TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

COLONY: A Privileged Trusted Execution
Environment with Extensibility

Yubin Xia, Member, IEEE, Zhichao Hua, Member, IEEE, Yang Yu, Jinyu Gu, Member, IEEE,
Haibo Chen, Senior Member, IEEE, Binyu Zang, Member, IEEE, and Haibing Guan, Member, IEEE

Abstract—The code base of system software is growing fast, which results in a large number of vulnerabilities: for example, 296 CVEs
have been found in Xen hypervisor and 2195 CVEs in Linux kernel. To reduce the reliance on the trust of system software, many
researchers try to provide trusted execution environments (TEEs), which can be categorized into two types: non-privileged TEEs and
privileged TEEs. Non-privileged TEEs (e.g., Intel SGX) are extensible, but cannot protect security services like virtual machine
introspection (VMI) due to the lack of system-level semantics. On the contrary, privileged TEEs (e.g., the secure world of ARM
TrustZone) have system-level semantics, but any additional service implemented in the privileged TEE directly increases the TCB of
the entire system. In this paper, we propose a new design of TEE to support system-level security services and achieve better
extensibility with a small TCB. Each TEE instance of the proposed design is named a COLONY. Specifically, we introduce a secure
monitor for isolation and capability management. Each COLONY is assigned capabilities to access only necessary system-level
semantics. We use the new TEE to build four security services, including secure device accessing, VMI tools, a system call tracer, and
a much more complex service to virtualize ARM TrustZone with multiple COLONIES. We have implemented the system on ARMv7 and
ARMV8 platforms, in Xen hypervisor and Linux kernel, and perform a detailed evaluation to show its efficiency.

Index Terms—System Security, Trusted Execution Environment, Operating System, Virtualization

1 INTRODUCTION

OMMERCIAL system software (e.g., hypervisor and op-
C erating system) contains a variety of system-level se-
curity services such as virtual machine introspection (VMI),
secure device accessing, system call tracer, kernel integrity
checker, random number generator, etc. These services
need to be isolated from malicious guest virtual machines
(VMs)/processes, and need to access system semantics to
provide rich functionalities, so they need to be run in
the privileged mode. However, the code base of existing
commercial system software is growing fast which results
in a large number of vulnerabilities: for example, 296 CVEs
have been found in the Xen hypervisorEl and 2195 CVEs
in Linux kernel An exploit of the system software could
allow complete access to the entire system and violate the
provided security services.

To reduce the reliance on the trust of system software,
plenty of researches [11], [15], [22], [25], [28], [33], [44], [45]
try to provide trusted execution environments (TEEs) by
using a secure monitor to interpose the critical operations of
system software, or with the hardware-supported secure en-
claves, e.g., Intel’s Software Guard eXtension (SGX). These

e Y. Xia, Z. Hua, Y. Yu, . Gu, H. Chen, B. Zang, H. Guan are with the
Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai
Jiao Tong University.
Email: ~ {xiayubin,
hbguan}@sjtu.edu.cn.
Corresponding author: Zhichao Hua.

Manuscript received Apr 09, 2020.

1. https:/ /www.cvedetails.com/vulnerability-list/ vendor_id-
6276 /XEN.html

2. https:/ /www.cvedetails.com /vulnerability-list/vendor_id-
33/Linux.html

zchua, yuyang, haibochen, byzang,

TEEs can be categorized into two types: non-privileged
TEEs and privileged TEEs. A non-privileged TEE, such as
Intel SGX, supports multiple TEE instances running in the
non-privileged mode, which are isolated from each other
as well as the system software. Since the code running in
a TEE instance is not included in trusted computing base
(TCB) of the whole system, new functionalities can be added
by launching new TEE instances, and each of them only
forms its own disjoint TCB. However, non-privileged TEEs
have no system-level semantics, such as memory mapping
or I/O processing, which is critical for system-level se-
curity services. On the contrary, privileged TEEs are able
to control the entire system resources. For example, ARM
TrustZone provides a TEE called secure world which has the
highest privilege. TZ-RKP leverages the secure world
for runtime kernel protection. However, existing privileged
TEEs can only provide a single privileged TEE instance,
which means that adding new security services will increase
the TCB of the entire system, which may cause security
problems [18].

In order to support the system-level security services and
at the same time provide better extensibility, compared to
existing solutions, we propose a new TEE that has system-
level semantics and does not belong to the system TCB.
Each instance of the proposed TEE is named a COLONY.
A COLONY has the same privilege mode as the system
software, i.e., the hypervisor or the OS. Different COLONIES
are isolated from each other as well as the system software.
We empower each COLONY to access two types of system-
level semantics: hardware semantics, including CPU context,
exception table, memory mapping and hardware devices,
and software semantics, which mainly refers to the data
of system software in memory. Each COLONY is assigned

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

capabilities to access these semantics. A secure monitor
is introduced to isolate a COLONY from untrusted system
software. Two types of isolations are enforced: data-flow
isolation, which protects a COLONY’s data in memory and
CPU context, and control-flow isolation, which prevents the
untrusted system software from bypassing or partially exe-
cuting a COLONY’s code. We also propose interfaces to sup-
port COLONY management, including creation, invocation,
communication, etc.

To demonstrate the effectiveness and expressiveness of
COLONY, we use it to build three system-level security ser-
vices, including 1) virtual machine introspection (VMI), 2)
secure device accessing, and 3) syscall tracing, and present
how to use COLONY to fully achieve the security require-
ments of these services. Then we use multiple COLONIES
to implement the virtualization of ARM TrustZone, which
provides a virtual TrustZone secure world for each guest,
without trusting the hypervisor. This case show how to
decouple a complex service into multiple COLONIES.

We implement the system on both HiKey development
board (ARMvS) and Samsung’s Exynos development board
(ARMvV?7), with Xen hypervisor and Linux kernel as system
software. The evaluation results show that our system im-
poses quite limited performance overhead (less than 2%).
The security services inside COLONIES reveal satisfactory
performance, too.

In summary, this paper makes these contributions:

o We propose a new design of privileged TEE; each
TEE instance, named COLONY, can access system-
level semantics and is isolated from other COLONIES.

e We re-design four system-level security services with
the help of COLONY: virtual machine introspection,
secure device accessing and system call tracing,
which are protected with a single COLONY for each,
and TrustZone virtualization, which is protected
with multiple COLONIES.

e We implement the new TEE design as well as the
four case studies, with different system software
including Xen hypervisor and Linux kernel, and
on different hardware platforms including HiKey
(ARMvVS8) and Samsung’s Exynos (ARMv7). A de-
tailed evaluation is performed to show the efficiency
of our design.

2 RELATED WORK AND MOTIVATION

There has been a long line of research on constructing
trusted execution environments (TEEs) based on various
hardware or software. These TEEs can be categorized into
two types: privileged TEEs and non-privileged TEEs, ac-
cording to the privilege level they are running, as shown
in the left part of Figure [[l While sharing the same goal:
to reduce the reliance on the trust of the system software
as much as possible, the two types of TEE have different
properties and are suitable for different scenarios.
Non-privileged TEEs: Most existing non-privileged
TEEs are built by either using a software secure monitor [21],
[28], [39], or directly leveraging hardware-supported
secure enclaves [7], [16], [19], [24], [40]. The former one is
known as soffware TEE, such as Overshadow [21]], Cloud-
Visor [45], Inktag [28], Sego [33] and SICE [13], which

2

provides TEE with different granularities. The latter is the
hardware TEE, which is enabled by hardware features. Intel
SGX [7] protects a piece of user-level code and data encap-
sulated into enclaves. An enclave’s memory pages cannot
be accessed by other software including the OS and the
hypervisor. Haven [15], SCONE and Graphene-SGX [43]
further improve the compatibility of the SGX enclave. AMD
SEV-SNP encrypts memory with different keys for each
VM as well as the hypervisor for isolation and protection.
The SEV-SNP provides VMPLO which could be used to
host some secure services, e.g., the secure VMI. However,
the VMPLO mode is non-privileged which cannot access
system-level semantics. Furthermore, SEV-SNP cannot be
used in non-virtualization environment and is not available
on existing hardware yet. SecureBlue++ [16], Sanctum
and Bastion [19] also provide non-privileged TEEs based
on the hardware design. On ARM platform, OSP [23],
TrustICE and Sanctuary leverage virtualization and
TrustZone to construct non-privileged TEEs.

Non-privileged TEEs support multiple TEE instances.
New functionalities can be added by launching new in-
stances, without increasing the system TCB. One of the
major limitations is that non-privileged TEEs do not have
system-level semantics, which is required for system-level
security services. For example, a kernel integrity checker
needs to access kernel’s memory; a VMI tool requires to
map and access the memory of the target VM. Thus, non-
privileged TEEs are not suitable for these services.

