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In-memory key/value store (KV-store) is a key building block for many systems like databases and large

websites. Two key requirements for such systems are efficiency and availability, which demand a KV-store to

continuously handle millions of requests per second. A common approach to availability is using replication,

such as primary-backup (PBR), which, however, requires M + 1 times memory to tolerate M failures. This

renders scarce memory unable to handle useful user jobs.

This article makes the first case of building highly available in-memory KV-store by integrating erasure

coding to achieve memory efficiency, while not notably degrading performance. A main challenge is that an

in-memory KV-store has much scattered metadata. A single KV put may cause excessive coding operations

and parity updates due to excessive small updates to metadata. Our approach, namely Cocytus, addresses this

challenge by using a hybrid scheme that leverages PBR for small-sized and scattered data (e.g., metadata and

key), while only applying erasure coding to relatively large data (e.g., value). To mitigate well-known issues

like lengthy recovery of erasure coding, Cocytus uses an online recovery scheme by leveraging the replicated

metadata information to continuously serve KV requests. To further demonstrate the usefulness of Cocytus,

we have built a transaction layer by using Cocytus as a fast and reliable storage layer to store database records

and transaction logs. We have integrated the design of Cocytus to Memcached and extend it to support in-

memory transactions. Evaluation using YCSB with different KV configurations shows that Cocytus incurs low

overhead for latency and throughput, can tolerate node failures with fast online recovery, while saving 33% to

46% memory compared to PBR when tolerating two failures. A further evaluation using the SmallBank OLTP

benchmark shows that in-memory transactions can run atop Cocytus with high throughput, low latency, and

low abort rate and recover fast from consecutive failures.
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1 INTRODUCTION

The increasing performance demand of large-scale Web applications has stimulated the paradigm
of placing large datasets within memory to satisfy millions of operations per second with
sub-millisecond latency. This new computing model, namely in-memory computing, has been
emerging recently. For example, large-scale in-memory key/value systems like Memcached
(Fitzpatrick 2004) and Redis (Zawodny 2009) have been widely used in Facebook (Nishtala et al.
2013), Twitter (Twitter Inc. 2012), and LinkedIn. There have also been considerable interests of ap-
plying in-memory databases (IMDBs) to performance-hungry scenarios (e.g., SAP HANA (Färber
et al. 2012), Oracle TimesTen (Lahiri et al. 2013), and Microsoft Hekaton (Diaconu et al. 2013)).

Even if many systems have a persistent backing store to preserve data durability after a crash, it
is still important to retain data in memory for instantaneously taking over the job of a failed node,
as rebuilding terabytes of data into memory is time-consuming. For example, it was reported that
recovering around 120GB data from disk to memory for an in-memory database in Facebook took
2.5–3h (Goel et al. 2014). Traditional ways of providing high availability are through replication,
such as standard primary-backup (PBR) (Budhiraja et al. 1993) and chain-replication (van Renesse
and Schneider 2004), by which a dataset is replicated M + 1 times to tolerate M failures. However,
this also means dedicatingM copies of CPU/memory without producing user work, requiring more
standby machines, and thus multiplying energy consumption.

This article describes Cocytus, an efficient, available, and strongly consistent in-memory repli-
cation scheme. Cocytus aims at reducing the memory consumption for replicas while keeping
similar performance and availability of PBR-like solutions, though at additional CPU cost for
update-intensive workloads and more network bandwidth during recovery. The key of Cocytus is
efficiently combining the space-efficient erasure coding scheme with PBR.

Erasure coding is a space-efficient solution for data replication, which is widely applied in dis-
tributed storage systems, including Windows Azure Store (Huang et al. 2012) and Facebook stor-
age (Muralidhar et al. 2014). However, though space-efficient, erasure coding is well-known for its
lengthy recovery and transient data unavailability (Huang et al. 2012; Silberstein et al. 2014).

In this article, we investigate the feasibility of applying erasure coding to in-memory key/value
stores (KV-stores). Our main observation is that the abundant and speedy CPU cores make it
possible to perform coding online. For example, a single Intel Xeon E3-1230v3 CPU core can
encode data at 5.26GB/s for Reed-Solomon(3,5) codes, which is faster than even current high-
end NIC with 40Gb/s bandwidth. However, the block-oriented nature of erasure coding and the
unique feature of KV-stores raise several challenges to Cocytus to meet the goals of efficiency and
availability.

The first challenge is that the scattered metadata like a hashtable and the memory allocation
information of a KV-store will incur a large number of coding operations and updates even for a
single KV put. This incurs not only much CPU overhead but also high network traffic. Cocytus
addresses this issue by leveraging the idea of separating metadata from data (Wang et al. 2012) and
uses a hybrid replication scheme. In particular, Cocytus uses erasure coding for large-sized values
while using PBR for small-sized metadata and keys.
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The second challenge is how to consistently recover the lost data blocks online with the dis-
tributed data blocks and parity blocks.1 This is especially import for a high-performance in-
memory store since a small duration of blocking would impact a huge amount of services. While
state-of-the-art protocols for erasure coding block service to some extent during recovery (Huang
et al. 2012; Silberstein et al. 2014; Rashmi et al. 2013; Sathiamoorthy et al. 2013; Muralidhar et al.
2014), Cocytus introduces a distributed online recovery protocol that consistently collects all data
blocks and parity blocks to recover the lost data, yet without blocking services on live data blocks
and with predictable memory consumption.

We have implemented Cocytus in Memcached 1.4.21 with the synchronous model, in which
a server sends responses to clients after receiving the acknowledgments from backup nodes to
avoid data loss. We also implemented a pure primary-backup replication in Memcached 1.4.21 for
comparison.

To further demonstrate the usefulness of Cocytus, we build a transaction layer atop Cocytus by
leveraging Cocytus as a fast and reliable storage layer for database records as well as transaction
logs. The transaction layer runs on each machine with a transaction coordination service, which
coordinates together with a transaction master using the two-phase commit to commit a trans-
action. Upon a crash, the transaction layer leverages the logs replicated by Cocytus to reliably
recover running transactions.

With evaluation using YCSB (Cooper et al. 2010) to issue requests with different key/value dis-
tributions, we show that Cocytus incurs little degradation on throughput and latency during nor-
mal processing and can gracefully recover data quickly. Overall, Cocytus has high memory effi-
ciency while incurring small overhead compared with PBR, yet at little CPU cost for read-mostly
workloads and modest CPU cost for update-intensive workloads. Evaluation using the SmallBank
(Alomari et al. 2008) application from the OLTP-Bench set shows that transactions running atop
Cocytus achieves high throughput, low latency and low abort rate, yet can be reliably recovered
within a short time.

In summary, the main contribution of this article includes:

—The first case of exploiting erasure coding for in-memory KV-store.
—Two key designs, including a hybrid replication scheme and distributed online recovery

that achieve efficiency, availability and consistency.
—An implementation of Cocytus on Memcached (Fitzpatrick 2004) as well as a showcase of a

transaction layer atop Cocytus.
—A thorough evaluation that confirms Cocytus’s efficiency and availability.

The rest of this article is organized as follows. The next section describes necessary background
information about primary-backup replication and erasure coding in a modern computing en-
vironment. Section 3 describes the design of Cocytus, followed up by the recovery process in
Section 4. Section 5 presents a transaction layer built atop Cocytus. Section 6 describes the imple-
mentation details. Section 7 presents the experimental data of Cocytus. Finally, Section 8 discusses
related work, and Section 9 concludes this paper.

2 BACKGROUND AND CHALLENGES

This section first briefly reviews PBR and erasure coding, and then identifies opportunities and
challenges of applying erasure coding to in-memory KV-stores.

1Both data blocks and parity blocks are called code words in the coding theory. We term “parity blocks” as those code

words generated from the original data and “data blocks” as the original data.
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Fig. 1. Data storage with two different replication schemes.

