
DArray: A High Performance RDMA-Based Distributed Array
Baorong Ding

dingbaorong@sjtu.edu.cn
Shanghai Jiao Tong University

Shanghai, China

Mingcong Han
mingconghan@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai AI Laboratory

Shanghai, China

Rong Chen
rongchen@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai AI Laboratory

Shanghai, China

ABSTRACT

This paper presents DArray, a high performance RDMA-based
distributed memory system. DArray achieves high performance
through three key designs. First, DArray is designed with an ob-
ject array abstraction, which captures the high-level application
semantics and provides a rich set of optimized interfaces with object
granularity. Second, DArray adopts distributed cache to absorb
remote data accesses. In order to reduce the performance overhead
incurred by the cache layer and increase the parallelism, DArray
devises a lock-free data access path to the local cache which uti-
lizes reference counters to prevent data races. Finally, based on the
observation that most data update operators are associative and
commutative, DArray proposes a new "Operate" interface, which
enables concurrent data operations on multiple nodes, and extends
existing distributed cache coherence protocol to support the new
"Operate" semantics.

A graph analytics engine and a distributed key-value store (KVS)
are built on top of DArray to demonstrate its versatility. The ex-
periment results on graph applications show that DArray achieves
two to three orders of magnitude better performance than GAM (a
state-of-the-art distributed memory), also with a maximum speedup
of 2.1x compared to Gemini (a state-of-the-art distributed graph
engine). Furthermore, the DArray-based KVS outperforms the
GAM-based KVS by up to 41x (from 2x).

CCS CONCEPTS

•Computingmethodologies→Distributed computingmethod-

ologies.

KEYWORDS

RDMA, Distributed Shared Memory, Distributed Data Structure,
Distributed System

ACM Reference Format:

Baorong Ding, Mingcong Han, and Rong Chen. 2023. DArray: A High Per-
formance RDMA-Based Distributed Array. In 52nd International Conference
on Parallel Processing (ICPP 2023), August 07–10, 2023, Salt Lake City, UT, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3605573.3605608

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605608

1 INTRODUCTION

Distributed in-memory processing is becoming increasingly pop-
ular, as it enables computation on large datasets to be carried out
more efficiently. Distributed shared memory (DSM) systems are
widely used for building distributed in-memory processing appli-
cations, as they provide a unified view of memory in distributed
machines. The low-level byte-addressed memory model of DSM
makes it more flexible for applications that require fine-grained
data access (e.g., graph analytics and distributed key-value stores),
compared to bulk-based data processing systems like Dryad[15],
Spark [21]. Programming distributed applications on DSM is as
easy as on a multicore system. Therefore, many distributed shared
memory systems have been developed to support distributed ap-
plications, such as Argo [17] and Magi [14], especially with the
emergence of low-latency RDMA networks.

Despite the flexibility in programming made possible through
low-level abstraction in distributed shared memory systems, this
comes with limitations that hinder the DSM’s ability to capture
high-level application semantics. For example, when locks are used
to avoid data race, DSM is not certain which objects the lock is
protecting. As a result, traditional DSM systems often perform
pessimistic synchronization of all pages to prevent possible conflicts,
negatively affecting DSM system performance. To mitigate this
performance issue, providing high-level application semantic can
be helpful. Through high-level semantics, more precise data can be
obtained about the objects protected by the lock.

To this end, this paper presents DArray, a high performance
RDMA-based distributed memory system that takes advantage of
the high-level application semantics. Instead of byte-addressed
read/write, DArray utilizes an abstraction of a global object array
spanningmultiple nodes.With the object array abstraction, DArray
provides a rich set of interfaces with object granularity, such as
get/set and R/W lock. To improve performance, DArray adopts
various optimization techniques.

First, DArray is designed with a cache layer to exploit data
locality. Each node maintains a local cache to store the most re-
cently accessed objects, which is managed by a runtime systemwith
cache coherence protocol. In order to minimize the performance
overhead incurred by the cache layer on the critical path, DArray
has an elaborately designed data access path. Unlike lock-based
solutions presented in existing cache-based systems [5] to prevent
data races between application threads and runtime threads, DAr-
ray employs a lock-free data access path that enables application
threads to access cached data just holding a reference (implemented
with atomic variables). To improve performance even further for
appropriate sequential access scenarios, DArray also provides an
optional "Pin" interface that holds the reference of a chunk explicitly
for subsequent data access, reducing the number of atomic variable

715

https://doi.org/10.1145/3605573.3605608
https://doi.org/10.1145/3605573.3605608
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605573.3605608&domain=pdf&date_stamp=2023-09-13

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Baorong Ding, Mingcong Han, and Rong Chen

read/write significantly and achieving data access performance
comparable to native arrays.

Second, DArray proposes the "Operate" interface to better cater
to application demands, which performs an atomic read-then-write
operation on an object. With the observation that many operators
(e.g., write_add, write_min) are both associative and commuta-
tive, DArray leverages an optimization that locally combines the
operations on the same object, and moves the combined operation
to the home node of the object, which can significantly improve
the parallelism. However, this new "Operate" interface doesn’t fit
well in existing cache coherence protocols. To facilitate such opti-
mizations, we extend the existing cache coherence protocol with a
new "Operated" state, which enables concurrent data operations on
multiple nodes, in contrast to the exclusive ownership restriction
imposed by the "Write" interface.

We have implemented DArray as a header-only user-space li-
brary, comprising about 5,000 lines of C++ code. Several micro
benchmark results demonstrate that DArray outperforms GAM [5]
(a state-of-the-art distributed memory system) and BCL [4] (a dis-
tributed data structure library) in both performance and scalability.
We also demonstrate the versatility of DArray as a distributed data
structure by implementing two distributed applications: a graph
analytics engine and a distributed key-value store (KVS) with the
interfaces provided by DArray. Benchmarks conducted on graph
applications show that DArray achieves two to three orders of
magnitude better performance than GAM, also with a maximum
speedup of 2.1x compared to Gemini [23] (a specialized distributed
graph analytics engine). Furthermore, the DArray-based KVS out-
performs the GAM-based KVS by 2x to 41x.

The contributions made in this paper are summarized below:
(1) The design of DArray, a high performance distributed object

array with a rich set of high-level interfaces.
(2) The design of a cache layer with a lock-free data access path

that achieves low overhead and high degree of parallelism in
the presence of local cache and a runtime system.

(3) The design of a new "Operate" interface that enables concur-
rent data operations on multiple nodes along with an extended
distributed cache coherence protocol.

(4) Two distributed applications built on the interfaces provided
by DArray to demonstrate its versatility and a set of eval-
uations that confirm the efficacy of DArray for distributed
data-intensive applications.

2 MOTIVATION AND DESIGN PRINCIPLE

Implementing a high performance distributed memory system is
challenging. We summarize three key principles that motivate the
design of DArray as follows.