Privileged TEEs: Privileged TEEs can be enabled by
software, like SKEE and Nested Kernel [26], or by
hardware features, like ARM TrustZone for Cortex-A [10].
ARM also provides TrustZone for Cortex-M in IoT scenario,
which usually runs simple software stack. In this paper, we
only focus on TrustZone-A, and all the “TrustZone” refers to
“TrustZone-A". TrustZone splits the CPU into two execution
environments: a normal world and a secure world. In the
specification of ARM, all hardware resources can be par-
titioned into the two worlds. However, some manufacturers
may choose to hardwire some devices to the secure world.
The secure world is a privileged TEE, which can access all
resources. Manufacturers often run TEE OSes [4], [5]], [8] in
the secure world to construct multiple non-privileged TEEs.
However, they cannot access system-level semantics. ARM
introduces virtualization extensions in the secure world in
ARMvV8.4, which can run multiple TEE OSes in the secure
world. There is no available hardware yet. Further, the TEE
OS still cannot access system-level semantics — only the TEE
hypervisor running in sEL2 can directly access all hardware
resources and system semantics.

Since privileged TEEs usually can access all the com-
puting resources, they have the system-level semantics and
can be used for system-level security services. For example,
TZ-RKP implements a runtime kernel integrity protec-
tor by leveraging the privileged TEE provided by ARM
TrustZone. SKEE and Nested Kernel [26] construct a
single privileged TEE by software and use it to implement
a runtime kernel monitor. Aurora [36] leverages SMM to
protect system services. However, Aurora only enables the
service to access devices, and provides a single privileged
TEE (called SSV) for all services. Existing privileged TEEs
do not support multiple privileged TEE instances, which

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

. . Normal Environment Isolated Environment
Non-Privileged TEEs Privileged TEEs (e.g., Normal world) (e.., Secure world)
L L L [|
1
u TEEs Processes/ Processes/VMs Non-Privileged Clients |
o VMs L Mode (Processes/VMs) iy
<2 Eiintetatebeiiinintntutu I Dttt tubuluiiininininl i il 1
[\ Privileged
t ft g |
2 | System S.o ware TEE System Software | Mode COLONY lb coLony Ha- System ' Monitor
5 = Monitor Software | !
(72 ! .
E.g., CloudVisor, InkTag E.g., SKEE, Nested Kernel h Y Hardware |
Our System
Normal world 1 Secure world
1
I I I 1
1 TEE
w Processes/ Processes/|| 1
TEE! Non-Privileged
E S VMs VMs | E . Mc;rctie rivilege
) g | ——_ _ _ _ _]
b
© ! L
TEE OS
% System Software Kernel E I—, md”:gw E System TCB
= |
(] Access
— .
T h Hardware (CPU) | h Hardware | Semantics
E.g., Intel SGX, AMD SEV E.g., ARM TrustZone <> communication

Fig. 1. Different TEE designs and the overview of our design. Note that our design can be applied to not only ARM (with TrustZone support),
but also other platforms, as long as it provides isolated environment for the secure monitor.

means that adding new security services will increase the
TCB of the entire system.

Motivation: There have already been a variety of system-
level security services. VMI helps the user to monitor the
runtime status of a guest VM; syscall tracer allows a parent
process to monitor the execution of its child; disk encryption
transparently protects the confidentiality of on-disk data.
Most of these services rely on the system-level semantics
to achieve rich functionalities and minimal performance
overhead. Many of the services run at low level of the
system and have little reliance on the functionalities of the
system software. By running these services in TEE, we can
protect them from untrusted system software.

Comparing with putting multiple services into one TEE
instance, it is more secure to deploy them into multiple small
instances, and let them interact through explicit communi-
cation channels [31]]. Recent work [18] also shows that if
putting too much logic into a single TEE instance (e.g., the
secure world of TrustZone), even commercial implementa-
tions may contain critical vulnerabilities. Thus, it is required
to construct multiple privileged TEE instances, and each
instance should be able to access system-level semantics and
not be a part of the system TCB.

3 COLONY ABSTRACTION

Our system has following three goals: 1) Isolation: a
COLONY should be isolated from the untrusted system
software and other COLONIES. 2) System-level Semantics:
a COLONY should have the ability to access system-level
semantics. 3) Minimal TCB: there are two kinds of TCBs:
system TCB and service TCB. The system TCB includes all
the components that support the functionalities and the iso-
lation of COLONY. Components outside the system TCB can-
not break the above two security goals. On the contrary, the
service TCB depends on the semantic of service. It contains
components that are trusted by other parts of the service,
which may affect the whole service once compromised by
attackers. All COLONIES should be excluded from the sys-
tem TCB so that any compromised COLONY cannot break

the isolation between different COLONIES or provide fake
system-level semantics for others. For a complex service, we
allow it to be decoupled and to be deployed in multiple
COLONIES with different capabilities, to reduce the service
TCB. Section discusses more about these two TCBs. In
this section, we will first introduce the threat model of our
system, and then give the COLONY abstraction, followed by
how it accesses system-level semantics.

3.1 Threat Model

We have following assumptions: 1) the hardware compo-
nents are trustworthy; 2) the system supports an execution
environment that is isolated from the system software and
can access all hardware resources (e.g., the secure world
of TrustZone or a tiny hypervisor), which is used to run
a secure monitor. 3) the secure boot is used to guarantee
the integrity of the system during the boot-up process, but
not the integrity thereafter; 4) the system software, is benign
but has bugs, which will finish the initialization correctly
during booting, but may get fully compromised after that;
5) any user application or guest VM may be malicious; 6)
one COLONY could be compromised and issue attacks to
other COLONIES.

Our system focuses on protecting system services, and
leaves the protection of user applications or VMs to existing
user-level TEEs, which is orthogonal to our work. For ex-
ample, in the scenario of one process using some system
services, we assume that the process has been protected
by some user-level TEE like TZ-Container [30]. Even so,
the application still relies on the correctness of the system
services, which will be protected by COLONY.

This paper does not consider the case that a system-level
service itself leaks its own data. DoS attacks, side-channel
attacks and physical attacks are also out of the scope.

3.2 Overview of COLONY

As shown in Figure [Il a COLONY runs in the same mode
with the system software, either the hypervisor or the

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

TABLE 1
The interfaces of a COLONY.

Type Name Arguments Description
Management CREATE Execution info, interface info Create a COLONY and get the ID.
int rfg ASSIGN_CAP ID, capability type, permission, info Assign a capability to a COLONY.
eriaces ALLOW_COMM Source ID, target ID Specify the target a COLONY can communicate with
INVOKE 1D, arguments Allow the client to invoke a COLONY.

Invocation and

Invocation Memory None

Allow to invoke a COLONY by accessing specific memory.

.Cotm I;lunication COLONY_CALL 1D, arguments Allow a COLONY to call another COLONY.
Interfaces COLONY_RETURN return value Allow a callee to return to the caller COLONY.

ALLOC PAGES Memory type, number Allocate pages from COLONY memory.
Runtime GET_SEMANTICS Semantics type, metadata Get a memory pointer used to access the target semantics.
interf WRITE_SEMANTICS Semantics type, metadata, data Modify the target semantics.
rtertaces ENTER_COLONY None Enter a COLONY.

EXIT_COLONY None Exit current COLONY.

TABLE 2
The capability types of a COLONY.
Capability Type Description

CPU context
Exception table
Memory mapping
Hardware device
System memory

Which parts of CPU context can be read /written by a COLONY.
Whether a COLONY can read/write the exception table.

Whether a COLONY can read/write/check the memory mappings.
Which device can be accessed by a COLONY.

Whether a COLONY can read/write the memory of system software.

OS kernel. We use a monitor, protected by either a tiny
hypervisor or the secure world of TrustZone, to construct
COLONIES. A COLONY can host a system-level service to
serve multiple clients. The client can be a guest VM or a
user process. Both the data-flow and the control-flow of a
COLONY are isolated from the untrusted system software as
well as other COLONIES. Each COLONY has its own code
and data region to support a system-level security service.
There are two kinds of data regions: user-private memory
and global memory. We maintain a user-private memory
region for a client, to store the service data for the client.
When handling a request, the COLONY can only access the
user-private memory of current client. The global memory
is used to store the service data shared by all clients.

Our system provides a capability method for COLONIES
to access system-level semantics. The developer can give
each COLONY the minimal capability. The capability method
also enables a complex service to be decoupled and run in
multiple COLONIES for stronger isolation. We also provide
three kinds of interfaces of COLONIES: management inter-
faces, invocation/communication interfaces, and runtime
interfaces, as shown in Table[ll

3.3 Capability for Accessing System-level Semantics

We divide system-level semantics into two types: hardware
semantics and software semantics. The previous one con-
sists of CPU context, exception table, memory mapping and
devices. The only software semantic we provide is system
memory. Table 2l shows all the five capabilities.

Each type of capability corresponds to a kind of se-
mantics, and each of them has different permissions:
read /write/check/access. All the capabilities have both the
read and write permissions, except the hardware device
which only has access permission. For the memory mapping,
we further provide a check permission to indicate whether

Normal World Secure World
COLONY Secure Monitor
ENTER_
coLoNY hw,
requests COLONY

p— g P metadata

system vy

software I o

data COLONY oA code
memory o

coge Linkage Stack

Fig. 2. Architecture of our system.

a COLONY can check mapping modifications. For the CPU
context, the permission is maintained for each CPU register.

4 DESIGN AND IMPLEMENTATION

The abstraction of COLONY is portable and can be imple-
mented on either x86 or ARM platform, with a secure mon-
itor protected by, e.g., a tiny hypervisor or ARM TrustZone.
In this section, we propose a detailed design based on ARM
TrustZone. The design overview is shown in Figure 2l We
first introduce the address translation on ARM and further
give the design of our system.