2.1 Background

Primary-backup replication: PBR (Bressoud and Schneider 1996) is a widely used approach to
providing high availability. As shown in Figure 1(a), each primary node has M backup nodes to
store its data replicas to tolerate M failures. One of the backup nodes would act as the new primary
node if the primary node failed, resulting in a view change (e.g., using Paxos (Lamport 2001)). As
a result, the system can still provide continuous services upon node failures. This, however, is at
the cost of high data redundancy, for example, M additional storage nodes and the corresponding
CPUs to tolerate M failures. For example, to tolerate two node failures, the storage efficiency of a
KV-store can only reach 33%.

Erasure coding: Erasure coding is an efficient way to provide data durability. As shown in
Figure 1(b), with erasure coding, an N-node cluster can use K of N nodes for data and M nodes for
parity (K +M = N ). A commonly used coding scheme is Reed-Solomon codes (RS-code) (Reed and
Solomon 1960), which computes parities according to its data over a finite field by the following
formula (the matrix is called a Vandermonde matrix):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1

P2

...

PM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

1 a1
1 · · · aK−1

1
...
...
. . .

...

1 a1
M−1 · · · a

K−1
M−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1

D2

...

DK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

An update on a DNode (a node for data) can be achieved by broadcasting its delta to all PNodes
(nodes for parity) and asking them to add the delta to parity with a predefined coefficient. This
approach works similarly for updating any parity blocks; its correctness can be proven by the
following equation, where A represents the Vandermonde matrix mentioned in Equation (1).
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In the example above, we denote the corresponding RS-code scheme as RS(K,N). Upon node
failures, any K nodes of the cluster can recover data or parity lost in the failed nodes, and thus
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Table 1. The Speed of Coding Data with Different

Schemes for a Five-Node Cluster

Scheme Encoding speed Decoding speed
RS(4,5) 5.52GB/s 5.20GB/s
RS(3,5) 5.26GB/s 4.83GB/s
RS(2,5) 4.56GB/s 4.24GB/s

RS(K,N) can handle M node failures at most. During recovery, the system recalculates the lost data
or parity by solving the equations generated by the above equation.

As only M of N nodes are used for storing parities, the memory efficiency can reach K/N . For
example, an RS(3,5) coding scheme has storage efficiency of 60% while tolerating up to two node
failures.

Unlike PBR, where the backup data can be used directly, erasure coding necessities after-failure
recovery, during which consistent data and parities are collected from available nodes to calculate
the lost data correctly.

2.2 Motivation: Opportunities and Challenges

The emergence of in-memory computing significantly boosts the performance of many systems.
However, this also means that a large amount of data needs to be placed in memory. As memory
is currently volatile, a node failure would cause data loss for a large chunk of memory. Even if the
data has its backup in persistent storage, it would require non-trivial time to recover the data for
a single node (Goel et al. 2014).

However, simply using PBR may cause significant memory inefficiency. Despite an increase of
the volume, memory is still a scarce resource, especially when processing the “big-data” applica-
tions. It was frequently reported that memory bloat either significantly degraded the performance
or simply caused server crashes (Bu et al. 2013). This is especially true for workload-sharing clus-
ters, where the budget for storing specific application data is not large.

Opportunities: The need for both availability and memory efficiency makes erasure coding a
new attractive design point. The increase of CPU speed and the CPU core counts make erasure
coding suitable to be used even in the critical path of data processing. Table 1 presents the encoding
and decoding speed for different Reed-Solomon coding scheme on a five-node cluster with an
average CPU core (2.3GHz Xeon E5, detailed configurations in Section 7.1). Both encoding and
decoding can be done at 4.24–5.52GB/s, which is several hundreds of times compared to 20 years
ago (e.g., 10MB/s (Rizzo 1997)). This means that an average-speed core is enough to handle data
transmitted through even a network link with 40Gb/s. This reveals a new opportunity to trade
CPU resources for better memory efficiency to provide high availability.

Challenges: However, trivially applying erasure coding to in-memory KV-stores may result in
significant performance degradation and consistency issues.

The first challenge is that coding is done efficiently only in a bulk-oriented manner. However, an
update operation in a KV-store may result in a number of small updates, which would introduce
a notable amount of coding operations and network traffics. For example, in Memcached, both
the hashtable and the allocation metadata need to be modified for a set operation. For the first
case, a KV pair being inserted into a bucket will change four pointers of the double linked list.
Some statistics like those for LRU replacement algorithm need to be changed as well. In the case
of a hashtable expansion or shrinking, all key/value pairs may need to be relocated, causing a
huge amount of memory updates. For the allocation metadata, as Memcached uses a slab allocator,
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an allocation operation usually changes four variables and a free operation changes six to seven
variables.

The second challenge is that a data update involves changes to multiple parity blocks across
machines. During data recovery, there are also multiple data blocks and parity blocks involved. If
there are concurrent updates in progress, then this may easily lead to inconsistent data recovery.
A simple solution is freezing all related blocks until the completion of recovery, which ensures
the correctness of recovered data but hurts the performance during recovery. The performance
impact is even grater in a distributed system where network communications are involved during
recovery.

3 DESIGN

3.1 Interface and Assumption

Cocytus is an in-memory replication scheme for key/value stores (KV-stores) to provide high mem-
ory efficiency and high availability with low overhead. It assumes that a KV-store has two basic
operations: Value ← дet (Key) and set (Key,Value ), where Key and Value are arbitrary strings.
According to prior large-scale analysis on key/value stores in commercial workloads (Atikoglu
et al. 2012; Nishtala et al. 2013), Cocytus assumes that the value size is much larger than the key
size.

Cocytus handles only omission node failures where a node is fail-stop and won’t taint other
nodes; commission or Byzantine failures are not considered. It also does not consider a complete
power outage that crashes the entire cluster. In such cases, it assumes that there is another storage
layer that constantly stores data to preserve durability (Nishtala et al. 2013). Alternatively, one may
leverage battery-backed RAM like NVDIMM (Technology 2014; SNIA 2015) to preserve durability.

Cocytus is designed to be synchronous, that is, a response of a set request returned to the client
guarantees that the data has been replicated/coded and can survive node failures.

Cocytus works efficiently for read-mostly workloads, which are typical for many commercial
KV-stores (Atikoglu et al. 2012). For update-intensive workloads, Cocytus would use more CPU
resources due to the additional calculations caused by the erasure coding to achieve similar latency
and throughput compared to a simple primary-backup replication.

3.2 Architecture

Cocytus separates data from metadata and leverages a hybrid scheme: metadata and keys are repli-
cated using primary-backup while values are erasure coded.

One basic component of Cocytus is the coding group, as shown in Figure 2. Each group com-
prises K data processes handling requests to data blocks and M parity processes receiving update
requests from the data processes. A get operation only involves one data node, while a set opera-
tion updates metadata in both primary and its backup node, and generates diffs to be patched to
the parity codes.

Cocytus uses sharding to partition key/value tuples into different groups. A coding group han-
dles a key shard, which is further divided into P partitions in the group. Each partition is han-
dled by a particular data process, which performs coding at the level of virtual address spaces.
This makes the coding operation neutral to the changes of value sizes of a KV pair as long as
the address space of a data process does not change. There is no data communication among the
data processes, which ensures fault isolation among data processes. When a data process crashes,
one parity process immediately handles the requests for the partition that belongs to crashed
nodes and recovers the lost data, while other data processes continuously provide services without
disruption.
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Fig. 2. Requests handled by an coding group in Cocytus, where K = 3, M = 2.