Take advantage of locality. As is well-known, exploiting locality
can effectively improve system performance [9]. One mechanism
that utilizes this principle of locality is the cache. To demonstrate
the significance of cache for distributed memory, we first evaluate
the performance of two different RDMA-based distributed memory
systems, GAM (a distributed memory system with cache), and BCL
(a distributed data structure without cache), through sequentially
accessing an array. As shown in Figure 1, in a distributed workload
with 6 nodes, BCL exhibits significantly higher data access latency

Figure 1: Average latency of 8-byte sequential access over the entire

array. In the distributed scenario, the array is evenly distributed

among these nodes.

compared to GAM. This is primarily because BCL lacks local cache,
necessitating network communication for each access and result-
ing in a latency that is comparable to that of RDMA one-sided
READ (2μs). While GAM incorporates a local cache for remote ac-
cess scenarios, reducing the frequency of network communication
and resulting in a lower latency than that of BCL. Therefore, to
achieve better performance, DArray also adopts a cache mecha-
nism.

However, though GAM has lower remote access latency than
BCL, it has higher latency when accessing local memory, as shown
in the single machine configuration of Figure 1. This is because
introducing a cache layer increases the path to access local data,
leading to significant performance overhead. Thus, implementing
a cache layer with low overhead is still challenging.

Capture application semantic. Another principle is to use the
semantic information of data access from applications to optimize
the performance of the memory system. For example, knowing
the object access pattern can help the cache layer avoid repeatedly
migrating the data between nodes, thus reducing the overhead
of cache maintenance and improving performance. As shown in
Figure 1, DArray-Pin is implementedwith amemory access pattern
hint using the pin interface (described in §4.1), so it has a lower
latency than DArray. Therefore, in order to capture the application
semantics of data accesses, DArray provides various interfaces to
achieve extreme performance.

Utilize RDMA networks. The high-throughput and low-latency
features of RDMA networks are essential for developing a high
performance distributed memory system. However, these benefits
don’t come for free. RDMA has a different programming model
than traditional TCP/IP networks, necessitating efficient mapping
of various network communications (e.g., application data, coher-
ence requests) in DArray to the primitives provided by RDMA.
Furthermore, several optimization techniques for RDMA networks
are also crucial to the high performance of DArray.

3 DARRAY OVERVIEW

3.1 Architecture

Figure 2 presents an overview of DArray’s architecture. DArray
provides APIs for distributed applications to be built on and an
abstraction of a global array spanning multiple nodes. These nodes
are connected using low-latency RDMA networks. DArray adopts
a layered design, with each layer having its specific responsibil-
ity. These layers communicate with each other through lock-free

716

DArray: A High Performance RDMA-Based Distributed Array ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Local

subarray
.

.

.

Cache

Directory

Runtime
Layer

Comm
Layer

Node 1

Application thread Runtime thread Comm thread

Interface Layer

Application
 threads

DArray API

RDMA

Node 2

Node !

local-req

queue

RDMA-req

queue

data

access

RPC-msg

queue

Fast path Slow path

Figure 2: Overview of DArray architecture. All application threads

of these nodes are in the same distributed application (e.g., graph

analytics, key-value store).

queues and specific interfaces. Starting from the top, these layers
are interface layer, runtime layer, and communication layer.

Interface layer. The interface layer is designed to provide low-
overhead abstraction and maximum concurrency for data access
that is directly called by application threads. It provides APIs of rich
semantics to applications, and utilizes the functionalities provided
by the runtime layer. To fulfill applications’ needs, it attempts to
access the local subarray or cache directly first. If the data is not
available, it submits a request to the runtime layer via local-request
queue and awaits the request to be fulfilled.

Runtime layer. The runtime layer takes the responsibility of han-
dling requests from both local and remote nodes, cache manage-
ment, executing state transitions conforming to the extended cache
coherence protocol, and implementing various runtime optimiza-
tions. The local subarray is the application data allocated by the
local node, while the cache stores local copies of remote data. The
directory 1 tracks the state of data in both local subarray and cache
at the chunk granularity (512 elements by default) and is used by
the cache coherence protocol to maintain data consistency. The
runtime layer receives requests through the local-request queue
and RPC-message queue, and sends RDMA requests to the commu-
nication layer via the RDMA-request queue. By separating request
handling and network communication, it allows for the overlap of
computation and communication and masks network latency that
cannot be ignored.

Communication layer. The communication layer provides RDMA
communication support for the runtime layer and consists of two
1Directory in DArray has similar functionalities to that of a directory employed in
directory-based CPU cache coherence protocol.

!"#$%&!"'!(%&))"#$""""""""""""""""""""""""""""""

(%&))"%&''()"*

+"""*)+,-",-.'(/,'01234"5"6,789#:;"#<=""

▸">,3?/'24/,'

@"""%&''()9?7A.0/"3;"6.4/,'!?7A.0/$"-('/7/7,30,11?./5*B<=""""""

▸"C.(8DE'7/."&FG

H"""#"I./9?7A.0/"738.J<=

K"""6,78"?./9?7A.0/"738.J;"4,3?/"#:"3.L06(M<=

▸">,342''.34)"4,3/',M"

N"""6,78"CO,4P9?7A.0/"738.J<=

Q"""6,78"EO,4P9?7A.0/"738.J<=

R"""6,78"S3O,4P9?7A.0/"738.J<=

▸"T-.'(/."&FG

U"""73/"'.I7?/.'T-9,-.'(/,'01234",-.'(/,'<=

V"""6,78"(--M)9?7A.0/"738.J;"73/",-078;"4,3?/"S:",-.'(38<=

▸"T-/7W7A(/7,3"X73/

+Y""Z,,M"-7308(/(9?7A.0/"738.J;"T-#)-.",-<=

++""Z,,M"23-7308(/(9?7A.0/"738.J<=

B=

Figure 3: DArray APIs.

types of networking threads. Tx (Transmit) threads are responsible
for receiving RDMA requests from the runtime and posting them to
the RNIC (RDMA NIC). While Rx (Receive) threads constantly poll
the RNIC and deliver received RPC messages to the runtime via
the RPC-message queue. Additionally, these networking threads
perform RDMA-related optimizations, such as selective signaling
and batching. The separation of Tx and Rx threads ensures efficient
and high-throughput network communication.

3.2 Interface

DArray, as a data structure, provides a rich set of APIs, as shown
in Figure 3. These APIs can be classified into five categories.

Constructor. The constructor of DArray creates a distributed
array with 𝑛 elements that spans multiple nodes. By default, the
global array is evenly partitioned among these nodes. However,
users have the option to specify a custom partition scheme by
providing the optional argument, partition_offset.

Read/Write API. Similar to existing distributed data structures,
DArray provides basic Read/Write APIs that enable access to the
global array.