4.1

COLONY’s memory isolation employs basic operations of
memory management unit (MMU) H. With MMU, the ad-
dress translation is performed with translation tables, which
is pointed to by a translation table base register. There are
two different kinds of address translations: one-stage and
two-stage. The previous one maps a virtual address (VA)

Address Translation on ARM

3. This paper focuses on the Cortex-A platform which is widely used
to run complex OS and hypervisor. Other ARM profiles, e.g., Cortex-M,
may not provide MMU.

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

to a physical address (PA). It is used for the OS kernel
(no virtualization) or for the hypervisor. The page table is
controlled by the OS or the hypervisor respectively. The
two-stage translation is used by guest VMs, which has two
stages: in stage-1, a VA is translated to an intermediate phys-
ical address (IPA); in stage-2, the IPA is further translated to
a PA. The stage-1 page table is controlled by guest OS and
the stage-2 page table is controlled by the hypervisor.

4.2 Design Challenges

There are three goals of our system: strong isolation, system-
level semantics and minimal TCB. Each of them derives
multiple challenges.

Challenge-1: isolating a COLONY. A compromised system
software running in privileged mode may: 1) modifies
the memory and CPU context of a COLONY, 2) hijacks a
COLONY’s execution, partially execute a COLONY or totally
bypass it, or 3) indirectly replaces the arguments passed to
it. Thus, both the control-flow and data-flow of a COLONY
should be isolated.

Challenge-2: accessing system-level semantics. We allow
each COLONY to access system-level semantics. The system
software may try to tamper with the semantics or provide
fake semantics.

Challenge-3: minimizing the TCB. Both the system TCB and
service TCB should be minimized. Since all COLONIES run
in the privileged mode, any compromised one may tamper
with the system semantics and further compromise others.

4.3

To protect the data-flow of a COLONY, the secure monitor
isolates both the CPU context and memory.

To isolate the CPU context, the monitor maintains a
copy of the context for each COLONY, including CPU regis-
ters. Whenever entering or exiting a COLONY, the monitor
switches the context. Similar to the syscall, COLONY invo-
cation uses registers to transfer the arguments and return
value, which will not be switched. To hook the entering
and exiting operations, we implant ENTER_COLONY and
EXIT_COLONY interfaces to the entry and exit point of a
COLONY, as shown in Figure 2l These two interfaces will
invoke the secure monitor.

To isolate the memory, the monitor constructs different
mappings for COLONIES and system software. If controls
the memory mappings exclusively and traces the mappings
of each physical page. Thereafter, the monitor enforces that
a COLONY’s memory can never be mapped to the system
software or other COLONIES. The monitor switches the
translation table when entering or exiting a COLONY. The
switching is only performed on current CPU core.

The monitor needs to exclusively control all the map-
pings to the physical memory in the normal world, in-
cluding all VA-to-PA mappings, as well as the IPA-to-PA
mappings. The monitor deprives system software of the
ability to modify memory mappings, so that they must
invoke the monitor to load a translation table or to modify
table entries. We use OS kernel as an example: there are three
ways for a kernel to modify memory mappings: 1) changing
the base register to a new translation table, 2) modifying the

Isolating Data-Flow of COLONY

5

table entries, or 3) disabling the address translation A we
modify the kernel to ensure that there is no MMU-related
instruction which loads a new translation table or disables
the translation. After that, the monitor maps translation
tables as read-only to the kernel. All mapping modification
operations are replaced with invocations to the monitor.

The OS kernel may try to bypass the monitor by: 1)
injecting MMU-related instructions to the kernel code; 2)
leveraging ROP to form these instructions; or 3) jumping
to the user process to execute these instructions. To prevent
the first way, the monitor maps the kernel’s code pages as
read-only. There are two situations that the kernel needs to
add new executable pages: swapping and loading kernel
modules. The monitor checks the integrity of the memory
page during the swapping. All kernel modules are checked
by the monitor to ensure that they do not contain these in-
structions. To prevent ROP, we remove all the ROP gadgets
which can be used to form new MMU-related instructions.
It is relatively trivial on ARM platform which has fixed-
length ISA. We also consider all the ARM ISAs with different
lengths. To prevent return-to-user attacks, the monitor maps
user pages as non-executable for the kernel. The above
method can also be used for the hypervisor.

Cross-Client Isolation of COLONIES: Besides isolating a
COLONY from the system software and other COLONIES, the
monitor also provides cross-client isolation. A COLONY has
multiple user-private memory regions, and each of them is
used to store per-client data. When a COLONY is invoked,
the monitor identifies current client (by the VMID of a VM
or the PCID of a process), and maps the corresponding user-
private memory. For the first time a COLONY is invoked, the
monitor will allocate the user-private memory.

4.4

The monitor isolates the control-flow of a COLONY by 1)
isolating the control-flow data from other COLONIES and
the system software, 2) preventing a COLONY from being
partly executed, and 3) preventing a COLONY from being
bypassed. The control-flow data is protected by data-flow
isolation, so we will focus on the latter two points.

To prevent the system software from executing part of
a COLONY, the monitor enforces the atomicity: a COLONY
can only execute from its entry point, and must run to
completion. For the previous goal, the monitor unmaps
a COLONY’s code from the system software, except the
started ENTER_COLONY function which is in a different
executable page. Thereafter, a COLONY can only be invoked
by executing its started ENTER_COLONY. The monitor then
switches to the COLONY’s page table on current CPU core.
To enforce the atomicity, the monitor disables interrupts
during the execution. We also require that the COLONY’s
code is self-contained.

To prevent the system software from bypassing a
COLONY, the monitor enforces the non-bypassability: once
a COLONY is invoked, it must be executed thereafter. Unlike
atomicity, non-bypassibility can defend against control flow
hijacking attacks, e.g., by completely redirecting the control

Isolating Control-Flow of COLONIES

4. ARM provides multiple methods to disable the translation table,
including modifying the SCTLR_EL1 or TCR_EL1 registers.

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

flow to other components. Our system provides two invo-
cation interfaces for the client, both are implemented with
exceptions (more details in SectionL.6). The monitor forbids
the system software from controlling the exception handlers
and hooks all the handlers to enforce the non-bypassability.

There are three ways for the system software to control
an exception handler: 1) modifying the code of a handler,
2) modifying the exception table, and 3) modifying the ex-
ception table base register to enable a new table. To prevent
all these methods, we first replace the instruction, used to
modify the exception table base register from the system
software, with invocations to the monitor. Thereafter, the
monitor maps the exception table as read-only to the system
software. All the exception handlers are part of the system
software’s code, which is also mapped as read-only by the
monitor. After exclusively controlling the exception handler,
the monitor implants a hook in each handler.

4.5 Accessing System-Level Semantics

A COLONY can access five kinds of system-level semantics:
CPU context, exception table, memory mapping, hardware
devices and system memory. Our system ensures that the
semantics are not faked, and provides the capability mech-
anism to control the access.

CPU Context: A COLONY can access the CPU context
of the system software or other clients. To provide a real
context, the monitor hooks all the switchings between dif-
ferent privileged modes, identifies current client and saves
the CPU contexts.

To switch from low privilege to high privilege, an ex-
ception must be triggered The monitor hooks all exception
handlers, and can further save the CPU context. Current
client can be identified by the VMID/PCID in the CPU
context. To switch from high privilege to low privilege,
system software must execute specific instructions (e.g.,
eret). We replace all these instructions with invocations to
the monitor.

When a COLONY wants to access the CPU context of the
system software or a client, the monitor will find the target
context and maps it to the COLONY. The system software
cannot provide fake context to a COLONY.

We provide two permissions, read and write, for each
CPU register for access control. For read operations, the
monitor maps the CPU context to the COLONY. Write op-
erations can be done by invoking the monitor.

Exception Table and Memory Mapping: The monitor
has exclusively control of the exception table and translation
tables. We provide two permissions, read and write, to access
these two semantics. For the one with read permission, the
monitor maps the semantics to a COLONY’s address space.
The modification can be performed by invoking the monitor.

For the memory mapping, the monitor further provides
check permission that allows a COLONY to update its map-
ping policies. A policy is specified by a triple (REGION_1,
OP, REGION_2). A memory region includes a virtual mem-
ory range and an address space ID. Our system provides
two kinds of OP: 1) two regions cannot overlap, 2) two
regions must be mapped to the same physical region. When
the monitor receives a mapping modification request, it
enforces that the request satisfies all the policies.

6

Hardware Device: On ARM platforms, all devices are
controlled by accessing corresponding MMIO. The monitor
allows a COLONY to directly access a device by mapping its
MMIO region to the COLONY. For each device, we provide
two kinds of access permissions: sharing access and exclusive
access.

Different COLONIES with the sharing access permission
are allowed to access a device at the same time. When the
device is used by a COLONY, the monitor still needs to for-
bid system software from tampering with the device status.
When entering a COLONY with sharing access permission
of a device, the monitor will unmap the device’s MMIO
region from the system software. To perform this operation,
the monitor traces all the mappings of the MMIO region
for each device. When the COLONY exits, the monitor will
remap the MMIO region to the system software.