Cocytus is designed to be strongly consistent, which never loses data or recovers inconsistent
data. However, strict ordering on parity processes is not necessary for Cocytus. For example, two
data processes update their memory at the same time, which involves two updates on the parity
processes. However, the parity processes can execute the updates in any order as long as they are
notified that the updates have been received by all of the parity processes. Thus, in spite of the
update ordering, the data recovered later are guaranteed to be consistent. Section 4.1.2 will show
how Cocytus achieves consistent recovery when a failure occurs.

3.3 Separating Metadata from Data

For a typical KV-store, there are two types of important metadata to handle requests. The first
is the mapping information, such as a (distributed) hashtable that maps keys to their value ad-
dresses. The second one is the allocation information. As discussed before, if the metadata is era-
sure coded, there will be a large number of small updates and lengthy unavailable duration upon
crashes.

Cocytus uses primary-backup replication to handle the mapping information. In particular, the
parity processes save the metadata for all data processes in the same coding group. For the alloca-
tion information, Cocytus applies a slab-based allocation for metadata allocation. It further relies
on an additional deterministic allocator for data such that each data process will result in the same
memory layout for values after every operation.
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Fig. 3. Interleaved layout of coding groups in Cocytus. The blocks in the same row belong to one coding

group.

Interleaved layout: One issue caused by this design is that parity processes save more metadata
than those in the data processes, which may cause memory imbalance. Further, as parity processes
only need to participate in set operations, they may become idle for read-mostly workloads. In
contrast, for read-write workloads, the parity processes may become busy and may become a
bottleneck of the KV-store.

To address these issues, Cocytus interleaves coding groups in a cluster to balance workload and
memory on each node, as shown in Figure 3. Each node in Cocytus runs both parity processes and
data processes; a node will be busy on parity processes or data processes for update-intensive or
read-mostly workload accordingly.

The interleaved layout can also benefit the recovery process by exploiting the cluster resources
instead of one node. Because the shards on one node belong to different groups, a single node
failure leads a process failure on each group. However, the first parity nodes of these groups are
distributed across the cluster, all nodes will work together to do recovery.

To extend Cocytus in a large scale cluster, there are three dimensions to consider, including the
number of data processes (K) and the number of parity processes (M) in a coding group, as well as
the number of coding groups. A larger K increases memory efficiency but makes the parity process
suffer from higher CPU pressure for read-write workloads. A larger M leads to more failures to
be tolerated but decreases memory efficiency and degrades the performance of set operations. A
neutral way to extend Cocytus is deploying more coding groups.
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3.4 Consistent Parity Updating with Piggybacking

Because an erasure-coding group has multiple parity processes, sending the update messages to
such processes needs an atomic broadcast. Otherwise, a KV-store may result in inconsistency. For
example, when a data process has received a set request and is sending updates to two parity pro-
cesses, a failure occurs and only one parity process has received the update message. The following
recovery might recover incorrect data due to the inconsistency between parities.

A natural solution to this problem is using two-phase commit (2PC) to implement atomic broad-
cast. This, however, requires two rounds of messages and doubles the I/O operations for set re-
quests. Cocytus addresses this problem with a piggybacking approach. Each request is assigned
with an xid, which monotonously increases at each data process like a logical clock. Upon receiving
parity updates, a parity process first records the operation in a buffer corresponding with the xid

and then immediately send acknowledgments to its data process. After the data process receives
acknowledgments from all parity processes, the operation is considered stable in the KV-store. The
data process then updates the latest stable xid as well as data and metadata, and sends a response
to the client. When the data process sends the next parity update, this request piggybacks on the
latest stable xid. When receiving a piggybacked request, the parity processes mark all operations
that have smaller xid in the corresponding buffer as READY and install the updates in place se-
quentially. Once a failure occurs, the corresponding requests that are not received by all parity
processes will be discarded.

3.5 Request Handling

After introducing the basic design of Cocytus, this section describes the process of request handling
in detail.

When a request comes, a data process first checks whether the key belongs to the shard it
manages. If the request is wrongly dispatched, then the data process sends a response of WRONG-

SHARD. After passing the validation, for a get request, the data process finds the key/value pair in
the hashtable. If found, then the value is sent back to the client. Otherwise, the data process sends
a NOTFOUND back to the client.

For a set request, the data process tries to find the key/value pair in the hashtable. If the key
does not exist in the hashtable, then the data process allocates a space to save the key/value pair in
the hashtable. The data process also allocates a free space for the data region, which is previously
allocated during system initialization. If the key has been mapped to an old value, then the data
process frees the old value but does not reset the memory, because resetting memory causes parity
updates. After finding the space, the data process generates the diffs between the value and the
old data in that place. The data process also appends an automatically incremental ID, called xid

for the request. Then, the data process sends the allocated address and the request to the parity
process, in which the value is replaced with the diffs between the value and the original data on the
allocated space. In fact, the allocated address is not necessary thanks to the deterministic allocator.
Hence, the network traffic of Cocytus is similar to primary-backup replication.

When a parity process received a request from a data process, it records the request in a buffer
and sends a response to the data process. After the data process received all responses from parity
processes, it sends a response to the client, updates the memory in place and updates the latest sta-

ble xid. When the parity process received a request with the piggybacked xid, it marks the buffered
request with smaller xid as READY and applies the updates sequentially. The parity processes deal
the requests with the same way as the data processes. Because the allocation and hashtable are
both deterministic, the states of both types of processes keep the same.
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4 RECOVERY

When a node crashes, Cocytus needs to reconstruct lost data online while serving client requests.
Cocytus assumes that the KV-store will eventually keep its fault tolerance level by assigning new
nodes to host the recovered data. Alternatively, Cocytus can degenerate its fault tolerance level
to tolerate fewer failures. In this section, we first describe how Cocytus recovers data in-place to
the parity node and then illustrate how Cocytus migrates the data to recover the parity and data
processes when a crashed node reboots or a new standby node is added.

4.1 Data Recovery

Because data blocks are only updated at the last step of handling set requests which are executed
sequentially with xid. We can regard the xid of the latest completed request as the logical timestamp
(T ) of the data block. Similarly, there are K logical timestamps (VT [1..K]) for a parity block, where
K is the number of the data processes in the same coding group. Each of the K logical timestamps
is the xid of the latest completed request from the corresponding data process.

Suppose data processes 1 to F crash at the same time. Cocytus chooses all alive data blocks
and F parity blocks to reconstruct the lost data blocks. Suppose the logical timestamps of data
blocks are TF+1, T F+2, . . . ,T K and the logical timestamps of parity blocks are VT 1, VT 2, . . . ,VT F.
If VT 1 = VT 2 = · · · = VT F and VT 1[F + 1..K] = 〈T F+1,T F+2, . . . ,T K〉, then theses data blocks and
parity blocks agree with formula (1). Hence, they are consistent.

The recovery comprises two phases: preparation and online recovery. During the preparation
phase, the parity processes synchronize their request buffers that correspond to the failed pro-
cesses. Once the preparation phase completes, all parity blocks are consistent on the failed pro-
cesses. During online recovery, alive data process send their data blocks with its logical timestamp,
so the parity processes can easily provide the consistent parity blocks.

4.1.1 Preparation. Once a data process failure is detected, a corresponding parity process is se-
lected as the recovery process to do the recovery and to provide services on behalf of the crashed
data process. The recovery process first collects latest xids, which correspond to failed data pro-
cesses from all parity processes. Hence, a parity process has a latest xid for each data process,
because it maintains an individual request buffer for each data process. The minimal latest xid is
then chosen as the stable xid. Requests with greater xid received by the failed data process haven’t
been successfully received by all parity processes and thus should be discarded. Then, the stable
xid is sent to all parity processes. The parity processes apply the update requests in place of which
the xid equal to or less than the stable xid in the corresponding buffer. After that, all parity pro-
cesses are consistent in the failed data process, because their corresponding logical timestamps are
all the same with the stable xid.

The preparation phase blocks key/value requests for a very short time. According to our evalu-
ation, the blocking time is only 7 to 13ms even under a high workload.