Concurrency control. For parallel and distributed applications,
locks play a crucial role in avoiding data races. Therefore, DArray
also provides distributed reader/writer locks for these applications
to ensure data consistency.

Operate API. The Operate API is a unique design of DArray
that utilizes the associativity and commutativity found in many
operators, and its detail will be discussed in §4.3. Applications
can register custom operators with the DArray runtime via the
registerOp method, and the runtime will assign operator IDs.
Applications can use these IDs to invoke corresponding operators
to operate data.

Optimization hint. To minimize abstraction overhead (overhead
present in data access path), applications can provide optimization
hints to the DArray runtime using the Pin interface, which will be
further discussed in §4.1.

717

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Baorong Ding, Mingcong Han, and Rong Chen

4 DESIGN AND OPTIMIZATION

4.1 Data Access

To achieve the objective of a high performance distributed memory
system, DArray first needs to design a low-overhead data access
path, as applications with good data locality are more sensitive to
the abstraction overhead.

However, the incorporation of local cache complicates the data
access path. This is because there may exist data races between the
application thread that accesses data and the runtime thread that
manages it. For instance, while an application thread is writing to
its cached data, the runtime thread may be evicting it back to its
home node2, causing a loss of data updates. Similar situations can
also happen for data in the local subarray.

Lock-based approach. One strawman solution is to introduce
locks in both data access path and runtime management to pre-
vent possible data races. This approach is simple but has several
drawbacks:

• Large overhead. It introduces locks in each data access, which
is unacceptable for many applications with good locality, since
the network latency is already amortized.

• Limited concurrency. The concurrency of application threads
is restricted, as only one application thread is allowed to access
data in the same chunk at a time. The possible presence of false
sharing [16] in applications may exacerbate this issue of limited
concurrency.

• Restriction on optimizations. Some runtime management
operations, such as updating the chunk’s state from readable to
writable, do not conflict with existing data access from application
threads and can coexist with them. However, in the lock-based
approach, these parallelisms are suppressed.

Therefore, DArray takes a different approach where the inter-
action between these threads is carefully designed to minimize
overhead on the critical path. For the data access path of appli-
cation threads, lock-free reference counting is adopted to reduce
overhead and maximize parallelism. In contrast, lock-based concur-
rency control is used in the runtime thread, which is not sensitive
to performance, to simplify the design. Figure 4 and Figure 5 re-
spectively demonstrate the data access path in application threads
and the cache eviction path in runtime threads.

Data access path.When an application thread invokes the getAPI,
it determines whether to read from the local subarray or the cache,
based on whether the data is allocated on the local node (Figure 4,
lines 1–4). To simplify the discussion, we only show the path for
reading from the cache. In this case, the index is used to locate the
directory entry (dentry) that manages the chunk where the index
belongs (line 5). The delay_flag is checked (line 6) to prevent
runtime threads from starving, and if it is set, the thread will spin
and wait (line 7). Afterward, the reference counter is increased to
prevent state transitions between time-of-check and time-of-use
(line 8). If the state of the dentry is readable, it remains so (line 13)
and it’s safe to read from this chunk until the reference counter
is decreased (line 14). However, if the state of the dentry is not

2Home node represents the node where this chunk is allocated.

▸!"#$%!&'(#)*$+#

!"#,-&.#/(!&'%#01!23!4!!!!!!!!!!!!!!!!!!!!!!!!!!!

5!!!$%!&-67+$8,&'%#01!!!!!!!!!!▸!$887+$(#%!9:!87+$8!'7%#;

<!!!!!&"#'&(!)#$%/&'/87+$8/-=9$))$:,&'%#01>!!!!!!!!!!!!

?!!!")*"!

@!!!!!&"#'&(!)#$%/&'/+$+A#,&'%#01>

▸ "#$%!&'!87+$8!+$+A#

&"+,-$(-.+./",-&.#/(!&'%#01!23!4

B!!!+'#0C!%#'():!D!E#(/%#'():,&'%#01>

F!!!1/$)"!%#'():GE#(/%#8$:/*8$E,1

H!!!!!-I&',1>!!!!!!!!!!!!!▸ I)#J#'(!)='(&K#!*)7K!-($)J&'E

L!!!%#'():G&'+/)#*+'(,1>!!!!!!!!!!!!!!!▸!A78%!$!)#*#)#'+#

M!!!1/$)"!N%#'():G)#$%$98#,1!

5O!!!!%#'():G%#+/)#*+'(,1>

55!!!!%#'():GP$&(/*7)/+$+A#/*&88,1>

5<!!!!%#'():G&'+/)#*+'(,1>

5?!!+'#0!)#(!D!%#'():GE#(,&'%#01>!!!!!!!!▸!)#$%!(A#!%$($

5@!!%#'():G%#+/)#*+'(,1>!!!!!!!!!▸!)#8#$-#!(A#!)#*#)#'+#!!!!!

5B!!&"#'&(!)#(>

Figure 4: Data access in DArray.

▸!"#$%&!&'($)(*+!(+!,-+)(.&!

!"#$%&!'%()/0&+),12!3&+),14!56!'*(3!!!!!!!!!!!!!!!!!!!!!!

▸!7,&'&+)!3#)#!,#$&8!(+!,-+)(.&

9!!!8)3::;*$<=>-#,3!;</3&+),14?

@!!!3&+),1A8&)=3&;#1=B;#>/4?!!▸!C;*$<!(+$*.(+>!#77!)%,&

D!!!3&+),1A8&)=8)#)&/EFGHIE04?!!!!!!!!!!▸!8)#)&!),#+8()(*+

J!!!3&+),1AK#()/4?!!!!!!!!!!!!▸!K#()!B*,!,&B$+)!)*!,&#$%!L

▸!-+C;*$<!(+$*.(+>!#77!)%,&

M!!!3&+),1A$;&#,=3&;#1=B;#>/4?

▸!8#B&;1!&'($)!$#$%&;(+&!!!!!!!

N!!!&'($)=$#$%&;(+&/3&+),1A$#$%&;(+&4?

Figure 5: Runtime management in DArray, take cache eviction as

an example.

▸!"#$!%!&'#(#$)#*!+'#(!',%-.#*/0!$#!1')$%2/,!!!!!

!"#$%&'()"*%&(+&",*--*.$34,*$'05!-,*$'06!.7!8#)-!!!!!!!!!

9!!!:$-;;/#<=>?@%'-!/=3-,*$'06A

▸ :%+,/0!<B%*?,!)$:!:$%$,!1)$B#@$!:0*<)*?

C!!!-,*$'0D:,$>:$%$,34EFGH6A

Figure 6: Runtime management in DArray, take permission pro-

motion as an example.

readable, the application thread will send a request to the runtime
and wait for it to be fulfilled (line 11).

