-COPY.

In the commit phase (§4.3), DrTM+B supports the

DATA-SYNC by draining updates in logs to the backup

replica. When the amount of logs is too much and thus

may cause a notable downtime, DrTM+B uses a cooper-

ative commit protocol where a primary continues to com-

mit transactions while the backup is applying logs. Yet,

the transaction commit protocol (e.g., OCC) is modified

such that the log versions of involved transactions are

forwarded to the primary. Next, when the backup has ap-

plied all previous logs, it can quickly apply the remaining

logs only synchronizing with the primary. In DrTM+B,

the STATE-SYNC usually takes little time since it only

needs to update a few state tables (e.g., PN table). Fi-

nally, one-sided RDMA READ is used to actively watch

the state of the node holding the new primary, which

helps timely resume the execution on migrated data.

4 REPLICATION-DRIVEN LIVE RECON-

FIGURATION

Our goals are to minimize service disruption and down-

time while completing a reconfiguration as fast as pos-

sible. This section presents the detailed design on how

DrTM+B optimizes both the pre-copy and the commit

phases by a novel reuse of primary-backup replication.

4.1 Basic Data Structure

Database tuples in DrTM+B are assigned to multiple

disjoint partitions, which are further distributed across

multiple nodes. For brevity, this paper uses range parti-

tioning as an example.2 DrTM+B maintains a few data

structures to support fine-grained live reconfiguration, as

shown in Fig. 6. The first one is a mapping table from

key to partition (KP table), which makes it possible to

provide fine-grained reconfiguration at the tuple level.

The second one is a mapping table from partition to node

(PN table), which maintains the type (i.e., primary (P) or

backup (B)) and the state (i.e., whether the transaction

is executable (E) or not (N)) of each replica. Both KP

and PN tables are replicated and individually changed on

each node. A reconfiguration will change the two tables

to reflect the new plan.3

2A two-tiered partitioning [24] can be used to fully support fine-

grained planning and live reconfiguration at the tuple level.
3Each node updates the local tables atomically via an RCU-like

mechanism during live reconfiguration and after all worker threads

have executed at least one transaction.
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PN table, P and B stand for “Primary” and “Backup”, which

mean the type of the partition. E and N stand for “Executable”

and “Non-executable”, which mean the state of the partition.

C and X stand for “Create” and “eXchange”, which are used

for creating partition and notifying transactions to enter ex-

change mode (see Fig. 7,8, 9, and 10).

4.2 Pre-copy Phase

Generally, DrTM+B prefers to reuse existing replicas for

fault tolerance to support live reconfiguration such that

data transfer can be avoided. The underloaded nodes

holding backup replicas are superior candidates to take

over the workload from the overloaded nodes. How-

ever, for some highly skewed workloads, performing

data migration at a partition granularity may not be able

to achieve an optimal balance. Further, a spare node

with the backup for the partition cannot always be found.

DrTM+B addresses these two issues through partition

splitting and asynchronous replication accordingly.

Partition splitting. To support fine-grained migration

at tuple level, DrTM+B allows to split a single partition

into multiple ones and can reconfigure these new parti-

tions individually. For example, in Fig. 6, P3 is split into

two new partitions (i.e., P3 and P4), and one of them (P4)

is migrated from N2 to N1 in the commit phase.

Splitting a partition has minimal impact on outstand-

ing transactions since there is no real data movement in-

volved at this stage. Yet, we cannot naively split one par-

tition. Consider the example in Fig. 6, where keys from

[37,45) are being re-assigned from P3 to P4. If some

transaction updates the key 40 in P3 on N2, while the

key has been assigned to P4 at backup replica on N1,

this replica may miss this update which causes incon-

sistency. It is vital to split the partition among all nodes

synchronously. Moreover, all previous logs of committed

transactions should be applied on all backups in advance.