4.1.2 Online Recovery. The separation of metadata and data enables online recovery of
key/value pairs. During recovery, the recovery process can leverage the replicated metadata to
reconstruct lost data online to serve client requests, while using idle CPU cycles to proactively
reconstruct other data. During the recovery, data blocks are recovered in a granularity of 4KB,
which is called a recovery unit. According to the address, each recovery unit is assigned an ID for
the convenience of communication among processes.

For each recovery unit, the key issue is to get all corresponding blocks from other data/parity
processes in the coding group in a consistent way. For example, suppose Cocytus uses RS(4,6) to
encode the data. There are six processes, that is, DP1, DP2, DP3, DP4, PP1, PP2 (DP is data process
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Fig. 4. Semi-blocking vs. non-blocking based recovery.

and PP is parity process), in a coding group, which contains data D1, D2, D3, D4, P1, P2. The
relationships between the data are

P1 = D1 + D2 + D3 + D4,

P2 = D1 + 2 ∗ D2 + 4 ∗ D3 + 8 ∗ D4.

Once DP1 and DP2 crash, PP1 and PP2 become the recovery processes for DP1 and DP2 accord-
ingly, where PP1 is the recovery leader and PP2 is the recovery worker. When the PP1 wants to
reconstruct a block, it needs to collect all corresponding blocks from D3, D4, P2 to calculate D1
and D2 with the following formulas:

D1 = 2 ∗ P1 − P2 + 2 ∗ D3 + 6 ∗ D4,

D2 = −P1 + P2 − 3 ∗ D3 − 7 ∗ D4.

To ensure D1 and D2 are reconstructed in a consistent way, it is critical to ensure that all P1, P2,
D3, and D4 are collected consistently. In the following, we first describe a naive approach using
Chandy-Lamport’s distributed snapshot protocol (Chandy and Lamport 1985), which, however,
requires a number of memory buffers as well as blocking requests from data processes to the
coding group during the decoding process. Then, we present a refined, yet still simple protocol
that releases this guarantee. Finally, we use an example to illustrate the whole process of recovery.

Partial-blocking Based Recovery. Figure 4(a) illustrates a simplified version varied from this pro-
tocol. The recovery process first broadcasts snapshot requests to all data processes (step 1) and
continuously receives the parity update requests from its coding group. The request from PP1 to
PP2 is unnecessary, because the parity processes will not send requests that could lead to incon-
sistent results. Based on Chandy-Lamport’s protocol, once a parity process (i.e., PP1) receives the
first data block from DP4, it stops serving any requests from DP4 (step 2). When receiving all data
blocks, PP1 starts to serve requests from all data processes again (step 3). After receiving P2 from
PP2, PP1 can reconstruct D1 and D2 (step 4).

Although this approach prevents freezing all related blocks at the beginning, it still incurs
service suspension and consumes a lot of memory buffer: First, if one data process is busy on
dealing with get requests, the long suspension time may lead to performance degradation on an-
other shard. Second, it would also hold a lot of memory buffers for a long time. For example,
if N blocks are recovered in parallel, to buffer the data, the parity process needs memory about
(K − 1) ∗ N ∗ blocksize at most, where K is the number of data processes and N is the number of
simultaneously recovered blocks.

Non-blocking Based Recovery. Cocytus uses a refined solution to recovery, which requires less
memory buffer and never suspends message delivery. The key of our solution is to reconstruct the
data with a streaming-based way.
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Figure 4(b) shows how the recovery process managing P1 recovers the data block when DP1 and
DP2 crash on a RS(4,6) coded Cocytus. Suppose PP1 wants to recover D1 and D2, which are lost.
It broadcasts recovery requests to DP3 and DP4 (step 1). When a data process receives a recovery

request, it sends a response with the requested blocks to each involved parity process. When PP1
receives the first data block from DP4 (step 2), it copies its code block to P1′. At that moment,

P1′ = D1 + D2 + D3 + D4.

PP1 executes a subtraction operation on P1′ by D4, then P1′ becomes

P1′ = D1 + D2 + D3.

If an update request from D3 process on the same block comes before receiving the data block
from D3 process, then the update operation are done on both P1 and P1′. After receiving the data
block from DP3 (step 3), P1′ becomes P1′′:

P1′′ = D1 + D2.

Since DP1 and DP2 have crashed, so no update operations from their recovery processes on the
same block are accepted before the data block is completely recovered. Similarly, PP2 also finally
get a code block P2′′, which are

P2′′ = D1 + 2 ∗ D2.

Then PP2 sends the P2′ block to P1 process (step 4). Hence, the PP1 can recover D1 and D2 with
fewer data blocks, which is faster and needs less memory buffer.

D1 = 2 ∗ P1′ − P2′,

D2 = P2′ − P1′.

In this way, Cocytus requires much fewer memory buffers and is completely non-blocking dur-
ing the recovery process.

Combining with Vector Timestamps. The following shows how Cocytus combines the above
streaming-based recovery with vector timestamps to derive a consistent recovery. As shown in
Figure 5, there are five steps in our online recovery protocol:

—1. To reconstruct a recovery unit, a recovery process becomes the recovery initiator and
sends messages consisting of the recovery unit ID and a list of involved recovery processes
to alive data processes.

—2. When the ith data process receives the message, it sends the corresponding data unit to
all recovery processes along with its logical timestamp Ti .

—3(a). When a recovery process receives the data unit and the logical timestamp Ti , it first
applies the requests whose xid equals to or less thanTi in the corresponding buffer. At this
time, the ith logical timestamp on this recovery process equals to Ti .

—3(b). The recovery process subtracts the corresponding parity unit by the received data unit
with the predefined coefficient. After the subtraction completes, the parity unit is detached
from the ith data process and will not receive updates from that data process.

—4. When a recovery process has received and handled all data units from the surviving data
processes, it sends the final corresponding parity unit to the recovery initiator, which is
only associated with the failed data processes.

—5. When the recovery initiator has received all parity units from recovery processes, it de-
codes them by solving the following equation, in which the f n1, f n2, . . . , f nF indicate the
numbers of F failure data processes and the rn1, rn2, . . . , rnF indicate the numbers of F
parity processes chosen to be the recovery processes:
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Fig. 5. Online recovery when DP1 and DP2 crash in an RS(4, 6) coding group.
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4.2 Correctness Argument

Here, we briefly argue the correctness of the protocol. Because when a data block is updated, all
parity processes should have received the corresponding update requests. Hence, in step 3(a), the
parity process must have received all required update requests and can synchronize its correspond-
ing logical timestamp with the received logical timestamp. Since the received data block and parity
block have the same logical timestamps, the received data block should be the same as the data
block that is used to construct the parity block. Because a parity block is a sum of data blocks with
the individual predefined coefficients in the Vandermonde matrix, after the subtraction in step 3(b),
the parity block is only constructed by the rest of data blocks. At the beginning of step 4, the parity
block is only constructed by the data blocks of failed data processes, because the parity process
has done step 3 for each alive data process. Finally, with the help of stable xid synchronization in
the preparation phase, the parity blocks received in step 5 are all consistent and should agree with
Equation (2).

4.2.1 Request Handling on Recovery Process. Cocytus allows a recovery process to handle re-
quests during recovery. For a get request, it tries to find the key/value pair through the backup
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hashtable. If it finds the pair, then the recovery process checks whether the data blocks needed
for the value have been recovered. If the data blocks have not been recovered, then the recovery
process initiates data block recovery for each data block. After the data blocks are recovered, the
recovery process sends the response to the client with the requested value.

For a set request, the recovery process allocates a new space for the new value with the help
of the allocation metadata in the backup. If the allocated data blocks are not recovered, then the
recovery process calls the recovery function for them. After recovery, the recovery process handles
the operation like a normal data process.