Runtime management path. The runtime management path is
designed to be much simpler since it is not on the critical path. Let’s
take cache eviction as an example. The lock is acquired to prevent
data races between runtime threads (Figure 5, line 1). When the
dentry’s state needs to be changed, the following four steps are
performed: ➀ The delay flag is set to put all upcoming application
threads accessing this chunk on hold (line 2). ➁ The dentry’s state is
changed to the new state, which in this example is INVALID (line 3).
➂ The runtime thread waits for all existing application threads that
have acquired references to this chunk to finish their data accesses
(line 4). ➃ Finally, the delay flag is cleared to unblock incoming
application threads (line 5). Now, it’s safe to truly evict a cacheline
(line 6).

Optimization of parallelism. In certain scenarios, accessing a
chunk’s data and modifying its state can be parallelized. For in-
stance, as demonstrated in Figure 6, when the permission of a dentry
is promoted from read-only to writable, existing data access is not

718

DArray: A High Performance RDMA-Based Distributed Array ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

affected. Consequently, the runtime thread can directly modify the
state of the chunk without synchronization with user threads (line
2).

The proposed data access design reduces abstraction overhead,
increases parallelism, and adds room for optimizations.
• Minimal overhead. In the best case, the overhead introduced
by DArray compared to builtin arrays is only a single atomic
variable read (delay_flag), two atomic variable writes (refcnt),
and some branch instructions. Moreover, in certain scenarios,
the overhead of atomic variables can be completely eliminated,
which will be discussed later in this section.

• Improved concurrency. The lock-free data access permits mul-
tiple application threads to access the same chunk concurrently,
resulting in improved concurrency compared to the lock-based
approach.

• Room for optimizations. In certain scenarios (e.g., permission
promotion), application threads and runtime threads referring to
the same chunk can be parallelized.

Pin interface.Despite a variety of optimizations made to minimize
the abstraction overhead of DArray’s data access path, there is
still some overhead from atomic variables in the fast path 3. Atomic
variables are used to prevent the runtime altering the state of a
chunk while application threads are accessing it. In scenarios with
sequential access, a chunk is often accessed repeatedly, and the
chunk’s state is unlikely to be changed during this period. To ad-
dress this, we offer the "pin" API that ensures the chunk’s state
remains unchanged until the "unpin" API is invoked. Under the
hood, pinning a chunkmeans holding its reference (refcnt remains
nonzero), so runtime cannot evict it (for cached data) or degrade
its permission (e.g., from writable to only-readable). However, if
it is pinned to be read (with “Shared" state in §4.4), runtime can
share its data to fulfill other nodes’ read requests. Consequently,
the use of the "pin" API eliminates the need for atomic variables in
the fast path of "get", "set", and "apply", since "pin" has explicitly
held the reference for them. To use "pin", applications should have
some knowledge about their access pattern.

4.2 Cache Management

Cache is a critical component in the design of DArray. It can effec-
tively reduce network communication caused by remote data access,
particularly when applications exhibit good data locality. Cache
management is handled by the runtime, including maintenance of
cache coherence, cache eviction, and prefetching.

Cache coherence. In order to maintain cache coherence, runtime
threads receive requests from both local and remote nodes and up-
date dentry’s state accordingly. Dentry state transitions are defined
in the extended cache coherence protocol, which will be further
discussed in §4.4.
Cache eviction. To keep memory usage at a reasonable level and
achieve low response time for obtaining free cachelines, a cache
eviction mechanism to invalidate cold cachelines is required. Al-
though LRU (Least recently used) is a commonly used cache re-
placement algorithm, its update involves complex hash table and
3As shown in Figure 2, fast path does not require waiting for runtime to handle the
request, while slow path does.

scanning pointer

free cachelineruntime thread

allocated cacheline

!"#$%&'((')

accessed cacheline

!"#$%&'*(')

Figure 7: Cache eviction mechanism. Allocated cacheline is the

cacheline with valid data but no application thread is accessing it,

which can be evicted. Accessed cacheline is the cacheline with valid

data and some application threads are accessing it, which cannot be

evicted.

linked list operations, which can introduce unacceptable overhead
and limit concurrency in the data access path. In DArray, we avoid
introducing additional overhead in the data access path and dele-
gate cache eviction entirely to the runtime. As shown in Figure 7,
each runtime thread has its own independent cache region and a
corresponding scanning pointer, which allows DArray to avoid
data races and increase concurrency. The cache eviction policy is
governed by two parameters: low watermark and high watermark.
When the number of free cachelines in a local cache is below low
watermark, the runtime thread will perform cache reclamation until
the number of free cachelines is above high watermark. The default
ratio of low watermark and high watermark is 30% and 50%, which
can be adjusted in configurations. During the reclamation process,
the runtime thread scans its own cache region using the scanning
pointer. When a scanned cacheline is not in an intermediate state4
and has a refcnt of 0, it will be evicted.

Cache prefetch.As is widely recognized, sequential access is much
faster than random access, which is why many applications are
optimized for it. To better integrate with existing application op-
timization techniques, we introduce a prefetch mechanism in the
slow path of DArray (Figure 4, line 17). The prefetch mechanism
is placed in the slow path of data access for two reasons. Firstly,
placing it in the fast path would significantly reduce data access
performance and contradict our goal of minimal abstraction over-
head. Secondly, when waiting for the cacheline to be filled in the
slow path, the application thread is unable to make progress. Thus,
the insertion of the prefetch mechanism in the slow path does not
add an additional burden. The number of cachelines that need to
be prefetched can be configured.

4.3 Operate Semantics

While the basic Read/Write interfaces are useful in general, many
applications require more expressive interfaces. Inspired by widely-
used combiner in distributed systems implemented by message

4The intermediate state, which means it is still waiting for other node’s reply, is
introduced in implementing cache coherence protocol

719

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Baorong Ding, Mingcong Han, and Rong Chen

!"#$%"&'!"""#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

▸$%&'()*&+$,-)*./$.0&+1*.+$

2$$$"()*$(3,4.045-3,$6$78!9.-:;&<$=1;>$9.-:;&$(3,#$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$?$=1;$@6$(3,A$BA

C$$$(3*$(3,4.04(9$6$DE++1FGG+&'()*&+H0!(3,4.045-3,#A

▸$1;;.,1*&$';.:1;$1++1F$.5$=&+*&I$91*1

J$$$DE++1FK9.-:;&L$,-++4+13M!N"3#A

O$$$DE++1FK9.-:;&L$3&I*4+13M!N"3#A

▸$(3(*(1;(P&$=&+*&I$91*1

Q$$$,-++4+13M"5(;;!2"RSN"3#A

T$$$3&I*4+13M"5(;;!R#A

▸$,.+&$1;'.+(*U/

V$$$+*,$(*&+$-&$7RG2R8$

W$$$$$.",/+*,$)+,$-&$7RGN"38$

X$$$$$$$.",/+*,$9)*$-&$N"Y7)+,8"3&('U.-+)

2R$$$$$$$$9.-:;&$(3,$6$,-++4+13M"'&*!)+,#$S$

$$$$$$$$$$$$$$$$$$$$$$N"Y7)+,8"3&('U.-+)")(P&!#A

$$$$$$$$$$▸$0+.01'1*&$+13M$=1;-&$*.$3&('U:.+)

22$$$$$$$$3&I*4+13M"100;F!9)*>$(3,4.04(9>$(3,#A

$$$$$$▸$0+&01+&$5.+$*U&$3&I*$(*&+1*(.3

2C$$$$)Z10!,-++4+13M>$3&I*4+13M#A

2J$$$$3&I*4+13M"5(;;!R#A

Figure 8: An example of PageRank application using the Operate

interface.

passing [7, 8, 19], we propose a new interface with "Operate" se-
mantics, which better facilitates various data operations, including
write_add and write_min.