A COLONY with the exclusive access permission can
access the corresponding device exclusively. No matter
whether this COLONY is invoked or not, the monitor will
unmap the MMIO region of the device from the system
software and other COLONIES, even when they have sharing
access permission. For each device, the exclusive access can
only be assigned to one COLONY.

System Memory: A COLONY is allowed to map and
access the memory of the system software to implement ser-
vices such as kernel integrity monitor. The system memory
includes code, data, exception table and translation tables.
We provide two permissions, read and write, to control the
access of the system memory. For a COLONY with write
permission, only the system software data is mapped with
write permission. The code, exception table and translation
tables are mapped as read-only.

4.6 COLONY Interfaces

Invocation Interfaces: To enforce the non-bypassability of
CoLONY, we provide INVOKE and invocation memory for
a client to invoke a COLONY. Both interfaces are non-
bypassable. The previous one is implemented as a new
syscall/hypercall in OS kernel/hypervisor, and the latter
works similar as the MMIO of a device. On ARM platform,
both the syscall and the hypercall are implemented with ex-
ception. For the invocation memory, accessing it also triggers
an exception. As mentioned in Section [£4] the monitor has
hooked all the exception handlers. Thus, the monitor can
detect the invocation of the two interfaces and invoke the
target COLONY, which enforces the non-bypassability of the
interfaces. The protection of the arguments and return value
is also performed by the monitor.

Cross-COLONY Communication Interfaces: The
COLONY_CALL and COLONY_RETURN are used for
cross-COLONY communication. As shown in Figure] the
monitor keeps a linkage stack for each CPU core. The stack
is used to maintain the invocation context. Each entry of
the stack is called linkage record which consists of the
caller COLONY ID, callee COLONY ID and return address.
For a call operation, the monitor pushes a new record to
the stack, switches to the callee’s address space and starts
its execution. The monitor also checks whether the callee
is a legal target (specified through the ALLOW_COMM
interface). For a return operation, the monitor pops the

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

record from the linkage stack and switches to the caller. The
arguments and return value are transferred through the
CPU register with the help of the monitor. The monitor also
passes the caller ID as an argument to the callee.

Management Interfaces: The CREATE interface is used
to create a new COLONY, which can only be performed dur-
ing system boot, before the first process/VM (init process
for Linux and Domain-0 for Xen) is created. The monitor
handles the CREATE interface.

After creating a COLONY, the system software can
assign capabilities to the COLONY or specifies its legal
communication target. The ASSIGN_CAP configures the
capability and takes four arguments: 1) the ID of the
target COLONY, 2) the capability type, 3) the permis-
sion, and 4) some auxiliary information. For example, the
invocation of ASSIGN_CAP(RTIC_COLONY, DEVICE, AC-
CESS, RTIC_INFO) will assign the capability of RTIC de-
vice to the RTIC_COLONY. The ALLOW_COMM specifies
which COLONY can be invoked. The invocation of AL-
LOW_COMM(COLONY-1, COLONY-2) means COLONY-1
can call COLONY-2.

Runtime Interfaces: Each COLONY can invoke these in-
terfaces at runtime to access system-level semantics. Table[]]
shows all five runtime interfaces. For example, a COLONY
can invoke GET_SEMANTICS(DEVICE, RTIC_INFO) to ac-
cess RTIC device. If it has ACCESS permission of RTIC, the
monitor will return a pointer which points to the MMIO
region of RTIC with both read and write permissions.

5 CASE STUDIES USING COLONY

To show the expressiveness of the COLONY abstraction,
we use it to protect four system-level security services, in-
cluding virtual machine introspection (VMI), secure device
access, syscall tracer and TrustZone virtualization.

For each service, we first analyze and summarize the
required security properties before the redesign, as Table
shows. The first property P-0 is a general one that is enforced
by locating the service inside a COLONY. Other properties
will be introduced along with each service.

5.1

Motivation: Virtual machine introspection (VMI) is widely
used in virtualization environment. Even when the hyper-
visor is untrusted, the VMI can still help a manager VM
monitor the status of another functional VM. Although both
VMs are protected by existing non-privileged TEEs, we still
need to protect the VMI service from untrusted hypervisor.

Threat Model: We assume that the hypervisor is un-
trusted, and VMs are protected by existing user-level TEEs.
Besides directly tampering with the status of the VMI ser-
vice, the untrusted hypervisor can also bypass the VMI (P-
1.1) by not triggering its procedure at user-defined position,
or let the VMI service access fake memory or CPU context
of the target VM (P-1.2 and P-1.3).

Design and Implementation: Existing VMI tools (e.g.,
libvmi [38]) of Xen run in the user space of Domain-0.
Each time to access a page of the target VM, libvmi needs
to ask Xen to map the physical memory to Domain-0 and
then relies on the kernel of Domain-0 to map the memory

Case Study I: Virtual Machine Introspection

Normal world Secure world

User-level TEE

| | |Process” | |

User mode

ICOLON
Other

ICOLON

Driver
I

Fig. 3. Secure device accessing based on COLONIES.

=t Kernel Monitor

Kernel mode

Hardware

to libvmi’s virtual address space. We run the secure VMI
inside a COLONY to prevent the malicious Xen from directly
tampering with the service status. Leveraging the capability
of accessing system-level semantics, the secure VMI within
a COLONY can directly access the real memory mappings
and CPU context of the target VM, which enforces P-1.2 and
P-1.3. We use INVOKE interface to allow the VM invokes the
secure VMI, so that the service cannot be bypassed by the
untrusted hypervisor (P-1.1). Currently, we implemented
four basic functionalities of VMI: reading kernel symbols,
reading kernel addresses, dumping task list and dumping
kernel module list.

5.2 Case Study II: Secure Device Accessing

Motivation: There exist many devices which provide secu-
rity related functionalities, also known as secure devices.
User processes require these hardware devices to implement
some secure functionalities. For example, the Runtime In-
tegrity Checker (RTIC) can help calculate the hash value of
a specific memory region. The secure kernel mode of Trust-
Zone can be used to implement a secure device accessing
system. However, managing all secure devices in such single
privileged TEE will significantly increase the system TCB.
In this case, we try to use a COLONY to enable the secure
accessing of a device.

Threat Model: We assume that the hardware implemen-
tation is correct, but the kernel could be compromised. The
device access service can be protected within a COLONY.
All other COLONIES may be malicious. We assume that user
processes are protected by existing TEE methods. However,
the untrusted kernel could directly leak or tamper with the
device status (P-0), hijack the interfaces between the process
and the device access service (P-2.1), or help a malicious
process access other’s device status (P-2.2).

Design and Implementation: We use a COLONY to pro-
tect the logic for accessing the device, as shown in Figure 3
The functionality of the service is similar as a device driver,
which manages the hardware status and enables processes
to access the hardware. We use the INVOKE API to allow
processes to invoke the service securely, which enforces P-
2.1. The device accessing service manages the device status
for different processes. We store each process’s status in
the user-private memory of the COLONY, so that one pro-
cess cannot access other’s status, which enforces P-2.2. We
choose RTIC as an example to show how to use the above
design to enable secure device accessing for user processes.
We give a COLONY the ability to access the RTIC exclusively.
After that, this COLONY handles the RTIC accessing request
from user processes and performs the operation on the real
hardware.

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

TABLE 3
Required properties of security services.

Security Services Security Properties

Properties Violation by System Software — Consequence

P-0: Control flow and data flow of a service

General Service should be isolated.

Tamper with the control flow or data flow.
— Controlling the execution of the service.

P-1.1: VMI must be performed at specific points.

Virtual Machine P-1.2: VMI accesses the real memory of a guest.

Introspection

P-1.3: VMI accesses the real CPU context of a guest.

Not perform VMI. — Bypassing the protection of VML
Providing fake memory. — Hiding guest’s wrong status.
Providing fake CPU context. — Hiding guest’s wrong status.

Secure Device

P-2.1: Integrity of input/output should be protected.

Tamper with the input and output. — Providing malicious device.

Access P-2.2: Each process can only use its own device. Let a process access other’s device. — Info leakage/data corruption.
S P-3.1: Integrity of tracing result should be protected. =~ Tamper with the result. — Hiding malicious operation.

yscall P-3.2: Only t I syscall Let tracer trace fake syscall. — Injecting arbit I
Tracer -3.2: Only trace real syscall. et tracer trace fake syscall. — Injecting arbitrary syscall.

P-3.3: All syscalls can be traced.

Let tracer trace part of syscall. — Hiding malicious syscall.

5.3 Case Study lll: Syscall Tracer

Motivation: Syscall tracer, e.g., the ptrace provided by Linux
kernel, allows a parent process to trace all the syscalls
invoked by its child process. It can be used to detect the
malicious syscall invocation of the child process. For exam-
ple, a process may be compromised by an attacker, even
when the process is protected within a user-level TEE. After
that, the attacker could invoke some syscalls to perform
malicious behaviors. Secure syscall tracer can detect these
illegal invocations without trusting the OS. We try to protect
the tracer with a COLONY.