4.3 Data Migration

Data process recovery: During the data process recovery, Cocytus can migrate the data from
the recovery process to a new data process. The recovery process first sends the keys as well as
the metadata of values (i.e., sizes and addresses) in the hashtable to the new data process. While
receiving key/value pairs, the new data process rebuilds the hashtable and the allocation metadata.
After all key/value pairs are sent to the new data process, the recovery process stops providing
services to clients.

When metadata migration completes, the data (i.e., value) migration starts. At that moment, the
data process can handle the requests as done in the recovery process. The only difference between
them is that the data process does not recover the data blocks by itself. When data process needs
to recover a data block, it sends a request to the recovery process. If the recovery process has
already recovered the data block, then it sends the recovered data block to the data process directly.
Otherwise, it starts a recovery procedure. After all data blocks are migrated to the data process,
the migration completes.

If either the new data process or the corresponding recovery process fails during data migration,
then both of them should be killed. This is because having only one of them will lead to insufficient
information to provide continuous services. Cocytus can treat this failure as a data process failure.

Parity process recovery: The parity process recovery is straightforward. After a parity process
crashes, the data process marks all data blocks with a miss bit for that parity process. The data
processes first send the metadata to the recovering parity process. Once the transfer of metadata
completes, the logical timestamps of new parity processes are the same with the metadata it has
received. After the transfer of metadata, the data processes migrate the data that may overlap with
parity update requests. Before sending a parity update request, which involves data blocks marked
with a miss bit, the data process needs to send the involved data blocks to the new parity process.
In this way, data blocks sent to the new parity process have the same logical timestamps with the
metadata sent before. After the new parity process receives all data blocks, the recovery completes.
If either of the data processes fails during the recovery of the parity process, then the recovery fails
and Cocytus starts to recover the failed data process.

5 SUPPORTING HIGH-AVAILABLE TRANSACTIONS

Many in-memory transaction systems (Wang et al. 2014a; Wei et al. 2015; Chen et al. 2016) rely on a
key/value store to store database records. To showcase how the scheme of Cocytus can help reduce
memory consumption of in-memory transaction systems while preserving high availability, this
section presents a design that builds a transaction layer atop the KV-store of Cocytus to form an
in-memory transaction system.

5.1 Transaction Layer

As shown in Figure 6, the transaction layer comprises a set of transaction coordination (TC) ser-
vices running on each machine, each with a unique ID to manage data stored in that machine
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Fig. 6. Transaction Layer.

and to coordinate transactions. Cocytus uses the two-phase commit (2PC) protocol to commit a
distributed transaction.

To assist transaction execution, Cocytus maintains three types of key/value pairs, which are
directly stored in the underlying key/value store: (1) data fields, which are used to store data used
by a transaction; (2) log fields, which are used to store transaction logs; (3) system fields, which
are used to store the system variables used by the transaction layer itself. Cocytus extends each
data field stored by the underlying KV-store with a version number to validate a transaction.

Each transaction maintains a read set and a write set. A transaction read first searches through
the read set and write sets to see if the key/value pair has already been read or written. If not, then
the transaction will get the pair from the underlying KV-store and record the pair into the read
set. Each write by a transaction will be buffered into the write set.

As Cocytus mainly targets read-mostly scenarios and many transactional workloads contain
many read-only transactions (e.g., six read-only vs. four read-write transactions in TPC-E (Chen
et al. 2011)), Cocytus differentiates read-only transactions from read-write transactions. A read-
only transaction only requires one phase to commit, as shown in Figure 7. To commit a read-only
transaction, the transaction master in the client first sends a commit request to the transaction
coordination services managing the corresponding key/value pairs. The request contains the cor-
responding key as well as the version number. Each coordination service will first check if there is
any locked key, which indicates whether there is a concurrent read-write transaction in progress;
it will then check if the version number matches. If the checks pass successfully, then the coordi-
nation service will send “AGREE” to the transaction master. The read-only transaction can commit
successfully if all coordination service replies with “AGREE,” otherwise the transaction will abort.

Cocytus uses the standard two-phase commit protocol to commit a read-write transaction, as
shown in Figure 8. The first step is to prepare a transaction commit, where the transaction master
sends a set of information to each coordination service. The information includes: (1) transaction

ACM Transactions on Storage, Vol. 13, No. 3, Article 25. Publication date: September 2017.



25:16 H. Chen et al.

Fig. 7. Read-only Transaction Commit.

Fig. 8. Read-Write Transaction Commit.

ID; (2) the IDs of all involved coordination services; (3) keys and the corresponding versions in
the read set for each coordination service; (4) keys and values in the write set for each coordina-
tion services. Each coordination service will use such information to determine: (1) if there is a
concurrent yet conflicting transaction in the process of commit (i.e., if the key is locked or not);
or (2) the versions for keys in the read set have not changed. After the validation passes, the co-
ordination service will lock the corresponding keys, log the related information to the underlying
KV-store and send an “AGREE” the transaction master. Then, if all coordination services replied
“AGREE,” then the transaction can be committed and log the related transaction information; yet
the changes are still not visible to other transactions. Next, the master sends a “COMMIT” message
to all coordination services to ask them to commit the changes; each of the coordination service
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will install the changes, unlock the keys and reply to the master with “FINISH” once the changes
have been committed. Finally, the master, upon collecting all “FINISH” confirmations from all in-
volved coordination services, marks the transaction as committed.

5.2 Transaction Recovery

Cocytus follows a layered design by exploiting the high availability provided by the KV-store as
a building block to tolerate possible machine failures. As discussed above, Cocytus logs critical
information regarding a transaction during the committing process, which can be leveraged to do
recovery upon failures, similar to standard recovery to the two-phase commit. The key issue here
is to provide proper crash recovery to the transaction master and the coordination services.2

If a transaction master failed, then another machine (a survival or a standby machine) will take
the job of the failed master. The transaction information can be recovered from the underlying
KV-store. For each transaction, the master then uses the logged transaction status to determine
whether to abort or commit a transaction. If a transaction has sent all “COMMIT” but received no
confirmations, or a transaction has received all “FINISH” confirmations from coordination services,
then the transaction can be restarted or marked as “FINISH” accordingly. If the transaction is in a
state in between, then Cocytus needs to reply the coordination services to decide to commit or not.
Specifically, an elected coordination service in a pending transaction will send messages to other
services to decide if a transaction should be committed or not and commit or abort accordingly.
Each coordination service will rely on a timeout mechanism to decide whether a transaction master
is alive or not.

If a coordination service failed, then the underlying KV-store will first recover all KV pairs. Then,
a new service node will recover necessary states for the coordination service from the recovered
logs in the KV pairs. Currently, each coordination service uses a monotonically increasing number
to identify logs. However, it does not serialize all logs among concurrent transactions to maximize
performance. Hence, it may be possible that log 10 is available but log 9 is missing. Besides, since
the writing of transaction data and the “FINISH” record is done concurrently, it is possible that the
“FINISH” record exists yet the related transactional data is missing.

To address this issue, each coordination service maintains two system variables, stable log num-
ber (SLN) and maximum log number (MLN). The former indicates all transactions whose log num-
bers are no larger than MLN have been persisted (including both data and log). If there is a “FINISH”
log for a transaction but the data has not been durable, then the transactional actions will be redone
on this service. If there is no “FINISH” log for a transaction, then the service then locks related keys
in the write set. If another transaction B currently holds the lock required by this transaction, then
this indicates that transaction B must have finished according to the serialization order. Hence, the
service finishes the related action to confirm the commit for transaction B. Since all data is stored
in memory, it is fairly fast to recover transactions.