𝑣𝑎𝑙 ⊕ 𝑎𝑟𝑔1 ⊕ 𝑎𝑟𝑔2 = 𝑣𝑎𝑙 ⊕ (𝑎𝑟𝑔1 ⊕ 𝑎𝑟𝑔2) (1)
As depicted in Equation 1, the fundamental concept of "Operate"

semantics will be explicated by using the write_add operation as
an illustration. To increment the value of val by arg1 and arg2,
two approaches can be applied: (a) apply the computation on the
left side, where val is first incremented by arg1 and then by arg2,
or (b) apply the computation on the right side, where the sum of
arg1 and arg2 is first computed and then added to val. The order
of computation does not affect the final result.

The "Operate" interface is compatible with any operator that
satisfies the properties of associativity and commutativity. Applica-
tions are required to register the operator to the DArray runtime
and obtain an operator ID, which only needs to be passed along
with the operand when calling the apply API.

We explain the "Operate" interface using the PageRank algo-
rithm [3] as a case study, as depicted in Figure 8. PageRank is an
algorithm that computes the rank of each vertex based on the ranks
of its neighbors. In each iteration of PageRank, vertices evenly dis-
tribute their rank among their outgoing neighbors, which results
in an increment of the neighbor vertices’ ranks by inc. Initially,
the PageRank application registers the inc_op_func to the DAr-
ray runtime and obtains an operator ID (inc_op_id) assigned by
the runtime (line 2). During the iteration process, using the apply
API, the write_add operation can be carried out by feeding both
inc_op_id and inc as input (line 11).

Without the Operate API, it would be necessary to acquire the
writer lock for the corresponding vertex, read the vertex’s rank,
add the increment value to the rank, and write it back before releas-
ing the lock. The Operate interface offers some benefits over this
approach. The writer lock is exclusive, which means that only one
node can hold it at a time, leading to higher contention and limiting

UnsharedShared

Dirty

Operated

Rem
ote

 R

Loca
l/R

em
ote

 R Rem
ote W

Local W

Local/Rem
ote O

Remote R

Local W

Local/Rem
ote O Loca

l/R
em

ote
 R

W

Rem
ote

 O

L
o

c
a
l/
R

e
m

o
te

 R L
o

c
a
l R

W
O

Remote W

Local/Remote O

Figure 9: State machine of extended cache coherence proto-

col. Local/Remote is relative to the home node. RWO represents

Read/Write/Operate.

Table 1: States in the cache coherence protocol. RWO represents

Read/Write/Operate.

States Home node Other nodes Exclusive

Unshared R/W/O None Yes
Shared R R No
Dirty None R/W or None Yes
Operated O O No

concurrency. In contrast, the Operate interface is not exclusive, as
will be discussed in detail in §4.4, which can reduce contention and
increase concurrency.

4.4 Extended Cache Coherence Protocol

Cache coherence protocol is essential in offering a consistent view
of data to applications. While existing cache coherence protocols
mainly focus on the Read/Write interface, it is not adequate to im-
plement our proposed Operate interface. Consequently, we present
an extended cache coherence protocol that supports the Operate
interface. The extended cache coherence protocol comprises four
states and their corresponding transitions, as shown in Figure 9.

Similar to existing protocols, our protocol is directory-based and
ensures sequential consistency. This is because we don’t buffer or
reorder reads/writes, and all "Operate" operations are visible for
subsequent reads/writes with happen-before relationships.

Table 1 presents a summary of the four states in the cache co-
herence protocol:
• Unshared: The ownership of the chunk is exclusively assigned to
the home node. Subsequently, the home node has the permission
to Read/Write/Operate this chunk’s data.

• Shared: The chunk is shared among nodes, allowing all of them
to Read the data.

• Dirty: A non-home node has exclusive ownership of the chunk,
enabling it to Read/Write this chunk’s data.

• Operated: The chunk is shared among all nodes to enable con-
current Operate operations on the data. These operations will
be merged later by the home node (the node where this chunk is
allocated).

720

DArray: A High Performance RDMA-Based Distributed Array ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

12

Add

4

12

Add

3

12

Add

7

12 7

12

Add

2

12

Add

2

12

Add

7

12

Add

2

16

12 index Add operator 4 operand 7 old value 16 new value

Node 1 Node 2 Node 3

combine RDMA reduceApp thread Comm thread Runtime thread

Figure 10: Logical process of Operate interface.

Given that the other three states resemble existing cache coher-
ence protocols and are easily comprehensible, this section focuses
primarily on explaining the proposed "Operated" state. Figure 10
shows the logical process of the Operate interface. In the Operated
state, each node is capable of applying a registered operator to the
data in this chunk. Since operators are associative and commuta-
tive, their operands are first combined in the local cache. Once the
cacheline is evicted, the combined operands are written back to the
home node, which then applies the received operand to local data.
Due to the potential incompatibility between different operators,
the Operated state is uniquely associated with specific operator IDs
to ensure correctness of the Operate semantics.

Also, the newly proposed "Operated" state can bewell-coordinated
with existing states.

Transitions to "Operated". A chunk in the "Shared" or "Unshared"
state can easily transition to the "Operated" state. A chunk in the
"Dirty" state has to write its dirty data back to its home node before
transitioning to the "Operated" state, since it is the home node that
has to perform the reduction based on other nodes’ operations.

Transitions from "Operated". A chunk in the "Operated" state
cannot be accessed, since no node has complete information to
deduce its current value. If a read/write request is encountered,
it transitions to the "Unshared” state, allowing the home node
to gather data modifications (see Figure 9, transitions between
"Operated" and "Unshared"). What follows is similar to access an
"Unshared" chunk.