Consequently, DrTM+B defers the commit of splitting

partitions to the commit phase (§4.3), which can syn-

chronously change the configuration to the entire cluster.
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Asynchronous replication. The number of replicas

for fault tolerance depends on the requirement of degrees

for availability. For 3-way replication, there are two can-

didate nodes that can be considered when reconfiguration

without data movement. However, in some rare cases,

the planner cannot find an optimal reconfiguration plan

under current distribution of replicas. DrTM+B also al-

lows to asynchronously create a new backup replica for

some tuples in hot partitions on a spare node and then

migrate the workload to that node.

To avoid adding new workload to hot nodes, DrTM+B

adopts a pull-based approach, which leverages one-sided

RDMA READ on the spare node to fetch tuples of the

partition. To ensure the new backup replica receives the

updates from running transactions, the reconfiguration

manager (RM) will first acknowledge every node to add

a new backup replica entry to its PN table. Consequently,

subsequent transactions will write logs to the node which

will hold the newly created replica. The spare node will

start to fetch tuples from the primary of the partition af-

ter the notification from RM, which avoids missing some

updates on the primary. Note that the spare node may

fetch the tuples updated by transactions when creating

the new replica. Yet, DrTM+B can still guarantee the

consistency of the new backup even though the updates

are duplicated in logs. Since each update has a version,

the updates with an out-of-date version in the log or from

the primary will be simply skipped. Finally, all nodes

will receive the notification of the completion of asyn-

chronous replication, and the new replica can be treated

as a normal backup of the partition.

An example of asynchronous replication is shown in

Fig. 7 where another copy of P0 is created on N1. For

simplicity, we just create the whole P0 on N1 without

losing generality. The process starts when RM sends the

new plan to all nodes in the cluster. A new entry for N1’s

P0 with the state Create (C) is added to PN table when

each node receives the new plan. After that, subsequent

transactions will write logs to N1 after changing some

tuples in P0, while N1 will drain updates in the log to the

newly created backup. Each node replies to RM when

all transactions have noticed the new plan. After all ac-

knowledgments are collected by RM, RM then notifies

N1 to fetch tuples from the primary of P0. At last, N1
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Fig. 8: The optimized execution flow of asynchronous replica-

tion. A new backup replica of P0 is created on N1.

will notify all nodes to update the state of N1’s P0 to

Non-executable (N) in their PN tables.

Parallel data fetching. While asynchronous replica-

tion has no interference with the execution of transac-

tions, it may still delay the reconfiguration and increase

the degree of imbalance. Since data fetching domi-

nates the execution time of asynchronous replication,

DrTM+B optimizes this by splitting the migrated data

into multiple disjoint ranges and fetching them from mul-

tiple replicas in parallel. However, the backup replicas

may be stale since some logs have not been drained.

Hence, the RM must collect the latest log versions (i.e.,

log offsets) before changing PN table on all nodes4 first,

and then informs each backup to apply its logs beyond

such versions. After that, the backups can allow the spare

node to fetch data from them.

As shown in Fig. 8, the log offset of P0 on each node is

piggybacked to the acknowledgment message to the RM,

and the RM sends the collected log offsets to every node

with the backup replica of P0 (NX in this example). After

NX’s logs have been drained according to the collected

log offsets, NX sends an explicit message to N1 to invite

it to fetch P0’s data from its backup replica.

4.3 Commit Phase

The pre-copy phase guarantees that a destination node

has already possessed a backup replica with the migrated

tuples, and new updates to these tuples are being for-

warded through the primary-backup logs. However, to

commit a new configuration, it is necessary to atomically

promote the backup to the new primary and demote the

previous primary to the backup. Moreover, before ex-

changing the roles, DrTM+B must ensure that all updates

in the log of the backup have been applied so that the

primary and the backup are equivalent. Unfortunately,

in common concurrency control protocols [11, 5], each

transaction individually writes logs to all backup repli-

cas of modified tuples. This means that each node con-

tains the updates from all nodes and is not fully aware of

which transaction wrote the updates and when.