6 IMPLEMENTATION

To understand its performance implication on real KV-stores, we have implemented Cocytus on
top of Memcached 1.4.21 with the synchronous model, by adding about 3,700 SLoC to Memcached.
Currently, Cocytus only works for single-thread model and the data migration is not fully sup-
ported. To exploit multicore, Cocytus can be deployed with sharding and multi-process instead of
multi-threading. In fact, using multi-threading has no significant improvement for data processes
that may suffer from unnecessary resource contention and break data isolation. The parity pro-
cesses could be implemented in a multi-threaded way to distribute the high CPU pressure under

2Note that the master may be colocated with one of the coordination service.
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write-intensive workloads, which we leave as future work. We use Jerasure (Plank et al. 2008) and
GF-complete (Plank et al. 2013) for the Galois-Field operations in RS-code. Note that Cocytus is
largely orthogonal with the coding schemes; it will be our future work to apply other network or
space-efficient coding schemes (Shah et al. 2012; Rashmi et al. 2015). The transaction layer is built
from scratch and runs directly atop the modified Memcached. To study the impact of Cocytus on
the transaction performance, we also implement the transaction layer atop the Memcached with
primary-backup replication. This section describes some implementation issues.

Deterministic allocator: In Cocytus, the allocation metadata is separated from data. Each data
process maintains a memory region for data with the mmap syscall. Each parity process also main-
tains an equivalent memory region for parity. To manage the data region, Cocytus uses two AVL
trees, of which one records the free space and the other records the allocated space. The tree node
consists of the start address of a memory piece and its length. The length is ensured to be multiples
of 16 and is used as the index of the trees. Each memory location is stored in either of the trees. An
alloc operation will find an appropriate memory piece in the free-tree and move it to the allocated-
tree and the free operations do the opposite. The trees manage the memory pieces in a way similar
to the buddy memory allocation: large blocks might be split into small ones during alloc operations
and consecutive pieces are merged into a larger one during free operations. To make the splitting
and merging fast, all memory blocks are linked by a list according to the address. Note that only
the metadata is stored in the tree, which is stored separately from the actual memory managed by
the allocator.

Pre-alloc: Cocytus uses the deterministic allocator and hashtables to ensure all metadata in
each node is consistent. Hence, Cocytus only needs to guarantee that each process will handle the
related requests in the same order. The piggybacked two-phase commit (Section 3.4) can mostly
provide such a guarantee.

One exception is shown in Figure 9(a). When a recovery process receives a set request with X=a,
it needs to allocate memory for the value. If the memory for the value needs to be recovered, then
the recovery process first starts the recovery for X and puts this set request into a waiting queue. In
Cocytus, the recovery is asynchronous. Thus, the recovery process is able to handle other requests
before the recovery is finished. During this time frame, another set request with Y = b comes to
the recovery process. The recovery process allocates memory for it and fortunately the memory
allocated has already been recovered. Hence, the recovery process directly handles the set request
with Y= b without any recovery and sends requests to other parity processes for fault-tolerance. As
soon as they receive the request, other processes (for example, PP2 in the figure) allocate memory
for Y and finish their work as usual. Finally, when the recovery for X is finished, the recovery
process continues to handle the set request with X = a. It also sends fault-tolerance requests to
other parity processes, on which the memory is allocated for X. Up to now, the recovery process
has allocated memory for X and Y successively. However, on other parity processes, the memory
allocation for Y happens before that for X. This different allocation ordering between recovery
processes and parity processes will cause inconsistency.

Cocytus solves this problem by sending a pre-allocation request (shown in Figure 9(b)) before
each set operation is queued due to recovery. In this way, the parity processes can pre-allocate
space for the queued set requests and the ordering of memory allocation is guaranteed.

Recovery leader: Because when multiple recovery processes want to recover the two equiv-
alent blocks simultaneously, both of them want to start an online recovery protocol, which is
unnecessary. To avoid this situation, Cocytus assigns a recovery leader in each group. A recovery
leader is a parity process responsible for initiating and finishing the recovery in the group. All
other parity processes in the group will send recovery requests to the recovery leader if they need
to recover data, and the recovery leader will broadcast the result after the recovery is finished. A
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Fig. 9. In (a), the memory allocation ordering for X and Y is different on PP1 and PP2. In (b), thanks to the

pre-alloc, the memory allocation ordering remains the same on different processes.

recovery leader is not absolutely necessary but such a centralized management of recovery can
prevent the same data from being recovered multiple times and thus reduce the network traffic.
Considering the interleaved layout of the system, the recovery leaders are uniformly distributed
on different nodes and won’t become the bottleneck.

Short-cut Recovery for Consecutive Failures: When there are more than one data process
failures and the data of some failed processes are already recovered by the recovery process, the
further recovered data might be wrong if we do not take the recovery process into consideration.

In the example given in Figure 4(b), suppose DP1 (data process 1) fails first and PP1 (parity
process 1) becomes a recovery process for it. After PP1 recovered a part of data blocks, DP2 fails
and PP2 becomes a recovery process for DP2. At that moment, some data blocks on PP1 have been
recovered and others haven’t. To recover a data block on DP2, if its corresponding data block on
DP1 has been recovered, it should be recovered in the way that involves three data blocks and one
parity block, otherwise it should be recovered in the way that involves two data blocks and two
parity blocks. The procedures of the two kinds of recovery are definitely different.

Primary-backup replication: To evaluate Cocytus, we also implemented a primary-backup
(PBR) replication version based on Memcached-1.4.21 with almost the same design as Cocytus,
like synchronous write, piggyback, except that Cocytus puts the data in a coded space and needs
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to decode data after a failure occurs. We did not directly use Repcached (KLab Inc. 2011) for two
reasons. One is that Repcached only supports one slave worker. The other one is that set operation
in Repcached is asynchronous and thus does not guarantee crash consistency.

7 EVALUATION

We evaluate the performance of Cocytus by comparing it to primary-backup replication (PBR) and
the vanilla Memcached. The highlights of our evaluation results are the followings:

—Cocytus achieves high memory efficiency: It reduces memory consumption by 33% to 46%
for value sizes from 1KB to 16KB when tolerating two node failures.

—Cocytus incurs low overhead: It has similar throughput with PBR and vanilla KV-store (i.e.,
Memcached) and incurs small increase in latency compared to vanilla KV-store.

—Cocytus can tolerate failures as designed and recover fast and gracefully: Even under two
node crashes, Cocytus can gracefully recover lost data and handle client requests with close
performance with PBR.

7.1 Experimental Setup

Hardware and configuration: Due to our hardware limit, we conduct all experiments on a six-
node cluster of machines. Each machine has two 10-core 2.3GHz Intel Xeon E5-2650, 64GB of
RAM and is connected with 10Gb network. We use five of the six nodes to run as servers and the
remaining one as client processes.

To gain a better memory efficiency, Cocytus could use more data processes in a coding group.
However, deploying too many data processes in one group increases the burden on parity pro-
cesses, which could be a bottleneck of the system. Because of the limitation of our cluster, we
deploy Cocytus with five interleaved EC groups, which are configured as RS(3,5) so the system
can tolerate two failures while maximizing the data processes. Each group consists of three data
processes and two parity processes. With this deployment, each node contains three data processes
and two parity processes of different groups.

Targets of comparison: We compare Cocytus with PBR and vanilla Memcached. To evaluate
PBR, we distribute 15 data processes among the five nodes. For each data process, we launch 2
backup processes so that the system can also tolerate two node failures. This deployment launches
more processes (45 processes) compared to Cocytus (25 processes), which could use more CPU
resource in some cases. We deploy the vanilla Memcached by evenly distributing 15 instances
among the five nodes. In this way, the number of processes of Memcached is the same as the data
processes of Cocytus.

Workload: We use the YCSB (Cooper et al. 2010) benchmark to generate our workloads. We
generate each key by concatenating a table name and an identifier, and a value is a compressed
HashMap object, which consists of multiple fields. The distribution of the key probability is Zip-
fian (Egghe 2005), with which some keys are hot and some keys are cold. The length of the key is
usually smaller than 16B. We also evaluate the systems with different read/write ratios, including
equal-shares (50%:50%), read-mostly(95%:5%), and read-only (100%:0%).