4.5 RDMA-Based Acceleration

Due to its low latency and zero-copy capabilities, we choose to
implement DArray using RDMA networks. Our DArray imple-
mentation handles two forms of data transfer between nodes: ap-
plication data and protocol messages. Specifically, we make use
of one-sided RDMA WRITE verb to transmit application data and
two-sided RDMA SEND/RECV verbs to transmit protocol messages.
Moreover, we apply various optimizations related to RDMA.

Dedicated networking threads. Some networking threads are
dedicated to interactingwith RNIC (RDMANIC), while other threads
offload network communication via RDMA-request queue. This
eliminates the need for connections between every pair of threads,
reducing the required number of queue pairs (RDMA connection)
from 𝑛2 × 𝑡 (where 𝑡 refers to the number of threads in each node)
to 𝑛2 × 𝑐 (where 𝑐 refers to the number of networking threads in

!"""#$%%&'()*+%',"-&.-+&/0123)*+%41.56"""""""""""""""""""

7"""#$%%&'(84*+9:+,"/'+1:&%%&'23;1<=>56""

▸"?1+"&"31':@&081"A&4%"B%C<"+-1"31'D@&081".+C%1""""""

!"#231':+"31'5"D,"31':@&0:+

E"""31':@&0:+"3@"F"GH6"""""""""""▸"4*4+4&04>1"4+"+C"1<A+'

I"""4*+"/8J31+:4K"F"-&.-231'56"""""""▸"-&.-"31'"+C"/8J31+

L"""4*+".+&%+"F"MMM6"""""""""▸".+&%+"1*+%'"4*"+-4."/8J31+

N"""4*+"1*K"F"MMM6"""

O"""/CC0"BC8*K"F"B&0.16

9"""$%&"4KP"'("Q.+&%+R1*KS"

T"""""-&.-+&/01MUVCJ324KP56

!W"""")*+%'"1*+%'"F"-&.-+&/01MX1+24KP56

!!""""'$"<&+J-:31'21*+%'Y"31'5

!7""""""BC8*K"F"+%816

!E""""""3@"F"Z1'[&02/'+1:&%%&'MX1+21*+%'M&KK%556

!I""""""-&.-+&/01M*0CJ324KP56

!L"""""")&"*+6

!N""""-&.-+&/01M*0CJ324KP56

▸"+%'"+C"B4*K"4*"1P+%&"/8J31+.

!O""'$"2]BC8*K5"

!9"""".4>1:+"C@1%B0C^:A+%"F"-&.-+&/01MX1+21*K_!56

!T""""MMM"""""""""""""""""""""""▸"BC00C^"C@1%B0C^"AC4*+1%

7W""&"#,&("3@6

Figure 11: Simplified code for implementing distributed key-value

store using DArray’s API.

each node). This optimization can help avoid RNIC’s on-chip cache
misses, as on-chip cache sizes are often limited.

Selective signaling. By default, RNIC generates a work completion
upon completion of every work request. This requires networking
threads to poll them, resulting in much PCIe traffic caused byMMIO
Reads. We employ an optimization of selective signaling, which in-
structs RNIC to produce work completions only for every 𝑟 requests,
with the exception of some RDMA requests that require signals to
reclaim buffers. The optimization technique helps reduce the PCIe
traffic.

5 APPLICATIONS

In this section, we showcase how DArray’s abstraction can be
used to construct distributed applications through the development
of two applications: a graph analytics engine and a distributed
key-value store.

5.1 Graph Analytics

A single-machine graph analytics engine (e.g., Polymer [22]) builds
on built-in shared-memory arrays for communication between
different computational units. However, a distributed graph ana-
lytics engine (e.g., Gemini [23]) relies on explicit message passing,
given that there is no built-in shared-memory abstraction among
the nodes. To port a single-machine graph analytics engine to a
distributed one, we could simply replace the built-in arrays with
our DArray, which provides shared-memory abstraction among
the nodes, and reuse the computation engine and task scheduling
components of the graph analytics engine. Figure 8 is a simplified
version of the PageRank algorithm based on DArray and omits
other parts that require domain knowledge of graph processing.

5.2 Distributed Key-Value Store

The distributed key-value store is an important distributed appli-
cation that can be conveniently constructed on top of the DArray
abstraction. A distributed key-value store comprises an entry array
and a byte array, both spanning multiple nodes (Figure 11, lines

721

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Baorong Ding, Mingcong Han, and Rong Chen

1–2). The entry array is partitioned into buckets, with each bucket
containing 15 entries and an overflow pointer, and the hash func-
tion maps a key to a particular bucket. Each entry is 8 bytes and
comprises an 8-bit tag, 16-bit size, and 40-bit offset. The tag
distinguishes entries within a bucket, while the size indicates the
size of the key-value pair, and the offset represents the byte offset
of the key-value pair within the byte array. The overflow pointer is
used to chain extra bucket when this buckets is full. We port the
SlabAllocator from Memcached [11] to manage the byte array.

Figure 11 demonstrates how to retrieve a key-value pair from
this key-value store. ➀ First, the hash function maps the key to a
particular bucket (line 4). ➁ Afterwards, we probe each entry in
this bucket to find a match (lines 8–16). ➂ If not found, we follow
the overflow_ptr to probe an extra bucket until there exists no
extra bucket (lines 17–19). ➃ Finally, we return either the key-value
pair we found or an empty one (line 20).

6 EVALUATION

6.1 Experimental Setup

Implementation. DArray is implemented as a header-only user-
space library comprising approximately 5,000 lines of C++ code,
which enables easy integration with various applications.

Testbed setup. The experiments are conducted on an RDMA-
capable cluster with twelve nodes. Each node is equipped with two
Intel Xeon E5-2650 v4 CPUs (total 2 × 12 cores), 128GB DRAM (128
GB/s, measured by Intel Memory Latency Checker [1]), and one
ConnectX-4 100 Gbps InfiniBand RNIC. These servers’ software en-
vironment is configured with GCC 11.2, OpenMPI 4.1.1, and Ubuntu
16.04. OpenMPI is configured with ucx to utilize high-speed RDMA
networks.

Comparing targets. DArray-Pin is a variant of DArray that
utilizes the Pin interface to improve performance. We also intro-
duce BCL [4], GAM [5], and Gemini [23] for comparison. BCL is a
distributed data structure library that maps access to remote data
directly to RMA (Remote memory access) operations, resulting
in poor performance in scenarios with good locality. GAM is an
RDMA-based distributed memory system and also incorporates a
local cache to absorb remote data access. However, its design that
aims at applications with bulk Read/Write results in significant
performance overhead in data access path. Gemini is a specialized
distributed graph analytics engine that has many optimizations
targeted at graph analytics workload.

6.2 Micro Benchmark

We first evaluate the total throughput of sequentially accessing
data structures by utilizing the Read, Write, and Operate APIs. We
compare Operate interface in DArray with the Atomic interface in
GAM, which results in suboptimal performance due to its exclusive
ownership.