Threat Model: We assume that the OS kernel is un-
trusted, and user processes are protected by existing user-
level TEEs. The malicious kernel may directly tamper with
the tracing result (P-3.1). It may also fake the tracer to trace
fake syscall (P-3.2), or hide some syscall invocations (P-3.3).

Design and Implementation: We run the secure syscall
tracer inside a COLONY. On ARM, the syscall is imple-
mented with exception, and the secure monitor has already
hooked all exception handlers. Based on that, the tracer
can be implanted at the syscall entry to hook all syscalls
invoked by user processes (P-3.1). Because of the isolation
mechanism of our system, the compromised kernel cannot
inject fake syscall to the tracer (P-3.2). A user process can
use INVOKE interface to invoke the secure tracer, which also
enforces the integrity of the tracing result (P-3.1).

5.4 Case Study IV: Virtualizing TrustZone

Complex services can be decoupled and deployed with
multiple COLONIES. For demonstration, we design and im-
plement a new service called TrustZone virtualization (vIZ).

Motivation: TrustZone has already been widely used to
build secure system [12], [32], [34], [35], [41]. However, cur-
rent TrustZone hardware only provides one secure world,
which is not enough for multiple guest VMs in virtual-
ization environment fi. Although existing systems, such as
Sanctuary [17], could construct multiple user-level TEEs on
ARM, cloud users cannot directly run their TrustZone-based
systems within these TEEs. The goal of vIZ is providing
a virtual secure world for each guest, and enforcing that
the virtual secure world has the same functionalities and
security properties as the real hardware.

5. The lastest design of TrustZone supports hardware virtualization.
Here we virtualize TrustZone to show the expressiveness of our TEE.

Trusted Component D

Normal World Secure World
I 8 . %
]]
S g S5 g
— = o
€3 €3
g e LE
- Boot-GOLONY — — |- —
o8 : 28
o] [el = | 5 ¢
€

Schedule-COLONY Device-COLONIES

Fig. 4. TrustZone virtualization. V M,, and V M, mean the normal
world and secure world of a VM, respectively.

Threat Model: vTZ relies on the normal world hypervi-
sor to virtualize functionality of guest secure worlds and
uses the COLONIES to enforce protection. As shown in
Figure @] the two virtualized worlds of each guest (guest
normal world and guest secure world) are simulated by two
different VMs (called V' M,, and V' M;). Then we analyze a
set of security properties that physical TrustZone provides,
as shown in Table @] and leverage multiple COLONIES to
enforce all these properties. We assume that the hypervisor
and the host OS are untrusted, and any other users may
be malicious. The attacker may try to break any property
mentioned in the Table. vIZ also assumes that the secure
boot is used to protect the integrity of the hypervisor’s code,
during the system boot.

Design and Implementation: We will further give the
detailed implementation of vTZ, including how to virtual-
ize the secure boot, protect CPU states and virtualize the
resource partitioning.

5.4.1 Virtualizing Secure Boot

Secure boot is used to ensure the integrity of booting.
The booting process of a TrustZone-enabled device contains
following steps: 1) Loading a bootloader from ROM, which
is tamper resistant. 2) The bootloader initializes the secure
world and loads a secure OS to memory. 3) The secure OS
initializes the secure world. 4) The secure OS switches to the

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

TABLE 4

Properties enforced by TrustZone which should also be enforced by vTZ.

TrustZone

Features System Properties

Properties Violation by Malicious Hypervisor — Consequence

P-4.1.1: S/W must boot before N/W.
Secure Boot P-4.1.2: Boot image of S/W must be checked.
P-4.1.3: S/W cannot be replaced.

Violate boot order. — Secure configuration bypass.
Violate integrity check of boot image. — Code injection in guest S/W.
Replace a guest S/W with another one. — Providing malicious S/W.

P-4.2.1: smc must switch to the correct world.
P-4.2.2: Protect the integrity of N/W CPU
states during switching.

P-4.2.3: Protect S/W CPU states.

CPU States
Protection

Switch to a wrong guest S/W. — Providing malicious S/W.
Tamper with CPU states during switching. — Controlling execution of guest S/W.
Tamper with guest S/W’s CPU states. — Controlling execution of guest S/W.

Memory P-4.3.1: Only S/W can access secure memory. — Let arbitrary VM access guest secure memory. — Info leakage.
Isolation P-4.3.2: Only S/W can configure memory par- et arbitrary VM configure guest memory partition. — Reconfigure secure
tition. memory as normal.
P-4.4.1: Secure interrupts must be injected Forbid interrupt being injected into guest S/W. — Disturbing the execution of
Peripheral into S/W. guest S/W.

Let guest N/W access secure peripherals. — Info leakage of secure peripherals.

Assignment P-4.4.2: N/W cannot access secure peripherals.
P-4.4.3: Secure peripherals are trusted for S/W.
P-4.4.4: Only S/W can partition inter-
rupt/peripherals.

Provide malicious peripherals for guest S/W. — Info leakage of guest S/W.

Let arbitrary VM configure guest interrupt/peripherals. — Reconfigure secure
peripheral as normal.

normal world and executes a kernel-loader. 5) The kernel-
loader loads a non-secure OS and runs it.

In these steps, each time a loader loads a binary image,
it will calculate the checksum of the image to verify its
integrity. At the same time, the booting order is also fixed:
the secure OS is the first to run so that it can initialize the
platform first. To virtualize the secure boot process, we need
to enforce P-4.1.1, P-4.1.2 and P-4.1.3.

During system booting, the hypervisor initializes the
data structure and allocates memory for both guest VM,
and VM, loads the secure OS image and guest normal
world OS image to the memory, respectively. Then the hy-
pervisor needs to register the two VMs in the boot COLONY.
Thereafter, leveraging the non-bypassability of COLONY, the
schedule COLONY checks all switchings between the hyper-
visor and a VM and ensures that only registered VM can be
executed. The scheduling of VMs is done by the hypervisor,
and the schedule COLONY enforces that the V M, must run
before the corresponding V' M,, (P-4.1.1).

During registration, the boot COLONY first removes all
the mappings of memory pages allocated to the guest from
the hypervisor’s translation table and checks the integrity
of the image of the guest secure OS. Then it creates a
binding between the guest V' M,, and VM, by recording
their VMIDs, and marks their context data as read-only to
hypervisor. The boot COLONY also initializes the stage-2
translation tables of these two VMs and set the VMID in
the stage-2 translation table base register. Leveraging the
data-flow and control-flow isolation of COLONY, all these
operations cannot be influenced by the hypervisor. And all
the modifications on memory mappings are checked by the
secure monitor. So the P-4.1.2 and P-4.1.3 are enforced.

5.4.2 Protecting CPU states

vTZ needs to enforce P-4.2.1, P-4.2.2 and P-4.2.3 to provide
the same CPU states protection of TrustZone. The schedule
COLONY intercepts all the switchings between a guest VM
and the hypervisor.TrustZone can split hardware resources
to A switching includes saving states of the current VM,

finding the next VM, and restoring its states. The states
saving and restoring are done by the schedule COLONY,
while finding the next VM is done by the hypervisor. Then
schedule COLONY checks the restored VM to ensure that
P-4.2.1 and P-4.2.2 are satisfied. During execution, it also
prevents the hypervisor from stealing or tampering with
V' M’s context to achieve P-4.2.3. For example, if one VM
exits because of the scheduling, then its CPU states cannot
be modified. Further, V M,’s system control registers also
cannot be modified by the hypervisor.

5.4.3 Virtualizing Resource Partitioning

TrustZone can assign hardware resources to the normal
world or the secure world. Three different resource parti-
tions are provided, together with three different controllers
which are used to configure the partition: 1) Memory parti-
tioning configured by TrustZone Address Space Controller
(TZASC); 2) Peripheral partitioning configured by Trust-
Zone Protection Controller (TZPC); 3) Interrupt partition-
ing configured by General Interrupt Controller (GIC).

Once set as secure, the resource can only be accessed
by the secure world. A secure interrupt must be injected
into the secure world and will lead to a world switching
if it happens in the normal world. The secure world can
use these controllers to repartition the resource. We provide
the same functionality of resource partitioning as a real
TrustZone, which includes the configuration of partitioning
and the enforcement of partitioning.

Virtualizing Partitioning Controllers: P-4.3.2 and P-
4.4.4 should be satisfied for virtualizing partitioning con-
trollers. The virtualization of partitioning controllers is
done by the “trap and emulate” method. vIZ leverages
COLONIES to implement three virtual controllers (vTZASC,
vITZPC and vGIC) for each guest. COLONY ensures that
all three virtual controllers cannot be compromised by the
untrusted hypervisor. Since ARM only provides memory
mapped I/0, all these COLONIES use invocation memory
to interact with guest VM. These virtual controllers check

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

whether the trap is raised by a VM, before doing the
repartition, which enforces P-4.3.2 and P-4.4.4.

Secure Memory Partitioning: Secure property P-4.3.1 is
a fundamental one. With the help of the secure monitor, the
virtual memory partitioning controller (i.e. vVIZASC) can
enforce the following policy: any guest’s secure memory
region can only be mapped in its V M, but not any other
VMs or the hypervisor.