Since the median of the value sizes from Facebook (Nishtala et al. 2013) are 4.34KB for Region

and 10.7KB for Cluster, we test these caching systems with similar value sizes. As in YCSB, a
value consists of multiple fields, to evaluate our system with various value sizes, we keep the field
number as 10 while changing the field size to make the total value sizes be 1KB/4KB/16KB, that is,
the field sizes are 0.1KB/0.4KB/1.6KB accordingly. To limit the total data size to be 64GB, the item
numbers for 1/4/16KB are 64/16/1 million, respectively. However, due to the object compression,
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Fig. 10. Memory consumption of three systems with different value sizes. Due to the compression in YCSB,

the total memory cost for different value sizes differs a little bit.

we cannot predict the real value size received by the KV-store and the values may not be aligned
as well; Cocytus aligns the compressed values to 16 bytes to perform coding.

7.2 Memory Consumption

As shown in Figure 10, Cocytus achieves notable memory saving compared to PBR, due to the use
of erasure coding. With a 16KB value size, Cocytus achieves 46% memory saving compared to PBR.
With RS(3,5), the expected memory overhead of Cocytus should be 1.66X while the actual memory
overhead ranges from 1.7X to 2X. This is because replicating metadata and keys introduces more
memory cost, for example, 25%, 9.5%, and 4% of all consumed memory for value sizes of 1, 4, and
16KB. We believe such a cost is worthwhile for the benefit of fast and online recovery.

To investigate the effect of small- and variable-sized values, we conduct a test in which the value
size follows the Zipfian distribution over the range from 10B to 1KB. Since it is harder to predict
the total memory consumption, we simply insert 100 million such items. The result is shown as
zipf in Figure 10. As expected, more items bring more metadata (including keys), which diminishes
the benefit of Cocytus. Even so, Cocytus still achieves 20% memory saving compared to PBR.

7.3 Performance

As shown in Figure 11, Cocytus incurs little performance overhead for read-only and read-
mostly workloads and incurs small overhead for write-intensive workload compared to vanilla
Memcached. Cocytus has similar latency and throughput with PBR. The following use some pro-
filing data to explain the data.

Small overhead of Cocytus and PBR: As the three configurations handle get request with
similar operations, the performance is similar in this case. However, when handling set requests,
Cocytus and PBR introduce more operations and network traffic and thus modestly higher latency
and small degradation of throughput. From the profiled CPU utilization (Table 2) and network
traffic (Memcached:540Mb/s, PBR: 2.35Gb/s, Cocytus:2.3Gb/s, profiled during 120 clients insert
data), we found that even though PBR and Cocytus have more CPU operations and network
traffic, both of them were not the bottleneck. Hence, multiple requests from clients can be
overlapped and pipelined. Hence, the throughput is similar with the vanilla Memcached. Hence,
both Cocytus and PBR can trade some CPU and network resources for high availability, while
incurring small user-perceived performance overhead.

Higher write latency of PBR and Cocytus: The latency is higher when the read-write ratio is
95%:5%, which is a quite strange phenomenon. The reason is that set operations are preempted by
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Fig. 11. Comparison of latency and throughput of the three configurations.

Table 2. CPU Utilization for 1KB Value Size

Memcached PBR Cocytus
15 primary 30 backup 15 data 10 parity

Read : Write 15 processes processes processes processes processes
50%:50% 231%CPUs 439%CPUs 189%CPUs 802%CPUs 255%CPUs
95%:5% 228%CPUs 234%CPUs 60%CPUs 256%CPUs 54%CPUs
100%:0% 222%CPUs 230%CPUs 21%CPUs 223%CPUs 15%CPUs

get operations. In Cocytus and PBR, set operations are FIFO, while set operations and get operations
are interleaved. Especially in the read-mostly workload, the set operations tend to be preempted,
as set operations have longer path in PBR and Cocytus.

Lower read latency of PBR and Cocytus: There is an interesting phenomenon is that higher
write latency causes lower read latency for PBR and Cocytus under update-intensive case (i.e.,
r:w = 50:50). This may be because when the write latency is higher, more client threads are waiting
for the set operations at a time. However, the waiting on set operation does not block the get

operation from other client threads. Hence, the client threads waiting on get operation could be
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Fig. 12. Performance of PBR and Cocytus when nodes fail. The vertical lines indicate all data blocks are

recovered completely.

done faster, because there would be fewer client threads that could block this operation. As a result,
the latency of get is lower.

7.4 Recovery Efficiency

We evaluate the recovery efficiency using 1KB value size for read-only, read-mostly and read-write
workloads. We emulate two node failures by manually killing all processes on the node. The first
node failure occurs on the 60th second after the benchmark starts. And the other node failure
occurs at 100s, before the recovery of the first failure finishes. The two throughput collapses in
each of the subfigures of Figure 12 are caused by the TCP connection mechanism and can be used
coincidentally to indicate the time a node fails. The vertical lines indicate the time that all the data
has been recovered.

Our evaluation shows that after the first node failure, Cocytus can repair the data at 550MB/s
without client requests. The speed could be much faster if we use more processes. However, to
achieve high availability, Cocytus first does recovery for requested units and recovers cold data
when the system is idle.

As shown in Figure 12(a), Cocytus performs similarly as PBR when the workload is read-only,
which confirms that data recovery could be done in parallel with read requests without notable
overhead. The latencies for 50%, 90%, 99% requests are 408us, 753us, and 1117us in Cocytus during
recovery. Similar performance can be achieved when the read-write ratio is 95%:5%, as shown in
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Fig. 13. Performance under different coding schemes.

Figure 12(b). In the case with frequent set requests, as shown in Figure 12(c), the recovery affects the
throughput of normal request handling modestly. The reason is that to handle set operations Co-
cytus needs to allocate new blocks, which usually triggers data recovery on those blocks. Waiting
for such data recovery to complete degrades the performance. In fact, after the first node crashes,
the performance is still acceptable, since the recovery is relatively simpler and not all processes are
involved in the recovery. However, when two node failures occur simultaneously, the performance
can be affected more notably. Fortunately, this is a very rare case and even if it happens, Cocytus
can still provide services with reasonable performance and complete the data recovery quickly.

To confirm the benefit of our online recovery protocol, we also implement a blocked version of
Cocytus for comparison. In the blocked version of Cocytus, the set operations are delayed if there
is any recovery in progress and the get operations are not affected. From Figure 12, we can observe
that the throughput of the blocked version collapses even when there is only one node failure and
5% of set operations.

7.5 Different Coding Schemes

To understand the effect under different coding schemes, we evaluate the Cocytus with RS(4,5),
RS(3,5) and RS(2,5). As shown in Figure 13, the memory consumption of RS(2,5) is the largest
and the one of RS(4,5) is the least. All the three coding schemes benefit more from larger value
sizes. Their throughput is similar, because there are no bottlenecks on servers. However, the write
latency of RS(2,5) is a little bit longer, since it sends more messages to parity processes. The reason
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Fig. 14. Network cost of three systems with 1KB value size and 50%:50% read-write ratio.

Fig. 15. Performance under lower CPU frequency and smaller network bandwidth. The value size is 1KB.

why RS(2,5) has lower read latency should be a longer write latency causes lower read latency
(similar to the case described previously).

7.6 Performance Under Limited Resources

To understand Cocytus’ performance under limited resources, we first collect the network band-
width cost of three systems in 1KB value size and 50%:50% read-write ratio scenario. The data that
are shown in Figure 14 is the total network cost of five servers. In this evaluation, we crash one
of the five servers (for both Cocytus and PBR) at the 120th second, so there is a period of network
fluctuation starting at that point. Before the crash, the network cost of PBR and Cocytus is around
3Gbps, which is close to PBR and is about 3× of that of Memcached. After the crash, PBR′ s net-
work cost drops, because one server is down on which there is no more network traffic. Cocytus′s
network cost reaches 5Gbps–{6}Gbps during data recovery. After recovery, the network cost of
PBR and Cocytus are close again.