Workload.We allocate a global array that spans multiple nodes,
with each element of 8 bytes in size. The array size increases linearly
with the number of nodes, specifically by 0.78 GB per node. Each
thread on a node sequentially accesses the entire global array with
an 8-byte granularity.

Figure 12: Comparison of sequential (a) Read (b) Write (c) Operate

request throughput (Mops/s) with the increase of threads on three

nodes.

Figure 13: Comparison of sequential (a) Read (b) Write (c) Operate

request throughput (Mops/s) with the increase of nodes. Use one

thread per node.

Intra-node scalability. Efficient utilization of multi-core resources
of servers is crucial in parallel and distributed applications. There-
fore, in this micro benchmark, we increase the number of threads
on three nodes synchronously to evaluate the intra-node scalability
of these systems. The results, shown in Figure 12, indicate that
DArray consistently outperforms both GAM and BCL. In such a
sequential access scenario, the lack of local cache in BCL results in
an average access latency equivalent to the round-trip of network
communication, making its total throughput the lowest of these
systems. Although we expect BCL’s throughput to scale with an
increasing number of threads, its scalability is hindered by issues
with RMA operations in MPI [13]. Although the use of local cache
significantly improves GAM’s performance compared to BCL, its
high-cost data access path still results in a significant performance
gap relative to DArray’s low-overhead abstraction. This gap only
increases with a growing number of threads.

Inter-node scalability. The significance of inter-node scalability
as depicted in Figure 13 cannot be ignored. DArray outperforms
GAMand BCL in terms of both performance and scalability. DArray
has better inter-node scalability due to its efficient runtime and
optimized RDMA communication layer. As the number of nodes
increases, DArray has scalability ratios of 0.82, 0.76, and 0.87 for the
three operations (Read, Write, and Operate) respectively, which is
higher than that of GAM’s 0.72, 0.68, and 0.73, and BCL’s 0.52 and
0.52 for the same set of operations.

6.3 Optimization Techniques

Two micro benchmarks are utilized to demonstrate the efficacy
of these optimization techniques, highlighting the performance
improvements brought forth by the "Operate" and "Pin" interfaces.

Operate interface. The workload consists of write_add opera-
tions that follow a Zipfian distribution of skewness 0.99. To achieve
the same semantics without the Operate interface, we would rely
on WLock+Read+Write. Evaluation results are shown in Figure 14.
The implementation that utilizes the Operate interface exhibits
strong scalability and sustains consistent operation latency with

722

DArray: A High Performance RDMA-Based Distributed Array ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Figure 14: The (a) throughput and (b) latency of zipfian access on a

global array using different interfaces. Use one thread per node.

Figure 15: Comparison of DArray and DArray-Pin’s sequential

8-byte read performance. Use one thread per node.

Figure 16: Running time of two graph applications on rMat24. Use

all available cores on each node.

an increase in the number of nodes. In contrast, the performance
of the lock-based implementation is suboptimal, which includes a
reduction in overall throughput and a significant increase in data
access latency as the number of nodes increases. This outcome is
mainly due to the lock-based scheme’s exclusive ownership, which
causes severe contention in multi-node systems, ultimately affect-
ing performance significantly.

Pin interface. We compare DArray and DArray-Pin in a se-
quential read scenario to evaluate the performance improvements
brought by the Pin interface. As shown in Figure 15, DArray-Pin
outperforms DArray by 1.8x to 2.9x in terms of throughput. This
is primarily due to the capability to hold references explicitly at
the chunk granularity in sequential access scenarios, significantly
reducing the need for atomic variable read/write with the use of
the Pin interface.

6.4 Graph Analytics

We utilized the array abstractions provided by DArray and GAM
to port Polymer [22], a single-machine graph analytics engine, to
distributed ones.

Graph applications. Two fundamental algorithms in graph ana-
lytics, PageRank (PR), and Connected Components (CC) are imple-
mented utilizing these engines.

Input graph. The input graph, rMat24, containing 224 vertices and
226 edges, is generated by the RMAT generator [6] in Graph500 [2].

Figure 17: Total throughput (Kops/s) of KVS with varing number

of threads and get ratio. The "get ratio" represents the proportion

of "get" requests in relation to the total number of "get" and "put"

requests.

Evaluation results of graph applications are shown in Figure 16,
revealing that DArray outperforms GAM by two orders of magni-
tude. This is primarily due to two reasons: 1. Graph applications
necessitate a low-overhead abstraction to enhance their perfor-
mance due to their fine-grained data access. 2. DArray’s lock-free
design and Operate interface meet the need for high parallelism
demanded by graph applications.

We also compare DArray-Pin with Gemini, a specialized dis-
tributed graph analytics engine. Despite optimized with Pin inter-
face, abstraction overhead is not negligible due to inevitable branch
instructions, resulting in inferior performance of DArray-Pin on
a single node compared with Gemini. However, as the number of
nodes increases, DArray-Pin eventually outperforms Gemini with
speedups of 1.3x on PageRank and 2.1x on Connected Components.
This is primarily due to DArray’s Operate interface and efficient
layered design, which enables computation and communication
overlapping, network latency masking with prefetching mecha-
nisms. Additionally, DArray-Pin achieves better scalability ratios,
with 0.55 and 0.74 on PageRank and CC, respectively, compared to
Gemini’s inferior scalability ratios of only 0.28 and 0.09.

6.5 Distributed Key-Value Store

Distributed key-value store is an essential component of distributed
systems. GAM has a KVS implementation that is similar to DArray-
based KVS, enabling us to compare the two. YCSB benchmarks are
conducted on six nodes with a Zipfian distribution parameter of
0.99, which is the default value. The results are shown in Figure 17.

DArray-based KVS consistently outperforms GAM-based KVS
in all scenarios primarily due to its low-overhead abstraction, effi-
cient runtime, and optimized RDMA communication layer. With
a get ratio of 100%, DArray-based KVS outperforms GAM-based
KVS by a factor of 20 to 41. Despite the high contention from PUT
requests, DArray-based KVS outperforms GAM-based KVS by a
factor of 2 to 3.8. Furthermore, DArray-based KVS demonstrates
better intra-node scalability due to its lock-free data access path.
DArray-based KVS exhibits a scalability ratio of 0.63-0.96, whereas
GAM-based KVS only has a scalability ratio of 0.48-0.64.

6.6 Limitations

Poor locality. To investigate the performance of DArray with
poor data locality, we perform a uniform random access over the
global array and compare the average access latency of different
systems. The evaluation results are shown in Figure 18. When ac-
cessing a single-node data structure without network communica-
tion, DArray has comparable performance to BCL and outperforms

723

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Baorong Ding, Mingcong Han, and Rong Chen

Figure 18: Comparison of random (a) Read (b) Write (c) Operate

request latency (ns) with the increase of nodes. Use one thread per

node.