4Each transaction will individually write the logs to all backups,

such that each backup contains the logs from all nodes [11, 5, 15].
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Basic Commit Protocol. The basic commit protocol

will first suspend all involved transactions on every node,

and then apply the logs to candidate backup replicas.

Finally, all nodes will resume the involved transactions

with new configuration. Fig. 9 shows the timeline of the

basic commit protocol, where DrTM+B attempts to ex-

change the roles of P0’s replicas on N0 (source) and N1

(destination) by executing the following steps:

1. Suspend. The RM will inform all nodes the new

plan, and they first suspend all involved transactions on

P0 by updating the state of P0’s primary in PN table from

Executable (E) to Non-executable (N).

2. Collect. Every node will send its log offset to the

RM. The RM waits for all responses and informs the des-

tination node to drain its logs according to the offsets.

3. Resume. After draining the logs, the destination

node will inform the RM that the commit phase has done,

and notify other nodes to resume the execution of in-

volved transactions by updating their PN tables again.

Each node will exchange the roles (i.e., primary and

backup) of replicas and change the state of new primary

from Non-executable (N) to Executable (E).

Note that the logs are continuously applied in back-

ground on each node. Hence, the logs on the destination

node may have been applied beyond the log offsets be-

fore receiving the notification from the RM.

Cooperative Commit Protocol The downtime of the

basic commit protocol highly depends on the number of

updates in logs to be applied. Since the logs from the

same node are stored together to be efficiently appended

using one-sided RDMA WRITE, it is hard and not cost-

effective to apply logs for a certain backup. Conse-

quently, the destination node has to apply all logs from

all nodes, which may result in a lengthy downtime of the

commit phase when facing massive transactions.

Further, in DrTM+B and other systems [11, 5] which

leverage RDMA primitives for log forwarding, the log

versions are scattered over all nodes. Thus the log offsets

must be collected from all nodes in the cluster to indicate

the latest state of migrated tuples in the backup. Hence,

the exchange of roles must be carried with a global coor-

dination. Moreover, the destination node must notify all

nodes to resume involved transactions after the commit

phase, which may incur non-trivial downtime.

down
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Fig. 10: The execution flow of cooperative commit protocol.

To remedy this, DrTM+B optimizes the basic ex-

change protocol to minimize the downtime by adding a

new exchange mode for traditional concurrency control

protocol (e.g., OCC). DrTM+B will ask all nodes run-

ning involved transactions in exchange mode by chang-

ing the state of primary in PN table from Executable (E)

to eXchange (X). Under exchange mode, each node can

still execute involved transactions but need to forward

their log versions to the primary in addition. Then the

primary can initiate the exchange and delivery the log

offsets to the destination. The destination node will ap-

ply the logs and update the configuration in the PN table.

The rest of nodes will watch the state of the new pri-

mary on demand and resume the execution of involved

transactions. Fig. 10 shows the execution flow of the co-

operative commit protocol, where DrTM+B attempts to

exchange the roles of P0’s replicas on N0 (source) and

N1 (destination) by executing the following steps:

1. Prepare. The RM will inform all nodes the new

plan, then every node notifies involved transactions to

enter into the exchange mode by changing the state of

P0’s primary in its PN table from Executable (E) to eX-

change (X). When the transaction executes in the ex-

change mode, it will explicitly inform the primary (N0)

its log version during commitment with message. N0

will abort such transactions if it has already transferred

its ownership.

2. Collect. Every node will send the log offset to the

RM. The RM waits for all responses and informs the des-

tination node to drain its logs according to the offsets.

3. Suspend. After receiving the message from RM,

every node informs involved transactions to leave the ex-

change mode by setting the state of P0’s primary to Non-

executable (N). The primary (N0) starts to transfer P0’s

ownership to N1; it first denies transaction committing

from other nodes and then informs N1 with the further

log offsets collected from transactions running in the ex-

change mode.