Next, we limit the network bandwidth and CPU resources to test the three systems in resource-
limited environments. As Figure 15 shows, when we limit the CPU frequency to 1.2GHz, which is
2.3GHz in the previous test, Cocytus’s performance is worse than other two systems on 50%:50%
read-write ratio due to encoding work. Nevertheless, the performance of three systems is close
when the read-write ratio is 95%:5%. When we limited the outside network bandwidth to 100Mbps
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Fig. 16. Performance of transaction layer.

for each server with the traffic controller (tc) utility, the performance of PBR and Cocytus is half
of Memcached’s on 50%:50% read-write ratio; the performance difference is smaller on 95%:5%
read-write ratio.

7.7 Transaction Performance

We evaluate the transaction performance atop Cocytus by studying the raw throughput, latency,
abort rate as well as the crash recovery performance. In this evaluation, we set the number of
transaction masters the same as the number of data nodes. Each transaction master and its corre-
sponding data node are located on the same machine. In this way, there is no cross machine traffic
between transaction master and data node. We implemented SmallBank (Cahill et al. 2009) in C++
with an extension operation from the OLTP-Bench (Difallah et al. 2013). The benchmark contains
six operations that are amalgamate, balance, deposit checking, send payment, transact saving and
write check. We set the frequency of the six operations as 15%:15%:15%:25%:15%:15%, which is the
same as the config in OLTP-Bench. Hence, only 15% transactions are read-only. There are 100,000
accounts in the bank, of which 4,000 accounts are hotpot and are accessed in 90% probability.

Figure 16(a) illustrates the performance in normal mode and in crash mode. The transactions
atop Cocytus can achieve around 17,000 transactions per second, with a mean latency of 2.3ms (in
Figure 16(b)) and a transaction abort rate between 12% to 16% (in Figure 16(c)). There are three
reasons why performance difference between the K/V operations and transaction operations are
large. First, each transaction involves 3 to 8 KV operations. Second, 85% transactions are read-write
that involve more transaction-related traffic on commit. Third, the transactions have a hotspot, and
they would be serialized if they access the same key.

The high abort rate are mostly caused by clients when they found some data is unexpected, for
example, there is no enough money on withdrawing.

To study how Cocytus handles crash recovery, we shut down a machine running both the data
node and the transaction coordination services on the 60th second, and then shut down another
machine on the 120th second. From Figure 16(a), we can see that the time to recover the data node
as well as the transaction service is in 2s, and then the performance goes back to the normal level.

We also run the transaction layer on top of Memcached with PBR for comparison. As shown
in Figure 16(a), both systems experience similar performance in normal execution and during
recovery except that PBR reaches a little higher performance after two machine crash. This
further confirms the efficiency and availability of Cocytus without sacrificing performance in an
in-memory transaction system.

8 RELATED WORK

Separation of work: The separation of metadata/key and values is inspired by prior efforts
on separation of work. For example, Wang et al. (2012) separate data from metadata to achieve
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efficient Paxos-style asynchronous replication of storage. Yin et al. (2003) separate execution
from agreement to reduce execution nodes when tolerating Byzantine faults. Lu et al. (2016)
separate keys from value in a persistent LSM-tree-based KV-store to minimize I/O amplification
for SSD-conscious storage. Clement et al. (2009) distinguish omission and Byzantine failures and
leverage redundancy between them to reduce required replicas. In contrast, Cocytus separates
metadata/key from values to achieve space-efficient and highly-available key/value stores.

Erasure coding: Erasure coding has been widely adopted in storage systems in both academia
and industry to achieve both durability and space efficiency (Huang et al. 2012; Silberstein et al.
2014; Rashmi et al. 2013; Sathiamoorthy et al. 2013; Muralidhar et al. 2014). Generally, they pro-
vide a number of optimizations that optimize the coding efficiency and recovery bandwidth, like
local reconstruction codes (Huang et al. 2012), Xorbas (Sathiamoorthy et al. 2013), piggyback
codes (Rashmi et al. 2013), and lazy recovery (Silberstein et al. 2014). PanFS (Welch et al. 2008)
is a parallel file system that uses per-file erasure coding to protect files greater than 64KB, but
replicates metadata and small files to minimize the cost of metadata updates. Atlas (Lai et al. 2015)
is also a KV storage system that uses EC to replace three-copy replication and separates the man-
agement of metadata and data. Atlas is designed for HDD and it splits a patch of values for EC. In
contrast, Cocytus is designed for memory storage and splits entire storage space. A followup work
of Cocytus, EC-Cache (Rashmi et al. 2016) applies online erasure coding within a single large object
to provide dynamic load balancing in memory caching systems under skewed workloads. Yet, EC-
cache only targets immutable objects while Cocytus targets both immutable and mutable objects.

Replication: Replication is a standard approach to fault tolerance, which may be categorized
into synchronous (Budhiraja et al. 1993; Bressoud and Schneider 1996; van Renesse and Schneider
2004) and asynchronous (Lamport 2001; Bolosky et al. 2011). Mojim (Zhang et al. 2015) combines
NVRAM and a two-tier primary-backup replication scheme to optimize database replication. Co-
cytus currently leverages standard primary-backup replication to provide availability to metadata
and key in the face of omission failures. It will be our future work to apply other replications
schemes or handle commission failures.

RAMCloud (Ongaro et al. 2011) exploits scale of clusters to achieve fast data recovery. Imita-
tor (Wang et al. 2014b) leverages existing vertices in partitioned graphs to provide fault-tolerant
graph computation, which also leverages multiple replicas to recover failed data in one node. How-
ever, they do not provide online recovery such that the data being recovered cannot be accessed
simultaneously. In contrast, Cocytus does not require scale of clusters for fast recovery but instead
provide always-on data accesses, thanks to replicating metadata and keys.

Key/value stores: There have been a considerable number of interests in optimizing key/value
stores, leveraging advanced hardware like RDMA (Mitchell et al. 2013; Stuedi et al. 2012; Kalia
et al. 2014; Wei et al. 2015) or increasing concurrency (Fan et al. 2013; Li et al. 2014; Liu et al.
2014). Cocytus is largely orthogonal with such improvements, and we believe that Cocytus can be
similarly applied to such key/value stores to provide high availability.

Fault-tolerant transaction processing: There has been a long thread of providing fast and
reliable distributed transactions (Thomson et al. 2012; Corbett et al. 2012, 2013; Dragojević et al.
2015; Chen et al. 2016). Compared to the transactions in Cocytus, prior designs use primary-backup
replication, which incurs more memory consumptions. We believe Cocytus can be easily integrated
to prior distributed transaction designs and showcase a simple design that achieves good perfor-
mance and fast recovery.

9 CONCLUSION AND FUTURE WORK

Efficiency and availability are two key demanding features for in-memory key/value stores.
We have demonstrated such a design that achieves both efficiency and availability by building
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Cocytus and integrating it into Memcached. Cocytus uses a hybrid replication scheme by using
PBR for metadata and keys while using erasure-coding for values with large sizes. Cocytus is able
to achieve similarly normal performance with PBR and little performance impact during recovery
while achieving much higher memory efficiency.

We plan to extend our work in several ways. First, we plan to explore a larger cluster set-
ting and study the impact of other optimized coding schemes on the performance of Cocytus.
Second, we plan to investigate how Cocytus can be applied to other in-memory stores using
NVRAM (Venkataraman et al. 2011; Coburn et al. 2011; Yang et al. 2015).
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