GAM due to the lock-free data access path. However, as the num-
ber of nodes increases, the average access latency of DArray and
GAM increases, while the average access latency of BCL remains
roughly stable (approximately 2μs, which is the round-trip latency
of RDMA). This is mainly due to the overhead of the cache coher-
ence protocol. When the local cache is crowded, it needs to evict
data in the cache before accepting new data. Additionally, we ob-
serve that the write latency for random access is higher than the
read latency due to some data contention among different nodes.

7 RELATEDWORK

RDMA-Based distributed memory systems. FaRM [10] utilizes
RDMA to create a shared address space for the memory of all ma-
chines in a cluster, and provides developers with interfaces for
memory allocation, free, and read/write. FaRM also offers inter-
faces for transactions, leveraging the atomicity of cacheline up-
dates. GAM [5] implements a distributed cache coherence protocol
based on RDMA to ensure data consistency. Similar to FaRM, GAM
provides interfaces for memory allocation, free, and read/write
operations, as well as additional interfaces with lock semantics.

Distributed memory systems using programmable switches.

The emergence of programmable switches has propelled research
on implementing distributed memory systems using them, since
programmable switches enable in-network computation. Concor-
dia [20] and MIND [18] delegate cache coherence protocol mainte-
nance to programmable switches, allowing them to quickly handle
coherence requests. However, these systems require specialized
hardware that has not yet been widely used.

Distributed data structures. DASH [12] is a distributed data
structure that supports Partitioned Global Address Space (PGAS).
It provides the abstraction of an array to developers, but is not opti-
mized with caching and does not offer cache coherence ensurance.
BCL [4] implements a richer set of distributed data structures, in-
cluding queues, hash tables, arrays, and sets. However, like DASH,
it incurs excessive network requests for each access to remote data,
which makes it unsuitable for applications with good locality.

8 CONCLUSION

This paper presents DArray, a high performance RDMA-based
distributed memory system. DArray provides an abstraction of a
global array and provides a rich set of optimized interfaces with
object granularity. With the objective of high performance, DAr-
ray is designed with a coherent distributed cache and a lock-free
data access path. Furthermore, the interfaces and cache coherence
protocol of DArray are extended to better support applications

with commutative and associative data operations. Two distributed
applications, a graph engine and a distributed key-value store, are
built to demonstrate the versatility and efficacy of these techniques.
The results demonstrate that DArray performs well: it consistently
shows performance advantages over GAM [5] and BCL [4].

ACKNOWLEDGMENTS

This work was supported in part by the National Key Research
& Development Program of China (No. 2022YFB4500700), the Na-
tional Natural Science Foundation of China (No. 62272291), the
Fundamental Research Funds for the Central Universities, as well
as research grants from Huawei Technologies.

REFERENCES

[1] 2022. Intel Memory Latency Checker. https://www.intel.com/content/www/us/
en/download/736633/intel-memory-latency-checker-intel-mlc.html.

[2] 2023. Graph500. http://www.graph500.org/
[3] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-

tual Web Search Engine. In Proc. WWW. 107–117.
[4] Benjamin Brock, Aydın Buluç, and Katherine Yelick. 2019. BCL: A Cross-Platform

Distributed Data Structures Library. In Proc. ICPP. Article 102, 10 pages.
[5] Qingchao Cai, Wentian Guo, Hao Zhang, et al. 2018. Efficient DistributedMemory

Management with RDMA and Caching. Proc. VLDB 11, 11 (jul 2018), 1604–1617.
[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

Recursive Model for Graph Mining. In Proc. SIAM. 442–446.
[7] Rong Chen, Jiaxin Shi, Yanzhe Chen, et al. 2015. PowerLyra: Differentiated Graph

Computation and Partitioning on Skewed Graphs. In Proc. ACM EuroSys. Article
1, 15 pages.

[8] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proc. OSDI. 137–150.

[9] Peter J. Denning. 2005. The Locality Principle. Commun. ACM 48, 7 (jul 2005),
19–24.

[10] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, et al. 2014. FaRM:
Fast Remote Memory. In Proc. USENIX NSDI. 401–414.

[11] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 2004,
124 (2004), 5.

[12] Karl Fuerlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH: A C++ PGAS
Library for Distributed Data Structures and Parallel Algorithms. In Proc. IEEE
HPCC/SmartCity/DSS. 983–990.

[13] Nathan Hjelm, Matthew G. F. Dosanjh, Ryan E. Grant, et al. 2018. Improving
MPI Multi-Threaded RMA Communication Performance. In Proc. ICPP. Article
58, 11 pages.

[14] Yang Hong, Yang Zheng, Fan Yang, et al. 2019. Scaling out numa-aware applica-
tions with rdma-based distributed shared memory. Journal of Computer Science
and Technology 34 (2019), 94–112.

[15] Michael Isard, Mihai Budiu, Yuan Yu, et al. 2007. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In Proc. ACM Eurosys. 59–72.

[16] Tor E. Jeremiassen and Susan J. Eggers. 1995. Reducing False Sharing on Shared
Memory Multiprocessors through Compile Time Data Transformations. In Proc.
ACM PPoPP. 179–188.

[17] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, et al. 2015. Turning
Centralized Coherence and Distributed Critical-Section Execution on Their Head:
A New Approach for Scalable Distributed Shared Memory. In Proc. ACM HPDC.
3–14.

[18] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, et al. 2021. MIND: In-Network
Memory Management for Disaggregated Data Centers. In Proc. ACM SOSP. 488–
504.

[19] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, et al. 2010. Pregel: A
System for Large-Scale Graph Processing. In Proc. ACM SIGMOD. 135–146.

[20] Qing Wang, Youyou Lu, Erci Xu, et al. 2021. Concordia: Distributed Shared
Memory with In-Network Cache Coherence. In Proc. USENIX FAST. 277–292.

[21] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, et al. 2010. Spark:
Cluster Computing with Working Sets. In Proc. USENIX HotCloud. 10.

[22] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-
Structured Analytics. In Proc. PPoPP. 183–193.

[23] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, et al. 2016. Gemini: A
Computation-Centric Distributed Graph Processing System. In Proc. OSDI. 301–
316.

724

https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
http://www.graph500.org/

	Abstract
	1 Introduction
	2 Motivation and Design Principle
	3 DArray Overview
	3.1 Architecture
	3.2 Interface

	4 Design and Optimization
	4.1 Data Access
	4.2 Cache Management
	4.3 Operate Semantics
	4.4 Extended Cache Coherence Protocol
	4.5 RDMA-Based Acceleration

	5 Applications
	5.1 Graph Analytics
	5.2 Distributed Key-Value Store

	6 Evaluation
	6.1 Experimental Setup
	6.2 Micro Benchmark
	6.3 Optimization Techniques
	6.4 Graph Analytics
	6.5 Distributed Key-Value Store
	6.6 Limitations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