4. Resume. To resume the execution on migrated data,

N1 waits for the logs to be drained according to the off-

sets received from N0. Then it updates its PN table to re-

sume involved transactions by exchanging the roles (i.e.,

primary and backup) of replicas and changing the state

of new primary to Executable (E).

Unlike the basic commit protocol, DrTM+B leverages



an RDMA-friendly watching mechanism to timely notify

all nodes to resume the execution on migrated data. The

PN table will be allocated in an RDMA memory region

which can be read by all nodes. Each node will lazily

update its PN table until it watches that the partition has

become Executable (E) at the destination node. For ex-

ample, when a transaction on NX touches P0 whose state

in PN table is Non-executable (N), NX will suspend the

transaction and continuously probe N1’s PN table until

the state of P0 become Executable (E). Then NX will

update its PN table to avoid further watching and resume

the transaction.

ALGORITHM 1: Generate a reconfiguration plan.

Data: LN : an array of the workload for each node.

LP: an array of the workload for each partition.

avg loadN : the average load per node.

P: a list of all partitions.

TPN : a mapping table from partitions to host nodes.

(LN , LP and avg loadN are provided by the monitor.)

1: Function GENERATE PLAN

2: new plan← {}
3: Sort P by the descending order in LP

4: for p in P do

5: src = primary in TPN [p]
6: if LN [src] > avg loadN then

7: dst = src, load = LN [src]
8: for backup in TPN [p] do

9: if (LN [backup] < avg loadN) &&

10: (LN [backup] < load) then

11: dst = backup, load = LN [dst]

12: if dst ! = src then

13: new plan← (p, dst)

14: LN [src] -= LP[p], LN [dst] += LP[p]

15: if HAS BALANCED (LN ) then

16: return new plan

17: . . . // fine-grained planning of E-Store

5 REPLICATION-AWARE RECONFIGURA-

TION PLAN

DrTM+B follows E-Store [24] to use a two-phase moni-

toring mechanism to detect load imbalance and identify

the tuples causing it, as well as a greedy planning algo-

rithm to generate the reconfiguration plan. To support the

replication-driven live reconfiguration, DrTM+B extends

the algorithm by considering the distribution of replicas.

The extended algorithm will first try to greedily bal-

ance the workload by migrating the partitions to the

nodes that hold their replicas. As shown in Algorithms 1,

the planner will start from the partition p with the high-

est workload LP[p] tracked by the monitor at runtime

(line 3–4). If the node with the primary of partition p

is overloaded (line 5–6), the planner will check whether

the nodes with the backup of partition p are underloaded

(line 7–11). If found, the node with the least workload

will be designated as the destination of partition p in the

reconfiguration plan (line 13). The workload of source

and destination node will be updated (line 14). After it-

erating all partitions, the planner will return the new plan

if the workload has been balanced (line 15–16). Oth-

erwise, DrTM+B will follow the fine-grained planning

algorithm in E-Store to refine the plan by splitting the

partitions and/or creating new replicas, which requires

the knowledge from fine-grained monitoring [24].

6 EVALUATION

6.1 Experimental Setup

The performance evaluation was conducted on a small-

scale cluster with 6 machines. Each machine has two

10-core Intel Xeon E5-2650 v3 processors with 128GB

of DRAM and a ConnectX-3 MCX353A 56Gbps Infini-

Band NIC via PCIe 3.0 x8 connected to a Mellanox

IS5025 40Gbps InfiniBand Switch. All machines run

Ubuntu 14.04 with Mellanox OFED v3.0-2.0.1 stack.

We implemented DrTM+B based on DrTM+R [5]

where 3-way replication is enabled. Each machine ded-

icates one processor to run up to 8 worker threads and

2 auxiliary cleaner threads5, the another processor is as-

signed to clients. To make an apple-to-apple compar-

isons, the state-of-the-art post-copy approach with all

optimizations in Squall [12] was also implemented on

DrTM+R as the baseline. In our experiments, we run all

systems with 10s for warm-up and use a monitoring time

window of 1s [24]. The backup replicas are randomly

assigned to all nodes during database initialization.