Secure Device Partitioning: In secure device part, we
must enforce P-4.4.2 and P-4.4.3. We emulated commonly
used secure devices within COLONIES, e.g., TZASC, TZPC,
GIC, uart and random number generator. If the device is
marked as a secure peripheral by one guest, the emulator
will enforce that it cannot be accessed by this guest’s V M,
so the P-4.4.2 is enforced. One guest’s configuration will
not influence others. The COLONIES can enforce that all
the operations on virtual secure device will eventually be
handled by itself, and P-4.4.3 is satisfied.

Secure Interrupt Partitioning: For securely partitioning
interrupts, we need to ensure P-4.4.1. We implemented an
interrupt dispatcher in a COLONY, which hooks all interrupt
handlers and decides whether an interrupt is secure or
not according to a virtual interrupt partition list which is
managed by the virtual GIC, thus P-4.4.1 is enforced.

6 PERFORMANCE EVALUATION

We try to answer three questions for evaluation:

e Question-1: How does our design influence the per-
formance of the hypervisor and the Linux?

o Question-2: How is the performance of a service
running in a COLONY?

e Question-3: How is the performance of a complex
service running in multiple COLONIES?

6.1 Evaluation Environment

We evaluate the performance of our design on both a HiKey
ARMVS board with Kirin 620 SoC (64-bit) and an Exynos
Cortex ARMv7 board (32-bit). The HiKey board enables
eight 1.2 GHz cores and 2GB memory. The Exynos board
enables one 1.7 GHz core and 1GB memory. In virtualization
environment, we use Xen 4.4 [9] as the hypervisor and Linux
4.1 as the guest kernel and Domain-0 kernel. On the Exynos
board, each guest together with Domain-0 has one virtual
CPU. On the HiKey board, each guest, as well as Domain-0,
has one virtual CPU and each virtual CPU is pinned on a
physical core. In native environment, we use Linux 4.1 as
the kernel. The ARM’s performance monitor unit (PMU) is
used to measure the clock cycles.

On HiKey, we implement the secure monitor as a service
inside ARM Trusted Firmware [2]; and on Exynos, the
monitor is integrated with the secure boot-loader provided
by Samsung. Other functionalities inside the EL3, e.g., the
power services (PSCI), are orthogonal to the monitor. For
the system software, we perform two modifications: 1)
replacing all sensitive instructions related to MMU and
exception, with invocations to the monitor; and 2) invoking
the monitor to modify page tables and exception tables.
Thanks for the well programming of Linux and Xen, almost
all modifications are performed on limited inline functions.

10
TABLE 5
Results of LMBench (in us).
Operation Linux Linux-COLONY
Null syscall 0.22 0.57
Null I/0O 0.71 1.03
Open/Close 7.48 8.57
Mmap 252 404
Page Fault 1.24 2.53
Signal Handle 0.65 1.01
Fork syscall 2020 2252
Exec syscall 3022 3316
ctxsw 2p/0k 8.82 14.1

6.2 Overhead of Our Design

LMBench [37]: LMBench contains a series of micro-
benchmarks to measure individual OS operations. We use it
to measure the overhead of the critical operations of OS (e.g.,
syscalls and signal handling) on HiKey board, to answer
Question-1. We run LMBench tool ten times and the average
result is shown in Table B The Null syscall and the ctxsw
(context switch) shows the overhead caused by hooking
all the switchings between user and kernel. Fork and exec
syscall, as well as the page fault, show overhead of hooking
all modifications of memory mapping. Although there is
some overhead on part of these operations, it will not
dramatically influence the performance of real applications.

SPEC_CPU 2006 [27]: We evaluate all SPEC_CPU 2006
INT applications under both the virtualization environment
and native Linux on HiKey board, to show the overhead of
our system. For each case, we run the benchmark tool ten
times. FigureBla) and (b) show the normalized overhead of
our system on Xen and Linux, respectively. We can see that
enabling COLONIES in both Xen and Linux increases very
small overhead, about 1-2% on average.

6.3 Security Services With Single COLONY

To answer Question-2, we measure the performance of three
security services based on COLONIES: 1) secure virtual ma-
chine introspection (VMI); 2) secure device accessing and
3) secure syscall tracer. The first two are implemented in
COLONIES of Xen and the last is in COLONIES of Linux.

6.3.1 Virtual Machine Introspection

We evaluate both the libvmi [38] and secure VMI with
COLONY. We test three basic functionalities: 1) dumping
1KB data from guest kernel, 2) dumping the process list and
3) dumping installed kernel module list. For both libvmi
and secure VMI, we test the latency of each functionality a
hundred times, and the average result is shown in Table
The time shown in the table does not include the initial-
ization phase of libvmi, which consists of identifying guest
and getting guest VM information. Compared with libvmi,
VMI in COLONY can reduce about 75% time for dumping
1KB data from the guest. The performance improvement
is mainly because that VMI in COLONY can directly access
the memory mappings while libvmi needs to invoke the
Domain-0 kernel as well as the hypervisor.

6.3.2 Secure Device Accessing

We use the Runtime Integrity Checker (RTIC) to evaluate
the overhead of secure device accessing with COLONIES on

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

11

1.8 —— 1.8 — 1.08 .
Xen R Linux RTIC EXXX
Xen-COLONY EXXX | Linux-COLONY EXXX | =1.06 RTIC-COLONY mmmm |
1.6 1.6 S 1.
E E S
£ 2 104
1.4 1.4 E 1
=) 3 = 3
o F SIS S 3 19 § S o & S » o
> 5 5 & § & & 5§ > 5 5 & § & 8 T § 5}
S v § f o0 § ¥ & s g Sy F & o0 § 5 T § 8 I
O 2t Ffs s fss §fgg C it ffepfdfFsgFsss 21.02f
=1 g < § g € » % & ¢ = = g < g > 5 g = o)
o (53 w2
N] 5 s
= 1r 3 =1 PR K
g g El B B
‘ZJ 0.8 ZO 0.8 5098 B &
B B
© 2 2
0.6 0.6] 0.96 §§ &
1K 32K 64K 128K
(a) (b) (c)

Fig. 5. Figure (a) and (b) show the normalized overhead of our system of SPEC_CPU 2006 INT applications on Xen and Linux, respectively.

Figure (c) shows the overhead of secure RTIC. Lower is better.

TABLE 6
Latency of different VMI operations, in cycles.
Operation libvmi COLONY-VMI Normalized
Dump symbol (1KB) 223,505 56,380 25.22%
Process list 2,118,113.5 1,532,319.5 72.34%
Module list 342,120 204,110.7 59.66%

Exynos board. RTIC is a commonly used security-related
device which can calculate hash values of at most five differ-
ent memory regions. It can be used to detect whether some
memory regions have been tampered with. We leverage
RTIC to perform SHA1 hashing on five memory regions
with sizes from 1K to 128K. For each case, we test the
latency a hundred times. Figure Flc) shows the overhead of
secure RTIC with COLONIES (RTIC-COLONY). It only incurs
overhead from 0.5% to 3%.

6.3.3 Secure Syscall Tracer

The secure syscall tracer in COLONY runs as a system
service. To evaluate its performance, we write a test program
to trace all the syscalls invoked by a target process, based on
the secure syscall tracer service. The functionality of the test
program is similar to the strace application, which uses the
ptrace provided by Linux kernel. We use both the secure
tracer and the strace to trace the syscalls invoked by Nginx.
After that, we use ab benchmark, with different numbers of
threads, to measure the throughput of Nginx, both ab and
Nginx server run in the HiKey board to bypass the influence
of network. For each case, we use ab to send 10 thousand re-
quests and calculate the average throughput. As Figure[6(a)
shows, both the strace and our secure tracer cause a huge
overhead (strace causes about 85% performance slowdown).
Compared with strace, our secure tracer in COLONY has
about 5% overhead on average.

6.4 Performance of TrustZone Virtualization

To answer Question-3, we perform a detailed evaluation
about the performance of the TrustZone virtualization (vIZ)
based on COLONY. Before the evaluation, we ported two
widely used secure OSes, namely seL4 [6] and OP-TEE [4],
to run inside the virtual secure world. First, vIZ leverages
Xen’s multi-boot loader to load secure OS kernel’s image, so
we need to add a multi-boot header in the image. Second,
we add a new description file (e.g., platform_config.h in
OP-TEE) to describe the memory layout of our guest secure
world. Finally, since vIZ already provides a secure context
switch, we remove the context switching logic in secure OS.

6.4.1 Micro-benchmark

We test the latency of critical operations in TrustZone and
vITZ. We perform each operation a hundred times and
calculate the average latency.

World Switch Overhead: For the physical TrustZone, the
time of switching between two worlds is about 17,840 cycles
on Exynos board and 1,294 cycles on HiKey board (shown
in Table [7). The cost includes context saving and restoring
in the schedule COLONIES. For the virtual TrustZone, one
switching between guest’s normal world and guest secure
world is about 34,199 cycles on Exynos and 6,851 cycles on
HiKey. The overhead is still acceptable since world switch-
ing happens rarely and thus has little effect on TrustZone-
based applications.

Secure Configuration Overhead: A secure OS usually
configures system resource partitioning during initialization
or occasional run-time protection. Table [7] shows the over-
head of these configurations with COLONY. The native value
is performing configuration by hardware in the real secure
world. Since HiSilicon, the vendor of hikey’s SoC, does not
publish the register mapping of TZASC or TZPC, the native
time of HiKey is not provided. Same as world switching,
secure configuration operations happen rarely, so the over-
head will have limited effect on the real applications.

TABLE 7
Single operation overhead (unit: cycle).

TrustZone vIZ TrustZone vIZ

(ARMv7) (ARMvV7) (ARMv8) (ARMvVS)

World Switching 17840 43199 1294 7732
Memory Partition 5798 15234 n/a 8155
Device Partition 1886 14311 n/a 7791
Interrupt Partition 1073 8943 755 6839

6.4.2 Application Overhead

Single Guest: We test four real applications (ccrypt, mcrypt,
GnuPG and GoHttp) and compare them with original Xen
on ARMv7 and ARMvS platform. We use these applica-
tions to encrypt/transfer file about 1KB, and protect the
encryption logic in real secure world/guest virtual secure
world. The application/guest VM is pinned on one physi-
cal core in native environment/virtualization environment,
respectively. We run each case 20 times and calculate the
average execution time. Figure[@(b) and Figure[6lc) show the
overhead. vTZ has little overhead compared with original
Xen on both ARMv7 and ARMvS platforms.

Multi-Guest: We compare the concurrent performance
of vIZ with native environment, real TrustZone and orig-
inal virtualization environment (Xen). The GoHttp server

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021 12
4000 ‘ _ _
Linux s ~ %
1.4 Xen mmm— - 1.4 Xen mmmm |
2 300f Linwxsrace wmm 2 =
° COLONY ExXxx] ~ VIZ EXXX I~ VIZ EXXX
% 30001 oL ONY-trace == < 12 < 12
E" 2500 3 3
o = 1 R = 1 B3
= & 3 & o) g
2 1500f 3] 5% 5%
£ &l = 08F [958 = 08FfF B33
) 5 S B g £
3 1000} & 1 = B g B
e X 3 B 5 g
= K Q L 3% < L oot
= X = 06 g = 06 5
B so0f 4 1 & K3 & &
ccrpyt GoHttp mcrpyt GnuPG cerpyt GoHttp mcrpyt GnuPG
(a) (b) (o)

Fig. 6. Figure (a) shows the throughput of Nginx with the secure syscall tracer of our system (higher is better). Figure (b) and (c) show the

application overhead of vTZ (lower is better).

Normalized Performance

(a) GoHttp w/ OP-TEE

(b) GoHttp w/ selL4

_ngwmq
Throughput of Apache (MB/s)

Throughput of MongoDB (kops)

(c) MongoDB (d) Apache

Fig. 7. Figure (a) and (b) show the throughput of GoHttp with different concurrencies. Figure (c) and (d) show the throughput of MongoDB and

Apache, with different object sizes and TCP buffer sizes. Higher is better.

is used to do the evaluation, and we protect its encryption
logic in secure world/guest virtual secure world. In native
environment (including protection with TrustZone), each
GoHttp server runs as a normal process. In virtualization
environment (including protected by vIZ), each of them
runs in one guest VM. The client, which sends the https
request, runs in the same guest with the server to bypass
the network overhead. We test the throughput of the data
transmission between the client and the GoHttp server. To
reduce the performance fluctuation, the client downloads a
20MB file and calculates a throughput. For each case, we
run the test 20 times and calculate the average throughput.
We only run at most 6 applications concurrently because
the memory on the board limits the number of VMs. The
results are shown in Figure [7] (a) and (b). vIZ has about
a 5% performance slowdown compared with original Xen
on ARMvS implementation, and less than 30% performance
slowdown compared with native environment.

Server Application Overhead: We also evaluate two
widely used server applications, MongoDB [3] and
Apache [1]] on HiKey board. Same as the multi-guest eval-
uation, we run applications on four different environments.
The clients are executed together with the server to bypass
the network overhead. One difference is that the guest has
eight virtual cores instead of one.

Figure[Z (c) shows the throughput of the insert operation
of MongoDB. The client continually inserts 10 thousand
objects to the server and calculates the throughput. We
perform the evaluation with different sizes of objects. The
result shows that vIZ has little overhead compared with the
virtualization environment. For Apache (shown in Figure [7]
(d)), we evaluate the downloading throughput by down-
loading a file (size is 100MB) from the server with https

protocol. We run the test case 20 times and calculate the
average throughput. The result shows that using virtual
TrustZone causes less than 5% overhead in the virtualization
environment.

7 SECURITY ANALYSIS AND DISCUSSION
7.1 Minimizing TCB

There are two kinds of TCB in our system: system TCB
and service TCB. Components outside the system TCB
cannot: 1) break the isolation between a COLONY with the
untrusted system software or between different Colonies,
and 2) provide fake system-level semantics to a COLONY.
In our system, the secure monitor is the only system TCB.
The size of the monitor itself is about 2K lines of C code
(including inline assembly), and the size of the binary is
about 12KB.

On the contrary, the service TCB depends on the seman-
tic of service. Our system provides the capability control and
the cross-user isolation, so that a service can be decoupled
to multiple components, each running in one COLONY.
It is known that by splitting a service into a number of
small isolated, mutually untrusted components with ex-
plicit communication channels, the security could be en-
hanced [31]]. The service TCB only contains components that
may compromise the entire service. For example, if a service
component sends malicious replies to other components but
will not affect their correctness or will be detected /rejected,
then it is not a part of the service TCB.

7.2 Attacking COLONIES

Code-reuse or Return-to-user/guest Attacks: Attackers may
issue ROP (Return-Oriented Programming) attacks to ex-

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

ecute critical instructions (e.g., switching translation ta-
ble) and bypass the monitor. ARM has several ISAs (e.g.,
AArch64, AArch32), the instructions are aligned. The mon-
itor ensures that there is no critical instruction under any
ISAs in the system software’s text section. After that, it
ensures that only the code of the system software can be
mapped as executable in the privileged mode, thus return-
to-user/guest attack can also be prevented.

DMA Attack: An attacker may try to access COLONY's
memory or inject code into system software by leveraging
Direct Memory Access (DMA). We defend against this attack
by controlling System Memory Management Unit (SMMU),
which performs address translation for DMA. SMMU is
controlled by certain memory mapped registers. The mon-
itor only maps these memory regions to secure world.
By exclusively controlling the SMMU, the monitor ensures
that no DMAs can access system software’s text section or
COLONY’s memory.

Debugging Attack: The attacker may try to bypass the
monitor by setting debug checkpoint before invoking it.
Then the attacker can perform additional operations. Our
system controls the entry points of all exception handlers,
and the debug procedure is also under control. Thus, the
debug point before invoking the monitor in the system
software will trigger an infinite iteration, since the first
instruction of the debug exception handler is invoking the
monitor. This is a kind of DoS attack and is not considered
in this paper.

Injecting Fake Exceptions: A malicious system software
may try to inject fake exceptions. The monitor can detect
them by checking exception registers. For example, on
AArch64, the registers ELR_ELx and SPSR_ELx are set by
hardware when an exception happens. The system software
must set fake values to these registers to inject a fake ex-
ception. However, our system ensures that only the monitor
can modify the two registers, as mentioned in Section
which will check and reject such fake values.

7.3 Security Limitations

Although COLONIES are isolated from each other, it is still
possible that a compromised callee COLONY may attack the
caller by providing a malicious return value, ak.a., lago
attacks [20]. We rely on the service itself to defend these
attacks by verifying the return value of the callee. Our
design also does not consider hardware-based attacks, side-
channel attacks and DoS attacks.

7.4 Combining with Non-Privileged TEE

Our system relies on existing non-privileged TEEs to pro-
tect clients. The COLONY abstraction is portable and can
be combined with different non-privileged TEEs, including
hardware TEE (such as SGX-like enclaves) and software TEE
(such as TZ-Container [30]). Our current implementation
requires a software TEE mechanism.

We provide a set of COLONY interfaces for a non-
privileged TEE to interact with a COLONY. Since non-
privileged TEEs often protect their CPU context and mem-
ory, to integrate them with our system, we need to allow
the secure monitor to access such status, so that the non-
privileged TEEs can pass arguments to the secure services
located in a COLONY.

13

8 CONCLUSION

This paper introduces a new TEE design that can access
system-level semantics and achieve better extensibility. We
use the new TEE to protect four system-level services:
virtual machine introspection (VMI), secure device access-
ing, syscall tracer, and TrustZone virtualization. We im-
plemented the our design in both Linux kernel and Xen
hypervisor. The evaluation shows that our system only
causes small performance overhead.

9 ACKNOWLEDGMENTS

This work is supported in part by National Key
Research and Development Program of China (No.
2020AAA0108502), China National Natural Science Foun-
dation (No. 61972244, U19A2060, 61925206, 61732010).

REFERENCES
[1] Apache http server. https://www.apache.org/, visited on 8 Feb
2021.

[2] Arm trusted firmware. https:/ /github.com/ARM-software/
arm-trusted-firmware, visited on 8 Feb 2021.

[3] Mongodb. https://www.mongodb.com/, visited on 8 Feb 2021.

[4] Optee. https://github.com/OP-TEE/, visited on 8 Feb 2021.