We use two standard OLTP benchmarks to evaluate

DrTM+B: TPC-C[26] and SmallBank [25]. TPC-C sim-

ulates principal transactions of an order-entry environ-

ment, which scales by partitioning a database into multi-

ple warehouses spreading across multiple machines. We

use a database with 192 warehouses (32 per node). The

cross-warehouse ratio is set to 1% for the new-order

transactions according to the specification. Similar to

prior work [24], two skewed settings are evaluated. For

low skew, the Zipfian distribution is used where two-

thirds of transaction requests go to one-third of ware-

houses. For high skew, 40% of requests follow the Zip-

fian distribution used in low skew, while the remaining

requests target four warehouses located initially on the

first server.

SmallBank models a simple banking application

where each transaction performs simple reads and writes

on user accounts. SmallBank scales by partitioning user

accounts into multiple partitions spreading across mul-

tiple machines. We use a database with 192 partitions

(100K accounts for each). The default probability of

cross-machine accesses is set to 1%. Again, two differ-

5DrTM+B follows DrTM+R to use auxiliary cleaner threads for ap-

plying updates in the log to the backup replicas periodically.
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Fig. 11: The perf. timeline for TPC-C with low skew.
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Fig. 12: The perf. timeline for TPC-C with high skew.

ent skewed settings are evaluated. For low skew, two-

thirds of transaction requests go to 25% of records in the

database. For high skew, 90% transaction requests go to

10% of records.

6.2 Performance for Skewed Workloads

We first evaluate the performance of DrTM+B and Squall

for both benchmarks with various skewed workloads.

The same initial configuration and reconfiguration plan

are enforced to both systems, which ensures the same

behaviors before and after live reconfiguration. In fact,

for a 6-node cluster with 3-way replication, the existing

backup is enough to provide load balance for both low

and high skewed workloads. Therefore, DrTM+B can

skip the data transfer. However, we still provide the per-

formance of DrTM+B/copy as the reference, which en-

forces to migrate data with asynchronous replication to

the destination node without regarding the existing data,

while parallel data fetching and cooperative commit pro-

tocol are enabled by default.

TPC-C: Low skew. Fig. 11 shows the perfor-

mance timeline of live reconfiguration with different

approaches. After reconfiguration, the throughput in-

creases by 2.1X, while the latency decreases by 33%.

Since there is no data movement, DrTM+B has imper-

ceptible downtime due to sub-millisecond commit phase.
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Fig. 13: The perf. timeline for SmallBank with low skew.
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Fig. 14: The perf. timeline for SmallBank with high skew.

Squall needs 4.7s to finish reconfiguration due to reac-

tive data transfer, while DrTM+B/copy only takes about

2.5s thanks to parallel data fetching. The performance

degradation in DrTM+B/copy is also trivial, the average

throughput drops by about 7% and the average latency

increases by about 6% during live reconfiguration. This

is because in DrTM+B/copy all logs are sent concur-

rently and data fetching mostly occupies CPU resources

at spare nodes. For Squall, the throughput drops by

around 99% and the latency increases by 7.7X in this

period (the first 2.5s) due to frequent transaction aborts

and increased contention on CPUs.

High skew. Fig. 12 shows how DrTM+B can im-

prove the performance of TPC-C workload with high

skew. After reconfiguration, the throughput increases

by 3.0X, while the latency decreases by 64%. When

there is no data movement, DrTM+B improves perfor-

mance instantly. It takes about 7.0s for Squall, while

DrTM+B/copy only needs 2.6s. Moreover the through-

put of DrTM+B/copy decreases by about 2% during live

reconfiguration and the latency increases by nearly 3%,

while Squall suffers from 98% throughput degradation in

this period since most workload is focused on hot spots.