[5] Qualcomm security. https:/ /www.
qualcomm.com/media/documents/files/
guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.
pdf, visited on 8 Feb 2021.

[6] sel4. |http://seld.systems, visited on 8 Feb 2021.

[7] Software guard extensions programming reference.
software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf, visited on 8 Feb 2021.

[8] Trustonic inc. https://www.trustonic.com/, visited on 8 Feb 2021.

[9] Xen on arm. https:/ /wiki.xen.org/wiki/Xen_ARM_with_
Virtualization_Extensions, visited on 8 Feb 2021.

[10] T. Alves and D. Felton. Trustzone: Integrated hardware and
software security. ARM white paper, 3(4):18-24, 2004.

[11] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al.
Scone: Secure linux containers with intel sgx. In USENIX Sym-
posium on Operating Systems Design and Implementation. USENIX
Association, 2016.

[12] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen. Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 90-102. ACM, 2014.

[13] A.M. Azab, P. Ning, and X. Zhang. Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms. In
Proceedings of the 18th ACM conference on Computer and communica-
tions security, pages 375-388. ACM, 2011.

[14] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang,
and P. Ning. Skee: A lightweight secure kernel-level execution
environment for arm. In Network & Distributed System Security
Symposium (NDSS), pages 21-24, 2016.

[15] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Com-
puter Systems (TOCS), 33(3):8, 2015.

[16] R. Boivie and P. Williams. Secureblue++: Cpu support for secure
execution. IBM Research Report, RC25287 (WAT1205-070), pages
1-9, 2012.

[17] E Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf.
Sanctuary: Arming trustzone with user-space enclaves. pages 1-
15, 2019.

[18] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. Sok: Understand-
ing the prevailing security vulnerabilities in trustzone-assisted tee
systems. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, pages 18-20, 2020.

[19] D. Champagne and R. Lee. Scalable architectural support for
trusted software. In Proc. HPCA, pages 1-12, 2010.

[20] S. Checkoway and H. Shacham. Iago attacks: Why the system call api
is a bad untrusted rpc interface, volume 41. ACM, 2013.

https://

https://www.apache.org/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://www.mongodb.com/
https://github.com/OP-TEE/
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
http://sel4.systems
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.trustonic.com/
https://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions
https://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions

TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, JAN 2021

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

(36]

[37]

[38]

[39]

(40]

[41]

[42]

[43]

X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, C. Wald-
spurger, D. Boneh, J. Dwoskin, and D. Ports. Overshadow: a
virtualization-based approach to retrofitting protection in com-
modity operating systems. In Proc. ASPLOS, pages 2-13. ACM,
2008.

S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. SecureME:
A Hardware-Software Approach to Full System Security. In ICS,
2011.

Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek. Hardware-
assisted on-demand hypervisor activation for efficient security
critical code execution on mobile devices. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 565-578. USENIX
Association, 2016.

V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hard-
ware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 857-874, 2016.
J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting
applications from hostile operating systems. ACM SIGARCH
Computer Architecture News, 42(1):81-96, 2014.

N. Dautenhahn, T. Kasampalis, W. Dietz,]. Criswell, and V. Adve.
Nested kernel: An operating system architecture for intra-kernel
privilege separation. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 191-206. ACM, 2015.

J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Computer Architecture News, 34(4):1-17, 2006.

O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
Inktag: secure applications on an untrusted operating system.
ACM SIGPLAN Notices, 48(4):265-278, 2013.

Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vtz
Virtualizing arm trustzone. In 26th USENIX Security Symposium
(USENIX Security 17), pages 541-556. USENIX Association, 2017.
Z.Hua, Y. Yu, J. Gu, Y. Xia, H. Chen, and B. Zang. Tz-container:
Protecting container from untrusted os with arm trustzone. SCI-
ENCE CHINA Information Sciences, pages 1-16, 2020.

T. Hunt, Z. Jia, V. Miller, H. Tyler,]. Zhipeng, M. Vance, C. J. Ross-
bach, and E. W. Witchel. Isolation and beyond: Challenges for
system security, 2019.

J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang. Secret:
Secure channel between rich execution environment and trusted
execution environment. In NDSS, pages 180-195, 2015.

Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and
E. Witchel. Sego: Pervasive trusted metadata for efficiently verified
untrusted system services. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pages 277-290. ACM, 2016.

W. Li, H. Li, H. Chen, and Y. Xia. Adattester: Secure online mobile
advertisement attestation using trustzone. In MobiSys, 2015.

W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li. Building
trusted path on untrusted device drivers for mobile devices. In
Proceedings of 5th Asia-Pacific Workshop on Systems, page 8. ACM,
2014.

H. Liang, M. Li, Y. Chen, L. Jiang, Z. Xie, and T. Yang. Establishing
trusted i/o paths for sgx client systems with aurora. IEEE Trans-
actions on Information Forensics and Security, 15:1589-1600, 2019.

L. W. McVoy, C. Staelin, et al. Imbench: Portable tools for per-
formance analysis. In USENIX annual technical conference, pages
279-294. San Diego, CA, USA, 1996.

B. Payne. Libvmi introduction: Vmitools, an introduction to
libvmi, 2014.

N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-
sealed data: A new abstraction for building trusted cloud services.
In Usenix Security, 2012.

A. SEV-SNP. Strengthening vm isolation with integrity protection
and more. White Paper, January, 2020.

H. Sun, K. Sun, Y. Wang, and J. Jing. Trustotp: Transforming smart-
phones into secure one-time password tokens. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 976-988. ACM, 2015.

H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. Trustice:
Hardware-assisted isolated computing environments on mobile
devices. In Dependable Systems and Networks (DSN), 2015 45th
Annual IEEE/IFIP International Conference on, pages 367-378. IEEE,
2015.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical
library os for unmodified applications on sgx. In Proceedings of the
USENIX Annual Technical Conference (ATC), page 8, 2017.

ACM

[44]

[45]

14

J. Yang and K. G. Shin. Using hypervisor to provide data secrecy
for user applications on a per-page basis. In Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 71-80. ACM, 2008.

F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 203-216. ACM, 2011.

Yubin Xia received his Ph.D. degree in computer
science from Peking University in 2010. He is cur-
rently an associate professor of the Institute of Par-
allel and Distributed Systems, Shanghai Jiao Tong
University. He is a member of ACM and IEEE. His
research interests include system software, com-
puter architecture and system security.

Zhichao Hua received his PH.D degree in com-
puter science from Shanghai Jiao Tong University
in 2020. He is currently an assistant professor of
the Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University. His research inter-
ests include operating system, virtualization and
system security.

Yang Yu received his Ph.D. degree from School of
Computer Science, Fudan University in 2016. He is
now a senior researcher in Shanghai Gejing Infor-
mation Technology Co., Ltd. His research interests
include computer architecture, system security and
Java virtual machine.

Jinyu Gu received the BS degree in software engi-
neering in 2016, from Shanghai Jiao Tong Univer-
sity. He is now a Ph.D student at the Institute of Par-
allel and Distributed Systems, Shanghai Jiao Tong
University. His research interests include operating
system and system security.

Haibo Chen received his Ph.D. degree in com-
puter science from Fudan University in 2009. He
is currently a professor at the Institute of Parallel
and Distributed Systems, Shanghai Jiao Tong Uni-
versity. He is a distinguished member of ACM and
senior member of IEEE. His research interests are
in operating systems and parallel and distributed
systems.

Binyu Zang received his Ph.D. degree in computer
science from Fudan University in 1999. He is cur-
rently a professor at the Institute of Parallel and Dis-
tributed Systems, Shanghai Jiao Tong University.
He is a member of ACM and IEEE. His research
interests include compilers, computer architecture
and systems software.

Haibing Guan obtained his Ph.D. degree from
Tongji University in 1999 and worked in Shanghai
Jiao Tong University since 2002. He is now a pro-
fessor of Shanghai Jiao Tong University. He is a
member of ACM and IEEE. His major research in-
terests include computer system, cloud computing.

	Introduction
	Related Work and Motivation
	Colony Abstraction
	Threat Model
	Overview of Colony
	Capability for Accessing System-level Semantics

	Design and Implementation
	Address Translation on ARM
	Design Challenges
	Isolating Data-Flow of Colony
	Isolating Control-Flow of Colonies
	Accessing System-Level Semantics
	Colony Interfaces

	Case Studies using Colony
	Case Study i: Virtual Machine Introspection
	Case Study ii: Secure Device Accessing
	Case Study iii: Syscall Tracer
	Case Study iv: Virtualizing TrustZone
	Virtualizing Secure Boot
	Protecting CPU states
	Virtualizing Resource Partitioning

	Performance Evaluation
	Evaluation Environment
	Overhead of Our Design
	Security Services With Single Colony
	Virtual Machine Introspection
	Secure Device Accessing
	Secure Syscall Tracer

	Performance of TrustZone Virtualization
	Micro-benchmark
	Application Overhead

	Security Analysis and Discussion
	Minimizing TCB
	Attacking Colonies
	Security Limitations
	Combining with Non-Privileged TEE

	Conclusion
	Acknowledgments
	References
	Biographies
	Yubin Xia
	Zhichao Hua
	Yang Yu
	Jinyu Gu
	Haibo Chen
	Binyu Zang
	Haibing Guan