SmallBank: Low skew. Fig. 13 shows the perfor-

mance timeline of live reconfiguration with different

approaches. After reconfiguration, the throughput in-
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Fig. 15: The perf. timeline for SmallBank with a load spike.

creases by 1.7X, while the latency decreases by 42%. As

existing backups are enough to balance, DrTM+B gains

performance increase instantly. The reconfiguration by

Squall requires 3.8s, while DrTM+B/copy only takes

0.7s to finish. Further, the throughput of DrTM+B/copy

drops by only 3% and latency increases by 11% during

live reconfiguration. By contrast, Squall has about 23%

throughput drop and nearly 6.3X latency increase in this

period. The throughput drops less for Squall in Small-

Bank compared with TPC-C since the transactions are

much simpler and less affected by missing data.

High skew. Fig. 14 shows the performance time-

line of SmallBank workload with high skew. After re-

configuration, the throughput increases by 2.4X and the

latency decreases by 69%. Squall takes 1.8s to fin-

ishes while DrTM+B/copy only needs 0.3s. Moreover

DrTM+B/copy has only 6% throughput drop with 8% la-

tency increase without notable downtime, while the num-

bers for Squall are 22% and 3.8X respectively in this

period. Although the performance is improving gradu-

ally during live reconfiguration, it still has non-negligible

costs.

Load spike: We further evaluate DrTM+B with a load

spike for SmallBank where 90% of workloads focus only

on one partition (0.5% of records). In such workload

data movement is necessary for the optimal plan. Fig. 15

shows the performance timeline of DrTM+B with differ-

ent settings. Note that DrTM+B starts one second fine-

grained monitoring after detecting the imbalance at time

0 to generate fine-grained plans for DrTM+B/split and

DrTM+B/copy. This will tentatively increase latency by

17%. DrTM+B only exchanges primary with backup,

which barely changes the performance since the hot data

resides in one partition. DrTM+B/split uses partition

splitting to balance the workload on the hot partition,

which can immediately improve the throughput by 2.1X

and reduce the latency by 54%. DrTM+B/copy further

uses asynchronous replication to create new replicas on

spare nodes, so that the throughput is improved by 5.4X
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Fig. 17: The perf. timeline using different replication copy

mechanisms for TPC-C with high skew.

while the latency is decreased by 82%. The improvement

is slighted delayed (0.5s) due to data movement.

6.3 Breakdown of Commit Phase

Since the commit phase of the pre-copy approach will

cause service downtime, we further study the time break-

down of DrTM+B’s commit phase using TPC-C work-

load with low skew and illustrate the focus timeline

in Fig. 16. RM issues a new plan at 0ms, suspends

all nodes at 26ms, and resumes the execution at 38ms.

In DrTM+B, all logs are concurrently drained during

the commit phase, therefore the waiting time to acti-

vate the destination partitions is much short. Moreover,

the downtime of DrTM+B is minimized to only 12ms

thanks to the cooperative commit protocol. The through-

put drops slightly by 12% during the commit phase.

6.4 Optimization for Replication Copy

To further study the impact of different optimizations on

the pre-copy phase, we conduct an experiment on balanc-

ing TPC-C workload with high skew. Fig. 17 shows the

performance timeline of live reconfiguration with three

different settings in DrTM+B, which indicate fetching

data directly from the primary, 1 backup replica, or all

of 3 replicas in parallel. When fetching directly from the

primary, it incurs 24% throughput drop and 2.8X latency

increase due to the contention on CPU at the primary.

Data fetching from 1 backup replica has nearly no im-

pact to throughput, and the latency only increases 3%.

This is because the backup node has less load than that

of the primary. Moreover, data fetching from 3 replicas

in parallel can notably shorten the migration time from
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Fig. 18: A comparison of (a) network traffic and (b) perfor-

mance degradation between DrTM+B and Squall.

3.5 to 2.6 seconds.

6.5 Micro-benchmark

We further use a micro-benchmark based on TPC-C to

study the performance of DrTM+B and Squall, where 24

partitions are deployed on 3 nodes each holds one ware-

house. We measure the metrics by swapping different

numbers of partitions between first two nodes.

Network traffics. Fig. 18(a) shows the log scale data

transferred with the increase of swapping partitions. For

DrTM+B, only 4KB metadata is transferred during the

commit phase since there is no data movement. For

Squall, the network traffic is mainly dominated by the

size of migrated partitions. For DrTM+B/copy, the data

transferred is nearly doubled due to additional logs of the

new backup replica, which can be avoided by removing

one existing backup.

Influenced transactions. Fig. 18(b) presents the log

scale influenced transactions with the increase of swap-

ping partitions. DrTM+B and DrTM+B/copy have al-

most the same amount of influenced transactions, which

only happens during the commit phase. The number of

influenced transactions in DrTM+B is only 2% of Squall

when swapping two partitions.

7 RELATED WORK

Live reconfiguration for shared-storage database:

There have been a few efforts to provide live recon-

figuration features to shared-storage databases. For ex-

ample, Albatross [9, 10] uses a traditional pre-copy ap-

proach to iteratively migrating the database. DrTM+B

also uses a pre-copy approach but overcomes several

limits through a novel reuse of fault-tolerant replicas.

Zephyr [13] uses post-copy to migrate database while

allowing transactions to execute during data migration.

ProRea [20] extends Zephyr’s approach by proactively

migrating hot tuples to reduce service interruption. Elas-

tras [8] decouples data storage nodes from transaction

nodes and provides elasticity by moving or adding par-

titions. Slacker [4] leverages existing database backup

tools to migrate data, and uses stop-and-copy or pre-copy

method to create backups.

Live reconfiguration for partitioned databases:

The importance of providing load balance has stimulated

a few recent designs targeting partitioned databases.

Squall [12] follows Zephyr’s post-copy mechanism to

performing live reconfiguration with the support of fine-

grained tuple level migration. Compared to Zephyr, it in-

troduces some optimizations such as pull prefetching and

range splitting. In this paper, we show that using a post-

copy based approach cause notable service disruption for

fast in-memory transaction processing. DrTM+B makes

a novel reuse and extension of the replication mechanism

to achieve fast and seamless reconfiguration.

Providing elasticity on non-transactional systems:

Spore [14] aims at addressing skewed access patterns

on keys for in-memory caching systems (i.e., mem-

cached). The basic approach is to create replicas of popu-

lar keys, which is similar to the asynchronous replication

in DrTM+B. However, it does not consider the transac-

tional execution on the key/value store. The reconfig-

uration in primary-backup systems has also been stud-

ied in distributed systems [28, 23]. For example, Shraer

et al. [23] proposes a protocol to dynamically configure

Apache Zookeeper without leveraging an extern recon-

figuration service. Similarly, The commit protocol in

DrTM+B incurs no downtime to partitions where their

primaries have not changed during reconfiguration.

Generating reconfiguration plan: E-Store [24] pro-

poses a fine-grained tracking approach and can generate

a new partition plan to migrate data tuples between par-

titions. DrTM+B further extends it to consider the lo-

cation of existing fault-tolerant replicas. Accordion [21]

uses a mechanism to find a better partition plan to re-

duce distributed transactions. A few recent work has pro-

vided a general partitioning service for datacenter appli-

cations [2] or general DBMS schema [22].

8 CONCLUSION

This paper described DrTM+B, a fast and seamless live

reconfiguration framework for fast in-memory transac-

tion systems. It adopted a pre-copy based approach,

which allows minimal interference between live recon-

figuration and normal execution. DrTM+B further made

a novel reuse of replication for fault tolerance in several

ways to accelerate data transfer in pre-copy phase and

minimize the downtime in commit phase. Evaluations

using typical OLTP workloads with different skewed

workloads confirmed the benefits of designs in DrTM+B.
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